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Abstract

Traditional list schedulers order instructions based on an optimistic estimate of the load delay imposed
by the implementation. Therefore they cannot respond to variations in load latencies (due to cache hits
or misses, congestion in the memory interconnect, etc.) and cannot easily be applied across different
implementations. We have developed an alternative algorithm, known as balanced scheduling, that
schedules instructions based on an estimate of the amount of instruction level parallelism in the program.
Since scheduling decisions are program- rather than machine-based, balanced scheduling is unaffected by
implementation changes. Since it is based on the amount of instruction level parallelism that a program
can support, it can respond better to variations in load latencies. Performance improvements over a
traditional list scheduler on a Fortran workload and simulating several different machine types (cache-
based workstations, large parallel machines with a multipath interconnect and a combination, all with
non-blocking processors) are quite good, averaging between 3% and 18%.

1 Introduction

Instruction schedulers for conventional machines generate code assuming a machine model in which load
latencies are well-defined and fixed. Usually the latencies reflect the most optimistic execution situation, e.g.,
the time of a cache hit rather than a cache miss. Compiler optimizations intended to improve performance
through instruction scheduling, such as reordering instructions to avoid pipeline stalls; insert independent
instructions after loads to keep the CPU busy while memory references are in progress. The number of
instructions inserted (in the best case) depends on this predefined latency value.

When a load reference exceeds the implementation-defined latency, the processor architecture generally
stipulates that instruction execution be stalled. The advantage of this design (called blocking loads) is that
it requires a simple and straightforward hardware implementation. The consequence for compiler technology
is that the compiler does not have to consider multiple memory latencies during instruction scheduling.

Two architectural innovations make it worthwhile to reconsider how to schedule behind load instructions.

The first is processor designs that do not stall on unsatisfied load references (called nonblocking loads)



through the use of lockup free caches[19, 20, 16, 13], multiple hardware contexts[2, 1] or an instruction
lookahead scheme[2]. Nonblocking loads allow a processor to continue executing other instructions while a
load is in progress. Although the design requires more complex hardware, more instruction level parallelism
can be exploited, and therefore programs execute faster. The second innovation is machines that have a
large variance in memory response time. These uncertain memory latencies may be due to congestion in
a multipath interconnect or a hierarchy of memory, including both cache hierarchies and local and global
memories.

Variable load instruction latencies, coupled with nonblocking loads, complicate scheduling, because the
instruction scheduler does not know how many instructions to schedule after a load to maintain high processor
utilization. If the memory reference is delayed beyond the scheduler’s latency estimate, the processor will
stall and processor utilization will drop. However, if the load latency is shorter than the estimate, the
destination register of a load instruction will be tied up longer than necessary. This may increase register
pressure enough to cause unnecessary spills to memory and a consequent increase in program execution
time. In addition, an excessive number of instructions may migrate to the top of the schedule, leaving an
insufficient number to hide load latencies near the bottom. In this case the CPU will also be needlessly idled.

In this report we present a code scheduling algorithm, called balanced scheduling, that has been specifically
designed to tolerate a wide range of variance in load latency over the entire execution of a program. Balanced
scheduling works within the context of a traditional list scheduler[9, 15, 23, 8, 6], but uses a new method for
calculating load instruction weights. Rather than using weights that are determined by the implementation
and therefore are fixed for all programs, the weight of each load is based on the amount of instruction level
parallelism that is available to it. (We refer to this as load level parallelism.) This assignment is effective,
since load instructions are scheduled for the maximum latency that can be sustained by the amount of load
level parallelism in the code. In essence, our algorithm schedules for the code instead of scheduling for the
machine. Looking at it another way, balanced scheduling amortizes the cost of incorrectly estimating actual
load latencies over all load instructions in the program.

To validate the algorithm we compared the performance of several programs scheduled via balanced
scheduling and a traditional list scheduler on a variety of processor and memory architectures. The proces-
sor models differed in their ability to exploit load level parallelism; each was coupled with three different
memory systems, that exhibit dissimilar latency behavior. Both the balanced scheduler and the traditional
scheduler were incorporated into the Goco[21] compiler and generated code for the Perfect Club benchmarks[4].
Performance improvements for balanced scheduling averaged 3% to 18% over the traditional list scheduler,
for different processor and system model combinations.

The remainder of this report is organized as follows. Section 2 introduces balanced scheduling, and



section 3 describes the algorithm in more detail. Section 4 explains our experimental methodology; Section 5
presents the experimental results. Section 6 discusses extensions and other applications of the balanced

scheduling algorithm. The conclusion follows in section 7.

2 Balanced Scheduling

The traditional approach to instruction scheduling that considers machine resource constraints is list schedul-
ing[9, 15, 23, 8, 6]. The primary data structure used by list schedulers is the code DAG, in which nodes
represent instructions and edges represent dependences between them. Each node is labeled with a weight
reflecting the latency of the instruction.’ At each iteration of its algorithm a list scheduler creates a ready
list of instructions that are eligible for scheduling, i.e., those whose predecessors in the code DAG have been
scheduled or have had their latencies met. A set of heuristics is then applied to decide which instruction
from the ready list should be scheduled next; the heuristics used depend on the particular list scheduler. For
example, Gibbons and Muchnick[8] first schedule the instruction with the greatest operation latency. If more
than one instruction qualifies, their scheduler breaks the tie by choosing the instruction(s) with the greatest
number of successors. The final heuristic picks the the instruction with the largest sum of the latencies along
the longest path from the instruction node to a leaf node. Other styles of list schedulers include those that
combine several levels of heuristics into a single weight and schedule in decreasing weight order[17, 24] and
update scheduling weights dynamically[23]. Our heuristics are described in detail in Section 4.1.

If a processor exposes the variations in actual memory reference latency to the compiler through non-
blocking load instructions, instruction scheduling becomes more complicated. Traditional list schedulers use
a single constant for the weight of all load instructions, usually an implementation-defined latency (e.g.,
cache hit time). They then schedule instructions independent of that load until the load latency has been
consumed. As expected, traditional schedulers work best when the actual latency of each load matches
the predefined (and optimistic) value. When it does not, a longer latency (e.g., the time of a cache miss)
penalizes the program by stalling the CPU. This fixed estimate of memory latency prevents the scheduler
from hiding latencies larger than the nominal value. Therefore, when the optimistic execution scenario does
not occur, performance suffers. The worst scheduling situation exists when the actual latencies change over
time, for example, as congestion in the interconnect varies.

In contrast, the balanced scheduler computes load instruction weights based on a measure of instruction
level parallelism in the code rather than on an implementation-defined value. This measure, which we

call load level parallelism, defines the number of instructions that may execute in parallel with each load

1Edges can also be labeled, allowing latencies to differ among successor nodes of a given node, as on the Intel i860.
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Figure 2: Schedules generated from the code DAG
Figure 1: Code DAG of a hypo- in Figure 1, using the traditional and balanced
schedulers. The traditional scheduler 1s illustrated
with load instruction weights of 5 and 1, respec-
tively.

thetical program.

instruction. The weight for each load is calculated separately, as a function of the number of instructions
that may initiate execution during the load and the number of other loads that could also use them to hide
latencies.

Both the balanced scheduling algorithm and the traditional scheduler operate on a basic block by basic
block basis. The balanced scheduler simply incorporates the new method of computing weights for each load
instruction into a traditional list scheduler.

Using the code DAG of Figure 1 as an example, Figure 2 illustrates the schedules generated by the
traditional and the balanced schedulers. Nodes labeled Ln represent load instructions and nodes labeled Xn
represent other non-load instructions of weight 1. The schedules in Figures 2a and 2b result from scheduling
the graph of Figure 1 with a traditional scheduler, assuming load instruction weights of 5 and 1, respectively.
These two schedules illustrate the effect of over- and under-estimating load instruction latency. In Figure 2a,
if L1 incurs an actual latency greater than one, hardware interlocks will be inserted before X4. We say the
scheduler is greedy in this case, because L0 captured all of the load level parallelism and left none for L1.
The opposite situation occurs when load instruction weights are too small. Figure 2b illustrates the schedule
produced when a weight of one is used. In this case we have not taken advantage of the load level parallelism
with respect to L0. We say the scheduler was lazy, because it passed over opportunities for parallelism.
Should the actual latency be greater than the scheduling assumption, the processor will needlessly stall.
Figure 2c is the schedule that the balanced scheduler generates. The balanced scheduler has measured the
load level parallelism in the DAG and determined that a weight of 3 assigned to each load instruction would

generate an efficient schedule.
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Figure 3: Interlocks generated from Figure 2 for various load latencies.

Figure 3 summarizes the number of interlocks that accrue when these schedules are executed with varying
memory latencies. The chart shows that, for latencies in the range of 2-4, the balanced schedules are faster
than both the greedy and lazy traditional schedules illustrated in Figure 2. Outside this range the balanced
and traditional schedules perform equivalently.

In summary, balanced scheduling’s strength is its ability to look beyond fixed latencies, thereby exposing
additional instruction level parallelism. Whereas traditional schedulers plan for the optimal latency, balanced
schedulers make scheduling decisions based on the amount of load level parallelism the code can support. It

therefore produces fewer interlocks when the optimal case doesn’t occur.

3 Balanced Scheduling Algorithm

This section presents the balanced scheduling algorithm. The algorithm is first illustrated through two
simple examples. The examples depict the two relationships load instructions can have with each other, 1.e.,
occurring in series and in parallel, and, therefore, the two cases the algorithm must handle.

When load instructions occur in series, the balanced scheduling algorithm equally distributes among them
all instructions with which they can execute in parallel. Referring again to the code DAG of Figure 1, the
two load instructions, L0 and L1, may execute independently of X0, X1, X2 and X3. Since L1 is dependent
on L0, the obvious partitioning would schedule two instructions after L0 and two after L1. The weight on

each load instruction is simply one (for the issue slot of the load), plus the number of instruction issue slots
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Figure 4: Code DAG in which L0 Figure 5: Balanced schedule generated from the

and L1 are independent and exe- code DAG in Figure 4.

cute in parallel with all other in-
structions.

that may be initiated independently of the load divided by the number of loads in series or, 1 + (4/2) = 3.
Issue slots are measured, because instruction weights represent the number of machine cycles that should
pass before an instruction that uses the result of the load is initiated.

When load instructions are not dependent on each other, i.e.; they occur in parallel, their latencies can
be hidden, using instructions drawn from the same set. Referring to the code DAG in Figure 4, the balanced
scheduling algorithm takes advantage of the fact that LO and L1 can, and should, share the same set of
padding instructions. In Figure 4 each load instruction may execute in parallel with five other instructions,
so they are each assigned a weight of six (1 4+ 5/1). The final schedule is shown in Figure 5.

For a balanced scheduling algorithm to be successful, any combination of loads in series and loads in
parallel must be accommodated.

A balanced scheduler operates by measuring load level parallelism and assigning weights accordingly.
The algorithm, shown in Figure 6, examines each instruction ¢ in the code DAG () and computes the set
of instructions with which it may execute in parallel. It first eliminates from G those instructions that are
predecessors or successors, recursively, producing Gjpg (line 3). The resulting connected components of Ginqg
contain the sets of load instructions that may execute in parallel with ;. Within each connected component,
C', the path with the largest number of load instructions is located (lines 4-5). (We examine the longest
load path, because loads on other paths can be overlapped with it.) Since the loads on this path execute
in series, their sum (called Chances) represents the number of opportunities for scheduling ¢. Finally, the
number of 1ssue slots in the instruction execution pipeline that are required by ¢ is divided by the number

of loads in series (IssueSlots(i)/Chances), and is added to the accumulating weight of each load instruction

in C' (lines 6-7).



|| Term || Definition ||
G || the code DAG.

Pred(¢) || the transitive closure of the predecessor function on node i.
Suce(?) || the transitive closure of the successor function on node .
Chances || the maximum number of loads on any path in a connected component.
IssueSlots(¢) || the number of issue slots in the instruction execution pipeline re-
quired by instruction z.

1. Initialize the latency of each load instruction to 1.

2. for each instruction ¢ in GG

3 Ginga = G — (Pred(é) U Suce())

4 for each connected component C' in Ging

5. Find the path with the maximum number of load instructions.
6 for each load instruction [ € '

7 add TssueSlots(7)/Chances to the weight of {

8 end

9 end

1

0. end

Figure 6: Balanced scheduling algorithm

Figure 7a illustrates the balanced scheduling algorithm on a more challenging basic block. Using :=X1,
step 4 generates the three connected components shown in Figure 7b. (L2 does not appear in a connected
component because it is a predecessor of X1). The maximum path length in the component containing L1
is 1; therefore X1 contributes 1/1 to L1’s weight. The maximum path length in the second component is 3,
and X1 contributes 1/3 to the weights of each load instruction, L3, L4, Lb and L6. The third connected
component has no load instructions. Table 1 shows the weight contributed by each instruction to each load at
the completion of the algorithm. The latencies assigned to the five load instructions represent a distribution
of load level parallelism that is representative of the load level parallelism in Figure 7.

If n is the number of nodes in the DAG, steps 4 and 5 together may be done in a worst case time of
O(n « n)z, using the set union algorithm. First, each node in Gy, 4 1s labeled with its level from the farthest
leaf. Next, it is combined with the nodes to which it is connected, using the set union function. Each time
we perform set union, the set label 1s updated to reflect both the minimum and maximum level number that
has been seen in that set. Therefore, the largest path length for each connected component is simply the
maximum level number minus the minimum level number plus 1. Steps 6-7 are performed in O(n) time and,
therefore, do not impact the worst case time complexity. Connected component analysis is done for each

instruction in the code DAG; therefore, the entire algorithm has a worst case time complexity of O(n? « n).

2 is the inverse Ackerman function. As a function of n, it increases very slowly and may be considered constant[22].






4 Experimental Methodology

We designed a series of experiments to compare balanced scheduling with a traditional scheduling approach.
These experiments modeled the execution of real programs running on several different architectures. This
section describes the methodology of these experiments. The integration of the balanced scheduler into the
GCC compiler, the workload and the simulator we used for our measurements are described, in turn, in
sections 4.1 through 4.3.

For our experiments we classify the target machine characteristics into two groups. The processor char-
acteristics are those that control how the processor exploits parallelism with respect to load instructions.
The system characteristics are the attributes of the memory system in a particular implementation. We used
several alternatives for each model, to demonstrate that balanced scheduling works well on architectures that
contribute to latency uncertainty in different ways. The processor and system models we used are described

in sections 4.4 and 4.5.

4.1 Compiler

We modified the GNU Gee version 2.2.2 compiler[21] to perform balanced instruction scheduling. The default
instruction scheduler within Gec was replaced by a new module that can schedule using either the traditional
or balanced approaches. In addition, several changes were made to GCC to increase scheduling effectiveness
and improve instruction level parallelism. The changes include alleviating the effect of dependences in spill
code introduced by register allocation, our heuristics for picking instructions from the ready list (one of which
helps control register pressure) and modifications to ccc’s RTL intermediate language. Both schedulers take
advantage of these modifications.

Geco performs instruction scheduling both before and after register allocation. Since register allocation
may add spill code and/or copy instructions, the second scheduling pass serves to integrate these additional
instructions into the final schedule. However, the effectiveness of the second scheduling pass is restricted
because of dependences introduced by register allocation.

These false dependences negatively effect schedule performance in two ways. First, the final assignment
of register numbers severely limits the code motion that a scheduler can perform. Second, when adding spill
instructions, the Gec compiler always uses register numbers selected from a small pool of spill registers. The
net effect is that spill code cannot be scheduled effectively with other instructions. We improve performance
by increasing the size of GcC’s spill register pool by two and implementing a FIFO queue-like ordering of the
registers in the pool. An alternative approach would use software register renaming after register allocation

to better integrate spill instructions.



As previously mentioned, both the balanced and traditional schedulers use the same list scheduler. Some
list schedulers place instructions onto the ready list when all their predecessors in the code DAG have
been scheduled. In contrast, our scheduler defers adding these instructions to the ready list until each
predecessor has exhausted its expected latency. In the case of starvation the scheduler inserts virtual no-op’s
into the instruction stream. This delayed insertion of instructions into the ready list increases the accuracy
of instruction placement within the schedule. Since our processors use the hardware interlock model of
execution, the virtual no-ops are removed before actual code generation.

List schedulers select instructions from the ready list in priority order. In our case, the priority of an
instruction is equal to its weight plus the maximum priority among its successors. In the event of ties we
select instructions using alternate heuristics in the following order. The first selects the instruction that has
the largest difference between consumed and defined registers; this heuristic helps control register pressure.
The second ranks instructions based on the number of successors in the code DAG that would be exposed
for scheduling if that instruction were to be selected; it gives the list scheduler more instructions from which
to select. The final heuristic selects the instruction that was generated the earliest. Our list scheduler is a
bottom-up scheduler, therefore we generate schedules in reverse order by scheduling from the leaves of the
Code DAG toward the roots.

The compiler has been configured for the MIPS RISC processor[12]. Gcc’s intermediate language, RTL, is
not sufficiently rRisc-like for an instruction scheduler to get maximum benefit, since some primitive operations
in RTL are actually multi-cycle macros. In the context of this work, memory-to-memory copies are the most
notable, since it is load instructions that we are concentrating on scheduling. Our implementation extracts
GCC’s intermediate language after optimization but before register allocation and modifies it to replace
certain non-RISC patterns, such as memory-to-memory copy, with their RISC equivalents. The modified RTL
is at a lower level and therefore more suitable for instruction scheduling.

Loop unrolling is an optimization that increases instruction level parallelism. Due to a conflict with the
way we use profiling information (section 4.3), Gcc’s unrolling capability is not usable for these experiments.

Therefore, unrolling was performed manually.

4.2 Workload

The workload consisted of the Perfect Club suite of benchmarks[4]. (See Table 4.2) Since these programs are
written in FORTRAN, they were converted to C using f2¢[7]. The Fortran-to-C converter produces C programs
that correctly represent the semantics of the original FORTRAN programs. However, these C programs are
conservative translations: after being compiled by a C compiler, they will most likely execute more slowly

than if they were compiled by a FORTRAN compiler. For example, since almost all data is referenced through
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Name  Description

ADM A 3D pollution concentration simulation evaluating systems of hydrodynamic
equations.
ARC2D  Fluid flow modeling supersonic reentry.
BDNA Uses the BIoMOL package to model the molecular dynamics of biomolecules in water.
FLOb2Q Analyses transonic inviscid flow past an airfoil by solving unsteady Euler equations.
MDG Molecular dynamics calculation of water molecules in the liquid state at room tem-
perature and pressure.
MG3D  Seismic migration code using FFT’s to model below surface structures.
QcD2  Lattice gauge QCD simulation.
TRACK  Determines the course of a set of an unknown number of targets, such as rocket
boosters, from observations.

Table 2: The benchmarks in the “Perfect Club.”

float a[HUGE], b[HUGE];
float func(a, b)
float *a, *b; float new_func(.a, _b)

{ float *_a, *_b;
al1] = b[2]; - {
al2] = b[3]; al1] = v[2];

1 al2] = b[3];

1

Figure 8: Example f2¢ program showing the disambiguation problem and our transformation. In func the
load of b[3] must be considered dependent on the store of al1]. Our transformation results in new_func.
The resulting program produces incorrect results, but accurately models the code that would be generated
by a FORTRAN compiler.

pointers in the C program, it is nearly impossible for a C compiler to do the memory reference disambiguation
that might be obvious to a FORTRAN compiler. Instruction scheduling is effected, because load instructions
are not free to move above stores. Since this problem severely restricts a scheduler’s ability to exploit load
level parallelism, we apply a transformation which more correctly models the dependences in the FORTRAN
program and increases the available parallelism.

The FORTRAN standard[3] specifically disallows aliasing among dummy arguments (formal parameters) if
there will be any stores to the dummy arguments. If the function func in Figure 8 were produced by f2¢, the
FORTRAN standard would assume that array a and array b were digjoint; therefore the load for b[3] could be
scheduled before the store of a[1]. However, the C semantics for func insert a true data dependence between
the store of a[1] and the load of b[3]. This dependence is an artifact of the Fortran-to-C translation and
does not exist in the original program.

Our compiler takes advantage of the FORTRAN semantics by performing a parallelism-exposing transfor-
mation on the input C programs. The transformation would replace func with new_func, as illustrated in

Figure 8. New global variables are inserted with the same names as the original subroutine parameters. The
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formal parameters are replaced with names that are never referenced. The program is no longer semantically
correct, but the compiler 1s now able to correctly model the FORTRAN independence between references to
array a and array b. The net effect is the generation of code that is comparable to that generated by a
FORTRAN compiler. This transformation is a conservative representation of the data dependences that a

FORTRAN compiler could discover, since FORTRAN is quite specific about when aliasing may occur.

4.3 Simulator

After the second scheduling pass, the machine instructions are extracted and run through an instruction level
simulator. Given a particular model for load instruction latencies (explained in section 4.5), the simulator
simulates instruction issue and completion for each basic block and computes its execution time in cycles.

As the simulator encounters load instructions, it draws latency samples from a random distribution that
represents the system-level characteristics being modeled (see Section 4.5). The output of the simulator is
one sample of the number of instruction and interlock cycles that comprise the execution time of the program
on the modeled system. Because the results of the simulation are based on an independent and identically
distributed random variable, we can take several steps to both reduce the execution time of the simulation
and improve the quality of the results.

We have chosen to execute the full instruction-by-instruction simulation 30 times with new random
numbers on each iteration. The number 30 represents an arbitrary choice which is large enough to avoid
statistical noise.

Second, we measure the accuracy of our results by generating confidence intervals. Confidence intervals
are computed for percentage improvement using a bootstrapping[5] procedure. From the 30 sample runtimes,
we randomly draw 30 samples, with replacement, in order to generate a second sample mean. This process
is repeated until we have 100 sample means for the block. These 100 sample mean runtimes are scaled by
the profiled execution frequency to compute the actual runtime of the block. The sample means for each
block are summed giving 100 sample runtimes for the entire program. The mean runtime reported is the
mean of the 100 sample mean runtimes.

In order to report a percentage improvement for balanced scheduling, the 100 sample means from the
balanced scheduler are paired with an equal number from the traditional scheduler, and the calculation is

performed. After sorting, a 95% confidence interval is directly extracted.

4.4 Processor-level model

Processor-level attributes model a processor’s ability to exploit load level parallelism. We model three

different configurations. The first is unrealistically aggressive and serves as a best case reference. The
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second two are restricted in ways that make them implementable. All of our processor models are assumed
to maintain store/load consistency, i.e., if a load instruction follows a store, and they reference the same
address, the load instruction receives the data that was written by the store instruction.

The first processor model (called UNLIMITED) can dispatch non-blocking load instructions with no limit on
the number of loads outstanding. This model is similar to theoretical dataflow machines[10]. Tt is of interest
because it exposes the maximum benefit that processor parallelism can achieve. The second (called MAX-8)
allows a maximum of eight load instructions to be simultaneously executing. If a ninth load instruction is
issued, the processor blocks until one of the eight outstanding loads completes. The third processor model
(called LEN-8) restricts the maximum number of cycles a load instruction can take before blocking, as in the
Tera Computer[2].? In this model, if a load instruction has been outstanding for eight cycles, the processor
blocks until the data is returned.

The balanced scheduler has not been specifically configured for any of the processor models. In particular,
it may schedule more than eight load instructions before using loaded data (as is prohibited in Max 8), and
it might assign load instructions weights greater than eight (not effective in LEN-8). If this information were
available to the compiler, the results for MAX-8 and LEN-8 would improve. We used a processor-independent
version of balanced scheduling to demonstrate that a code scheduling approach that was not associated with
a particular implementation, but instead was based solely on program characteristics, such as the amount

of load level parallelism, would generate efficient code.

4.5 System-level model

Three memory systems are modeled and simulated, representing different latency behavior in both current
and future architectures. The first has a data cache. A load instruction’s data is returned after 2 cycles
on a cache hit and either 5 or 10 cycles on a cache miss. The model represents a typical workstation-
class RISC processor that implements nonblocking load instructions, such as the Motorola 83000 series[16].
It is simulated with cache hit rates of 80% and 95%, modeling first level caches of 4K and 32K bytes,
respectively[11]. Four configurations are modeled, and are referred to as Lhr(hl,ml), where Lhr stands for
lockup-free caches with a hit rate of hr, and Al and ml are hit and miss latencies, respectively.

The second model has a memory interconnection network and no cache. The interconnection scheme uses
a hashing function to assign addresses to memory modules, effectively randomizing memory access locations.
In this architecture, memory latencies modeled by one of two zero-based probability mass functions, depicting

normal distributions with standard deviations of 2 or 5. A standard deviation of 2 represents a machine

3The Tera restricts the number of instructions rather than cycles; since we assume that instructions other than loads execute
in a single cycle, the two are equivalent.
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in a relatively stable state (uniform network load, low to medium uncertainty). A standard deviation of 5
represents one with unpredictable memory latencies (changing network load, high uncertainty). The network
machine is modeled in seven different configurations. Each distribution is combined with a mean of 2, 3 or 5,
representing different base load levels. In a multithreaded processor such as the Tera, the different means are
related to the number of active threads; the more threads, the lower the mean memory access time. We refer
to these models as N(p,0) where p is the mean of the distribution and o is the standard deviation. All six
configurations are reasonable design points for the machine. A seventh configuration models an unbalanced
system, with a mean access time of 30 cycles and a standard deviation of 5 (N(30,5)). Although we recognize
that a compiler would not likely generate code specifically for such an unbalanced configuration, we include it
in order to gauge balanced scheduling’s ability to handle a workload that has too little load level parallelism
to hide the average latency.

The third machine has both a data cache and a Tera-style memory interconnection network. A cache
hit occurs 80% of the time and takes two cycles. A cache miss is represented by a normal distribution with
a mean of 30 and a standard deviation of 5. This configuration is referred to as L80-N(30,5) and has a
mean latency of 7.6. In this case the 30 cycle latency is a reasonable design point, since the cache satisfies
most requests. The model is intended to be representative of Alewife-like systems[1], where a commodity

processor might be incorporated into a shared memory machine.

5 Experimental Results

The first set of results is the percentage improvement in execution time of the balanced scheduler over the
traditional scheduler (positive values indicate an improvement due to balanced scheduling). These results
appear in Tables 3-5, one for each processor model. For these experiments, the traditional scheduler uses
load latencies equal to the cache hit time or effective access time for models with caches and the mean of the
normal distribution for models without caches (labeled Optimistic Latency in the table). The percentage
improvement of balanced scheduling over traditional scheduling is quite good. The average decrease in
execution time for the UNLIMITED model varies from 3 to 18 percent for individual system models, with a
mean improvement of 9.9%. The results for MAX-8 and LEN 8 are similar, with ranges of 7% to 16% and
3% to 16%, and means of 10.0% and 8.7%, respectively. These results demonstrate that balanced scheduling
works well for several architectures, each of which contributes to latency uncertainty in a different way. It is
important to emphasize that the balanced scheduler has not been customized for the restricted processors;
these results represent the improvement from a machine-independent scheduler and would be better if the

processor dependences were taken into account.
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Processor model: UNLIMITED — Unlimited loads

System Optimistic Percentage improvement from balanced scheduling
Latency ADM | ARc2D | BDNa | FLO52Q | MDG | MG3D | QcD2 [ TRACK [Mean
Data cache; bus-based interconnection
L80(2,5) 2 5.8 6.7 6.0 4.9 9.8 7.0 19.3 7.2 8.3
2.6 4.0 6.2 5.2 3.6 8.7 6.2 18.6 2.6 6.9
L80(2,10) |2 9.9 13.1 10.6 8.7 14.4 11.9 27.8 6.7 12.9
3.6 7.5 11.7 8.1 6.7 11.6 10.7 25.8 2.2 10.5
L95(2,5) 2 3.4 3.9 4.4 2.8 6.9 3.7 16.9 6.1 6.0
2.2 2.1 4.0 4.0 2.1 6.2 3.9 16.2 2.0 5.1
L95(2,10) |2 4.6 5.8 5.8 3.9 8.0 5.4 19.9 4.9 7.3
2.4 3.2 6.1 5.6 3.8 7.2 5.8 19.0 1.7 6.6
No cache; network interconnection
N(2,2) 2 8.0 9.3 8.0 6.5 11.3 9.2 21.3 9.4 10.4
N(3,2) 3 6.4 8.9 4.0 5.0 12.0 8.6 22.7 3.5 8.9
N(5,2) 5 4.8 5.5 3.4 3.6 13.5 6.5 20.0 3.9 7.7
N(2,5) 2 14.2 17.7 14.4 11.9 20.9 16.1 32.7 16.6 18.1
N(3,5) 3 11.5 18.2 10.8 10.9 20.0 14.9 35.9 3.9 15.8
N(5,5) 5 9.2 12.0 9.3 7.6 18.3 10.3 27.8 4.9 12.4
N(30,5) 30 -3.5 -5.0 1.9 4.1 19.3 -0.9 7.1 0.6 3.0
Mixed
L80-N(30,5) | 2 12.4 20.4 15.8 12.7 20.0 13.3 39.6 11.3 18.2
7.6 7.0 9.3 18.4 6.3 14.3 4.5 19.4 -2.5 9.6

Table 3: Percent improvement in execution time from simulations using processor model UNLIMITED
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Processor model:

MAX 8 — Maximum of eight outstanding loads

System Optimistic Percentage improvement from balanced scheduling
Latency ADM | ARc2D | BDNa | FLO52Q | MDG | MG3D | QcD2 [ TRACK [Mean
Data cache; bus-based interconnection
L80(2,5) 2 6.5 8.9 8.6 5.6 7.8 5.9 23.1 8.7 9.4
2.6 4.5 9.0 9.8 4.2 7.4 6.6 21.8 2.6 8.2
L80(2,10) |2 9.8 13.4 11.2 9.0 10.8 7.8 26.2 7.2 11.9
3.6 7.7 12.5 6.8 6.6 8.9 8.3 25.2 2.3 9.8
L95(2,5) 2 4.1 5.8 7.1 3.8 6.0 3.9 20.4 6.6 7.2
2.15 2.9 6.9 8.7 3.2 6.0 5.2 19.4 2.9 6.9
L95(2,10) |2 5.4 7.3 8.0 5.0 6.4 4.8 21.6 7.5 8.3
2.4 4.2 9.0 10.2 4.9 6.8 5.9 20.6 3.2 8.1
No cache; network interconnection
N(2,2) 2 8.2 10.9 9.6 7.3 10.2 7.7 24.4 9.2 10.9
N(3,2) 3 6.5 10.8 4.5 6.1 10.0 7.7 24.1 5.3 9.4
N(5,2) 5 6.1 10.5 4.6 4.7 10.8 6.3 24.1 5.2 9.0
N(2,5) 2 13.4 17.8 13.9 11.1 15.9 10.9 30.0 13.2 15.8
N(3,5) 3 10.6 16.8 6.0 10.4 14.5 10.8 30.1 6.5 13.2
N(5,5) 5 8.9 14.3 7.4 7.7 13.5 7.8 25.9 5.5 11.4
N(30,5) 30 -1.7 -3.9 12.5 1.4 14.5 1.5 23.4 4.7 6.6
Mixed
L80-N(30,5) | 2 10.6 17.4 12.3 11.2 13.6 9.4 30.4 11.9 14.6
7.6 5.2 11.3 8.8 7.4 11.5 5.1 19.8 1.5 8.9

Table 4: Percent improvement in execution time from simulations using processor model MAX 8
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Processor model: LEN 8 — Maximum of eight cycles for loads

System Optimistic Percentage improvement from balanced scheduling
Latency ADM | ARc2D | BDNa | FLO52Q | MDG | MG3D | QcD2 [ TRACK [Mean
Data cache; bus-based interconnection
L80(2,5) 2 5.6 6.6 6.1 4.6 9.6 6.8 19.2 7.2 8.2
2.6 3.8 6.3 5.1 3.5 8.2 6.1 18.4 2.8 6.8
L80(2,10) |2 8.5 11.2 8.5 7.7 14.6 10.8 24.9 10.8 12.1
3.6 6.3 9.5 5.9 5.2 11.6 9.6 24.4 4.6 9.6
L95(2,5) 2 3.3 3.9 4.2 2.7 6.8 3.7 16.9 6.0 5.9
2.15 2.0 4.1 3.8 2.0 6.2 3.9 15.9 2.0 5.0
L95(2,10) |2 4.5 5.7 5.0 3.5 8.0 4.8 18.6 7.6 7.2
2.4 3.5 5.7 4.6 2.7 7.2 5.5 18.2 4.1 6.4
No cache; network interconnection
N(2,2) 2 7.6 9.2 7.9 6.2 11.2 9.0 21.2 8.0 10.0
N(3,2) 3 6.1 8.7 3.9 5.0 12.0 8.8 23.1 5.5 9.1
N(5,2) 5 4.6 5.3 2.1 3.4 12.9 6.1 19.0 5.9 7.4
N(2,5) 2 12.8 15.8 11.5 10.1 19.2 13.6 29.7 10.9 15.5
N(3,5) 3 10.1 14.6 7.4 9.6 17.4 12.2 30.9 3.8 13.3
N(5,5) 5 6.5 8.1 3.3 5.7 16.4 7.3 21.6 2.0 8.9
N(30,5) 30 -2.7 -4.7 2.5 3.7 18.7 -3.8 6.3 2.3 2.8
Mixed
L80-N(30,5) | 2 9.7 11.9 9.7 10.3 13.9 9.5 27.6 17.5 13.8
7.6 2.4 0.7 2.9 3.5 10.4 0.9 10.9 11.0 5.3

Table 5: Percent improvement in execution time from simulations using processor model LEN 8
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|| Label || Definition |

TIns || The number of instructions executed, in millions, for the traditional scheduler.
Blns || The number of instructions executed, in millions, for the balanced scheduler.

T1% The percentage of cycles which were interlock cycles for the traditional scheduler.
BI% The percentage of cycles which were interlock cycles for the balanced scheduler.
Imp% || The percentage improvement of the balanced scheduler over the traditional

scheduler.

Table 6: Index of labels used in figures.

The balanced scheduler does relatively better (over the traditional scheduler) as the uncertainty of the
load instruction latencies increases. This can be seen in three different situations: when the cache hit rate is
low (L80 vs. L95); when the cache miss penalty is high (L80(2,10) vs. L80(2,5) and L95(2,10) vs. L95(2,5));
and when the standard deviation of the normal is high (N(2,5) vs. N(2,2), etc.).

To better understand the reasons for the performance improvements, we did a component analysis of
the execution times. All of our instructions execute in a single cycle; therefore the runtime of a program
is the sum of the number of instructions executed and the number of interlocks incurred. Table 7 presents
interlock information on the performance of one of the benchmarks, Mba. (Table 6 explains some of the
column headings used in the remaining tables.) In this table, the percentage of the total number of cycles
that were interlock cycles is reported for both the traditional and balanced schedulers. MDG’s performance
gain with balanced scheduling (and also that of the other programs) is a result of both executing fewer
instructions (BIns < TIns) and incurring fewer interlocks (BI% < T1%).

Balanced schedules often execute fewer instructions because their schedules contain less spill code. Table 8
presents data on the percentage of total instructions executed that was classified as spill code. (A spill
instruction is defined to be any instruction that is inserted by the register allocator.) Balanced scheduling
incurred fewer spills than the traditional scheduler for virtually all implementation-defined latencies on all
programs. (The sole exceptions were ARC2D with an optimistic latency of 30 cycles and FLO52Q with 3.6
cycles.)

We hypothesize that the reduction in interlocks and spill code when using the balanced scheduler is
a direct consequence of its always considering load level parallelism when calculating latency weights. It
measures the parallelism, and, whether it 1s high or low, tries to use it to hide all load latencies in a basic
block.

When there is significant load level parallelism, code DAGs tend to be bushy, causing all list schedulers
to schedule independent instructions in parallel. The balanced scheduler manages this by assigning load

instruction weights in such a way that load latencies are hidden by the other instructions. Register pressure
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Program: MbpaG
(BIns = 5,144 million)

System Optimistic | TIns UNLIMITED MAX 8 LEN 8
Latency Imp% | TI% | BI% || Imp% | TI% | BI% || Imp% | TI% | BI%
Data cache; bus-based interconnection
L80(2,5) 2 5,358 9.8 10.4| 5.6 7.8113.9(10.9 9.6(104| 5.7
2.6 5,351 8.7 9.6 7.4(13.7 8.2 9.3
L80(2,10) |2 5,358 14.4| 21.6 | 13.6 10.8 | 25.21| 20.6 14.6 | 22.5| 14.7
3.6 5,299 11.6 | 20.2 8.9 24.7 11.6 | 21.2
L95(2,5) 2 5,358 6.9| 5.9| 3.4 6.0 88| 7.1 6.8| 5.8| 3.4
2.15 5,351 6.2 5.5 6.0 8.9 6.2 5.3
L95(2,10) |2 5,358 8.0 94| 6.1 6.4| 12.1] 10.2 8.0| 9.9| 6.6
2.4 5,351 7.2 8.9 6.8 12.5 721 94
No cache; network interconnection
N(2,2) 2 5,358 11.3|12.8| 6.9 10.2 | 16.6 | 11.8 11.2113.1] 7.2
N(3,2) 3 5,351 12.0]16.1| 9.7 10.0| 21.1] 16.5 12.0| 16.0| 9.5
N(5,2) 5 5,297 13.5| 24.4| 16.8 10.8| 32.1| 27.0 12.9124.3|17.0
N(2,5) 2 5,358 20.9] 30.0| 18.7 15.9| 35.6 | 28.3 19.2 | 30.4| 20.4
N(3,5) 3 5,351 20.0( 31.8| 21.3 14.5| 37.2| 30.9 17.41 31.9 23.0
N(5,5) 5 5,297 18.3 | 35.5] 25.9 13.5|42.3| 36.4 16.4 | 36.3| 28.0
N(30,5) 30 5,393 19.3| 71.8| 67.9 14.5| 79.4| 77.5 18.7] 73.1| 69.6
Mixed
L80-N(30,5) | 2 5,358 20.0149.942.3 13.6 | 52.3| 47.9 13.9| 49.5| 44.7
7.6 5,405 14.3 | 46.9 11.5| 50.9 10.4| 47.4
Table 7: Detailed analysis of performance in MDG
Percentage of Spill Instructions
Balanced Traditional Scheduler with Optimistic Latency of
Program | Blns || Scheduler 2] 2.15] 24] 26] 3] 36] 5] 76[ 30
ADM 2,494 743 9.59| 9.15| 9.15| 9.15| 9.22| 9.42| 9.50| 8.70| 7.49
ARC2D | 11,149 10.47 (| 13.52|13.74 | 13.74 | 13.68 | 13.27 | 13.46 | 13.89 | 12.25 | 10.11
BDNA 2,391 22.84 | 26.50 | 26.32 | 26.32|26.32 | 24.17 | 24.94 | 24.68 | 24.73 | 25.54
FLO52Q | 3,323 4.61 | 7.14| 6.82| 6.82| 6.82| 6.97| 3.91| 6.55| 5.89| 4.90
MDG 5,144 749 7.86| 8.04| 8.04| 8.04| 8.04| 8.13| 8.00| 8.86| 9.21
MG3D | 60,784 7.38|| 9.73]10.36|10.36|10.36[10.36 [10.86|10.36| 8.85| 7.88
QCD2 1,176 19.91 {| 29.30 | 28.92 | 28.92 | 28.92 | 28.92 | 28.78 | 28.02 | 26.89 | 28.02
TRACK 398 15.78 | 20.41 | 17.85 | 17.85 [ 17.85|17.85|17.85|17.84 |17.45|17.46
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UNLIMITED MAX 8 LEN 8
Program | TIns| Blns[[Imp% | T1% [ BI% || Imp% [ T1% | B1% || Imp% | T1% | BI%

ADM 2,496 | 2,494 -3.5| 67.8|69.0 -1.7]76.1| 76.5 -2.7169.9 | 70.7
ARC2D |11,108 11,149 -5.0| 67.3 | 68.9 -3.9178.4|79.1 -4.71 709|721
BDNA 2,478 | 2,391 1.9]165.0| 65.6 12.5 | 85.3 | 84.0 25711714
FLO52Q | 3,332| 3,323 4.1|67.0|65.7 1.4 76.6|76.4 3.7169.0]67.9
MDG 5,393 | 5,144 19.3 ] 71.8 | 67.9 14.5|79.4 | 77.5 18.7173.1| 69.6
MG3D |[61,116 | 60,784 -0.9] 63.1|63.7 1.5]86.6| 86.5 -3.8|67.4|68.8
QCD2 1,270 1,176 7.1169.0]69.2 23.4|86.4|84.5 6.3(72.2]|72.6
TRACK 406 398 0.6|81.6|81.9 4.7|85.6|85.2 2.3|82.3|82.3

Table 9: Analysis of N(30,5) results — the effect of spill code.

is unchanged, but interlocks go down. Traditional schedulers lack the guidance for efficient load placement.
Therefore they incur similar register pressure, but also more interlocks.

When there is little load level parallelism, traditional schedulers greedily let independent instructions
float to one end of the basic block. Therefore they incur spills at that end, and interlocks at the other. In
contrast, the balanced scheduler spreads out the few independent instructions behind all loads. In all cases
uses quickly follow definitions, and little or no spill code is generated. If the load level parallelism is less
than the latency assumed by the traditional scheduler, balanced scheduling generates fewer spill instructions
than the traditional technique.

In both situations (high and low load level parallelism) balanced scheduling contributes either little
additional or less register pressure. When actual latencies differ from the optimistic latency, balanced
scheduling incurs fewer interlocks; when both latencies are equal, the number of interlocks produced by the
two schedulers is similar.

When load latencies are much larger than the amount of load level parallelism and therefore cannot be
hidden via instruction scheduling, there is no guarantee the balanced scheduler will do better. In this case,
register pressure can be a problem, and balanced scheduling can insert more spill code than the traditional
scheduler. The situation is illustrated in Table 9, which summarizes the results for the N(30,5) model.
This model assumes a mean latency much larger than the amount of load level parallelism of the programs
in our workload. Two interrelated factors contribute to balanced scheduling’s poor performance with this
model. First, as latencies get long, interlocks account for an increasingly large proportion of execution time.
Both schedulers do poorly, and often equally poorly (for example, see TRACK). Second, a consequence of
long load latencies is that each load instruction consumes more cycles relative to other instructions, and its
contribution to execution time is greater. Therefore whichever scheduler generates more spill loads will have
the poorer performance. Occasionally balanced scheduling chooses load instruction weights that cause higher

than necessary register pressure and consequently issues more spill instructions (for example, see ARC2D).
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The complete results generated from these experiments are reproduced in Appendix A.

In summary, these results show that balanced scheduling reduces execution time relative to traditional
list scheduling in most cases. Because its schedules are based on the amount of load level parallelism that a
program can support, they cause fewer interlocks during program execution and contain less spill code. The
benefits are most apparent when memory latency uncertainty is high, as evidenced by greater miss rates and

penalties, and larger standard deviations from mean latencies.

6 Future Work

Balanced scheduling has been presented in a specific form (weights calculated based on load level parallelism)
to solve a specific problem (scheduling with uncertain load instruction latencies). The technique is applicable
to a wider set of problems, such as other multi-cycle instructions (e.g., floating point operations coupled with
asynchronous floating point units), disabling balanced scheduling when the latency is known (e.g., for the
second access to a cache line), techniques that enlarge basic blocks (trace scheduling and software pipelining)
and superscalar architectures. The remainder of this section discusses future improvements on this study
and applications of balanced scheduling.

This study assumes unit latencies for all nonload instructions. A study should be done to measure the
effect of multicycle instructions, such as floating point multiply, on our results. We expect this to reduce
the usable load level parallelism (due to the possible introduction of no-ops) and therefore diminish the
magnitude of our performance increases.

Balanced scheduling can be applied to other types of uncertain latencies, for example, those of an asyn-
chronous divide unit. In this case, the algorithm would measure instruction level parallelism with respect
to divides and schedule accordingly. As another example, consider machines with asynchronous floating
point co-processors. In these machines the co-processor’s instruction latencies might be known. However,
if the latencies are long enough, and if the processor stalls while the co-processor is busy, the co-processor
instructions might appear to have completed in less than the expected amount of time. Hence, from the
point-of-view of the CPU, uncertain latency exists in the co-processor. Some modification to the algorithm
would need to occur to better identify the instances where this could be profitable.

Another processor variation might have multiple classes of uncertain latency. Our algorithm could be
modified for this type of machine by computing a C'hances value for each type of instruction that exhibited
uncertain latency and then repeatedly executing the loop in step 7, once for each value of C'hances. This
is possible because what counts is instruction initiation, not instruction latency. This modification does not

change the worst case time complexity of the algorithm.
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Some loads might not exhibit uncertain latencies. For example, if X and Y reside within in the same cache
line, and X has been referenced, Y will hit in the cache. For programs with regular memory access patterns,
a large fraction of the instructions might fall into this class. Balanced scheduling could use disambiguation
information to recognize this case and then remove the load instructions that have certain latency from
consideration in steps 6 and 7 of the algorithm.

Our algorithm does not take advantage of load instructions whose first use is outside the basic block
containing the load instruction. Some work, namely Trace Scheduling[6], directly addresses load instructions
whose first use is in future blocks by creating large basic blocks containing instructions from many blocks.
Since trace scheduling uses list scheduling at the lowest level, our work is compatible with a trace scheduler.
Another technique, software pipelining[18, 14], actively generates schedules where the first use of the register
defined by a load instruction can be along cyclic edges in the flow graph. In particular, it can be in a future
iteration of the same block with the load instruction. In that case, the first use precedes the load instruction
in the code DAG. A technique such as Palem and Simons’[17] or Woodard’s[24] might provide some of the
benefits of balancing in the software pipelined environment.

Superscalar processors are fully supported by the balanced scheduling algorithm as presented here. The
fact that a superscalar processor has the ability to initiate more than one instruction per cycle changes
the number of issue slots an instruction requires by a constant factor. However, if the processor has some
restriction on the types of instructions that can simultaneously be issued, an additional heuristic might

improve code quality.

7 Conclusion

This paper describes an instruction scheduling algorithm, called balanced scheduling, that is appropriate
for computers that expose uncertain memory latencies. Balanced scheduling is fundamentally different from
previous list schedulers in two respects. First, it ignores the optimistic, implementation-determined memory
latency when assigning scheduling priorities, basing them instead on the amount of parallel execution that
is achievable in the program. Second, it computes individual scheduling weights for each load instruction
separately, rather than using a single value for all loads in a basic block. Balanced scheduling thus insulates
program execution from machine uncertainties by generating schedules that are optimized for the program
rather than the machine.

To validate the algorithm we incorporated balanced scheduling into the Gec compiler and compared the
performance of the Perfect Club benchmarks scheduled with both balanced scheduling and a traditional list

scheduler. Three processors were modeled, representing machines with varying abilities to exploit instruction
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level parallelism. Each of the processor models was coupled with several memory systems that exhibit dis-

similar latency behavior. Execution time reductions of balanced scheduling over the traditional list scheduler

averaged between 3% and 18%, depending on the processor model, system model and program. The results

demonstrate that, if the capability to exploit uncertain memory latency is architected in future machines,

balanced schedulers can effectively take advantage of the additional flexibility to generate faster schedules.
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A Raw Data

This appendix presents the raw data used in the evaluation of balanced scheduling. Each table contains the
data for one benchmark executing on one processor model.

In addition to the column labels listed in Table 6, the headings listed in Table 10 are used in this appendix.

Table 10: Index of labels used in Appendix A.

Label Definition

Tst The number of static instructions in the program generated with the traditional
scheduler

Bst The number of static instructions in the program generated by the balanced
scheduler.

Trt The run time of the program generated with the traditional scheduler, in millions
of cycles. The confidence interval is a percentage of the run time.

Brt The run time of the program generated by the balanced scheduler, in millions of

cycles. The confidence interval is a percentage of the run time.

Tsp% | The percentage of dynamic instructions classified as spill instructions in the program
generated with the traditional scheduler.

Bsp% | The percentage of dynamic instructions classified as spill instructions in the program
generated by the balanced scheduler.

Imp% | The percentage improvement, at the 95% confidence interval, of the balanced sched-
uler over the traditional scheduler.
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Table 11: Simulation results for benchmark: ADM

system | OL Tst | Bst | Tins |Bins | Trt | Brt | T1% | BI% | Tmp % rTsp% | Bsp%
Processor: UNLIMITED

L80(2,5) 2 14553 [ 14526 | 2554|2494 | 27604+0.15% | 26094+0.11% | 7.47| 4.41| 5.840.18 9.59 7.43
2.6 | 1453914526 | 2541|2494 | 271440.14% | 2609+0.11% | 6.35| 4.41| 4.040.20 9.15 7.43

L80(2,10) 2 14553 [ 14526 | 2554|2494 | 312240.37% | 284040.31% |18.19[12.18| 9.940.53 9.59 7.43
3.6 | 1453814526 | 2549 [2494 | 3053+0.34% | 28404+0.31% |16.52(12.18| 7.54+0.49 9.42 7.43

L95(2,5) 2 14553 [ 14526 | 2554|2494 | 26484+0.09% | 25624+0.06% | 3.56| 2.63| 3.440.11 9.59 7.43
2.15(14539 | 14526 | 2541 [ 2494 | 2616+£0.08% | 2562+0.06% | 2.84| 2.63| 2.14+0.12 9.15 7.43

L95(2,10) 2 14553 [ 14526 | 2554|2494 | 27534+0.27% | 26314+0.22% | 7.23| 5.21| 4.640.39 9.59 7.43
2.4 (1453914526 | 2541 (2494 | 271440.23% | 2631+£0.22% | 6.38| 5.21| 3.240.37| 9.15 7.43

N(2,2) 2 14553 | 14526 | 2554|2494 | 284740.16% | 263740.14% |10.30 | 5.40| 8.0£0.24| 9.59 7.43
N(3,2) 3 14539 | 14526 | 2543|2494 | 28784+0.17% | 2707+0.16% | 11.63 | 7.85| 6.440.29 9.22 7.43
N(5,2) 5 14533 [ 14526 | 2550|2494 | 30634+0.19% | 292540.18% | 16.77 | 14.74 | 4.840.26 9.50 7.43
N(2,5) 2 14553 | 14526 | 2554|2494 | 345540.33% | 302540.33% | 26.09 [ 17.55|14.240.51 9.59 7.43
N(3,5) 3 14539 | 14526 | 2543|2494 | 346740.32% | 310640.33% | 26.65 [ 19.71|11.540.50 9.22 7.43
N(5,5) 5 14533 [ 14526 | 2550|2494 | 359840.35% | 329740.35% | 29.14 [ 24.35| 9.240.55 9.50 7.43
N(30,5) 30 14474 [ 14526 | 2496|2494 | 77534+0.19% | 803440.20% | 67.81 | 68.95 | -3.540.29 7.49 7.43
L80- 2 14553 [ 14526 | 2554|2494 | 47694+0.87% | 425240.90% | 46.45 [ 41.35|12.4+1.82 9.59 7.43
N(30,5) | 7.6 | 14506 | 14526 | 2527|2494 | 45504£0.89% | 425240.90% |44.46|41.35| 7.0£1.17| 8.70 7.43

Processor: MAX 8

L80(2,5) 2 14553 | 14526 | 2554|2494 | 287940.16% | 270340.13% |11.30| 7.73| 6.540.24| 9.59 7.43
2.6 | 1453914526 | 2541|2494 | 28244+0.14% | 2703+0.13% [10.02| 7.73| 4.54+0.22 9.15 7.43

L80(2,10) 2 14553 [ 14526 | 2554|2494 | 33014+0.37% | 300740.34% | 22.63[17.06| 9.840.52 9.59 7.43
3.6 | 1453814526 | 2549 [2494 | 32394+0.35% | 3007+0.34% [21.31|17.06 | 7.74+0.49 9.42 7.43

L95(2,5) 2 14553 | 14526 | 2554|2494 | 272940.09% | 26214+0.08% | 6.44| 4.84| 4.1£0.14| 9.59 7.43
2.15(14539 | 14526 | 2541 [ 2494 | 2698+0.08% | 2621+0.08% | 5.83| 4.84| 2.940.10 9.15 7.43

L95(2,10) 2 14553 [ 14526 | 2554|2494 | 284540.26% | 27004+0.22% |10.24 | 7.63| 5.440.42 9.59 7.43
2.4 (1453914526 | 2541|2494 | 2815+0.25% | 2700+£0.22% | 9.73| 7.63| 4.240.29 9.15 7.43

N(2,2) 2 14553 [ 14526 | 2554|2494 | 29614+0.18% | 27364+0.16% | 13.75| 8.85| 8.240.29 9.59 7.43
N(3,2) 3 14539 | 14526 | 2543|2494 | 304240.19% | 285640.19% | 16.41|12.66| 6.54£0.27| 9.22 7.43
N(5,2) 5 14533 [ 14526 | 2550|2494 | 342040.20% | 322440.20% | 25.45 [ 22.63 | 6.1£0.34| 9.50 7.43
N(2,5) 2 14553 [ 14526 | 2554|2494 | 374040.34% | 329940.34% | 31.72 | 24.39|13.440.65 9.59 7.43
N(3,5) 3 14539 | 14526 | 2543|2494 | 378240.33% | 341940.34% | 32.75(27.04|10.6+0.49 9.22 7.43
N(5,5) 5 14533 [ 14526 | 2550|2494 | 404340.36% | 370940.35% | 36.95 [ 32.76 | 8.940.59 9.50 7.43
N(30,5) 30 14474 [ 14526 | 2496 | 2494 | 104354+0.17% | 106154+0.17% | 76.08 | 76.50 | -1.740.23 7.49 7.43
L80- 2 14553 [ 14526 | 2554|2494 | 513540.89% | 465240.92% | 50.27 [ 46.38 | 10.6+£1.22 9.59 7.43
N(30,5) | 7.6 | 14506 | 14526 | 2527 [ 2494 | 4888+0.89% | 46524+0.92% |48.29|46.38 | 5.241.23 8.70 7.43

Processor: LEN &

L80(2,5) 2 14553 [ 14526 | 2554|2494 | 27564+0.15% | 26104+0.12% | 7.34| 4.43| 5.640.22 9.59 7.43
2.6 | 1453914526 | 2541|2494 | 2710+0.13% | 2610+£0.12% | 6.24| 4.43| 3.84+0.19 9.15 7.43

L80(2,10) 2 14553 [ 14526 | 2554|2494 | 313640.36% | 289140.30% | 18.56 [ 13.73 | 8.540.49 9.59 7.43
3.6 | 1453814526 | 2549 [2494 | 3071+0.33% | 28914+0.30% |16.99|13.73| 6.31+0.40 9.42 7.43

L95(2,5) 2 14553 [ 14526 | 2554|2494 | 26464+0.09% | 25624+0.06% | 3.50| 2.67| 3.340.13 9.59 7.43
2.15(14539 | 14526 | 2541 [ 2494 | 2615+£0.07% | 25624+0.06% | 2.82| 2.67| 2.040.12 9.15 7.43

L95(2,10) 2 14553 [ 14526 | 2554|2494 | 27584+0.26% | 26384+0.19% | 7.40| 5.47| 4.540.33 9.59 7.43
2.4 (1453914526 | 2541|2494 | 2729+0.25% | 2638+0.19% | 6.89| 5.47| 3.54+0.31 9.15 7.43

N(2,2) 2 14553 | 14526 | 2554|2494 | 284440.16% | 264240.15% |10.19| 5.59| 7.6£0.24| 9.59 7.43
N(3,2) 3 14539 | 14526 | 2543|2494 | 28764+0.17% | 27104+0.16% | 11.58 | 7.96| 6.140.31 9.22 7.43
N(5,2) 5 14533 [ 14526 | 2550|2494 | 306340.19% | 29314+0.18% | 16.76 | 14.89 | 4.640.30 9.50 7.43
N(2,5) 2 14553 [ 14526 | 2554|2494 | 346940.32% | 307340.32% | 26.38 [ 18.84 | 12.840.58 9.59 7.43
N(3,5) 3 14539 | 14526 | 2543|2494 | 348240.32% | 316040.33% | 26.97 [ 21.06 | 10.1£0.59 9.22 7.43
N(5,5) 5 14533 | 14526 | 2550|2494 | 361240.34% | 339140.36% | 29.41 | 26.46| 6.54£0.54| 9.50 7.43
N(30,5) 30 14474 [ 14526 | 2496 | 2494 | 828040.18% | 851240.19% | 69.86 | 70.70| -2.74£0.34| 7.49 7.43
L80- 2 14553 [ 14526 | 2554|2494 | 492440.86% | 448940.85% | 48.14 | 44.43 | 9.74+1.26 9.59 7.43
N(30,5) | 7.6 | 14506 | 14526 | 2527|2494 | 459540.87% | 44894+0.85% |44.99|44.43 | 2.4+1.17| 8.70 7.43
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Table 12: Simulation results for benchmark: ARC2D

system | OL Tst | Bst | Tins | Bins | Trt | Brt | T1% | BI% | Tmp % rTsp% | Bsp%
Processor: UNLIMITED

L80(2,5) 2 12491 (12170 | 11548 | 11149 | 124284+0.15% | 1164440.10% | 7.08 | 4.25| 6.740.18| 13.52| 10.47
2.6 1245112170 (1157011149 [12360+£0.12% |1164440.10% | 6.39| 4.25| 6.24+0.17| 13.68| 10.47

L80(2,10) 2 12491 [ 12170 | 11548 | 11149 | 1427140.36% | 1262040.30% | 19.08 | 11.66 | 13.1+0.55 | 13.52| 10.47
3.6 |12475(12170| 11537 (11149 |14088+0.33% | 1262040.30% |18.10 |11.66 | 11.740.54 | 13.46 | 10.47

L95(2,5) 2 12491 12170 | 11548 | 11149 [11871+£0.09% | 1142440.06% | 2.72| 2.41| 3.940.11| 13.52| 10.47
2.15(12452 12170 | 11577 | 11149 | 11885+£0.08% | 1142440.06% | 2.59| 2.41| 4.040.09| 13.74| 10.47

L95(2,10) 2 12491 [ 12170 | 11548 | 11149 [12390+£0.26% | 1171240.19% | 6.80| 4.81| 5.840.37| 13.52| 10.47
2.4 (1245212170 | 11577 | 11149 |12429+£0.25% [1171240.19% | 6.85| 4.81| 6.1+0.33| 13.74| 10.47

N(2,2) 2 12491 12170 | 11548 | 11149 | 128494+0.15% | 117574+0.12% | 10.13 | 5.18| 9.3+0.25| 13.52| 10.47
N(3,2) 3 12450 [ 12170 | 11517 | 11149 [13106+£0.16% | 1203840.14% | 12.12 | 7.39| 8.940.25| 13.27| 10.47
N(5,2) 5 12459 [ 12170 | 11598 | 11149 [13695+0.17% | 1297540.17% | 15.31 | 14.08 | 5.54+0.26 | 13.89| 10.47
N(2,5) 2 12491 [ 12170 | 11548 | 11149 [ 157694+0.32% | 1339740.31% | 26.77 | 16.78 | 17.7+0.46 | 13.52| 10.47
N(3,5) 3 12450 [ 12170 | 11517 | 11149 [16217+£0.32% | 1371940.32% | 28.98 | 18.74 | 18.240.45 | 13.27| 10.47
N(5,5) 5 12459 [ 12170 | 11598 | 11149 | 16326+£0.32% | 1458740.34% | 28.96 | 23.57 | 12.04+0.64 | 13.89| 10.47
N(30,5) 30 12113 (12170 {11108 | 11149 |339414+0.19% | 3571340.20% | 67.27 | 68.78 | -5.04+0.30 | 10.11| 10.47
L80- 2 12491 [ 12170 | 11548 | 11149 | 22857+£0.90% | 1900940.88% | 49.48 | 41.35 | 20.44+1.58 | 13.52| 10.47
N(30,5) |7.6 12353 (1217011378 | 11149 | 2078440.83% | 1900940.88% | 45.25 |41.35 | 9.3+1.50 | 12.25| 10.47

Processor: MAX 8

L80(2,5) 2 12491 (12170 | 11548 | 11149 [13111+£0.17% | 120454+0.12% [ 11.93 | 7.44| 8.940.19| 13.52| 10.47
2.6 1245112170 (1157011149 [13126+£0.15% | 120454+0.12% | 11.86 | 7.44| 9.04+0.19| 13.68| 10.47

L80(2,10) 2 12491 [ 12170 | 11548 | 11149 | 15227+0.39% | 1340740.36% | 24.16 | 16.84 | 13.440.69 | 13.52| 10.47
3.6 |12475(12170| 11537 |11149 |15095+£0.36% | 1340740.36% | 23.57 | 16.84 | 12.5+0.64 | 13.46 | 10.47

L95(2,5) 2 12491 12170 | 11548 | 11149 [12351+£0.10% | 116774+0.07% | 6.50 | 4.52| 5.840.14| 13.52| 10.47
2.15(12452 | 12170 | 11577 | 11149 | 12483+£0.09% [ 116774+0.07% | 7.26 | 4.52| 6.94+0.13| 13.74| 10.47

L95(2,10) 2 12491 [ 12170 | 11548 | 11149 | 128624+0.27% | 1198240.21% [ 10.22 | 6.96 | 7.3+0.41| 13.52| 10.47
2.4 (1245212170 | 11577 | 11149 |13066+£0.26% [ 1198240.21% | 11.39| 6.96 | 9.04+0.39| 13.74| 10.47

N(2,2) 2 12491 (12170 | 11548 | 11149 | 134814+£0.19% | 1215340.16% | 14.34 | 8.26 |10.940.27| 13.52| 10.47
N(3,2) 3 12450 [ 12170 | 11517 | 11149 | 14156+£0.20% | 1278040.20% | 18.64 | 12.77 | 10.840.32 | 13.27| 10.47
N(5,2) 5 12459 [ 12170 | 11598 | 11149 | 1624940.21% | 1471340.22% | 28.62 | 24.23 | 10.5+0.42 | 13.89| 10.47
N(2,5) 2 12491 12170 | 11548 | 11149 [17550+£0.37% | 1490340.37% | 34.20 | 25.19 | 17.840.61 | 13.52| 10.47
N(3,5) 3 12450 [ 12170 | 11517 | 11149 | 18116+0.35% | 1552540.35% | 36.43 | 28.19 | 16.84+0.54 | 13.27| 10.47
N(5,5) 5 12459 [ 12170 | 11598 | 11149 | 194964+0.38% | 1705240.38% | 40.51 | 34.62 | 14.3+0.66 | 13.89| 10.47
N(30,5) 30 12113 (12170 {11108 | 11149 | 513444+0.20% | 534334+0.18% | 78.37 | 79.14 | -3.940.26 | 10.11| 10.47
L80- 2 12491 [ 12170 | 11548 | 11149 | 24331+£0.94% | 2073940.92% | 52.54 | 46.24 | 17.4+1.57 | 13.52| 10.47
N(30,5) |7.6 12353 (12170 | 11378 | 11149 | 23055+£0.91% | 2073940.92% | 50.65 | 46.24 | 11.3+1.43 | 12.25| 10.47

Processor: LEN &

L80(2,5) 2 12491 (12170 | 11548 | 11149 | 12408+0.15% | 116404+0.10% | 6.93 | 4.22| 6.64+0.17| 13.52| 10.47
2.6 1245112170 (1157011149 [12376+£0.12% |116404+0.10% | 6.52| 4.22| 6.3+0.22| 13.68| 10.47

L80(2,10) 2 12491 [ 12170 | 11548 | 11149 | 1437440.36% | 1291840.29% | 19.66 | 13.70 | 11.24+0.62 | 13.52| 10.47
3.6 |12475|12170| 11537 |11149 |14147+£0.32% [ 1291840.29% | 18.45 [13.70 | 9.54+0.49 | 13.46 | 10.47

L95(2,5) 2 12491 (12170 | 11548 | 11149 |11873+£0.09% | 1142940.06% | 2.74| 2.46 | 3.940.13| 13.52| 10.47
2.15(12452 | 12170 | 11577 | 11149 | 11896+£0.08% | 1142940.06% | 2.68 | 2.46 | 4.1+0.11| 13.74| 10.47

L95(2,10) 2 12491 [ 12170 | 11548 | 11149 [ 12437+£0.27% | 117754+0.19% | 7.15| 5.32| 5.740.36| 13.52| 10.47
2.4 (1245212170 | 11577 | 11149 [12451+£0.25% [117754+0.19% | 7.02| 5.32| 5.7+0.34| 13.74| 10.47

N(2,2) 2 12491 (12170 | 11548 | 11149 | 1284240.15% | 1176240.12% | 10.08 | 5.21| 9.240.24 | 13.52| 10.47
N(3,2) 3 12450 [ 12170 | 11517 | 11149 [13125+0.17% | 1207240.15% | 12.25 | 7.65| 8.740.23 | 13.27| 10.47
N(5,2) 5 12459 [ 12170 | 11598 | 11149 [137024+0.17% | 1301840.17% | 15.36 | 14.36 | 5.3+0.21| 13.89| 10.47
N(2,5) 2 12491 12170 | 11548 | 11149 [15913+0.32% | 1375140.31% | 27.43 | 18.92 | 15.84+0.55 | 13.52| 10.47
N(3,5) 3 12450 [ 12170 | 11517 | 11149 | 16268+0.32% | 1418840.32% | 29.20 | 21.42 | 14.64+0.59 | 13.27| 10.47
N(5,5) 5 12459 [ 12170 | 11598 | 11149 | 164484+0.32% | 1521640.33% [ 29.49 | 26.73 | 8.1+0.51| 13.89| 10.47
N(30,5) 30 12113 (12170 {11108 | 11149 [38101+£0.17% | 4002340.18% | 70.85 | 72.14 | -4.740.24 | 10.11| 10.47
L80- 2 12491 [ 12170 | 11548 | 11149 | 23467+£0.88% | 2094440.88% | 50.79 |46.77 | 11.941.29 | 13.52| 10.47
N(30,5) |7.6 12353 (12170 {11378 | 11149 [ 211284+0.82% | 2094440.88% | 46.15 |46.77 | 0.7+1.17| 12.25]| 10.47
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Table 13: Simulation results for benchmark: BDNA

system | OL Tst | Bst | Tins |Bins | Trt | Brt | T1% | BI% | Tmp % rTsp% | Bsp%
Processor: UNLIMITED

L80(2,5) 2 10624 [ 10460 | 25102391 | 265340.25% | 250240.19% | 5.39| 4.45| 6.04+0.37| 26.50| 22.84
2.6 | 1060210460 | 2504 (2391 | 2633+£0.20% | 25024+0.19% | 4.91| 4.45| 5.240.28 | 26.32| 22.84

L80(2,10) 2 10624 [ 10460 | 25102391 | 293040.63% | 264940.52% |14.34| 9.74|10.6£0.90 | 26.50 | 22.84
3.6 | 1057510460 | 2458 (2391 | 2863+0.55% | 2649+0.52% |14.17| 9.74| 8.1+0.80| 24.94 | 22.84

L95(2,5) 2 10624 [ 10460 | 25102391 | 25704+0.15% | 24624+0.10% | 2.34| 2.89| 4.440.20| 26.50| 22.84
2.15(10602 | 10460 | 2504 [ 2391 | 2560+£0.12% | 24624+0.10% | 2.20| 2.89| 4.04+0.18| 26.32| 22.84

L95(2,10) 2 10624 [ 10460 | 25102391 | 264240.39% | 24954+0.28% | 5.00| 4.18| 5.84+0.49| 26.50| 22.84
2.4 1060210460 | 2504 (2391 | 2632+0.37% | 2495+0.28% | 4.87| 4.18| 5.6+0.48| 26.32| 22.84

N(2,2) 2 10624 [ 10460 | 25102391 | 271940.25% | 25184+0.22% | 7.71| 5.04| 8.04+0.36| 26.50| 22.84
N(3,2) 3 10570 [ 10460 | 2433|2391 | 26964+0.28% | 25944+0.27% | 9.77| 7.83| 4.04+0.46| 24.17| 22.84
N(5,2) 5 10547 [ 10460 | 2449|2391 | 284940.31% | 27534+0.31% | 14.04 [ 13.17| 3.440.44 | 24.68 | 22.84
N(2,5) 2 10624 [ 10460 | 25102391 | 320840.55% | 28084+0.55% |21.77|14.86|14.4+£1.02 | 26.50 | 22.84
N(3,5) 3 10570 [ 10460 | 2433|2391 | 31784+0.58% | 28654+0.54% |23.45(16.56|10.84£1.04 | 24.17 | 22.84
N(5,5) 5 10547 [ 10460 | 2449|2391 | 330240.57% | 302440.61% |25.84(20.94| 9.34+0.87 | 24.68| 22.84
N(30,5) 30 10483 [ 10460 | 2478|2391 | 7086+0.35% | 69554+0.35% | 65.03 [ 65.63 | 1.940.56 | 25.54 | 22.84
L80- 2 10624 [ 10460 | 2510|2391 | 42884+1.48% | 37124+1.55% |41.48 | 35.60|15.84£2.78 | 26.50 | 22.84
N(30,5) | 7.6 | 1052510460 | 2451 (2391 | 4377+£1.35% | 3712+1.55% | 43.99|35.60 | 18.44+2.54 | 24.73 | 22.84

Processor: MAX 8

L80(2,5) 2 10624 [ 10460 | 25102391 | 311040.32% | 286340.31% | 19.29[16.50| 8.64+0.54| 26.50| 22.84
2.6 | 1060210460 | 2504 (2391 | 31424+0.32% | 2863+0.31% [20.31|16.50 | 9.84+0.59| 26.32 | 22.84

L80(2,10) 2 10624 [ 10460 | 25102391 | 36384+0.79% | 327240.75% (31.02(26.94|11.2+1.30 | 26.50 | 22.84
3.6 | 1057510460 | 2458 (2391 | 3493+0.73% | 3272+0.75% | 29.65|26.94 | 6.8+1.18| 24.94 | 22.84

L95(2,5) 2 10624 [ 10460 | 25102391 | 289940.20% | 27064+0.18% |13.42[11.66| 7.14£0.25| 26.50| 22.84
2.15(10602 | 10460 | 2504 [2391| 2939+0.19% | 2706+£0.18% |14.83|11.66 | 8.7+0.33| 26.32| 22.84

L95(2,10) 2 10624 [ 10460 | 25102391 | 302440.56% | 2797+0.47% |17.00 [ 14.53 | 8.04+0.71| 26.50| 22.84
2.4 | 1060210460 | 2504 (2391 | 3078+0.54% | 2797+0.47% |18.67|14.53 [10.24+0.76 | 26.32 | 22.84

N(2,2) 2 10624 [ 10460 | 25102391 | 315240.40% | 287540.40% | 20.39[16.85| 9.64+0.63 | 26.50| 22.84
N(3,2) 3 10570 [ 10460 | 2433|2391 | 32514+0.42% | 311240.45% |25.18 23.18| 4.54+0.63 | 24.17| 22.84
N(5,2) 5 10547 [ 10460 | 2449|2391 | 39674+0.44% | 37904+0.42% | 38.27(36.92| 4.64+0.65| 24.68 | 22.84
N(2,5) 2 10624 [ 10460 | 25102391 | 428240.70% | 3757+0.69% |41.39(36.36|13.9+£1.13 | 26.50| 22.84
N(3,5) 3 10570 [ 10460 | 2433|2391 | 416440.73% | 392440.70% | 41.58 [ 39.08 | 6.04+1.14 | 24.17| 22.84
N(5,5) 5 10547 [ 10460 | 2449|2391 | 47133+0.71% | 4386+0.77% | 48.03 [ 45.50 | 7.441.10| 24.68| 22.84
N(30,5) 30 10483 [ 10460 | 2478|2391 | 168361+0.27% | 149724+0.29% | 85.28 | 84.03 | 12.54£0.48 | 25.54 | 22.84
L80- 2 10624 [ 10460 | 25102391 | 58044+1.76% | 5168+1.82% | 56.76 | 53.74|12.3+£3.10 | 26.50 | 22.84
N(30,5) | 7.6 1052510460 | 2451 (2391 | 5618+1.70% | 5168+1.82% | 56.37|53.74| 8.8+2.67| 24.73| 22.84

Processor: LEN &

L80(2,5) 2 10624 [ 10460 | 25102391 | 265440.23% | 250240.19% | 5.44| 4.44| 6.14£0.27| 26.50| 22.84
2.6 | 1060210460 | 2504 (2391 | 2629+0.20% | 25024+0.19% | 4.77| 4.44| 5.1+0.30| 26.32| 22.84

L80(2,10) 2 10624 [ 10460 | 25102391 | 29894+0.57% | 27544+0.51% |16.04 | 13.20| 8.54+0.81| 26.50| 22.84
3.6 | 1057510460 | 2458 (2391 | 29124+0.49% | 27544+0.51% | 15.61|13.20 | 5.940.77| 24.94 | 22.84

L95(2,5) 2 10624 [ 10460 | 25102391 | 256340.13% | 24614+0.10% | 2.10| 2.85| 4.240.20| 26.50| 22.84
2.15(10602 | 10460 | 2504 [2391| 255540.11% | 2461+£0.10% | 2.02| 2.85| 3.84+0.17| 26.32| 22.84

L95(2,10) 2 10624 [ 10460 | 25102391 | 26654+0.37% | 25394+0.32% | 5.81| 5.85| 5.04+0.47| 26.50| 22.84
2.4 | 1060210460 | 2504 (2391 | 26584+0.37% | 2539+0.32% | 5.80| 5.85| 4.6+0.55| 26.32| 22.84

N(2,2) 2 10624 [ 10460 | 25102391 | 272340.25% | 252440.23% | 7.82| 5.27| 7.940.34| 26.50| 22.84
N(3,2) 3 10570 [ 10460 | 2433|2391 | 26894+0.28% | 25884+0.27% | 9.54| 7.61| 3.940.37| 24.17| 22.84
N(5,2) 5 10547 [ 10460 | 2449|2391 | 284940.31% | 27914+0.32% | 14.05 | 14.34| 2.14+0.45| 24.68 | 22.84
N(2,5) 2 10624 [ 10460 | 25102391 | 328540.56% | 294340.56% | 23.59 [ 18.77|11.5+£0.98 | 26.50 | 22.84
N(3,5) 3 10570 [ 10460 | 2433|2391 | 32654+0.55% | 304240.56% | 25.50 [ 21.42| 7.440.92| 24.17| 22.84
N(5,5) 5 10547 [ 10460 | 2449|2391 | 3373+0.57% | 32634+0.60% | 27.38(26.74| 3.34+0.97| 24.68| 22.84
N(30,5) 30 10483 [ 10460 | 2478|2391 | 85784+0.34% | 83634+0.31% |71.11|71.41| 2.54+0.57| 25.54 | 22.84
L80- 2 10624 [ 10460 | 25102391 | 495241.38% | 452441.44% | 49.32 [47.15| 9.742.31| 26.50| 22.84
N(30,5) | 7.6 | 1052510460 | 2451 (2391 | 4638+1.36% | 4524+1.44% |47.15|47.15| 2.942.11| 24.73 | 22.84
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Table 14: Simulation results for benchmark: FLo52q
system | OL Tst | Bst | Tins |Bins | Trt | Brt | T1% | BI% | Tmp % rTsp% | Bsp%
Processor: UNLIMITED

L80(2,5) 2 10960 | 10785 | 3413|3323 | 365240.21% | 3481+0.19% | 6.55| 4.56| 4.940.28 7.14| 4.61
2.6 1093810785 | 3401 (3323 | 3607+0.18% | 3481+0.19% | 5.69| 4.56| 3.6+0.24| 6.82| 4.61

L80(2,10) 2 10960 | 10785 | 3413|3323 | 414440.53% | 3810+0.50% |17.64|12.80| 8.740.72 7.14| 4.61
3.6 1093910785 | 34053323 | 4065+0.47% | 3810+0.50% |16.24|12.80 | 6.74+0.71 6.91 4.61

L95(2,5) 2 10960 | 10785 | 3413|3323 | 349340.14% | 3397+0.11% | 2.30| 2.18| 2.840.19 7.14| 4.61
2.15(10938 | 10785 | 3401|3323 | 3470+0.12% | 3397+0.11% | 1.98| 2.18| 2.14+0.18 6.82| 4.61

L95(2,10) 2 10960 | 10785 | 3413|3323 | 362540.38% | 349240.34% | 5.85| 4.84| 3.940.61 7.14| 4.61
2.4 1093810785 | 3401 (3323 | 3622+0.37% | 34924+0.34% | 6.09| 4.84| 3.84+0.50 6.82| 4.61

N(2,2) 2 10960 | 10785 | 3413|3323 | 376240.21% | 35324+0.20% | 9.28| 5.93| 6.540.31 7.14| 4.61
N(3,2) 3 10939 [ 10785 | 3407|3323 | 382840.23% | 364440.23% |11.01| 8.83| 5.04£0.34| 6.97| 4.61
N(5,2) 5 10886 [ 10785 | 3391|3323 | 408140.23% | 393740.25% |16.90 [ 15.61| 3.64£0.37| 6.55| 4.61
N(2,5) 2 10960 | 10785 | 3413|3323 | 456340.43% | 40764+0.44% |25.20|18.49|11.940.79 7.14| 4.61
N(3,5) 3 10939 | 10785 | 3407|3323 | 464740.43% | 41944+0.45% | 26.70 [ 20.78 | 10.940.81 6.97| 4.61
N(5,5) 5 10886 [ 10785 | 33913323 | 47601+0.46% | 44301+0.46% | 28.75(24.99| 7.64+0.84| 6.55| 4.61
N(30,5) 30 10756 [ 10785 | 33323323 |100964+0.24% | 969540.26% | 67.00 [ 65.73 | 4.14£0.37| 4.90| 4.61
L80- 2 10960 | 10785 | 3413|3323 | 64414+1.32% | 5699+1.33% |47.01|41.70|12.742.23 7.14| 4.61
N(30,5) | 7.6 1083410785 | 3368 (3323 | 6054+1.32% | 5699+1.33% |44.37|41.70| 6.3+2.17| 5.89| 4.61

Processor: MAX 8

L80(2,5) 2 10960 | 10785 | 3413|3323 | 385840.23% | 36524+0.21% [11.54| 9.02| 5.640.36 7.14| 4.61
2.6 1093810785 | 3401 (3323 | 3804+0.20% | 36524+0.21% [10.59| 9.02| 4.240.28 6.82| 4.61

L80(2,10) 2 10960 | 10785 | 3413|3323 | 444440.55% | 4079+0.52% |23.20 |18.55| 9.040.80 7.14| 4.61
3.6 1093910785 | 3405|3323 | 434440.51% | 407940.52% |21.63|18.55| 6.640.84| 6.91 4.61

L95(2,5) 2 10960 | 10785 | 3413|3323 | 363740.15% | 3504+0.13% | 6.17| 5.16| 3.840.23 7.14| 4.61
2.15(10938 | 10785 | 3401|3323 | 3616+0.12% | 3504+0.13% | 5.95| 5.16| 3.240.21 6.82| 4.61

L95(2,10) 2 10960 | 10785 | 3413|3323 | 379140.39% | 3614+0.35% | 9.98| 8.07| 5.040.55 7.14| 4.61
2.4 1093810785 | 3401 (3323 | 3797+0.41% | 36144+0.35% |10.41| 8.07| 4.940.55 6.82| 4.61

N(2,2) 2 10960 | 10785 | 3413|3323 | 397640.24% | 3706+£0.25% |14.16 | 10.34| 7.340.35 7.14| 4.61
N(3,2) 3 10939 | 10785 | 3407|3323 | 414940.26% | 3909+0.27% [ 17.90 | 15.00 | 6.140.42 6.97| 4.61
N(5,2) 5 10886 | 10785 | 3391|3323 | 466440.26% | 4456+0.27% |27.30 | 25.43 | 4.740.40 6.55| 4.61
N(2,5) 2 10960 | 10785 | 3413|3323 | 506640.46% | 4557+0.48% |32.62|27.10|11.140.82 7.14| 4.61
N(3,5) 3 10939 | 10785 | 3407|3323 | 522240.45% | 473440.46% |34.7729.81(10.440.73 6.97| 4.61
N(5,5) 5 10886 | 10785 | 3391|3323 | 552440.48% | 5130+0.49% |38.61|35.23| 7.740.80 6.55| 4.61
N(30,5) 30 10756 [ 10785 | 3332|3323 | 1426040.23% | 140574+0.23% | 76.63 | 76.36 | 1.440.31 4.90| 4.61
L80- 2 10960 | 10785 | 3413|3323 | 69214+1.31% | 6250+£1.36% | 50.69 | 46.84 | 11.241.98 7.14| 4.61
N(30,5) | 7.6 1083410785 | 3368 (3323 | 6718+1.34% | 6250+1.36% |49.88|46.84 | 7.44+2.12 5.89| 4.61

Processor: LEN &

L80(2,5) 2 10960 | 10785 | 3413|3323 | 364640.21% | 3486+0.18% | 6.37| 4.68| 4.640.29 7.14| 4.61
2.6 1093810785 | 3401 (3323 | 3608+0.18% | 3486+0.18% | 5.74| 4.68| 3.5+0.27| 6.82| 4.61

L80(2,10) 2 10960 | 10785 | 3413|3323 | 417640.53% | 3879+0.49% |18.27|14.35| 7.740.75 7.14| 4.61
3.6 1093910785 | 3405|3323 | 408240.47% | 387940.49% |16.59|14.35| 5.240.74| 6.91 4.61

L95(2,5) 2 10960 | 10785 | 3413|3323 | 349240.14% | 3400+0.12% | 2.25| 2.27| 2.740.21 7.14| 4.61
2.15(10938 | 10785 | 3401 (3323 | 34694+0.12% | 3400+0.12% | 1.95| 2.27| 2.0+0.17| 6.82| 4.61

L95(2,10) 2 10960 [ 10785 | 3413|3323 | 36414+0.38% | 35184+0.36% | 6.25| 5.55| 3.54+0.54| 7.14| 4.61
2.4 |10938|10785| 3401 (3323 | 3613+0.35% | 35184+0.36% | 5.85| 5.55| 2.74+0.66 6.82| 4.61

N(2,2) 2 10960 | 10785 | 3413|3323 | 375740.21% | 3538+0.20% | 9.15| 6.09| 6.240.28 7.14| 4.61
N(3,2) 3 10939 | 10785 | 3407|3323 | 383040.22% | 3646+0.23% [11.07| 8.87| 5.040.36 6.97| 4.61
N(5,2) 5 10886 | 10785 | 3391|3323 | 408040.24% | 39454+0.24% | 16.88 | 15.78 | 3.440.32 6.55| 4.61
N(2,5) 2 10960 | 10785 | 3413|3323 | 457340.43% | 414540.44% |25.36|19.84|10.140.68 7.14| 4.61
N(3,5) 3 10939 | 10785 | 3407|3323 | 465040.42% | 42484+0.42% [26.74|21.79| 9.640.72 6.97| 4.61
N(5,5) 5 10886 | 10785 | 3391|3323 | 480440.45% | 454440.47% |29.41|26.87| 5.740.71 6.55| 4.61
N(30,5) 30 10756 [ 10785 | 33323323 |1073940.25% | 103554+0.25% | 68.97 [ 67.91 | 3.740.41 4.90| 4.61
L80- 2 10960 | 10785 | 3413|3323 | 652541.27% | 5927+£1.31% | 47.69 [ 43.94|10.342.01 7.14| 4.61
N(30,5) | 7.6 1083410785 | 3368 (3323 | 6119+1.30% | 5927+1.31% |44.96 | 43.94| 3.5+2.28 5.89| 4.61
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Table 15: Simulation results for benchmark: MDaG

system | OL Tst | Bst | Tins |Bins | Trt | Brt | T1% | BI% | Tmp % rTsp% | Bsp%
Processor: UNLIMITED

L80(2,5) 2 4259 | 4159 | 5358 | 5144 | 597940.27% | 544740.22% | 10.38 | 5.56| 9.840.41 7.86 7.49
2.6 | 4272|4159 | 5351|5144 | 591840.27% | 544740.22% | 9.57| 5.56| 8.7+£0.37| 8.04| 7.49

L80(2,10) 2 4259 | 4159 | 5358 | 5144 | 681340.64% | 595440.58% | 21.35|13.61 | 14.440.99 7.86 7.49
3.6 | 4257|4159 | 5299|5144 | 664440.63% | 595440.58% |20.24 |13.61|11.640.98 8.13 7.49

L95(2,5) 2 4259 | 4159 | 5358 | 5144 | 569440.16% | 532640.13% | 5.89| 3.43| 6.9£0.24| 7.86 7.49
2.15| 4272 | 4159 | 5351|5144 | 566240.17% | 532640.13% | 5.48| 3.43| 6.240.26 8.04| 7.49

L95(2,10) 2 4259 | 4159 | 5358 | 5144 | 591740.40% | 54774+0.39% | 9.43| 6.08| 8.0£0.77| 7.86 7.49
2.4 | 4272|4159 | 5351|5144 | 587440.43% | 54774+0.39% | 8.89| 6.08| 7.240.70 8.04| 7.49

N(2,2) 2 4259 | 4159 | 5358 | 5144 | 614440.32% | 552340.26% | 12.78 | 6.86|11.34+0.49 7.86 7.49
N(3,2) 3 4271|4159 | 5351|5144 | 637940.33% | 56964+0.31% | 16.11| 9.69|12.040.52 8.04| 7.49
N(5,2) 5 4257 | 4159 | 5297|5144 | 701040.35% | 617940.32% | 24.44 | 16.75 | 13.5+0.55 8.00 7.49
N(2,5) 2 4259 | 4159 | 5358 | 5144 | 76514+0.57% | 633040.52% |29.97 |18.73 |20.940.85 7.86 7.49
N(3,5) 3 4271|4159 | 5351|5144 | 78504+0.59% | 654240.57% | 31.83|21.38|20.04+1.03 8.04| 7.49
N(5,5) 5 4257 | 4159 | 5297|5144 | 821340.63% | 694240.59% | 35.50 | 25.90 | 18.3+1.14 8.00 7.49
N(30,5) 30 4234 | 4159 | 5393 | 5144 |1912440.33% | 160354+0.35% | 71.80 | 67.92 | 19.34+0.57 9.21 7.49
L80- 2 4259 | 4159 | 5358 | 5144 | 106894+1.56% | 8908+1.42% | 49.87 | 42.26 | 20.0+2.72 7.86 7.49
N(30,5) | 7.6 | 4237|4159 | 5405|5144 |101854+1.60% | 8908+1.42% | 46.93 | 42.26 | 14.3+2.50 8.68 7.49

Processor: MAX 8

L80(2,5) 2 4259 | 4159 | 5358 | 5144 | 622140.27% | 577240.24% | 13.87[10.88 | 7.8+0.37| 7.86 7.49
2.6 | 4272|4159 | 5351|5144 | 620040.26% | 577240.24% | 13.69 |10.88 | 7.440.43 8.04| 7.49

L80(2,10) 2 4259 | 4159 | 5358 | 5144 | 71654+0.63% | 647440.58% | 25.22|20.55|10.840.99 7.86 7.49
3.6 | 4257|4159 | 5299|5144 | 70364+0.62% | 647440.58% | 24.68|20.55| 8.9+1.01 8.13 7.49

L95(2,5) 2 4259 | 4159 | 5358 | 5144 | 58754+0.16% | 553940.14% | 8.79| 7.14| 6.040.22 7.86 7.49
2.15( 4272 | 4159 | 5351|5144 | 587240.15% | 553940.14% | 8.87| 7.14| 6.0+0.21 8.04| 7.49

L95(2,10) 2 4259 | 4159 | 5358 | 5144 | 609440.39% | 572640.36% | 12.07 [10.17| 6.440.63 7.86 7.49
2.4 | 4272|4159 | 5351|5144 | 61154+0.42% | 57264+0.36% | 12.49 |10.17| 6.840.59 8.04| 7.49

N(2,2) 2 4259 | 4159 | 5358 | 5144 | 642440.30% | 583140.28% | 16.58 | 11.78|10.240.49 7.86 7.49
N(3,2) 3 4271|4159 | 5351|5144 | 678040.34% | 616140.30% | 21.08 |16.51|10.040.53 8.04| 7.49
N(5,2) 5 4257 | 4159 | 5297|5144 | 780040.34% | 704240.30% | 32.09 | 26.96 | 10.840.49 8.00 7.49
N(2,5) 2 4259 | 4159 | 5358 | 5144 | 832240.58% | 717840.55% | 35.61 |28.34 | 15.94+1.06 7.86 7.49
N(3,5) 3 4271|4159 | 5351|5144 | 851840.57% | 744040.55% |37.18|30.87 |14.54+0.88 8.04| 7.49
N(5,5) 5 4257 | 4159 | 5297|5144 | 918740.59% | 808840.56% | 42.34 | 36.40 | 13.51+0.86 8.00 7.49
N(30,5) 30 4234 | 4159 | 5393 | 5144 | 2615840.28% | 2284840.27% | 79.38 | 77.49 | 14.5+0.45 9.21 7.49
L80- 2 4259 | 4159 | 5358 | 5144 | 112304+1.48% | 9868+1.40% | 52.29 | 47.87 | 13.6+2.53 7.86 7.49
N(30,5) | 7.6 | 4237|4159 | 5405|5144 [110014+1.54% | 9868+1.40% | 50.87 | 47.87 |11.5+2.53 8.68 7.49

Processor: LEN &

L80(2,5) 2 4259 | 4159 | 5358 | 5144 | 597840.27% | 545640.22% |10.36 | 5.72| 9.6+£0.44| 7.86 7.49
2.6 | 4272|4159 | 5351|5144 | 590140.26% | 54564+0.22% | 9.31| 5.72| 8.240.37| 8.04| 7.49

L80(2,10) 2 4259 | 4159 | 5358 | 5144 | 691240.66% | 602840.56% |22.47 | 14.67 | 14.64+1.02 7.86 7.49
3.6 | 4257|4159 | 5299|5144 | 672740.65% | 602840.56% |21.23 |14.67|11.640.97 8.13 7.49

L95(2,5) 2 4259 | 4159 | 5358 | 5144 | 568740.15% | 532340.12% | 5.78| 3.37| 6.840.22 7.86 7.49
2.15| 4272 | 4159 | 5351|5144 | 565240.16% | 532340.12% | 5.32| 3.37| 6.240.20 8.04| 7.49

L95(2,10) 2 4259 | 4159 | 5358 | 5144 | 594940.45% | 55064+0.37% | 9.93| 6.58| 8.0+£0.64| 7.86 7.49
2.4 | 4272|4159 | 5351|5144 | 590740.44% | 55064+0.37% | 9.40| 6.58| 7.240.69 8.04| 7.49

N(2,2) 2 4259 | 4159 | 5358 | 5144 | 61634+0.31% | 554340.27% | 13.06 | 7.21|11.240.53 7.86 7.49
N(3,2) 3 4271|4159 | 5351|5144 | 636840.34% | 568140.29% | 15.97| 9.46 |12.040.48 8.04| 7.49
N(5,2) 5 4257 | 4159 | 5297|5144 | 699340.36% | 619640.32% | 24.25 [16.99 | 12.940.61 8.00 7.49
N(2,5) 2 4259 | 4159 | 5358 | 5144 | 769940.59% | 64654+0.56% | 30.40 | 20.43 | 19.240.95 7.86 7.49
N(3,5) 3 4271|4159 | 5351|5144 | 785240.59% | 668340.58% |31.85(23.04|17.4+1.01 8.04| 7.49
N(5,5) 5 4257 | 4159 | 5297|5144 | 831840.62% | 714540.58% | 36.31|28.00 | 16.44+1.12 8.00 7.49
N(30,5) 30 4234 | 4159 | 5393 | 5144 | 200604+0.33% | 168914+0.33% | 73.11 | 69.55 | 18.74+0.59 9.21 7.49
L80- 2 4259 | 4159 | 5358 | 5144 | 106194+1.45% | 930141.38% | 49.54 | 44.70 | 13.94+2.66 7.86 7.49
N(30,5) | 7.6 | 4237|4159 | 5405|5144 | 102804+1.56% | 930141.38% | 47.42 | 44.70 | 10.442.20 8.68 7.49
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Table 16: Simulation results for benchmark: MmGa3D

system | OL Tst | Bst | Tins | Bins | Trt | Brt | T1% | BI% | Tmp % rTsp% | Bsp%
Processor: UNLIMITED

L80(2,5) 2 7695 | 7431 | 62371 | 60784 | 666461+0.15% | 623054+0.09% | 6.42| 2.44| 7.040.21 9.73 7.38
2.6 | 7667 | 7431 | 62806 | 60784 | 66153+£0.11% | 623054+0.09% | 5.06| 2.44| 6.240.16 | 10.36 7.38

L80(2,10) 2 7695 | 7431 | 62371 | 60784 | 756564+0.34% | 6761940.28% | 17.56 |10.11|11.940.56 9.73 7.38
3.6 | 7677|7431 | 63154 | 60784 | 748144+0.28% | 676194+0.28% |15.59(10.11 |10.740.51 | 10.86 7.38

L95(2,5) 2 7695 | 7431 | 62371 | 60784 | 6378240.09% | 6150940.05% | 2.21| 1.18| 3.740.11 9.73 7.38
2.15| 7667 | 7431 | 62806 | 60784 | 63917+£0.07% | 615094+0.05% | 1.74| 1.18| 3.940.09| 10.36 7.38

L95(2,10) 2 7695 | 743162371 | 60784 | 663594+0.26% | 6298040.19% | 6.01| 3.49| 5.4£0.34| 9.73 7.38
2.4 | 7667 | 7431 | 62806 | 60784 | 66669+0.25% | 629804+0.19% | 5.79| 3.49| 5.840.36| 10.36 7.38

N(2,2) 2 7695 | 7431 | 62371 | 60784 | 685734+0.14% | 627634+0.11% | 9.05| 3.15| 9.240.20 9.73 7.38
N(3,2) 3 7667 | 7431 | 62806 | 60784 | 6955240.14% | 6403840.13% | 9.70| 5.08| 8.6£0.27| 10.36 7.38
N(5,2) 5 7638 | 7431 | 62807 | 60784 | 7222240.16% | 6782340.16% | 13.04 |10.38 | 6.540.26 | 10.36 7.38
N(2,5) 2 7695 | 7431 | 62371 | 60784 | 8242640.31% | 7099240.29% | 24.33 | 14.38 | 16.1+0.51 9.73 7.38
N(3,5) 3 7667 | 7431 | 62806 | 60784 | 8330740.29% | 7255740.31% | 24.61 |16.23 | 14.940.47 | 10.36 7.38
N(5,5) 5 7638 | 7431 | 62807 | 60784 | 847214+0.31% | 7677340.32% | 25.8720.83 |10.3+£0.51 | 10.36 7.38
N(30,5) 30 7440 | 7431 | 61116 | 60784 | 1657874+0.19% | 1673264+0.20% | 63.14 | 63.67 | -0.940.35 7.88 7.38
L80- 2 7695 | 7431 | 62371 | 60784 [ 11969040.82% | 1055744+0.80% | 47.89 | 42.42 | 13.3+1.16 9.73 7.38
N(30,5) | 7.6 | 7546 | 7431 | 61764 | 60784 | 110265+0.77% | 1055744+0.80% | 43.99 | 42.42 | 4.54+1.13 8.85 7.38

Processor: Max &

L80(2,5) 2 7695 | 7431 | 62371 | 60784 | 809614+0.17% | 7642740.15% | 22.96 |20.47 | 5.940.26 9.73 7.38
2.6 | 7667 | 7431 | 62806 | 60784 | 814844+0.15% | 764274+0.15% |22.92(20.47 | 6.640.27 | 10.36 7.38

L80(2,10) 2 7695 | 7431 | 62371 | 60784 | 9704840.39% | 8995640.35% | 35.73 |32.43 | 7.840.62 9.73 7.38
3.6 | 7677|7431 | 63154 |60784 | 97357+0.36% | 8995640.35% | 35.13 (32.43 | 8.34+0.53| 10.86 7.38

L95(2,5) 2 7695 | 7431 | 62371 | 60784 | 7435440.10% | 7157740.08% | 16.12|15.08 | 3.940.16 9.73 7.38
2.15| 7667 | 7431 | 62806 | 60784 | 75316+£0.09% | 715774+0.08% | 16.61|15.08 | 5.240.12| 10.36 7.38

L95(2,10) 2 7695 | 7431 | 62371 | 60784 | 786284+0.29% | 7508940.25% | 20.68 |19.05| 4.840.39 9.73 7.38
2.4 | 7667 | 7431 | 62806 | 60784 | 79539+0.27% | 7508940.25% |21.04(19.05| 5.940.40 | 10.36 7.38

N(2,2) 2 7695 | 7431 | 62371 | 60784 | 841414+0.18% | 781154+0.17% | 25.87 |22.19| 7.7+0.26 9.73 7.38
N(3,2) 3 7667 | 7431 | 62806 | 60784 | 9204640.21% | 8544640.20% | 31.77 |28.86 | 7.7£0.31| 10.36 7.38
N(5,2) 5 7638 | 7431 | 62807 | 60784 [ 1122374+0.20% | 1055774+0.21% | 44.04 |42.43 | 6.3£0.30| 10.36 7.38
N(2,5) 2 7695 | 7431 | 62371 | 60784 [ 11790040.36% | 10627040.34% | 47.10 | 42.80 | 10.940.56 9.73 7.38
N(3,5) 3 7667 | 7431 | 62806 | 60784 | 12423840.32% | 11211940.33% | 49.45 |45.79 | 10.84+0.46 | 10.36 7.38
N(5,5) 5 7638 | 7431 | 62807 | 60784 | 13620440.37% | 12631140.36% | 53.89 | 51.88 | 7.840.65| 10.36 7.38
N(30,5) 30 7440 | 7431 | 61116 | 60784 | 4561014+0.14% | 44908440.15% | 86.60 | 86.46 | 1.54£0.24| 7.88 7.38
L80- 2 7695 | 7431 | 62371 | 60784 | 1630904+0.82% | 14912940.81% | 61.76 | 59.24 | 9.44+1.48 9.73 7.38
N(30,5) | 7.6 | 7546 | 7431 | 61764 | 60784 | 156650+0.77% | 1491294+0.81% | 60.57 [ 59.24 | 5.14+1.19 8.85 7.38

Processor: LEN &

L80(2,5) 2 7695 | 7431 | 62371 | 60784 | 665504+0.14% | 623064+0.09% | 6.28| 2.44| 6.840.20 9.73 7.38
2.6 | 7667 | 7431 | 62806 | 60784 | 66095+0.11% | 623064+0.09% | 4.98| 2.44| 6.14+0.15| 10.36 7.38

L80(2,10) 2 7695 | 7431 | 62371 | 60784 | 766624+0.34% | 691934+0.27% | 18.64 |12.15|10.840.47 9.73 7.38
3.6 | 7677|7431 | 63154 |60784 | 75778+£0.28% | 691934+0.27% | 16.66 |12.15| 9.640.45| 10.86 7.38

L95(2,5) 2 7695 | 7431 | 62371 | 60784 | 6380240.09% | 6148840.05% | 2.24| 1.14| 3.740.11 9.73 7.38
2.15| 7667 | 7431 | 62806 | 60784 | 63881+0.07% | 614884+0.05% | 1.68| 1.14| 3.940.11| 10.36 7.38

L95(2,10) 2 7695 | 7431 | 62371 | 60784 | 66715+0.25% | 636884+0.18% | 6.51| 4.56| 4.840.29 9.73 7.38
2.4 | 7667 | 7431 | 62806 | 60784 | 67186+£0.24% | 636884+0.18% | 6.52| 4.56| 5.540.36| 10.36 7.38

N(2,2) 2 7695 | 7431 | 62371 | 60784 | 6858440.15% | 629064+0.11% | 9.06| 3.37| 9.04+0.21 9.73 7.38
N(3,2) 3 7667 | 7431 | 62806 | 60784 | 69635+0.15% | 6401740.12% | 9.81| 5.05| 8.840.19| 10.36 7.38
N(5,2) 5 7638 | 7431 | 62807 [ 60784 | 724704+0.17% | 6830440.17% |13.33|11.01| 6.1£0.22| 10.36 7.38
N(2,5) 2 7695 | 743162371 | 60784 | 833274+0.31% | 7327240.31% | 25.15|17.04 | 13.6+0.51 9.73 7.38
N(3,5) 3 7667 | 7431 | 62806 | 60784 | 8444640.30% | 7522940.30% | 25.63 [19.20 | 12.24+0.50 | 10.36 7.38
N(5,5) 5 7638 | 7431 | 62807 [ 60784 | 8633940.32% | 8037940.32% | 27.26 |24.38 | 7.3£0.38| 10.36 7.38
N(30,5) 30 7440 | 7431 | 61116 | 60784 | 18741640.18% | 19471840.20% | 67.39 | 68.78 | -3.84£0.24 | 7.88 7.38
L80- 2 7695 | 7431 | 62371 | 60784 | 1270014+0.80% | 11613240.77% | 50.89 |47.66 | 9.5+£1.34| 9.73 7.38
N(30,5) | 7.6 | 7546 | 7431 | 61764 | 60784 | 117195+0.73% | 1161324+0.77% | 47.30 | 47.66 | 0.941.19 8.85 7.38
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Table 17: Simulation results for benchmark: Qcn2

system | OL Tst | Bst | Tins |Bins | Trt | Brt | T1% | BI% | Tmp % rTsp% | Bsp%
Processor: UNLIMITED

L80(2,5) 2 5813 | 5685 | 1366 1176 |147240.20% |1234+0.19% | 7.15| 4.72(19.34£0.36 | 29.30 | 19.91
2.6 | 5785|5685 | 1356|1176 |1464+0.20% |12344+0.19% | 7.34| 4.72|18.6+0.36 | 28.92| 19.91

L80(2,10) 2 5813 | 5685 | 1366 1176 |17214+0.51% |1347+0.53% |20.59 | 12.73 |27.84+1.02 | 29.30 | 19.91
3.6 | 5798|5685 | 1351|1176 |1695+0.46% |13474+0.53% |20.28 [12.73|25.840.92 | 28.78 | 19.91

L95(2,5) 2 5813 | 5685 | 1366 1176|141240.12% |1208+0.10% | 3.22| 2.70[16.940.20 | 29.30 | 19.91
2.15| 5785 | 5685 | 1356|1176 | 1404+0.13% |12084+0.10% | 3.42| 2.70|16.240.22 | 28.92| 19.91

L95(2,10) 2 5813 | 5685 | 1366|1176 |148440.35% |1239+0.32% | 7.92| 5.11[19.940.59 | 29.30 | 19.91
2.4 | 5785|5685 | 1356|1176 |1474+0.35% [12394+0.32% | 7.98| 5.11|19.0+0.54 | 28.92| 19.91

N(2,2) 2 5813 | 5685 | 1366 [1176|151240.23% |1247+0.23% | 9.61| 5.71(21.34+0.44 | 29.30 | 19.91
N(3,2) 3 5785 | 5685 | 1356 [1176|157140.26% | 1280+0.25% |13.66 | 8.14 |22.74+0.48 | 28.92 | 19.91
N(5,2) 5 5774 | 5685 | 1329 (1176 |16464+0.27% | 1373+£0.30% |19.25 | 14.39 [ 20.04+0.52 | 28.02 | 19.91
N(2,5) 2 5813 | 5685 | 1366 1176 |189240.47% | 1426+0.51% |27.77|17.56 | 32.74+1.14 | 29.30 | 19.91
N(3,5) 3 5785 | 5685 | 1356 [1176|197840.48% | 1456+0.48% |31.44|19.29 | 35.940.92 | 28.92 | 19.91
N(5,5) 5 5774 | 5685 | 1329 [1176|19814+0.47% |1551+£0.54% | 32.89 | 24.19 |27.84+0.83 | 28.02 | 19.91
N(30,5) 30 5755 | 5685 | 1270 1176 |409240.27% | 38224+0.31% | 68.95(69.24 | 7.14£0.50 | 28.02 | 19.91
L80- 2 5813 | 5685 | 1366|1176 |28894+1.20% |2074+1.31% |52.70 | 43.32 [ 39.64+2.38 | 29.30 | 19.91
N(30,5) | 7.6 | 5751|5685 | 1297|1176 |2477+1.17% |20744+1.31% | 47.62 [43.32|19.442.21 | 26.89| 19.91

Processor: MAX 8

L80(2,5) 2 5813 | 5685 | 1366 1176 |169140.24% |1374+0.22% [19.18 | 14.43 | 23.14+0.46 | 29.30 | 19.91
2.6 | 5785|5685 | 1356|1176 |1673+£0.23% |137440.22% | 18.92 |14.43 | 21.840.44 | 28.92| 19.91

L80(2,10) 2 5813 | 5685 | 1366 1176 |202140.54% |15994+0.54% |32.38 |26.50 | 26.241.00 | 29.30 | 19.91
3.6 | 5798|5685 | 1351|1176 |2001+0.53% |159940.54% | 32.47 [ 26.50 | 25.240.96 | 28.78 | 19.91

L95(2,5) 2 5813 | 5685 | 1366 1176 |15654+0.15% |1300+£0.14% |12.69 | 9.54 |20.440.26 | 29.30 | 19.91
2.15| 5785 | 5685 | 1356|1176 [ 1551+£0.14% | 13004+0.14% | 12.54 | 9.54|19.440.23 | 28.92| 19.91

L95(2,10) 2 5813 | 5685 | 1366 1176 |16454+0.37% | 1353+0.35% |16.94 | 13.14 [ 21.64+0.65 | 29.30 | 19.91
2.4 | 5785|5685 | 1356|1176 |1633+0.37% |13534+0.35% | 16.95 [13.14 | 20.6+£0.58 | 28.92| 19.91

N(2,2) 2 5813 | 5685 | 1366 1176 |17474+0.27% | 1405+0.27% | 21.80 | 16.33 | 24.440.45 | 29.30 | 19.91
N(3,2) 3 5785 | 5685 | 1356 [1176|188440.29% |15184+0.32% |28.03 |22.58 |24.14+0.51 | 28.92 | 19.91
N(5,2) 5 5774 | 5685 | 1329 (1176 |228040.29% |1838+0.30% |41.70 | 36.03 |24.14+0.47 | 28.02 | 19.91
N(2,5) 2 5813 | 5685 | 1366 1176 |242740.48% |1867+0.53% |43.69 | 37.02 [ 30.04+0.84 | 29.30 | 19.91
N(3,5) 3 5785 | 5685 | 1356 [ 1176 |25464+0.44% | 1956+0.51% |46.72|39.91 [ 30.14+0.89 | 28.92 | 19.91
N(5,5) 5 5774 | 5685 | 1329 [1176|27664+0.52% | 2196+0.55% | 51.95 | 46.47 [ 25.941.07 | 28.02 | 19.91
N(30,5) 30 5755 | 5685 | 1270 (1176 |934340.19% | 75744+0.22% | 86.40 | 84.48 | 23.440.33 | 28.02 | 19.91
L80- 2 5813 | 5685 | 1366 1176 |33914+1.19% | 2603+1.28% |59.70 | 54.84 | 30.442.03 | 29.30 | 19.91
N(30,5) | 7.6 | 5751|5685 | 1297|1176 3115+1.19% |2603+1.28% | 58.35 [ 54.84 | 19.842.07 | 26.89| 19.91

Processor: LEN &

L80(2,5) 2 5813 | 5685 | 1366 1176 |147240.20% |1234+0.18% | 7.16| 4.76 [19.240.34 | 29.30 | 19.91
2.6 | 5785|5685 | 1356|1176 |1462+0.19% |12344+0.18% | 7.22| 4.76|18.440.32 | 28.92| 19.91

L80(2,10) 2 5813 | 5685 | 1366 1176 |17204+0.48% |1377+£0.51% |20.56 | 14.61 | 24.940.84 | 29.30 | 19.91
3.6 | 5798|5685 | 1351|1176 |17124+0.48% [13774+0.51% |21.08 [ 14.61 | 24.440.88 | 28.78 | 19.91

L95(2,5) 2 5813 | 5685 | 1366 [1176|141340.11% |1208+0.11% | 3.29| 2.70[16.940.17 | 29.30 | 19.91
2.15| 5785 | 5685 | 1356|1176 [ 1400+£0.11% [12084+0.11% | 3.15| 2.70|15.940.19 | 28.92| 19.91

L95(2,10) 2 5813 | 5685 | 1366|1176 |148240.34% |1251+£0.31% | 7.81| 6.00 [18.64+0.60 | 29.30 | 19.91
2.4 | 5785|5685 | 1356|1176 |1479+0.36% [12514+0.31% | 8.29| 6.00|18.240.55| 28.92| 19.91

N(2,2) 2 5813 | 5685 | 1366 |1176|15104+0.22% |1246+0.23% | 9.49| 5.63 (21.240.40 | 29.30 | 19.91
N(3,2) 3 5785 | 5685 | 1356 [ 1176 |15754+0.26% |12794£0.24% |13.88 | 8.11 [23.14+0.57 | 28.92 | 19.91
N(5,2) 5 5774 | 5685 | 1329 [1176|164940.27% | 1385+0.29% [19.37 | 15.15 [19.04+0.55 | 28.02 | 19.91
N(2,5) 2 5813 | 5685 | 1366 1176 |190940.47% |1471+£0.50% | 28.40 | 20.07 [29.74+1.08 | 29.30 | 19.91
N(3,5) 3 5785 | 5685 | 1356 (1176 |19874+0.47% |15184+0.51% |31.74|22.57 [ 30.941.07 | 28.92 | 19.91
N(5,5) 5 5774 | 5685 | 1329 [1176|199740.48% | 16424+0.55% | 33.45 | 28.42 [21.64+0.89 | 28.02 | 19.91
N(30,5) 30 5755 | 5685 | 1270 (1176 | 45654+0.26% | 4297+0.28% |72.17 | 72.64 | 6.34+0.40 | 28.02 | 19.91
L80- 2 5813 | 5685 | 1366 [1176|292141.14% |2288+1.26% |53.22 | 48.62 [27.64+2.26 | 29.30 | 19.91
N(30,5) | 7.6 | 5751|5685 | 1297|1176 |2530+1.12% |22884+1.26% | 48.72 [48.62|10.94£2.15 | 26.89| 19.91
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Table 18: Simulation results for benchmark: TRACK

system | OL Tst | Bst | Tins |Bins | Trt | Brt | T1% | BI% | Tmp % frsp% | Bsp%
Processor: UNLIMITED

L80(2,5) 2 6102 | 5853 421 | 398 | 5174+1.16% | 481+1.05% |18.52(17.28 7.24£1.52| 20.41 | 15.78
2.6 | 6083|5853 408 | 398 | 49441.03% | 4814+1.05% |17.44|17.28 2.6£1.57| 17.85| 15.78

L80(2,10) 2 6102 | 5853 421 | 398 | 62442.70% | 585+2.68% |32.51|31.97 6.7£3.96 | 20.41 | 15.78
3.6 | 6087|5853 408 | 398 | 60042.55% | 58542.68% |31.96|31.97 2.2+3.92| 17.85| 15.78

L95(2,5) 2 6102 | 5853 421 | 398 | 48240.75% | 4544+0.63% |12.61|12.43 6.1+£1.00| 20.41| 15.78
2.15| 6083 | 5853 408 | 398 | 46340.58% | 45440.63% |11.91|12.43 2.0+£0.98| 17.85| 15.78

L95(2,10) 2 6102 | 5853 421 | 398 | 50841.94% | 483+2.02% [17.16|17.70 4.942.69 | 20.41 | 15.78
2.4 | 6083 | 5853 408 | 398 | 49241.85% | 48342.02% |17.07|17.70 1.7+£2.99| 17.85| 15.78

N(2,2) 2 6102 | 5853 421 | 398 | 54941.27% | 502+1.29% |23.26|20.69 9.4+1.88| 20.41 | 15.78
N(3,2) 3 6083 | 5853 408 | 398 | 55141.30% | 533+1.38% |25.97(25.33 3.5+2.02| 17.84| 15.78
N(5,2) 5 6082 | 5853 408 | 398 | 64941.18% | 625+£1.27% |37.17|36.35 3.9+1.74| 17.84| 15.78
N(2,5) 2 6102 | 5853 421 | 398 | 75441.98% | 648+2.23% | 44.10|38.57 | 16.6+£3.32| 20.41| 15.78
N(3,5) 3 6083 | 5853 408 | 398 | 72642.10% | 696+£2.25% |43.81|42.83 3.943.67| 17.84| 15.78
N(5,5) 5 6082 | 5853 408 | 398 | 78942.09% | 75542.21% |48.34|47.31 4.943.64 | 17.84 | 15.78
N(30,5) 30 6063 | 5853 406 | 398|220640.90% | 2194+0.88% | 81.59 |81.87 0.6+£1.33| 17.46 | 15.78
L80- 2 6102 | 5853 421 | 398|10644+5.74% | 957+5.93% | 60.41 | 58.44 | 11.3+9.64| 20.41| 15.78
N(30,5) | 7.6 | 6053|5853 406 | 398 | 92845.62% | 957+5.93% | 56.25 | 58.44 | -2.549.33| 17.45| 15.78

Processor: MAX 8

L80(2,5) 2 6102 | 5853 421 | 398 | 55141.14% | 508+1.09% |23.62|21.66 8.7+£1.65| 20.41 | 15.78
2.6 | 6083|5853 408 | 398 | 52141.01% | 50841.09% |21.79|21.66 2.6+1.44| 17.85| 15.78

L80(2,10) 2 6102 | 5853 421 | 398 | 6714+2.51% | 620+£2.59% |37.26|35.83 7.243.63| 20.41 | 15.78
3.6 | 6087|5853 408 | 398 | 63842.47% | 62042.59% | 36.08|35.83 2.3+3.64| 17.85| 15.78

L95(2,5) 2 6102 | 5853 421 | 398 | 50040.70% | 469+0.66% |15.72|15.27 6.6+£1.19| 20.41 | 15.78
2.15| 6083 | 5853 408 | 398 | 48340.65% | 46940.66% | 15.58 |15.27 2.9+0.91| 17.85| 15.78

L95(2,10) 2 6102 | 5853 421 | 398 | 53742.02% | 498+1.92% |21.50]20.17 7.5+£3.05| 20.41 | 15.78
2.4 | 6083 | 5853 408 | 398 | 51541.80% | 49841.92% |20.81|20.17 3.2+3.05| 17.85| 15.78

N(2,2) 2 6102 | 5853 421 | 398 | 5674+1.21% | 518+1.27% |25.73|23.25 9.2+2.03| 20.41 | 15.78
N(3,2) 3 6083 | 5853 408 | 398 | 59741.28% | 567+£1.35% |31.75(29.85 5.3+1.83| 17.84| 15.78
N(5,2) 5 6082 | 5853 408 | 398 | 7284+1.07% | 692+1.10% |44.00 | 42.52 5.2+1.75| 17.84| 15.78
N(2,5) 2 6102 | 5853 421 | 398 | 81642.03% | 717+2.05% | 48.37|44.51 | 13.243.58| 20.41| 15.78
N(3,5) 3 6083 | 5853 408 | 398 | 7904+1.87% | 745+2.06% |48.40|46.58 6.5+£3.22| 17.84| 15.78
N(5,5) 5 6082 | 5853 408 | 398 | 88641.86% | 837+£1.89% |53.97|52.50 5.5+£2.92| 17.84| 15.78
N(30,5) 30 6063 | 5853 406 | 398|281440.69% | 2687+£0.75% | 85.57 | 85.20 4.74+1.21| 17.46 | 15.78
L80- 2 6102 | 5853 421 | 398|112245.65% | 999+5.67% | 62.47|60.18 | 11.949.62| 20.41| 15.78
N(30,5) | 7.6 | 6053|5853 406 | 398|10214+5.37% | 999+5.67% | 60.24 | 60.18 1.5+8.87| 17.45| 15.78

Processor: LEN &

L80(2,5) 2 6102 | 5853 421 | 398 | 52241.14% | 486+1.14% |19.25|18.08 7.24£1.94| 20.41 | 15.78
2.6 | 6083|5853 408 | 398 | 4984+1.09% | 48641.14% |18.11|18.08 2.8+1.64| 17.85| 15.78

L80(2,10) 2 6102 | 5853 421 | 398 | 63442.66% | 571+2.65% |33.54(30.37 | 10.843.68| 20.41| 15.78
3.6 | 6087|5853 408 | 398 | 59642.58% | 57142.65% |31.54|30.37 4.64+3.07| 17.85| 15.78

L95(2,5) 2 6102 | 5853 421 | 398 | 48340.79% | 457+0.72% [12.83(12.91 6.0+£1.37| 20.41 | 15.78
2.15| 6083 | 5853 408 | 398 | 46640.73% | 4574+0.72% |12.54|12.91 2.0£1.15| 17.85| 15.78

L95(2,10) 2 6102 | 5853 421 | 398 | 5084+1.89% | 473+1.64% [17.09|15.92 7.6£3.07| 20.41| 15.78
2.4 | 6083 | 5853 408 | 398 | 49041.81% | 473+1.64% |16.84|15.92 4.14+2.43 | 17.85| 15.78

N(2,2) 2 6102 | 5853 421 | 398 | 53941.28% | 501+£1.25% |21.85(20.53 8.0+£2.33| 20.41 | 15.78
N(3,2) 3 6083 | 5853 408 | 398 | 55941.24% | 531+£1.43% [27.09(25.11 5.5+£2.12| 17.84| 15.78
N(5,2) 5 6082 | 5853 408 | 398 | 65441.19% | 616+£1.20% |37.65|35.45 5.9+1.74| 17.84| 15.78
N(2,5) 2 6102 | 5853 421 | 398 | 7374+2.46% | 661+£2.17% | 42.87(39.82 | 10.943.78| 20.41| 15.78
N(3,5) 3 6083 | 5853 408 | 398 | 72542.06% | 695+£2.32% |43.74|42.81 3.8+3.28 | 17.84| 15.78
N(5,5) 5 6082 | 5853 408 | 398 | 79241.94% | 777+£2.16% | 48.54 | 48.78 2.0£2.91| 17.84| 15.78
N(30,5) 30 6063 | 5853 406 | 398|229440.87% | 22424+0.86% | 82.30 | 82.25 2.3+1.55| 17.46 | 15.78
L80- 2 6102 | 5853 421 | 398(109445.89% | 943+5.75% | 61.51|57.82 |17.54+10.77| 20.41 | 15.78
N(30,5) | 7.6 | 6053|5853 406 | 398 |10494+5.77% | 943+5.75% | 61.32|57.82 [11.04+10.05 | 17.45| 15.78
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