
Balanced Scheduling:

Instruction scheduling

when memory latency is uncertain

Daniel R. Kerns

Department of Computer Science and Engineering

University of Washington

Technical Report 92-11-03

November 1992

Balanced Scheduling:

Instruction scheduling when memory latency is uncertain

Daniel R. Kerns

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195

December 14, 1992

Abstract

Traditional list schedulers order instructions based on an optimistic estimate of the load delay imposed

by the implementation. Therefore they cannot respond to variations in load latencies (due to cache hits

or misses, congestion in the memory interconnect, etc.) and cannot easily be applied across di�erent

implementations. We have developed an alternative algorithm, known as balanced scheduling, that

schedules instructions based on an estimate of the amount of instruction level parallelism in the program.

Since scheduling decisions are program- rather than machine-based, balanced scheduling is una�ected by

implementation changes. Since it is based on the amount of instruction level parallelism that a program

can support, it can respond better to variations in load latencies. Performance improvements over a

traditional list scheduler on a Fortran workload and simulating several di�erent machine types (cache-

based workstations, large parallel machines with a multipath interconnect and a combination, all with

non-blocking processors) are quite good, averaging between 3% and 18%.

1 Introduction

Instruction schedulers for conventional machines generate code assuming a machine model in which load

latencies are well-de�ned and �xed. Usually the latencies re
ect the most optimistic execution situation, e.g.,

the time of a cache hit rather than a cache miss. Compiler optimizations intended to improve performance

through instruction scheduling, such as reordering instructions to avoid pipeline stalls, insert independent

instructions after loads to keep the CPU busy while memory references are in progress. The number of

instructions inserted (in the best case) depends on this prede�ned latency value.

When a load reference exceeds the implementation-de�ned latency, the processor architecture generally

stipulates that instruction execution be stalled. The advantage of this design (called blocking loads) is that

it requires a simple and straightforward hardware implementation. The consequence for compiler technology

is that the compiler does not have to consider multiple memory latencies during instruction scheduling.

Two architectural innovations make it worthwhile to reconsider how to schedule behind load instructions.

The �rst is processor designs that do not stall on unsatis�ed load references (called nonblocking loads)

1

through the use of lockup free caches[19, 20, 16, 13], multiple hardware contexts[2, 1] or an instruction

lookahead scheme[2]. Nonblocking loads allow a processor to continue executing other instructions while a

load is in progress. Although the design requires more complex hardware, more instruction level parallelism

can be exploited, and therefore programs execute faster. The second innovation is machines that have a

large variance in memory response time. These uncertain memory latencies may be due to congestion in

a multipath interconnect or a hierarchy of memory, including both cache hierarchies and local and global

memories.

Variable load instruction latencies, coupled with nonblocking loads, complicate scheduling, because the

instruction scheduler does not know how many instructions to schedule after a load to maintain high processor

utilization. If the memory reference is delayed beyond the scheduler's latency estimate, the processor will

stall and processor utilization will drop. However, if the load latency is shorter than the estimate, the

destination register of a load instruction will be tied up longer than necessary. This may increase register

pressure enough to cause unnecessary spills to memory and a consequent increase in program execution

time. In addition, an excessive number of instructions may migrate to the top of the schedule, leaving an

insu�cient number to hide load latencies near the bottom. In this case the CPU will also be needlessly idled.

In this report we present a code scheduling algorithm, called balanced scheduling, that has been speci�cally

designed to tolerate a wide range of variance in load latency over the entire execution of a program. Balanced

scheduling works within the context of a traditional list scheduler[9, 15, 23, 8, 6], but uses a new method for

calculating load instruction weights. Rather than using weights that are determined by the implementation

and therefore are �xed for all programs, the weight of each load is based on the amount of instruction level

parallelism that is available to it. (We refer to this as load level parallelism.) This assignment is e�ective,

since load instructions are scheduled for the maximum latency that can be sustained by the amount of load

level parallelism in the code. In essence, our algorithm schedules for the code instead of scheduling for the

machine. Looking at it another way, balanced scheduling amortizes the cost of incorrectly estimating actual

load latencies over all load instructions in the program.

To validate the algorithm we compared the performance of several programs scheduled via balanced

scheduling and a traditional list scheduler on a variety of processor and memory architectures. The proces-

sor models di�ered in their ability to exploit load level parallelism; each was coupled with three di�erent

memory systems, that exhibit dissimilar latency behavior. Both the balanced scheduler and the traditional

scheduler were incorporated into the gcc[21] compiler and generated code for the Perfect Club benchmarks[4].

Performance improvements for balanced scheduling averaged 3% to 18% over the traditional list scheduler,

for di�erent processor and system model combinations.

The remainder of this report is organized as follows. Section 2 introduces balanced scheduling, and

2

section 3 describes the algorithm in more detail. Section 4 explains our experimental methodology; Section 5

presents the experimental results. Section 6 discusses extensions and other applications of the balanced

scheduling algorithm. The conclusion follows in section 7.

2 Balanced Scheduling

The traditional approach to instruction scheduling that considers machine resource constraints is list schedul-

ing [9, 15, 23, 8, 6]. The primary data structure used by list schedulers is the code DAG, in which nodes

represent instructions and edges represent dependences between them. Each node is labeled with a weight

re
ecting the latency of the instruction.

1

At each iteration of its algorithm a list scheduler creates a ready

list of instructions that are eligible for scheduling, i.e., those whose predecessors in the code DAG have been

scheduled or have had their latencies met. A set of heuristics is then applied to decide which instruction

from the ready list should be scheduled next; the heuristics used depend on the particular list scheduler. For

example, Gibbons and Muchnick[8] �rst schedule the instruction with the greatest operation latency. If more

than one instruction quali�es, their scheduler breaks the tie by choosing the instruction(s) with the greatest

number of successors. The �nal heuristic picks the the instruction with the largest sum of the latencies along

the longest path from the instruction node to a leaf node. Other styles of list schedulers include those that

combine several levels of heuristics into a single weight and schedule in decreasing weight order[17, 24] and

update scheduling weights dynamically[23]. Our heuristics are described in detail in Section 4.1.

If a processor exposes the variations in actual memory reference latency to the compiler through non-

blocking load instructions, instruction scheduling becomes more complicated. Traditional list schedulers use

a single constant for the weight of all load instructions, usually an implementation-de�ned latency (e.g.,

cache hit time). They then schedule instructions independent of that load until the load latency has been

consumed. As expected, traditional schedulers work best when the actual latency of each load matches

the prede�ned (and optimistic) value. When it does not, a longer latency (e.g., the time of a cache miss)

penalizes the program by stalling the CPU. This �xed estimate of memory latency prevents the scheduler

from hiding latencies larger than the nominal value. Therefore, when the optimistic execution scenario does

not occur, performance su�ers. The worst scheduling situation exists when the actual latencies change over

time, for example, as congestion in the interconnect varies.

In contrast, the balanced scheduler computes load instruction weights based on a measure of instruction

level parallelism in the code rather than on an implementation-de�ned value. This measure, which we

call load level parallelism, de�nes the number of instructions that may execute in parallel with each load

1

Edges can also be labeled, allowing latencies to di�er among successor nodes of a given node, as on the Intel i860.

3

L0

L1

X0

X1

X2

X3

X4

Begin

Figure 1: Code DAG of a hypo-

thetical program.

Traditional Traditional Balanced

Scheduling Scheduling Scheduling

W = 5 W = 1

L0 L0 L0

X0 L1 X0

X1 X0 X1

X2 X1 L1

X3 X2 X2

L1 X3 X3

X4 X4 X4

(a) (b) (c)

Figure 2: Schedules generated from the code DAG

in Figure 1, using the traditional and balanced

schedulers. The traditional scheduler is illustrated

with load instruction weights of 5 and 1, respec-

tively.

instruction. The weight for each load is calculated separately, as a function of the number of instructions

that may initiate execution during the load and the number of other loads that could also use them to hide

latencies.

Both the balanced scheduling algorithm and the traditional scheduler operate on a basic block by basic

block basis. The balanced scheduler simply incorporates the new method of computing weights for each load

instruction into a traditional list scheduler.

Using the code DAG of Figure 1 as an example, Figure 2 illustrates the schedules generated by the

traditional and the balanced schedulers. Nodes labeled Ln represent load instructions and nodes labeled Xn

represent other non-load instructions of weight 1. The schedules in Figures 2a and 2b result from scheduling

the graph of Figure 1 with a traditional scheduler, assuming load instruction weights of 5 and 1, respectively.

These two schedules illustrate the e�ect of over- and under-estimating load instruction latency. In Figure 2a,

if L1 incurs an actual latency greater than one, hardware interlocks will be inserted before X4. We say the

scheduler is greedy in this case, because L0 captured all of the load level parallelism and left none for L1.

The opposite situation occurs when load instruction weights are too small. Figure 2b illustrates the schedule

produced when a weight of one is used. In this case we have not taken advantage of the load level parallelism

with respect to L0. We say the scheduler was lazy, because it passed over opportunities for parallelism.

Should the actual latency be greater than the scheduling assumption, the processor will needlessly stall.

Figure 2c is the schedule that the balanced scheduler generates. The balanced scheduler has measured the

load level parallelism in the DAG and determined that a weight of 3 assigned to each load instruction would

generate an e�cient schedule.

4

0 2 4 6 8

Load Latency

0

2

4

6

8

In
ter

loc
ks

Figure 2 (a)
Figure 2 (b)
Figure 2 (c)

Load Latency vs. Interlocks

Figure 3: Interlocks generated from Figure 2 for various load latencies.

Figure 3 summarizes the number of interlocks that accrue when these schedules are executed with varying

memory latencies. The chart shows that, for latencies in the range of 2{4, the balanced schedules are faster

than both the greedy and lazy traditional schedules illustrated in Figure 2. Outside this range the balanced

and traditional schedules perform equivalently.

In summary, balanced scheduling's strength is its ability to look beyond �xed latencies, thereby exposing

additional instruction level parallelism. Whereas traditional schedulers plan for the optimal latency, balanced

schedulers make scheduling decisions based on the amount of load level parallelism the code can support. It

therefore produces fewer interlocks when the optimal case doesn't occur.

3 Balanced Scheduling Algorithm

This section presents the balanced scheduling algorithm. The algorithm is �rst illustrated through two

simple examples. The examples depict the two relationships load instructions can have with each other, i.e.,

occurring in series and in parallel, and, therefore, the two cases the algorithm must handle.

When load instructions occur in series, the balanced scheduling algorithm equally distributes among them

all instructions with which they can execute in parallel. Referring again to the code DAG of Figure 1, the

two load instructions, L0 and L1, may execute independently of X0, X1, X2 and X3. Since L1 is dependent

on L0, the obvious partitioning would schedule two instructions after L0 and two after L1. The weight on

each load instruction is simply one (for the issue slot of the load), plus the number of instruction issue slots

5

L0 L1

X4

Begin

X0

X1

X2

X3

Figure 4: Code DAG in which L0

and L1 are independent and exe-

cute in parallel with all other in-

structions.

Balanced

Scheduling

L0

L1

X0

X1

X2

X3

X4

Figure 5: Balanced schedule generated from the

code DAG in Figure 4.

that may be initiated independently of the load divided by the number of loads in series or, 1 + (4=2) = 3.

Issue slots are measured, because instruction weights represent the number of machine cycles that should

pass before an instruction that uses the result of the load is initiated.

When load instructions are not dependent on each other, i.e., they occur in parallel, their latencies can

be hidden, using instructions drawn from the same set. Referring to the code DAG in Figure 4, the balanced

scheduling algorithm takes advantage of the fact that L0 and L1 can, and should, share the same set of

padding instructions. In Figure 4 each load instruction may execute in parallel with �ve other instructions,

so they are each assigned a weight of six (1 + 5=1). The �nal schedule is shown in Figure 5.

For a balanced scheduling algorithm to be successful, any combination of loads in series and loads in

parallel must be accommodated.

A balanced scheduler operates by measuring load level parallelism and assigning weights accordingly.

The algorithm, shown in Figure 6, examines each instruction i in the code DAG (G) and computes the set

of instructions with which it may execute in parallel. It �rst eliminates from G those instructions that are

predecessors or successors, recursively, producing G

ind

(line 3). The resulting connected components of G

ind

contain the sets of load instructions that may execute in parallel with i. Within each connected component,

C, the path with the largest number of load instructions is located (lines 4{5). (We examine the longest

load path, because loads on other paths can be overlapped with it.) Since the loads on this path execute

in series, their sum (called Chances) represents the number of opportunities for scheduling i. Finally, the

number of issue slots in the instruction execution pipeline that are required by i is divided by the number

of loads in series (IssueSlots(i)=Chances), and is added to the accumulating weight of each load instruction

in C (lines 6{7).

6

Term De�nition

G the code DAG.

Pred(i) the transitive closure of the predecessor function on node i.

Succ(i) the transitive closure of the successor function on node i.

Chances the maximum number of loads on any path in a connected component.

IssueSlots(i) the number of issue slots in the instruction execution pipeline re-

quired by instruction i.

1. Initialize the latency of each load instruction to 1.

2. for each instruction i in G

3. G

ind

= G � (Pred(i) [Succ(i))

4. for each connected component C in G

ind

5. Find the path with the maximum number of load instructions.

6. for each load instruction l 2 C

7. add IssueSlots(i)/Chances to the weight of l

8. end

9. end

10. end

Figure 6: Balanced scheduling algorithm

Figure 7a illustrates the balanced scheduling algorithm on a more challenging basic block. Using i=X1,

step 4 generates the three connected components shown in Figure 7b. (L2 does not appear in a connected

component because it is a predecessor of X1). The maximum path length in the component containing L1

is 1; therefore X1 contributes 1=1 to L1's weight. The maximum path length in the second component is 3,

and X1 contributes 1=3 to the weights of each load instruction, L3, L4, L5 and L6. The third connected

component has no load instructions. Table 1 shows the weight contributed by each instruction to each load at

the completion of the algorithm. The latencies assigned to the �ve load instructions represent a distribution

of load level parallelism that is representative of the load level parallelism in Figure 7.

If n is the number of nodes in the DAG, steps 4 and 5 together may be done in a worst case time of

O(n � n)

2

, using the set union algorithm. First, each node in G

ind

is labeled with its level from the farthest

leaf. Next, it is combined with the nodes to which it is connected, using the set union function. Each time

we perform set union, the set label is updated to re
ect both the minimum and maximum level number that

has been seen in that set. Therefore, the largest path length for each connected component is simply the

maximum level number minus the minimum level number plus 1. Steps 6{7 are performed in O(n) time and,

therefore, do not impact the worst case time complexity. Connected component analysis is done for each

instruction in the code DAG; therefore, the entire algorithm has a worst case time complexity of O(n

2

� n).

2

� is the inverse Ackerman function. As a function of n, it increases very slowly and may be considered constant[22].

7

Contribution by Total

Load L1 L2 L3 L4 L5 L6 X1 X2 X3 X4 Weight

L1 0 1 1 1 1 1 1 1 1 1 10

L2 1/4 0 0 0 0 0 0 0 0 0 1 1/4

L3 1/4 0 0 0 0 0 1/3 1/3 1/3 1/3 2 5/12

L4 1/4 0 0 0 1 1 1/3 1/3 1/3 1/3 4 5/12

L5 1/4 0 0 1/2 0 0 1/3 1/3 1/3 1/3 2 11/12

L6 1/4 0 0 1/2 0 0 1/3 1/3 1/3 1/3 2 11/12

Table 1: How instruction weights are calculated for Figure 7. The total weight is one plus the sum of the

weight contribution of each instruction to each load.

Since the worst case time complexity of list scheduling is O(n

2

), the balanced scheduling algorithm is nearly

as e�cient.

An alternative technique for assigning weights might compute a weight based on the average load level

parallelism over all load instructions in a basic block. However, since load level parallelism typically varies

within a basic block, this method does not consider those imbalances, often ignoring load level parallelism

that is greater than the average for some loads, while unrealistically allocating nonexistent parallelism to

others. Our early experiments indicated that this alternative produced schedules that executed no faster

than schedules from the traditional scheduler.

Figure 7: Balanced scheduling example, with the code DAG (a) and the connected components which

determine the possible placements for X1 (b).

8

4 Experimental Methodology

We designed a series of experiments to compare balanced scheduling with a traditional scheduling approach.

These experiments modeled the execution of real programs running on several di�erent architectures. This

section describes the methodology of these experiments. The integration of the balanced scheduler into the

GCC compiler, the workload and the simulator we used for our measurements are described, in turn, in

sections 4.1 through 4.3.

For our experiments we classify the target machine characteristics into two groups. The processor char-

acteristics are those that control how the processor exploits parallelism with respect to load instructions.

The system characteristics are the attributes of the memory system in a particular implementation. We used

several alternatives for each model, to demonstrate that balanced scheduling works well on architectures that

contribute to latency uncertainty in di�erent ways. The processor and system models we used are described

in sections 4.4 and 4.5.

4.1 Compiler

We modi�ed the gnu gcc version 2.2.2 compiler[21] to perform balanced instruction scheduling. The default

instruction scheduler within gccwas replaced by a new module that can schedule using either the traditional

or balanced approaches. In addition, several changes were made to gcc to increase scheduling e�ectiveness

and improve instruction level parallelism. The changes include alleviating the e�ect of dependences in spill

code introduced by register allocation, our heuristics for picking instructions from the ready list (one of which

helps control register pressure) and modi�cations to gcc's RTL intermediate language. Both schedulers take

advantage of these modi�cations.

gcc performs instruction scheduling both before and after register allocation. Since register allocation

may add spill code and/or copy instructions, the second scheduling pass serves to integrate these additional

instructions into the �nal schedule. However, the e�ectiveness of the second scheduling pass is restricted

because of dependences introduced by register allocation.

These false dependences negatively e�ect schedule performance in two ways. First, the �nal assignment

of register numbers severely limits the code motion that a scheduler can perform. Second, when adding spill

instructions, the gcc compiler always uses register numbers selected from a small pool of spill registers. The

net e�ect is that spill code cannot be scheduled e�ectively with other instructions. We improve performance

by increasing the size of gcc's spill register pool by two and implementing a FIFO queue-like ordering of the

registers in the pool. An alternative approach would use software register renaming after register allocation

to better integrate spill instructions.

9

As previously mentioned, both the balanced and traditional schedulers use the same list scheduler. Some

list schedulers place instructions onto the ready list when all their predecessors in the code DAG have

been scheduled. In contrast, our scheduler defers adding these instructions to the ready list until each

predecessor has exhausted its expected latency. In the case of starvation the scheduler inserts virtual no-op's

into the instruction stream. This delayed insertion of instructions into the ready list increases the accuracy

of instruction placement within the schedule. Since our processors use the hardware interlock model of

execution, the virtual no-ops are removed before actual code generation.

List schedulers select instructions from the ready list in priority order. In our case, the priority of an

instruction is equal to its weight plus the maximum priority among its successors. In the event of ties we

select instructions using alternate heuristics in the following order. The �rst selects the instruction that has

the largest di�erence between consumed and de�ned registers; this heuristic helps control register pressure.

The second ranks instructions based on the number of successors in the code DAG that would be exposed

for scheduling if that instruction were to be selected; it gives the list scheduler more instructions from which

to select. The �nal heuristic selects the instruction that was generated the earliest. Our list scheduler is a

bottom-up scheduler, therefore we generate schedules in reverse order by scheduling from the leaves of the

Code DAG toward the roots.

The compiler has been con�gured for the mips risc processor[12]. gcc's intermediate language, rtl, is

not su�ciently risc-like for an instruction scheduler to get maximum bene�t, since some primitive operations

in rtl are actually multi-cycle macros. In the context of this work, memory-to-memory copies are the most

notable, since it is load instructions that we are concentrating on scheduling. Our implementation extracts

gcc's intermediate language after optimization but before register allocation and modi�es it to replace

certain non-risc patterns, such as memory-to-memory copy, with their risc equivalents. The modi�ed rtl

is at a lower level and therefore more suitable for instruction scheduling.

Loop unrolling is an optimization that increases instruction level parallelism. Due to a con
ict with the

way we use pro�ling information (section 4.3), gcc's unrolling capability is not usable for these experiments.

Therefore, unrolling was performed manually.

4.2 Workload

The workload consisted of the Perfect Club suite of benchmarks[4]. (See Table 4.2) Since these programs are

written in fortran, they were converted to C using f2c[7]. The Fortran-to-C converter produces C programs

that correctly represent the semantics of the original fortran programs. However, these C programs are

conservative translations: after being compiled by a C compiler, they will most likely execute more slowly

than if they were compiled by a fortran compiler. For example, since almost all data is referenced through

10

Name Description

adm A 3D pollution concentration simulation evaluating systems of hydrodynamic

equations.

arc2d Fluid
ow modeling supersonic reentry.

bdna Uses the biomol package to model the molecular dynamics of biomolecules in water.

flo52q Analyses transonic inviscid
ow past an airfoil by solving unsteady Euler equations.

mdg Molecular dynamics calculation of water molecules in the liquid state at room tem-

perature and pressure.

mg3d Seismic migration code using FFT's to model below surface structures.

qcd2 Lattice gauge QCD simulation.

track Determines the course of a set of an unknown number of targets, such as rocket

boosters, from observations.

Table 2: The benchmarks in the \Perfect Club."

float func(a, b)

float *a, *b;

f

a[1] = b[2];

a[2] = b[3];

g

)

float a[HUGE], b[HUGE];

float new func(a, b)

float * a, * b;

f

a[1] = b[2];

a[2] = b[3];

g

Figure 8: Example f2c program showing the disambiguation problem and our transformation. In func the

load of b[3] must be considered dependent on the store of a[1]. Our transformation results in new func.

The resulting program produces incorrect results, but accurately models the code that would be generated

by a fortran compiler.

pointers in the C program, it is nearly impossible for a C compiler to do the memory reference disambiguation

that might be obvious to a fortran compiler. Instruction scheduling is e�ected, because load instructions

are not free to move above stores. Since this problem severely restricts a scheduler's ability to exploit load

level parallelism, we apply a transformation which more correctly models the dependences in the fortran

program and increases the available parallelism.

The fortran standard[3] speci�cally disallows aliasing among dummy arguments (formal parameters) if

there will be any stores to the dummy arguments. If the function func in Figure 8 were produced by f2c, the

fortran standard would assume that array a and array b were disjoint; therefore the load for b[3] could be

scheduled before the store of a[1]. However, the C semantics for func insert a true data dependence between

the store of a[1] and the load of b[3]. This dependence is an artifact of the Fortran-to-C translation and

does not exist in the original program.

Our compiler takes advantage of the fortran semantics by performing a parallelism-exposing transfor-

mation on the input C programs. The transformation would replace func with new func, as illustrated in

Figure 8. New global variables are inserted with the same names as the original subroutine parameters. The

11

formal parameters are replaced with names that are never referenced. The program is no longer semantically

correct, but the compiler is now able to correctly model the fortran independence between references to

array a and array b. The net e�ect is the generation of code that is comparable to that generated by a

fortran compiler. This transformation is a conservative representation of the data dependences that a

fortran compiler could discover, since fortran is quite speci�c about when aliasing may occur.

4.3 Simulator

After the second scheduling pass, the machine instructions are extracted and run through an instruction level

simulator. Given a particular model for load instruction latencies (explained in section 4.5), the simulator

simulates instruction issue and completion for each basic block and computes its execution time in cycles.

As the simulator encounters load instructions, it draws latency samples from a random distribution that

represents the system-level characteristics being modeled (see Section 4.5). The output of the simulator is

one sample of the number of instruction and interlock cycles that comprise the execution time of the program

on the modeled system. Because the results of the simulation are based on an independent and identically

distributed random variable, we can take several steps to both reduce the execution time of the simulation

and improve the quality of the results.

We have chosen to execute the full instruction-by-instruction simulation 30 times with new random

numbers on each iteration. The number 30 represents an arbitrary choice which is large enough to avoid

statistical noise.

Second, we measure the accuracy of our results by generating con�dence intervals. Con�dence intervals

are computed for percentage improvement using a bootstrapping[5] procedure. From the 30 sample runtimes,

we randomly draw 30 samples, with replacement, in order to generate a second sample mean. This process

is repeated until we have 100 sample means for the block. These 100 sample mean runtimes are scaled by

the pro�led execution frequency to compute the actual runtime of the block. The sample means for each

block are summed giving 100 sample runtimes for the entire program. The mean runtime reported is the

mean of the 100 sample mean runtimes.

In order to report a percentage improvement for balanced scheduling, the 100 sample means from the

balanced scheduler are paired with an equal number from the traditional scheduler, and the calculation is

performed. After sorting, a 95% con�dence interval is directly extracted.

4.4 Processor-level model

Processor-level attributes model a processor's ability to exploit load level parallelism. We model three

di�erent con�gurations. The �rst is unrealistically aggressive and serves as a best case reference. The

12

second two are restricted in ways that make them implementable. All of our processor models are assumed

to maintain store/load consistency, i.e., if a load instruction follows a store, and they reference the same

address, the load instruction receives the data that was written by the store instruction.

The �rst processor model (called unlimited) can dispatch non-blocking load instructions with no limit on

the number of loads outstanding. This model is similar to theoretical data
ow machines[10]. It is of interest

because it exposes the maximum bene�t that processor parallelism can achieve. The second (called max-8)

allows a maximum of eight load instructions to be simultaneously executing. If a ninth load instruction is

issued, the processor blocks until one of the eight outstanding loads completes. The third processor model

(called len-8) restricts the maximum number of cycles a load instruction can take before blocking, as in the

Tera Computer[2].

3

In this model, if a load instruction has been outstanding for eight cycles, the processor

blocks until the data is returned.

The balanced scheduler has not been speci�cally con�gured for any of the processor models. In particular,

it may schedule more than eight load instructions before using loaded data (as is prohibited in max 8), and

it might assign load instructions weights greater than eight (not e�ective in len-8). If this information were

available to the compiler, the results for max-8 and len-8 would improve. We used a processor-independent

version of balanced scheduling to demonstrate that a code scheduling approach that was not associated with

a particular implementation, but instead was based solely on program characteristics, such as the amount

of load level parallelism, would generate e�cient code.

4.5 System-level model

Three memory systems are modeled and simulated, representing di�erent latency behavior in both current

and future architectures. The �rst has a data cache. A load instruction's data is returned after 2 cycles

on a cache hit and either 5 or 10 cycles on a cache miss. The model represents a typical workstation-

class risc processor that implements nonblocking load instructions, such as the Motorola 88000 series[16].

It is simulated with cache hit rates of 80% and 95%, modeling �rst level caches of 4K and 32K bytes,

respectively[11]. Four con�gurations are modeled, and are referred to as Lhr(hl,ml), where Lhr stands for

lockup-free caches with a hit rate of hr, and hl and ml are hit and miss latencies, respectively.

The second model has a memory interconnection network and no cache. The interconnection scheme uses

a hashing function to assign addresses to memory modules, e�ectively randomizing memory access locations.

In this architecture, memory latencies modeled by one of two zero-based probability mass functions, depicting

normal distributions with standard deviations of 2 or 5. A standard deviation of 2 represents a machine

3

The Tera restricts the number of instructions rather than cycles; since we assume that instructions other than loads execute

in a single cycle, the two are equivalent.

13

in a relatively stable state (uniform network load, low to medium uncertainty). A standard deviation of 5

represents one with unpredictable memory latencies (changing network load, high uncertainty). The network

machine is modeled in seven di�erent con�gurations. Each distribution is combined with a mean of 2, 3 or 5,

representing di�erent base load levels. In a multithreaded processor such as the Tera, the di�erent means are

related to the number of active threads; the more threads, the lower the mean memory access time. We refer

to these models as N(�,�) where � is the mean of the distribution and � is the standard deviation. All six

con�gurations are reasonable design points for the machine. A seventh con�guration models an unbalanced

system, with a mean access time of 30 cycles and a standard deviation of 5 (N(30,5)). Although we recognize

that a compiler would not likely generate code speci�cally for such an unbalanced con�guration, we include it

in order to gauge balanced scheduling's ability to handle a workload that has too little load level parallelism

to hide the average latency.

The third machine has both a data cache and a Tera-style memory interconnection network. A cache

hit occurs 80% of the time and takes two cycles. A cache miss is represented by a normal distribution with

a mean of 30 and a standard deviation of 5. This con�guration is referred to as L80-N(30,5) and has a

mean latency of 7.6. In this case the 30 cycle latency is a reasonable design point, since the cache satis�es

most requests. The model is intended to be representative of Alewife-like systems[1], where a commodity

processor might be incorporated into a shared memory machine.

5 Experimental Results

The �rst set of results is the percentage improvement in execution time of the balanced scheduler over the

traditional scheduler (positive values indicate an improvement due to balanced scheduling). These results

appear in Tables 3{5, one for each processor model. For these experiments, the traditional scheduler uses

load latencies equal to the cache hit time or e�ective access time for models with caches and the mean of the

normal distribution for models without caches (labeled Optimistic Latency in the table). The percentage

improvement of balanced scheduling over traditional scheduling is quite good. The average decrease in

execution time for the unlimited model varies from 3 to 18 percent for individual system models, with a

mean improvement of 9.9%. The results for max-8 and len 8 are similar, with ranges of 7% to 16% and

3% to 16%, and means of 10.0% and 8.7%, respectively. These results demonstrate that balanced scheduling

works well for several architectures, each of which contributes to latency uncertainty in a di�erent way. It is

important to emphasize that the balanced scheduler has not been customized for the restricted processors;

these results represent the improvement from a machine-independent scheduler and would be better if the

processor dependences were taken into account.

14

Processor model: unlimited | Unlimited loads

System Optimistic Percentage improvement from balanced scheduling

Latency adm arc2d bdna flo52q mdg mg3d qcd2 track Mean

Data cache; bus-based interconnection

L80(2,5) 2 5.8 6.7 6.0 4.9 9.8 7.0 19.3 7.2 8.3

2.6 4.0 6.2 5.2 3.6 8.7 6.2 18.6 2.6 6.9

L80(2,10) 2 9.9 13.1 10.6 8.7 14.4 11.9 27.8 6.7 12.9

3.6 7.5 11.7 8.1 6.7 11.6 10.7 25.8 2.2 10.5

L95(2,5) 2 3.4 3.9 4.4 2.8 6.9 3.7 16.9 6.1 6.0

2.2 2.1 4.0 4.0 2.1 6.2 3.9 16.2 2.0 5.1

L95(2,10) 2 4.6 5.8 5.8 3.9 8.0 5.4 19.9 4.9 7.3

2.4 3.2 6.1 5.6 3.8 7.2 5.8 19.0 1.7 6.6

No cache; network interconnection

N(2,2) 2 8.0 9.3 8.0 6.5 11.3 9.2 21.3 9.4 10.4

N(3,2) 3 6.4 8.9 4.0 5.0 12.0 8.6 22.7 3.5 8.9

N(5,2) 5 4.8 5.5 3.4 3.6 13.5 6.5 20.0 3.9 7.7

N(2,5) 2 14.2 17.7 14.4 11.9 20.9 16.1 32.7 16.6 18.1

N(3,5) 3 11.5 18.2 10.8 10.9 20.0 14.9 35.9 3.9 15.8

N(5,5) 5 9.2 12.0 9.3 7.6 18.3 10.3 27.8 4.9 12.4

N(30,5) 30 -3.5 -5.0 1.9 4.1 19.3 -0.9 7.1 0.6 3.0

Mixed

L80-N(30,5) 2 12.4 20.4 15.8 12.7 20.0 13.3 39.6 11.3 18.2

7.6 7.0 9.3 18.4 6.3 14.3 4.5 19.4 -2.5 9.6

Table 3: Percent improvement in execution time from simulations using processor model unlimited

15

Processor model: max 8 | Maximum of eight outstanding loads

System Optimistic Percentage improvement from balanced scheduling

Latency adm arc2d bdna flo52q mdg mg3d qcd2 track Mean

Data cache; bus-based interconnection

L80(2,5) 2 6.5 8.9 8.6 5.6 7.8 5.9 23.1 8.7 9.4

2.6 4.5 9.0 9.8 4.2 7.4 6.6 21.8 2.6 8.2

L80(2,10) 2 9.8 13.4 11.2 9.0 10.8 7.8 26.2 7.2 11.9

3.6 7.7 12.5 6.8 6.6 8.9 8.3 25.2 2.3 9.8

L95(2,5) 2 4.1 5.8 7.1 3.8 6.0 3.9 20.4 6.6 7.2

2.15 2.9 6.9 8.7 3.2 6.0 5.2 19.4 2.9 6.9

L95(2,10) 2 5.4 7.3 8.0 5.0 6.4 4.8 21.6 7.5 8.3

2.4 4.2 9.0 10.2 4.9 6.8 5.9 20.6 3.2 8.1

No cache; network interconnection

N(2,2) 2 8.2 10.9 9.6 7.3 10.2 7.7 24.4 9.2 10.9

N(3,2) 3 6.5 10.8 4.5 6.1 10.0 7.7 24.1 5.3 9.4

N(5,2) 5 6.1 10.5 4.6 4.7 10.8 6.3 24.1 5.2 9.0

N(2,5) 2 13.4 17.8 13.9 11.1 15.9 10.9 30.0 13.2 15.8

N(3,5) 3 10.6 16.8 6.0 10.4 14.5 10.8 30.1 6.5 13.2

N(5,5) 5 8.9 14.3 7.4 7.7 13.5 7.8 25.9 5.5 11.4

N(30,5) 30 -1.7 -3.9 12.5 1.4 14.5 1.5 23.4 4.7 6.6

Mixed

L80-N(30,5) 2 10.6 17.4 12.3 11.2 13.6 9.4 30.4 11.9 14.6

7.6 5.2 11.3 8.8 7.4 11.5 5.1 19.8 1.5 8.9

Table 4: Percent improvement in execution time from simulations using processor model max 8

16

Processor model: len 8 | Maximum of eight cycles for loads

System Optimistic Percentage improvement from balanced scheduling

Latency adm arc2d bdna flo52q mdg mg3d qcd2 track Mean

Data cache; bus-based interconnection

L80(2,5) 2 5.6 6.6 6.1 4.6 9.6 6.8 19.2 7.2 8.2

2.6 3.8 6.3 5.1 3.5 8.2 6.1 18.4 2.8 6.8

L80(2,10) 2 8.5 11.2 8.5 7.7 14.6 10.8 24.9 10.8 12.1

3.6 6.3 9.5 5.9 5.2 11.6 9.6 24.4 4.6 9.6

L95(2,5) 2 3.3 3.9 4.2 2.7 6.8 3.7 16.9 6.0 5.9

2.15 2.0 4.1 3.8 2.0 6.2 3.9 15.9 2.0 5.0

L95(2,10) 2 4.5 5.7 5.0 3.5 8.0 4.8 18.6 7.6 7.2

2.4 3.5 5.7 4.6 2.7 7.2 5.5 18.2 4.1 6.4

No cache; network interconnection

N(2,2) 2 7.6 9.2 7.9 6.2 11.2 9.0 21.2 8.0 10.0

N(3,2) 3 6.1 8.7 3.9 5.0 12.0 8.8 23.1 5.5 9.1

N(5,2) 5 4.6 5.3 2.1 3.4 12.9 6.1 19.0 5.9 7.4

N(2,5) 2 12.8 15.8 11.5 10.1 19.2 13.6 29.7 10.9 15.5

N(3,5) 3 10.1 14.6 7.4 9.6 17.4 12.2 30.9 3.8 13.3

N(5,5) 5 6.5 8.1 3.3 5.7 16.4 7.3 21.6 2.0 8.9

N(30,5) 30 -2.7 -4.7 2.5 3.7 18.7 -3.8 6.3 2.3 2.8

Mixed

L80-N(30,5) 2 9.7 11.9 9.7 10.3 13.9 9.5 27.6 17.5 13.8

7.6 2.4 0.7 2.9 3.5 10.4 0.9 10.9 11.0 5.3

Table 5: Percent improvement in execution time from simulations using processor model len 8

17

Label De�nition

TIns The number of instructions executed, in millions, for the traditional scheduler.

BIns The number of instructions executed, in millions, for the balanced scheduler.

TI% The percentage of cycles which were interlock cycles for the traditional scheduler.

BI% The percentage of cycles which were interlock cycles for the balanced scheduler.

Imp% The percentage improvement of the balanced scheduler over the traditional

scheduler.

Table 6: Index of labels used in �gures.

The balanced scheduler does relatively better (over the traditional scheduler) as the uncertainty of the

load instruction latencies increases. This can be seen in three di�erent situations: when the cache hit rate is

low (L80 vs. L95); when the cache miss penalty is high (L80(2,10) vs. L80(2,5) and L95(2,10) vs. L95(2,5));

and when the standard deviation of the normal is high (N(2,5) vs. N(2,2), etc.).

To better understand the reasons for the performance improvements, we did a component analysis of

the execution times. All of our instructions execute in a single cycle; therefore the runtime of a program

is the sum of the number of instructions executed and the number of interlocks incurred. Table 7 presents

interlock information on the performance of one of the benchmarks, mdg. (Table 6 explains some of the

column headings used in the remaining tables.) In this table, the percentage of the total number of cycles

that were interlock cycles is reported for both the traditional and balanced schedulers. mdg's performance

gain with balanced scheduling (and also that of the other programs) is a result of both executing fewer

instructions (BIns < TIns) and incurring fewer interlocks (BI% < TI%).

Balanced schedules often execute fewer instructions because their schedules contain less spill code. Table 8

presents data on the percentage of total instructions executed that was classi�ed as spill code. (A spill

instruction is de�ned to be any instruction that is inserted by the register allocator.) Balanced scheduling

incurred fewer spills than the traditional scheduler for virtually all implementation-de�ned latencies on all

programs. (The sole exceptions were arc2d with an optimistic latency of 30 cycles and flo52q with 3.6

cycles.)

We hypothesize that the reduction in interlocks and spill code when using the balanced scheduler is

a direct consequence of its always considering load level parallelism when calculating latency weights. It

measures the parallelism, and, whether it is high or low, tries to use it to hide all load latencies in a basic

block.

When there is signi�cant load level parallelism, code DAGs tend to be bushy, causing all list schedulers

to schedule independent instructions in parallel. The balanced scheduler manages this by assigning load

instruction weights in such a way that load latencies are hidden by the other instructions. Register pressure

18

Program: mdg

(BIns = 5,144 million)

System Optimistic TIns unlimited max 8 len 8

Latency Imp% TI% BI% Imp% TI% BI% Imp% TI% BI%

Data cache; bus-based interconnection

L80(2,5) 2 5,358 9.8 10.4 5.6 7.8 13.9 10.9 9.6 10.4 5.7

2.6 5,351 8.7 9.6 7.4 13.7 8.2 9.3

L80(2,10) 2 5,358 14.4 21.6 13.6 10.8 25.2 20.6 14.6 22.5 14.7

3.6 5,299 11.6 20.2 8.9 24.7 11.6 21.2

L95(2,5) 2 5,358 6.9 5.9 3.4 6.0 8.8 7.1 6.8 5.8 3.4

2.15 5,351 6.2 5.5 6.0 8.9 6.2 5.3

L95(2,10) 2 5,358 8.0 9.4 6.1 6.4 12.1 10.2 8.0 9.9 6.6

2.4 5,351 7.2 8.9 6.8 12.5 7.2 9.4

No cache; network interconnection

N(2,2) 2 5,358 11.3 12.8 6.9 10.2 16.6 11.8 11.2 13.1 7.2

N(3,2) 3 5,351 12.0 16.1 9.7 10.0 21.1 16.5 12.0 16.0 9.5

N(5,2) 5 5,297 13.5 24.4 16.8 10.8 32.1 27.0 12.9 24.3 17.0

N(2,5) 2 5,358 20.9 30.0 18.7 15.9 35.6 28.3 19.2 30.4 20.4

N(3,5) 3 5,351 20.0 31.8 21.3 14.5 37.2 30.9 17.4 31.9 23.0

N(5,5) 5 5,297 18.3 35.5 25.9 13.5 42.3 36.4 16.4 36.3 28.0

N(30,5) 30 5,393 19.3 71.8 67.9 14.5 79.4 77.5 18.7 73.1 69.6

Mixed

L80-N(30,5) 2 5,358 20.0 49.9 42.3 13.6 52.3 47.9 13.9 49.5 44.7

7.6 5,405 14.3 46.9 11.5 50.9 10.4 47.4

Table 7: Detailed analysis of performance in mdg

Percentage of Spill Instructions

Balanced Traditional Scheduler with Optimistic Latency of

Program BIns Scheduler 2 2.15 2.4 2.6 3 3.6 5 7.6 30

adm 2,494 7.43 9.59 9.15 9.15 9.15 9.22 9.42 9.50 8.70 7.49

arc2d 11,149 10.47 13.52 13.74 13.74 13.68 13.27 13.46 13.89 12.25 10.11

bdna 2,391 22.84 26.50 26.32 26.32 26.32 24.17 24.94 24.68 24.73 25.54

flo52q 3,323 4.61 7.14 6.82 6.82 6.82 6.97 3.91 6.55 5.89 4.90

mdg 5,144 7.49 7.86 8.04 8.04 8.04 8.04 8.13 8.00 8.86 9.21

mg3d 60,784 7.38 9.73 10.36 10.36 10.36 10.36 10.86 10.36 8.85 7.88

qcd2 1,176 19.91 29.30 28.92 28.92 28.92 28.92 28.78 28.02 26.89 28.02

track 398 15.78 20.41 17.85 17.85 17.85 17.85 17.85 17.84 17.45 17.46

Table 8: Spill Instructions Executed

19

unlimited max 8 len 8

Program TIns BIns Imp% TI% BI% Imp% TI% BI% Imp% TI% BI%

adm 2,496 2,494 -3.5 67.8 69.0 -1.7 76.1 76.5 -2.7 69.9 70.7

arc2d 11,108 11,149 -5.0 67.3 68.9 -3.9 78.4 79.1 -4.7 70.9 72.1

bdna 2,478 2,391 1.9 65.0 65.6 12.5 85.3 84.0 2.5 71.1 71.4

flo52q 3,332 3,323 4.1 67.0 65.7 1.4 76.6 76.4 3.7 69.0 67.9

mdg 5,393 5,144 19.3 71.8 67.9 14.5 79.4 77.5 18.7 73.1 69.6

mg3d 61,116 60,784 -0.9 63.1 63.7 1.5 86.6 86.5 -3.8 67.4 68.8

qcd2 1,270 1,176 7.1 69.0 69.2 23.4 86.4 84.5 6.3 72.2 72.6

track 406 398 0.6 81.6 81.9 4.7 85.6 85.2 2.3 82.3 82.3

Table 9: Analysis of N(30,5) results | the e�ect of spill code.

is unchanged, but interlocks go down. Traditional schedulers lack the guidance for e�cient load placement.

Therefore they incur similar register pressure, but also more interlocks.

When there is little load level parallelism, traditional schedulers greedily let independent instructions

oat to one end of the basic block. Therefore they incur spills at that end, and interlocks at the other. In

contrast, the balanced scheduler spreads out the few independent instructions behind all loads. In all cases

uses quickly follow de�nitions, and little or no spill code is generated. If the load level parallelism is less

than the latency assumed by the traditional scheduler, balanced scheduling generates fewer spill instructions

than the traditional technique.

In both situations (high and low load level parallelism) balanced scheduling contributes either little

additional or less register pressure. When actual latencies di�er from the optimistic latency, balanced

scheduling incurs fewer interlocks; when both latencies are equal, the number of interlocks produced by the

two schedulers is similar.

When load latencies are much larger than the amount of load level parallelism and therefore cannot be

hidden via instruction scheduling, there is no guarantee the balanced scheduler will do better. In this case,

register pressure can be a problem, and balanced scheduling can insert more spill code than the traditional

scheduler. The situation is illustrated in Table 9, which summarizes the results for the N(30,5) model.

This model assumes a mean latency much larger than the amount of load level parallelism of the programs

in our workload. Two interrelated factors contribute to balanced scheduling's poor performance with this

model. First, as latencies get long, interlocks account for an increasingly large proportion of execution time.

Both schedulers do poorly, and often equally poorly (for example, see track). Second, a consequence of

long load latencies is that each load instruction consumes more cycles relative to other instructions, and its

contribution to execution time is greater. Therefore whichever scheduler generates more spill loads will have

the poorer performance. Occasionally balanced scheduling chooses load instruction weights that cause higher

than necessary register pressure and consequently issues more spill instructions (for example, see arc2d).

20

The complete results generated from these experiments are reproduced in Appendix A.

In summary, these results show that balanced scheduling reduces execution time relative to traditional

list scheduling in most cases. Because its schedules are based on the amount of load level parallelism that a

program can support, they cause fewer interlocks during program execution and contain less spill code. The

bene�ts are most apparent when memory latency uncertainty is high, as evidenced by greater miss rates and

penalties, and larger standard deviations from mean latencies.

6 Future Work

Balanced scheduling has been presented in a speci�c form (weights calculated based on load level parallelism)

to solve a speci�c problem (scheduling with uncertain load instruction latencies). The technique is applicable

to a wider set of problems, such as other multi-cycle instructions (e.g.,
oating point operations coupled with

asynchronous
oating point units), disabling balanced scheduling when the latency is known (e.g., for the

second access to a cache line), techniques that enlarge basic blocks (trace scheduling and software pipelining)

and superscalar architectures. The remainder of this section discusses future improvements on this study

and applications of balanced scheduling.

This study assumes unit latencies for all nonload instructions. A study should be done to measure the

e�ect of multicycle instructions, such as
oating point multiply, on our results. We expect this to reduce

the usable load level parallelism (due to the possible introduction of no-ops) and therefore diminish the

magnitude of our performance increases.

Balanced scheduling can be applied to other types of uncertain latencies, for example, those of an asyn-

chronous divide unit. In this case, the algorithm would measure instruction level parallelism with respect

to divides and schedule accordingly. As another example, consider machines with asynchronous
oating

point co-processors. In these machines the co-processor's instruction latencies might be known. However,

if the latencies are long enough, and if the processor stalls while the co-processor is busy, the co-processor

instructions might appear to have completed in less than the expected amount of time. Hence, from the

point-of-view of the CPU, uncertain latency exists in the co-processor. Some modi�cation to the algorithm

would need to occur to better identify the instances where this could be pro�table.

Another processor variation might have multiple classes of uncertain latency. Our algorithm could be

modi�ed for this type of machine by computing a Chances value for each type of instruction that exhibited

uncertain latency and then repeatedly executing the loop in step 7, once for each value of Chances. This

is possible because what counts is instruction initiation, not instruction latency. This modi�cation does not

change the worst case time complexity of the algorithm.

21

Some loads might not exhibit uncertain latencies. For example, if X and Y reside within in the same cache

line, and X has been referenced, Y will hit in the cache. For programs with regular memory access patterns,

a large fraction of the instructions might fall into this class. Balanced scheduling could use disambiguation

information to recognize this case and then remove the load instructions that have certain latency from

consideration in steps 6 and 7 of the algorithm.

Our algorithm does not take advantage of load instructions whose �rst use is outside the basic block

containing the load instruction. Some work, namely Trace Scheduling[6], directly addresses load instructions

whose �rst use is in future blocks by creating large basic blocks containing instructions from many blocks.

Since trace scheduling uses list scheduling at the lowest level, our work is compatible with a trace scheduler.

Another technique, software pipelining[18, 14], actively generates schedules where the �rst use of the register

de�ned by a load instruction can be along cyclic edges in the
ow graph. In particular, it can be in a future

iteration of the same block with the load instruction. In that case, the �rst use precedes the load instruction

in the code DAG. A technique such as Palem and Simons'[17] or Woodard's[24] might provide some of the

bene�ts of balancing in the software pipelined environment.

Superscalar processors are fully supported by the balanced scheduling algorithm as presented here. The

fact that a superscalar processor has the ability to initiate more than one instruction per cycle changes

the number of issue slots an instruction requires by a constant factor. However, if the processor has some

restriction on the types of instructions that can simultaneously be issued, an additional heuristic might

improve code quality.

7 Conclusion

This paper describes an instruction scheduling algorithm, called balanced scheduling, that is appropriate

for computers that expose uncertain memory latencies. Balanced scheduling is fundamentally di�erent from

previous list schedulers in two respects. First, it ignores the optimistic, implementation-determined memory

latency when assigning scheduling priorities, basing them instead on the amount of parallel execution that

is achievable in the program. Second, it computes individual scheduling weights for each load instruction

separately, rather than using a single value for all loads in a basic block. Balanced scheduling thus insulates

program execution from machine uncertainties by generating schedules that are optimized for the program

rather than the machine.

To validate the algorithm we incorporated balanced scheduling into the gcc compiler and compared the

performance of the Perfect Club benchmarks scheduled with both balanced scheduling and a traditional list

scheduler. Three processors were modeled, representing machines with varying abilities to exploit instruction

22

level parallelism. Each of the processor models was coupled with several memory systems that exhibit dis-

similar latency behavior. Execution time reductions of balanced scheduling over the traditional list scheduler

averaged between 3% and 18%, depending on the processor model, system model and program. The results

demonstrate that, if the capability to exploit uncertain memory latency is architected in future machines,

balanced schedulers can e�ectively take advantage of the additional
exibility to generate faster schedules.

References

[1] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. APRIL: A processor archi-

tecture for multiprocessing. In Proceedings of the 17th Annual International Symposium on Computer

Architecture, pages 104{114. IEEE, May 1990.

[2] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porter�eld, and Burton

Smith. The Tera Computer System. In 1990 International Conference on Supercomputing, pages 1{6.

The ACM Press/SIGARCH, June 1990.

[3] ANS X3.9-1978. American National Standard Programming language FORTRAN. American National

Standards Institute, New York, 1978.

[4] M. Berry, D. Chen, D. Kuck, S. Lo, Y. Pang, L. Pointer, R. Rolo�, A. Samah, E. Clementi, S. Chin,

D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsiung, J. Schwarzmeier, K. Lue, S. Orszag, F. Seidl,

O. Johnson, R. Goodrum, and J. Martin. The perfect club: E�ective performance evaluation of super-

computers. The International Journal of Supercomputer Applications, 3(3), Fall 1989.

[5] Bradley Efron. The jackknife, the bootstrap, and other resampling plans. SIAM/CBMS-NSF Regional

conference series in applied mathematics volume 38, Philadelphia, PA, 1982.

[6] John R. Ellis. Bulldog: A Compiler for VLIW Architectures. ACM doctoral dissertation award; 1985.

The MIT Press, 1986.

[7] S. I. Feldman, David M. Gay, Mark W. Maimone, and N. L. Schryer. A Fortran-to-C converter.

Computer Science Technical Report 149, AT&T Bell Laboratories, Murray Hill, NJ 07974, April 1991.

[8] Phillip B. Gibbons and Steven S. Muchnick. E�cient instruction scheduling for a pipelined architecture.

Proceedings of the SIGPLAN 1986 Symposium on Compiler Construction, SIGPLAN Notices, 21(7),

July 1986.

[9] John L. Hennessy and Thomas R. Gross. Code generation and reorganization in the presence of pipeline

constraints. In Symposium on Principles of Programming Languages, pages 120{127, January 1982.

[10] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach. Morgan

Kaufmann, 1990.

[11] Mark Donald Hill. Aspects of Cache Memory and Instruction Bu�er Performance. PhD thesis, Univer-

sity of California, Berkeley, November 1987.

[12] Gerry Kane. mips RISC Architecture. Prentice-Hall, 1988.

[13] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In 8th Annual International Sym-

posium on Computer Architecture, pages 81{87, 1981.

23

[14] Monica Lam. Software pipelining: An e�ective scheduling technique for vliw machines. In Proceedings

of the SIGPLAN '88 Conference on Programming Language Design and Implementation, SIGPLAN

Notices, pages 318{328, 1988.

[15] E. Lawler, J. K. Lenstra, C. Martel, B. Simons, and L. Stockmeyer. Pipeline scheduling: A survey.

Research Report RJ-5738, IBM, July 1987.

[16] Motorola. MC88100 RISC Microprocessor User's Manual. Prentice Hall, 1990.

[17] Krishna V. Palem and Barbara B. Simons. Scheduling time-critical instructions on RISC machines. In

ACM Symposium on Principles of Programming Languages, January 1990.

[18] B. R. Rau and C. D. Glaeser. Some scheduling techniques and an easily schedulable horizontal architec-

ture for high performance scienti�c computing. In Proc. 14th Annual Symposium on Microprogramming,

pages 183{198. SIGMICRO, IEEE, October 1981.

[19] C. Scheurich and M. Dubois. Lockup-free caches in high-performance multiprocessors. Journal of

Parallel and Distributed Processing, 11(1):25{36, January 1991.

[20] G. S. Sohi and M. Franklin. High-bandwidth data memory systems for superscalar processor. In Fourth

International Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), pages 53{62, April 1991.

[21] Richard Stallman. The GNU project optimizing C compiler. Free Software Foundation, Inc., 675 Mass

Ave, Cambridge, MA 02139, USA.

[22] Robert Endre Tarjan. Data Structures and Network Algorithms, volume 44 ofRegional Conference Series

in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania,

1983.

[23] H. S. Warren, Jr. Instruction scheduling for the IBM RISC System/6000 processor. IBM Journal of

Research and Development, 34(1), January 1990.

[24] Michael J. Woodard. Personal communication. Scheduling techniques used in Sun SPARC compilers,

September 1992.

24

A Raw Data

This appendix presents the raw data used in the evaluation of balanced scheduling. Each table contains the

data for one benchmark executing on one processor model.

In addition to the column labels listed in Table 6, the headings listed in Table 10 are used in this appendix.

Table 10: Index of labels used in Appendix A.

Label De�nition

Tst The number of static instructions in the program generated with the traditional

scheduler

Bst The number of static instructions in the program generated by the balanced

scheduler.

Trt The run time of the program generated with the traditional scheduler, in millions

of cycles. The con�dence interval is a percentage of the run time.

Brt The run time of the program generated by the balanced scheduler, in millions of

cycles. The con�dence interval is a percentage of the run time.

Tsp% The percentage of dynamic instructions classi�ed as spill instructions in the program

generated with the traditional scheduler.

Bsp% The percentage of dynamic instructions classi�ed as spill instructions in the program

generated by the balanced scheduler.

Imp% The percentage improvement, at the 95% con�dence interval, of the balanced sched-

uler over the traditional scheduler.

25

Table 11: Simulation results for benchmark: adm

system OL Tst Bst Tins Bins Trt Brt TI% BI% Imp % Tsp% Bsp%

Processor: unlimited

L80(2,5) 2 14553 14526 2554 2494 2760�0.15% 2609�0.11% 7.47 4.41 5.8�0.18 9.59 7.43

2.6 14539 14526 2541 2494 2714�0.14% 2609�0.11% 6.35 4.41 4.0�0.20 9.15 7.43

L80(2,10) 2 14553 14526 2554 2494 3122�0.37% 2840�0.31% 18.19 12.18 9.9�0.53 9.59 7.43

3.6 14538 14526 2549 2494 3053�0.34% 2840�0.31% 16.52 12.18 7.5�0.49 9.42 7.43

L95(2,5) 2 14553 14526 2554 2494 2648�0.09% 2562�0.06% 3.56 2.63 3.4�0.11 9.59 7.43

2.15 14539 14526 2541 2494 2616�0.08% 2562�0.06% 2.84 2.63 2.1�0.12 9.15 7.43

L95(2,10) 2 14553 14526 2554 2494 2753�0.27% 2631�0.22% 7.23 5.21 4.6�0.39 9.59 7.43

2.4 14539 14526 2541 2494 2714�0.23% 2631�0.22% 6.38 5.21 3.2�0.37 9.15 7.43

N(2,2) 2 14553 14526 2554 2494 2847�0.16% 2637�0.14% 10.30 5.40 8.0�0.24 9.59 7.43

N(3,2) 3 14539 14526 2543 2494 2878�0.17% 2707�0.16% 11.63 7.85 6.4�0.29 9.22 7.43

N(5,2) 5 14533 14526 2550 2494 3063�0.19% 2925�0.18% 16.77 14.74 4.8�0.26 9.50 7.43

N(2,5) 2 14553 14526 2554 2494 3455�0.33% 3025�0.33% 26.09 17.55 14.2�0.51 9.59 7.43

N(3,5) 3 14539 14526 2543 2494 3467�0.32% 3106�0.33% 26.65 19.71 11.5�0.50 9.22 7.43

N(5,5) 5 14533 14526 2550 2494 3598�0.35% 3297�0.35% 29.14 24.35 9.2�0.55 9.50 7.43

N(30,5) 30 14474 14526 2496 2494 7753�0.19% 8034�0.20% 67.81 68.95 -3.5�0.29 7.49 7.43

L80{ 2 14553 14526 2554 2494 4769�0.87% 4252�0.90% 46.45 41.35 12.4�1.82 9.59 7.43

N(30,5) 7.6 14506 14526 2527 2494 4550�0.89% 4252�0.90% 44.46 41.35 7.0�1.17 8.70 7.43

Processor: max 8

L80(2,5) 2 14553 14526 2554 2494 2879�0.16% 2703�0.13% 11.30 7.73 6.5�0.24 9.59 7.43

2.6 14539 14526 2541 2494 2824�0.14% 2703�0.13% 10.02 7.73 4.5�0.22 9.15 7.43

L80(2,10) 2 14553 14526 2554 2494 3301�0.37% 3007�0.34% 22.63 17.06 9.8�0.52 9.59 7.43

3.6 14538 14526 2549 2494 3239�0.35% 3007�0.34% 21.31 17.06 7.7�0.49 9.42 7.43

L95(2,5) 2 14553 14526 2554 2494 2729�0.09% 2621�0.08% 6.44 4.84 4.1�0.14 9.59 7.43

2.15 14539 14526 2541 2494 2698�0.08% 2621�0.08% 5.83 4.84 2.9�0.10 9.15 7.43

L95(2,10) 2 14553 14526 2554 2494 2845�0.26% 2700�0.22% 10.24 7.63 5.4�0.42 9.59 7.43

2.4 14539 14526 2541 2494 2815�0.25% 2700�0.22% 9.73 7.63 4.2�0.29 9.15 7.43

N(2,2) 2 14553 14526 2554 2494 2961�0.18% 2736�0.16% 13.75 8.85 8.2�0.29 9.59 7.43

N(3,2) 3 14539 14526 2543 2494 3042�0.19% 2856�0.19% 16.41 12.66 6.5�0.27 9.22 7.43

N(5,2) 5 14533 14526 2550 2494 3420�0.20% 3224�0.20% 25.45 22.63 6.1�0.34 9.50 7.43

N(2,5) 2 14553 14526 2554 2494 3740�0.34% 3299�0.34% 31.72 24.39 13.4�0.65 9.59 7.43

N(3,5) 3 14539 14526 2543 2494 3782�0.33% 3419�0.34% 32.75 27.04 10.6�0.49 9.22 7.43

N(5,5) 5 14533 14526 2550 2494 4043�0.36% 3709�0.35% 36.95 32.76 8.9�0.59 9.50 7.43

N(30,5) 30 14474 14526 2496 2494 10435�0.17% 10615�0.17% 76.08 76.50 -1.7�0.23 7.49 7.43

L80{ 2 14553 14526 2554 2494 5135�0.89% 4652�0.92% 50.27 46.38 10.6�1.22 9.59 7.43

N(30,5) 7.6 14506 14526 2527 2494 4888�0.89% 4652�0.92% 48.29 46.38 5.2�1.23 8.70 7.43

Processor: len 8

L80(2,5) 2 14553 14526 2554 2494 2756�0.15% 2610�0.12% 7.34 4.43 5.6�0.22 9.59 7.43

2.6 14539 14526 2541 2494 2710�0.13% 2610�0.12% 6.24 4.43 3.8�0.19 9.15 7.43

L80(2,10) 2 14553 14526 2554 2494 3136�0.36% 2891�0.30% 18.56 13.73 8.5�0.49 9.59 7.43

3.6 14538 14526 2549 2494 3071�0.33% 2891�0.30% 16.99 13.73 6.3�0.40 9.42 7.43

L95(2,5) 2 14553 14526 2554 2494 2646�0.09% 2562�0.06% 3.50 2.67 3.3�0.13 9.59 7.43

2.15 14539 14526 2541 2494 2615�0.07% 2562�0.06% 2.82 2.67 2.0�0.12 9.15 7.43

L95(2,10) 2 14553 14526 2554 2494 2758�0.26% 2638�0.19% 7.40 5.47 4.5�0.33 9.59 7.43

2.4 14539 14526 2541 2494 2729�0.25% 2638�0.19% 6.89 5.47 3.5�0.31 9.15 7.43

N(2,2) 2 14553 14526 2554 2494 2844�0.16% 2642�0.15% 10.19 5.59 7.6�0.24 9.59 7.43

N(3,2) 3 14539 14526 2543 2494 2876�0.17% 2710�0.16% 11.58 7.96 6.1�0.31 9.22 7.43

N(5,2) 5 14533 14526 2550 2494 3063�0.19% 2931�0.18% 16.76 14.89 4.6�0.30 9.50 7.43

N(2,5) 2 14553 14526 2554 2494 3469�0.32% 3073�0.32% 26.38 18.84 12.8�0.58 9.59 7.43

N(3,5) 3 14539 14526 2543 2494 3482�0.32% 3160�0.33% 26.97 21.06 10.1�0.59 9.22 7.43

N(5,5) 5 14533 14526 2550 2494 3612�0.34% 3391�0.36% 29.41 26.46 6.5�0.54 9.50 7.43

N(30,5) 30 14474 14526 2496 2494 8280�0.18% 8512�0.19% 69.86 70.70 -2.7�0.34 7.49 7.43

L80{ 2 14553 14526 2554 2494 4924�0.86% 4489�0.85% 48.14 44.43 9.7�1.26 9.59 7.43

N(30,5) 7.6 14506 14526 2527 2494 4595�0.87% 4489�0.85% 44.99 44.43 2.4�1.17 8.70 7.43

26

Table 12: Simulation results for benchmark: arc2d

system OL Tst Bst Tins Bins Trt Brt TI% BI% Imp % Tsp% Bsp%

Processor: unlimited

L80(2,5) 2 12491 12170 11548 11149 12428�0.15% 11644�0.10% 7.08 4.25 6.7�0.18 13.52 10.47

2.6 12451 12170 11570 11149 12360�0.12% 11644�0.10% 6.39 4.25 6.2�0.17 13.68 10.47

L80(2,10) 2 12491 12170 11548 11149 14271�0.36% 12620�0.30% 19.08 11.66 13.1�0.55 13.52 10.47

3.6 12475 12170 11537 11149 14088�0.33% 12620�0.30% 18.10 11.66 11.7�0.54 13.46 10.47

L95(2,5) 2 12491 12170 11548 11149 11871�0.09% 11424�0.06% 2.72 2.41 3.9�0.11 13.52 10.47

2.15 12452 12170 11577 11149 11885�0.08% 11424�0.06% 2.59 2.41 4.0�0.09 13.74 10.47

L95(2,10) 2 12491 12170 11548 11149 12390�0.26% 11712�0.19% 6.80 4.81 5.8�0.37 13.52 10.47

2.4 12452 12170 11577 11149 12429�0.25% 11712�0.19% 6.85 4.81 6.1�0.33 13.74 10.47

N(2,2) 2 12491 12170 11548 11149 12849�0.15% 11757�0.12% 10.13 5.18 9.3�0.25 13.52 10.47

N(3,2) 3 12450 12170 11517 11149 13106�0.16% 12038�0.14% 12.12 7.39 8.9�0.25 13.27 10.47

N(5,2) 5 12459 12170 11598 11149 13695�0.17% 12975�0.17% 15.31 14.08 5.5�0.26 13.89 10.47

N(2,5) 2 12491 12170 11548 11149 15769�0.32% 13397�0.31% 26.77 16.78 17.7�0.46 13.52 10.47

N(3,5) 3 12450 12170 11517 11149 16217�0.32% 13719�0.32% 28.98 18.74 18.2�0.45 13.27 10.47

N(5,5) 5 12459 12170 11598 11149 16326�0.32% 14587�0.34% 28.96 23.57 12.0�0.64 13.89 10.47

N(30,5) 30 12113 12170 11108 11149 33941�0.19% 35713�0.20% 67.27 68.78 -5.0�0.30 10.11 10.47

L80{ 2 12491 12170 11548 11149 22857�0.90% 19009�0.88% 49.48 41.35 20.4�1.58 13.52 10.47

N(30,5) 7.6 12353 12170 11378 11149 20784�0.83% 19009�0.88% 45.25 41.35 9.3�1.50 12.25 10.47

Processor: max 8

L80(2,5) 2 12491 12170 11548 11149 13111�0.17% 12045�0.12% 11.93 7.44 8.9�0.19 13.52 10.47

2.6 12451 12170 11570 11149 13126�0.15% 12045�0.12% 11.86 7.44 9.0�0.19 13.68 10.47

L80(2,10) 2 12491 12170 11548 11149 15227�0.39% 13407�0.36% 24.16 16.84 13.4�0.69 13.52 10.47

3.6 12475 12170 11537 11149 15095�0.36% 13407�0.36% 23.57 16.84 12.5�0.64 13.46 10.47

L95(2,5) 2 12491 12170 11548 11149 12351�0.10% 11677�0.07% 6.50 4.52 5.8�0.14 13.52 10.47

2.15 12452 12170 11577 11149 12483�0.09% 11677�0.07% 7.26 4.52 6.9�0.13 13.74 10.47

L95(2,10) 2 12491 12170 11548 11149 12862�0.27% 11982�0.21% 10.22 6.96 7.3�0.41 13.52 10.47

2.4 12452 12170 11577 11149 13066�0.26% 11982�0.21% 11.39 6.96 9.0�0.39 13.74 10.47

N(2,2) 2 12491 12170 11548 11149 13481�0.19% 12153�0.16% 14.34 8.26 10.9�0.27 13.52 10.47

N(3,2) 3 12450 12170 11517 11149 14156�0.20% 12780�0.20% 18.64 12.77 10.8�0.32 13.27 10.47

N(5,2) 5 12459 12170 11598 11149 16249�0.21% 14713�0.22% 28.62 24.23 10.5�0.42 13.89 10.47

N(2,5) 2 12491 12170 11548 11149 17550�0.37% 14903�0.37% 34.20 25.19 17.8�0.61 13.52 10.47

N(3,5) 3 12450 12170 11517 11149 18116�0.35% 15525�0.35% 36.43 28.19 16.8�0.54 13.27 10.47

N(5,5) 5 12459 12170 11598 11149 19496�0.38% 17052�0.38% 40.51 34.62 14.3�0.66 13.89 10.47

N(30,5) 30 12113 12170 11108 11149 51344�0.20% 53433�0.18% 78.37 79.14 -3.9�0.26 10.11 10.47

L80{ 2 12491 12170 11548 11149 24331�0.94% 20739�0.92% 52.54 46.24 17.4�1.57 13.52 10.47

N(30,5) 7.6 12353 12170 11378 11149 23055�0.91% 20739�0.92% 50.65 46.24 11.3�1.43 12.25 10.47

Processor: len 8

L80(2,5) 2 12491 12170 11548 11149 12408�0.15% 11640�0.10% 6.93 4.22 6.6�0.17 13.52 10.47

2.6 12451 12170 11570 11149 12376�0.12% 11640�0.10% 6.52 4.22 6.3�0.22 13.68 10.47

L80(2,10) 2 12491 12170 11548 11149 14374�0.36% 12918�0.29% 19.66 13.70 11.2�0.62 13.52 10.47

3.6 12475 12170 11537 11149 14147�0.32% 12918�0.29% 18.45 13.70 9.5�0.49 13.46 10.47

L95(2,5) 2 12491 12170 11548 11149 11873�0.09% 11429�0.06% 2.74 2.46 3.9�0.13 13.52 10.47

2.15 12452 12170 11577 11149 11896�0.08% 11429�0.06% 2.68 2.46 4.1�0.11 13.74 10.47

L95(2,10) 2 12491 12170 11548 11149 12437�0.27% 11775�0.19% 7.15 5.32 5.7�0.36 13.52 10.47

2.4 12452 12170 11577 11149 12451�0.25% 11775�0.19% 7.02 5.32 5.7�0.34 13.74 10.47

N(2,2) 2 12491 12170 11548 11149 12842�0.15% 11762�0.12% 10.08 5.21 9.2�0.24 13.52 10.47

N(3,2) 3 12450 12170 11517 11149 13125�0.17% 12072�0.15% 12.25 7.65 8.7�0.23 13.27 10.47

N(5,2) 5 12459 12170 11598 11149 13702�0.17% 13018�0.17% 15.36 14.36 5.3�0.21 13.89 10.47

N(2,5) 2 12491 12170 11548 11149 15913�0.32% 13751�0.31% 27.43 18.92 15.8�0.55 13.52 10.47

N(3,5) 3 12450 12170 11517 11149 16268�0.32% 14188�0.32% 29.20 21.42 14.6�0.59 13.27 10.47

N(5,5) 5 12459 12170 11598 11149 16448�0.32% 15216�0.33% 29.49 26.73 8.1�0.51 13.89 10.47

N(30,5) 30 12113 12170 11108 11149 38101�0.17% 40023�0.18% 70.85 72.14 -4.7�0.24 10.11 10.47

L80{ 2 12491 12170 11548 11149 23467�0.88% 20944�0.88% 50.79 46.77 11.9�1.29 13.52 10.47

N(30,5) 7.6 12353 12170 11378 11149 21128�0.82% 20944�0.88% 46.15 46.77 0.7�1.17 12.25 10.47

27

Table 13: Simulation results for benchmark: bdna

system OL Tst Bst Tins Bins Trt Brt TI% BI% Imp % Tsp% Bsp%

Processor: unlimited

L80(2,5) 2 10624 10460 2510 2391 2653�0.25% 2502�0.19% 5.39 4.45 6.0�0.37 26.50 22.84

2.6 10602 10460 2504 2391 2633�0.20% 2502�0.19% 4.91 4.45 5.2�0.28 26.32 22.84

L80(2,10) 2 10624 10460 2510 2391 2930�0.63% 2649�0.52% 14.34 9.74 10.6�0.90 26.50 22.84

3.6 10575 10460 2458 2391 2863�0.55% 2649�0.52% 14.17 9.74 8.1�0.80 24.94 22.84

L95(2,5) 2 10624 10460 2510 2391 2570�0.15% 2462�0.10% 2.34 2.89 4.4�0.20 26.50 22.84

2.15 10602 10460 2504 2391 2560�0.12% 2462�0.10% 2.20 2.89 4.0�0.18 26.32 22.84

L95(2,10) 2 10624 10460 2510 2391 2642�0.39% 2495�0.28% 5.00 4.18 5.8�0.49 26.50 22.84

2.4 10602 10460 2504 2391 2632�0.37% 2495�0.28% 4.87 4.18 5.6�0.48 26.32 22.84

N(2,2) 2 10624 10460 2510 2391 2719�0.25% 2518�0.22% 7.71 5.04 8.0�0.36 26.50 22.84

N(3,2) 3 10570 10460 2433 2391 2696�0.28% 2594�0.27% 9.77 7.83 4.0�0.46 24.17 22.84

N(5,2) 5 10547 10460 2449 2391 2849�0.31% 2753�0.31% 14.04 13.17 3.4�0.44 24.68 22.84

N(2,5) 2 10624 10460 2510 2391 3208�0.55% 2808�0.55% 21.77 14.86 14.4�1.02 26.50 22.84

N(3,5) 3 10570 10460 2433 2391 3178�0.58% 2865�0.54% 23.45 16.56 10.8�1.04 24.17 22.84

N(5,5) 5 10547 10460 2449 2391 3302�0.57% 3024�0.61% 25.84 20.94 9.3�0.87 24.68 22.84

N(30,5) 30 10483 10460 2478 2391 7086�0.35% 6955�0.35% 65.03 65.63 1.9�0.56 25.54 22.84

L80{ 2 10624 10460 2510 2391 4288�1.48% 3712�1.55% 41.48 35.60 15.8�2.78 26.50 22.84

N(30,5) 7.6 10525 10460 2451 2391 4377�1.35% 3712�1.55% 43.99 35.60 18.4�2.54 24.73 22.84

Processor: max 8

L80(2,5) 2 10624 10460 2510 2391 3110�0.32% 2863�0.31% 19.29 16.50 8.6�0.54 26.50 22.84

2.6 10602 10460 2504 2391 3142�0.32% 2863�0.31% 20.31 16.50 9.8�0.59 26.32 22.84

L80(2,10) 2 10624 10460 2510 2391 3638�0.79% 3272�0.75% 31.02 26.94 11.2�1.30 26.50 22.84

3.6 10575 10460 2458 2391 3493�0.73% 3272�0.75% 29.65 26.94 6.8�1.18 24.94 22.84

L95(2,5) 2 10624 10460 2510 2391 2899�0.20% 2706�0.18% 13.42 11.66 7.1�0.25 26.50 22.84

2.15 10602 10460 2504 2391 2939�0.19% 2706�0.18% 14.83 11.66 8.7�0.33 26.32 22.84

L95(2,10) 2 10624 10460 2510 2391 3024�0.56% 2797�0.47% 17.00 14.53 8.0�0.71 26.50 22.84

2.4 10602 10460 2504 2391 3078�0.54% 2797�0.47% 18.67 14.53 10.2�0.76 26.32 22.84

N(2,2) 2 10624 10460 2510 2391 3152�0.40% 2875�0.40% 20.39 16.85 9.6�0.63 26.50 22.84

N(3,2) 3 10570 10460 2433 2391 3251�0.42% 3112�0.45% 25.18 23.18 4.5�0.63 24.17 22.84

N(5,2) 5 10547 10460 2449 2391 3967�0.44% 3790�0.42% 38.27 36.92 4.6�0.65 24.68 22.84

N(2,5) 2 10624 10460 2510 2391 4282�0.70% 3757�0.69% 41.39 36.36 13.9�1.13 26.50 22.84

N(3,5) 3 10570 10460 2433 2391 4164�0.73% 3924�0.70% 41.58 39.08 6.0�1.14 24.17 22.84

N(5,5) 5 10547 10460 2449 2391 4713�0.71% 4386�0.77% 48.03 45.50 7.4�1.10 24.68 22.84

N(30,5) 30 10483 10460 2478 2391 16836�0.27% 14972�0.29% 85.28 84.03 12.5�0.48 25.54 22.84

L80{ 2 10624 10460 2510 2391 5804�1.76% 5168�1.82% 56.76 53.74 12.3�3.10 26.50 22.84

N(30,5) 7.6 10525 10460 2451 2391 5618�1.70% 5168�1.82% 56.37 53.74 8.8�2.67 24.73 22.84

Processor: len 8

L80(2,5) 2 10624 10460 2510 2391 2654�0.23% 2502�0.19% 5.44 4.44 6.1�0.27 26.50 22.84

2.6 10602 10460 2504 2391 2629�0.20% 2502�0.19% 4.77 4.44 5.1�0.30 26.32 22.84

L80(2,10) 2 10624 10460 2510 2391 2989�0.57% 2754�0.51% 16.04 13.20 8.5�0.81 26.50 22.84

3.6 10575 10460 2458 2391 2912�0.49% 2754�0.51% 15.61 13.20 5.9�0.77 24.94 22.84

L95(2,5) 2 10624 10460 2510 2391 2563�0.13% 2461�0.10% 2.10 2.85 4.2�0.20 26.50 22.84

2.15 10602 10460 2504 2391 2555�0.11% 2461�0.10% 2.02 2.85 3.8�0.17 26.32 22.84

L95(2,10) 2 10624 10460 2510 2391 2665�0.37% 2539�0.32% 5.81 5.85 5.0�0.47 26.50 22.84

2.4 10602 10460 2504 2391 2658�0.37% 2539�0.32% 5.80 5.85 4.6�0.55 26.32 22.84

N(2,2) 2 10624 10460 2510 2391 2723�0.25% 2524�0.23% 7.82 5.27 7.9�0.34 26.50 22.84

N(3,2) 3 10570 10460 2433 2391 2689�0.28% 2588�0.27% 9.54 7.61 3.9�0.37 24.17 22.84

N(5,2) 5 10547 10460 2449 2391 2849�0.31% 2791�0.32% 14.05 14.34 2.1�0.45 24.68 22.84

N(2,5) 2 10624 10460 2510 2391 3285�0.56% 2943�0.56% 23.59 18.77 11.5�0.98 26.50 22.84

N(3,5) 3 10570 10460 2433 2391 3265�0.55% 3042�0.56% 25.50 21.42 7.4�0.92 24.17 22.84

N(5,5) 5 10547 10460 2449 2391 3373�0.57% 3263�0.60% 27.38 26.74 3.3�0.97 24.68 22.84

N(30,5) 30 10483 10460 2478 2391 8578�0.34% 8363�0.31% 71.11 71.41 2.5�0.57 25.54 22.84

L80{ 2 10624 10460 2510 2391 4952�1.38% 4524�1.44% 49.32 47.15 9.7�2.31 26.50 22.84

N(30,5) 7.6 10525 10460 2451 2391 4638�1.36% 4524�1.44% 47.15 47.15 2.9�2.11 24.73 22.84

28

Table 14: Simulation results for benchmark: flo52q

system OL Tst Bst Tins Bins Trt Brt TI% BI% Imp % Tsp% Bsp%

Processor: unlimited

L80(2,5) 2 10960 10785 3413 3323 3652�0.21% 3481�0.19% 6.55 4.56 4.9�0.28 7.14 4.61

2.6 10938 10785 3401 3323 3607�0.18% 3481�0.19% 5.69 4.56 3.6�0.24 6.82 4.61

L80(2,10) 2 10960 10785 3413 3323 4144�0.53% 3810�0.50% 17.64 12.80 8.7�0.72 7.14 4.61

3.6 10939 10785 3405 3323 4065�0.47% 3810�0.50% 16.24 12.80 6.7�0.71 6.91 4.61

L95(2,5) 2 10960 10785 3413 3323 3493�0.14% 3397�0.11% 2.30 2.18 2.8�0.19 7.14 4.61

2.15 10938 10785 3401 3323 3470�0.12% 3397�0.11% 1.98 2.18 2.1�0.18 6.82 4.61

L95(2,10) 2 10960 10785 3413 3323 3625�0.38% 3492�0.34% 5.85 4.84 3.9�0.61 7.14 4.61

2.4 10938 10785 3401 3323 3622�0.37% 3492�0.34% 6.09 4.84 3.8�0.50 6.82 4.61

N(2,2) 2 10960 10785 3413 3323 3762�0.21% 3532�0.20% 9.28 5.93 6.5�0.31 7.14 4.61

N(3,2) 3 10939 10785 3407 3323 3828�0.23% 3644�0.23% 11.01 8.83 5.0�0.34 6.97 4.61

N(5,2) 5 10886 10785 3391 3323 4081�0.23% 3937�0.25% 16.90 15.61 3.6�0.37 6.55 4.61

N(2,5) 2 10960 10785 3413 3323 4563�0.43% 4076�0.44% 25.20 18.49 11.9�0.79 7.14 4.61

N(3,5) 3 10939 10785 3407 3323 4647�0.43% 4194�0.45% 26.70 20.78 10.9�0.81 6.97 4.61

N(5,5) 5 10886 10785 3391 3323 4760�0.46% 4430�0.46% 28.75 24.99 7.6�0.84 6.55 4.61

N(30,5) 30 10756 10785 3332 3323 10096�0.24% 9695�0.26% 67.00 65.73 4.1�0.37 4.90 4.61

L80{ 2 10960 10785 3413 3323 6441�1.32% 5699�1.33% 47.01 41.70 12.7�2.23 7.14 4.61

N(30,5) 7.6 10834 10785 3368 3323 6054�1.32% 5699�1.33% 44.37 41.70 6.3�2.17 5.89 4.61

Processor: max 8

L80(2,5) 2 10960 10785 3413 3323 3858�0.23% 3652�0.21% 11.54 9.02 5.6�0.36 7.14 4.61

2.6 10938 10785 3401 3323 3804�0.20% 3652�0.21% 10.59 9.02 4.2�0.28 6.82 4.61

L80(2,10) 2 10960 10785 3413 3323 4444�0.55% 4079�0.52% 23.20 18.55 9.0�0.80 7.14 4.61

3.6 10939 10785 3405 3323 4344�0.51% 4079�0.52% 21.63 18.55 6.6�0.84 6.91 4.61

L95(2,5) 2 10960 10785 3413 3323 3637�0.15% 3504�0.13% 6.17 5.16 3.8�0.23 7.14 4.61

2.15 10938 10785 3401 3323 3616�0.12% 3504�0.13% 5.95 5.16 3.2�0.21 6.82 4.61

L95(2,10) 2 10960 10785 3413 3323 3791�0.39% 3614�0.35% 9.98 8.07 5.0�0.55 7.14 4.61

2.4 10938 10785 3401 3323 3797�0.41% 3614�0.35% 10.41 8.07 4.9�0.55 6.82 4.61

N(2,2) 2 10960 10785 3413 3323 3976�0.24% 3706�0.25% 14.16 10.34 7.3�0.35 7.14 4.61

N(3,2) 3 10939 10785 3407 3323 4149�0.26% 3909�0.27% 17.90 15.00 6.1�0.42 6.97 4.61

N(5,2) 5 10886 10785 3391 3323 4664�0.26% 4456�0.27% 27.30 25.43 4.7�0.40 6.55 4.61

N(2,5) 2 10960 10785 3413 3323 5066�0.46% 4557�0.48% 32.62 27.10 11.1�0.82 7.14 4.61

N(3,5) 3 10939 10785 3407 3323 5222�0.45% 4734�0.46% 34.77 29.81 10.4�0.73 6.97 4.61

N(5,5) 5 10886 10785 3391 3323 5524�0.48% 5130�0.49% 38.61 35.23 7.7�0.80 6.55 4.61

N(30,5) 30 10756 10785 3332 3323 14260�0.23% 14057�0.23% 76.63 76.36 1.4�0.31 4.90 4.61

L80{ 2 10960 10785 3413 3323 6921�1.31% 6250�1.36% 50.69 46.84 11.2�1.98 7.14 4.61

N(30,5) 7.6 10834 10785 3368 3323 6718�1.34% 6250�1.36% 49.88 46.84 7.4�2.12 5.89 4.61

Processor: len 8

L80(2,5) 2 10960 10785 3413 3323 3646�0.21% 3486�0.18% 6.37 4.68 4.6�0.29 7.14 4.61

2.6 10938 10785 3401 3323 3608�0.18% 3486�0.18% 5.74 4.68 3.5�0.27 6.82 4.61

L80(2,10) 2 10960 10785 3413 3323 4176�0.53% 3879�0.49% 18.27 14.35 7.7�0.75 7.14 4.61

3.6 10939 10785 3405 3323 4082�0.47% 3879�0.49% 16.59 14.35 5.2�0.74 6.91 4.61

L95(2,5) 2 10960 10785 3413 3323 3492�0.14% 3400�0.12% 2.25 2.27 2.7�0.21 7.14 4.61

2.15 10938 10785 3401 3323 3469�0.12% 3400�0.12% 1.95 2.27 2.0�0.17 6.82 4.61

L95(2,10) 2 10960 10785 3413 3323 3641�0.38% 3518�0.36% 6.25 5.55 3.5�0.54 7.14 4.61

2.4 10938 10785 3401 3323 3613�0.35% 3518�0.36% 5.85 5.55 2.7�0.66 6.82 4.61

N(2,2) 2 10960 10785 3413 3323 3757�0.21% 3538�0.20% 9.15 6.09 6.2�0.28 7.14 4.61

N(3,2) 3 10939 10785 3407 3323 3830�0.22% 3646�0.23% 11.07 8.87 5.0�0.36 6.97 4.61

N(5,2) 5 10886 10785 3391 3323 4080�0.24% 3945�0.24% 16.88 15.78 3.4�0.32 6.55 4.61

N(2,5) 2 10960 10785 3413 3323 4573�0.43% 4145�0.44% 25.36 19.84 10.1�0.68 7.14 4.61

N(3,5) 3 10939 10785 3407 3323 4650�0.42% 4248�0.42% 26.74 21.79 9.6�0.72 6.97 4.61

N(5,5) 5 10886 10785 3391 3323 4804�0.45% 4544�0.47% 29.41 26.87 5.7�0.71 6.55 4.61

N(30,5) 30 10756 10785 3332 3323 10739�0.25% 10355�0.25% 68.97 67.91 3.7�0.41 4.90 4.61

L80{ 2 10960 10785 3413 3323 6525�1.27% 5927�1.31% 47.69 43.94 10.3�2.01 7.14 4.61

N(30,5) 7.6 10834 10785 3368 3323 6119�1.30% 5927�1.31% 44.96 43.94 3.5�2.28 5.89 4.61

29

Table 15: Simulation results for benchmark: mdg

system OL Tst Bst Tins Bins Trt Brt TI% BI% Imp % Tsp% Bsp%

Processor: unlimited

L80(2,5) 2 4259 4159 5358 5144 5979�0.27% 5447�0.22% 10.38 5.56 9.8�0.41 7.86 7.49

2.6 4272 4159 5351 5144 5918�0.27% 5447�0.22% 9.57 5.56 8.7�0.37 8.04 7.49

L80(2,10) 2 4259 4159 5358 5144 6813�0.64% 5954�0.58% 21.35 13.61 14.4�0.99 7.86 7.49

3.6 4257 4159 5299 5144 6644�0.63% 5954�0.58% 20.24 13.61 11.6�0.98 8.13 7.49

L95(2,5) 2 4259 4159 5358 5144 5694�0.16% 5326�0.13% 5.89 3.43 6.9�0.24 7.86 7.49

2.15 4272 4159 5351 5144 5662�0.17% 5326�0.13% 5.48 3.43 6.2�0.26 8.04 7.49

L95(2,10) 2 4259 4159 5358 5144 5917�0.40% 5477�0.39% 9.43 6.08 8.0�0.77 7.86 7.49

2.4 4272 4159 5351 5144 5874�0.43% 5477�0.39% 8.89 6.08 7.2�0.70 8.04 7.49

N(2,2) 2 4259 4159 5358 5144 6144�0.32% 5523�0.26% 12.78 6.86 11.3�0.49 7.86 7.49

N(3,2) 3 4271 4159 5351 5144 6379�0.33% 5696�0.31% 16.11 9.69 12.0�0.52 8.04 7.49

N(5,2) 5 4257 4159 5297 5144 7010�0.35% 6179�0.32% 24.44 16.75 13.5�0.55 8.00 7.49

N(2,5) 2 4259 4159 5358 5144 7651�0.57% 6330�0.52% 29.97 18.73 20.9�0.85 7.86 7.49

N(3,5) 3 4271 4159 5351 5144 7850�0.59% 6542�0.57% 31.83 21.38 20.0�1.03 8.04 7.49

N(5,5) 5 4257 4159 5297 5144 8213�0.63% 6942�0.59% 35.50 25.90 18.3�1.14 8.00 7.49

N(30,5) 30 4234 4159 5393 5144 19124�0.33% 16035�0.35% 71.80 67.92 19.3�0.57 9.21 7.49

L80{ 2 4259 4159 5358 5144 10689�1.56% 8908�1.42% 49.87 42.26 20.0�2.72 7.86 7.49

N(30,5) 7.6 4237 4159 5405 5144 10185�1.60% 8908�1.42% 46.93 42.26 14.3�2.50 8.68 7.49

Processor: max 8

L80(2,5) 2 4259 4159 5358 5144 6221�0.27% 5772�0.24% 13.87 10.88 7.8�0.37 7.86 7.49

2.6 4272 4159 5351 5144 6200�0.26% 5772�0.24% 13.69 10.88 7.4�0.43 8.04 7.49

L80(2,10) 2 4259 4159 5358 5144 7165�0.63% 6474�0.58% 25.22 20.55 10.8�0.99 7.86 7.49

3.6 4257 4159 5299 5144 7036�0.62% 6474�0.58% 24.68 20.55 8.9�1.01 8.13 7.49

L95(2,5) 2 4259 4159 5358 5144 5875�0.16% 5539�0.14% 8.79 7.14 6.0�0.22 7.86 7.49

2.15 4272 4159 5351 5144 5872�0.15% 5539�0.14% 8.87 7.14 6.0�0.21 8.04 7.49

L95(2,10) 2 4259 4159 5358 5144 6094�0.39% 5726�0.36% 12.07 10.17 6.4�0.63 7.86 7.49

2.4 4272 4159 5351 5144 6115�0.42% 5726�0.36% 12.49 10.17 6.8�0.59 8.04 7.49

N(2,2) 2 4259 4159 5358 5144 6424�0.30% 5831�0.28% 16.58 11.78 10.2�0.49 7.86 7.49

N(3,2) 3 4271 4159 5351 5144 6780�0.34% 6161�0.30% 21.08 16.51 10.0�0.53 8.04 7.49

N(5,2) 5 4257 4159 5297 5144 7800�0.34% 7042�0.30% 32.09 26.96 10.8�0.49 8.00 7.49

N(2,5) 2 4259 4159 5358 5144 8322�0.58% 7178�0.55% 35.61 28.34 15.9�1.06 7.86 7.49

N(3,5) 3 4271 4159 5351 5144 8518�0.57% 7440�0.55% 37.18 30.87 14.5�0.88 8.04 7.49

N(5,5) 5 4257 4159 5297 5144 9187�0.59% 8088�0.56% 42.34 36.40 13.5�0.86 8.00 7.49

N(30,5) 30 4234 4159 5393 5144 26158�0.28% 22848�0.27% 79.38 77.49 14.5�0.45 9.21 7.49

L80{ 2 4259 4159 5358 5144 11230�1.48% 9868�1.40% 52.29 47.87 13.6�2.53 7.86 7.49

N(30,5) 7.6 4237 4159 5405 5144 11001�1.54% 9868�1.40% 50.87 47.87 11.5�2.53 8.68 7.49

Processor: len 8

L80(2,5) 2 4259 4159 5358 5144 5978�0.27% 5456�0.22% 10.36 5.72 9.6�0.44 7.86 7.49

2.6 4272 4159 5351 5144 5901�0.26% 5456�0.22% 9.31 5.72 8.2�0.37 8.04 7.49

L80(2,10) 2 4259 4159 5358 5144 6912�0.66% 6028�0.56% 22.47 14.67 14.6�1.02 7.86 7.49

3.6 4257 4159 5299 5144 6727�0.65% 6028�0.56% 21.23 14.67 11.6�0.97 8.13 7.49

L95(2,5) 2 4259 4159 5358 5144 5687�0.15% 5323�0.12% 5.78 3.37 6.8�0.22 7.86 7.49

2.15 4272 4159 5351 5144 5652�0.16% 5323�0.12% 5.32 3.37 6.2�0.20 8.04 7.49

L95(2,10) 2 4259 4159 5358 5144 5949�0.45% 5506�0.37% 9.93 6.58 8.0�0.64 7.86 7.49

2.4 4272 4159 5351 5144 5907�0.44% 5506�0.37% 9.40 6.58 7.2�0.69 8.04 7.49

N(2,2) 2 4259 4159 5358 5144 6163�0.31% 5543�0.27% 13.06 7.21 11.2�0.53 7.86 7.49

N(3,2) 3 4271 4159 5351 5144 6368�0.34% 5681�0.29% 15.97 9.46 12.0�0.48 8.04 7.49

N(5,2) 5 4257 4159 5297 5144 6993�0.36% 6196�0.32% 24.25 16.99 12.9�0.61 8.00 7.49

N(2,5) 2 4259 4159 5358 5144 7699�0.59% 6465�0.56% 30.40 20.43 19.2�0.95 7.86 7.49

N(3,5) 3 4271 4159 5351 5144 7852�0.59% 6683�0.58% 31.85 23.04 17.4�1.01 8.04 7.49

N(5,5) 5 4257 4159 5297 5144 8318�0.62% 7145�0.58% 36.31 28.00 16.4�1.12 8.00 7.49

N(30,5) 30 4234 4159 5393 5144 20060�0.33% 16891�0.33% 73.11 69.55 18.7�0.59 9.21 7.49

L80{ 2 4259 4159 5358 5144 10619�1.45% 9301�1.38% 49.54 44.70 13.9�2.66 7.86 7.49

N(30,5) 7.6 4237 4159 5405 5144 10280�1.56% 9301�1.38% 47.42 44.70 10.4�2.20 8.68 7.49

30

Table 16: Simulation results for benchmark: mg3d

system OL Tst Bst Tins Bins Trt Brt TI% BI% Imp % Tsp% Bsp%

Processor: unlimited

L80(2,5) 2 7695 7431 62371 60784 66646�0.15% 62305�0.09% 6.42 2.44 7.0�0.21 9.73 7.38

2.6 7667 7431 62806 60784 66153�0.11% 62305�0.09% 5.06 2.44 6.2�0.16 10.36 7.38

L80(2,10) 2 7695 7431 62371 60784 75656�0.34% 67619�0.28% 17.56 10.11 11.9�0.56 9.73 7.38

3.6 7677 7431 63154 60784 74814�0.28% 67619�0.28% 15.59 10.11 10.7�0.51 10.86 7.38

L95(2,5) 2 7695 7431 62371 60784 63782�0.09% 61509�0.05% 2.21 1.18 3.7�0.11 9.73 7.38

2.15 7667 7431 62806 60784 63917�0.07% 61509�0.05% 1.74 1.18 3.9�0.09 10.36 7.38

L95(2,10) 2 7695 7431 62371 60784 66359�0.26% 62980�0.19% 6.01 3.49 5.4�0.34 9.73 7.38

2.4 7667 7431 62806 60784 66669�0.25% 62980�0.19% 5.79 3.49 5.8�0.36 10.36 7.38

N(2,2) 2 7695 7431 62371 60784 68573�0.14% 62763�0.11% 9.05 3.15 9.2�0.20 9.73 7.38

N(3,2) 3 7667 7431 62806 60784 69552�0.14% 64038�0.13% 9.70 5.08 8.6�0.27 10.36 7.38

N(5,2) 5 7638 7431 62807 60784 72222�0.16% 67823�0.16% 13.04 10.38 6.5�0.26 10.36 7.38

N(2,5) 2 7695 7431 62371 60784 82426�0.31% 70992�0.29% 24.33 14.38 16.1�0.51 9.73 7.38

N(3,5) 3 7667 7431 62806 60784 83307�0.29% 72557�0.31% 24.61 16.23 14.9�0.47 10.36 7.38

N(5,5) 5 7638 7431 62807 60784 84721�0.31% 76773�0.32% 25.87 20.83 10.3�0.51 10.36 7.38

N(30,5) 30 7440 7431 61116 60784 165787�0.19% 167326�0.20% 63.14 63.67 -0.9�0.35 7.88 7.38

L80{ 2 7695 7431 62371 60784 119690�0.82% 105574�0.80% 47.89 42.42 13.3�1.16 9.73 7.38

N(30,5) 7.6 7546 7431 61764 60784 110265�0.77% 105574�0.80% 43.99 42.42 4.5�1.13 8.85 7.38

Processor: max 8

L80(2,5) 2 7695 7431 62371 60784 80961�0.17% 76427�0.15% 22.96 20.47 5.9�0.26 9.73 7.38

2.6 7667 7431 62806 60784 81484�0.15% 76427�0.15% 22.92 20.47 6.6�0.27 10.36 7.38

L80(2,10) 2 7695 7431 62371 60784 97048�0.39% 89956�0.35% 35.73 32.43 7.8�0.62 9.73 7.38

3.6 7677 7431 63154 60784 97357�0.36% 89956�0.35% 35.13 32.43 8.3�0.53 10.86 7.38

L95(2,5) 2 7695 7431 62371 60784 74354�0.10% 71577�0.08% 16.12 15.08 3.9�0.16 9.73 7.38

2.15 7667 7431 62806 60784 75316�0.09% 71577�0.08% 16.61 15.08 5.2�0.12 10.36 7.38

L95(2,10) 2 7695 7431 62371 60784 78628�0.29% 75089�0.25% 20.68 19.05 4.8�0.39 9.73 7.38

2.4 7667 7431 62806 60784 79539�0.27% 75089�0.25% 21.04 19.05 5.9�0.40 10.36 7.38

N(2,2) 2 7695 7431 62371 60784 84141�0.18% 78115�0.17% 25.87 22.19 7.7�0.26 9.73 7.38

N(3,2) 3 7667 7431 62806 60784 92046�0.21% 85446�0.20% 31.77 28.86 7.7�0.31 10.36 7.38

N(5,2) 5 7638 7431 62807 60784 112237�0.20% 105577�0.21% 44.04 42.43 6.3�0.30 10.36 7.38

N(2,5) 2 7695 7431 62371 60784 117900�0.36% 106270�0.34% 47.10 42.80 10.9�0.56 9.73 7.38

N(3,5) 3 7667 7431 62806 60784 124238�0.32% 112119�0.33% 49.45 45.79 10.8�0.46 10.36 7.38

N(5,5) 5 7638 7431 62807 60784 136204�0.37% 126311�0.36% 53.89 51.88 7.8�0.65 10.36 7.38

N(30,5) 30 7440 7431 61116 60784 456101�0.14% 449084�0.15% 86.60 86.46 1.5�0.24 7.88 7.38

L80{ 2 7695 7431 62371 60784 163090�0.82% 149129�0.81% 61.76 59.24 9.4�1.48 9.73 7.38

N(30,5) 7.6 7546 7431 61764 60784 156650�0.77% 149129�0.81% 60.57 59.24 5.1�1.19 8.85 7.38

Processor: len 8

L80(2,5) 2 7695 7431 62371 60784 66550�0.14% 62306�0.09% 6.28 2.44 6.8�0.20 9.73 7.38

2.6 7667 7431 62806 60784 66095�0.11% 62306�0.09% 4.98 2.44 6.1�0.15 10.36 7.38

L80(2,10) 2 7695 7431 62371 60784 76662�0.34% 69193�0.27% 18.64 12.15 10.8�0.47 9.73 7.38

3.6 7677 7431 63154 60784 75778�0.28% 69193�0.27% 16.66 12.15 9.6�0.45 10.86 7.38

L95(2,5) 2 7695 7431 62371 60784 63802�0.09% 61488�0.05% 2.24 1.14 3.7�0.11 9.73 7.38

2.15 7667 7431 62806 60784 63881�0.07% 61488�0.05% 1.68 1.14 3.9�0.11 10.36 7.38

L95(2,10) 2 7695 7431 62371 60784 66715�0.25% 63688�0.18% 6.51 4.56 4.8�0.29 9.73 7.38

2.4 7667 7431 62806 60784 67186�0.24% 63688�0.18% 6.52 4.56 5.5�0.36 10.36 7.38

N(2,2) 2 7695 7431 62371 60784 68584�0.15% 62906�0.11% 9.06 3.37 9.0�0.21 9.73 7.38

N(3,2) 3 7667 7431 62806 60784 69635�0.15% 64017�0.12% 9.81 5.05 8.8�0.19 10.36 7.38

N(5,2) 5 7638 7431 62807 60784 72470�0.17% 68304�0.17% 13.33 11.01 6.1�0.22 10.36 7.38

N(2,5) 2 7695 7431 62371 60784 83327�0.31% 73272�0.31% 25.15 17.04 13.6�0.51 9.73 7.38

N(3,5) 3 7667 7431 62806 60784 84446�0.30% 75229�0.30% 25.63 19.20 12.2�0.50 10.36 7.38

N(5,5) 5 7638 7431 62807 60784 86339�0.32% 80379�0.32% 27.26 24.38 7.3�0.38 10.36 7.38

N(30,5) 30 7440 7431 61116 60784 187416�0.18% 194718�0.20% 67.39 68.78 -3.8�0.24 7.88 7.38

L80{ 2 7695 7431 62371 60784 127001�0.80% 116132�0.77% 50.89 47.66 9.5�1.34 9.73 7.38

N(30,5) 7.6 7546 7431 61764 60784 117195�0.73% 116132�0.77% 47.30 47.66 0.9�1.19 8.85 7.38

31

Table 17: Simulation results for benchmark: qcd2

system OL Tst Bst Tins Bins Trt Brt TI% BI% Imp % Tsp% Bsp%

Processor: unlimited

L80(2,5) 2 5813 5685 1366 1176 1472�0.20% 1234�0.19% 7.15 4.72 19.3�0.36 29.30 19.91

2.6 5785 5685 1356 1176 1464�0.20% 1234�0.19% 7.34 4.72 18.6�0.36 28.92 19.91

L80(2,10) 2 5813 5685 1366 1176 1721�0.51% 1347�0.53% 20.59 12.73 27.8�1.02 29.30 19.91

3.6 5798 5685 1351 1176 1695�0.46% 1347�0.53% 20.28 12.73 25.8�0.92 28.78 19.91

L95(2,5) 2 5813 5685 1366 1176 1412�0.12% 1208�0.10% 3.22 2.70 16.9�0.20 29.30 19.91

2.15 5785 5685 1356 1176 1404�0.13% 1208�0.10% 3.42 2.70 16.2�0.22 28.92 19.91

L95(2,10) 2 5813 5685 1366 1176 1484�0.35% 1239�0.32% 7.92 5.11 19.9�0.59 29.30 19.91

2.4 5785 5685 1356 1176 1474�0.35% 1239�0.32% 7.98 5.11 19.0�0.54 28.92 19.91

N(2,2) 2 5813 5685 1366 1176 1512�0.23% 1247�0.23% 9.61 5.71 21.3�0.44 29.30 19.91

N(3,2) 3 5785 5685 1356 1176 1571�0.26% 1280�0.25% 13.66 8.14 22.7�0.48 28.92 19.91

N(5,2) 5 5774 5685 1329 1176 1646�0.27% 1373�0.30% 19.25 14.39 20.0�0.52 28.02 19.91

N(2,5) 2 5813 5685 1366 1176 1892�0.47% 1426�0.51% 27.77 17.56 32.7�1.14 29.30 19.91

N(3,5) 3 5785 5685 1356 1176 1978�0.48% 1456�0.48% 31.44 19.29 35.9�0.92 28.92 19.91

N(5,5) 5 5774 5685 1329 1176 1981�0.47% 1551�0.54% 32.89 24.19 27.8�0.83 28.02 19.91

N(30,5) 30 5755 5685 1270 1176 4092�0.27% 3822�0.31% 68.95 69.24 7.1�0.50 28.02 19.91

L80{ 2 5813 5685 1366 1176 2889�1.20% 2074�1.31% 52.70 43.32 39.6�2.38 29.30 19.91

N(30,5) 7.6 5751 5685 1297 1176 2477�1.17% 2074�1.31% 47.62 43.32 19.4�2.21 26.89 19.91

Processor: max 8

L80(2,5) 2 5813 5685 1366 1176 1691�0.24% 1374�0.22% 19.18 14.43 23.1�0.46 29.30 19.91

2.6 5785 5685 1356 1176 1673�0.23% 1374�0.22% 18.92 14.43 21.8�0.44 28.92 19.91

L80(2,10) 2 5813 5685 1366 1176 2021�0.54% 1599�0.54% 32.38 26.50 26.2�1.00 29.30 19.91

3.6 5798 5685 1351 1176 2001�0.53% 1599�0.54% 32.47 26.50 25.2�0.96 28.78 19.91

L95(2,5) 2 5813 5685 1366 1176 1565�0.15% 1300�0.14% 12.69 9.54 20.4�0.26 29.30 19.91

2.15 5785 5685 1356 1176 1551�0.14% 1300�0.14% 12.54 9.54 19.4�0.23 28.92 19.91

L95(2,10) 2 5813 5685 1366 1176 1645�0.37% 1353�0.35% 16.94 13.14 21.6�0.65 29.30 19.91

2.4 5785 5685 1356 1176 1633�0.37% 1353�0.35% 16.95 13.14 20.6�0.58 28.92 19.91

N(2,2) 2 5813 5685 1366 1176 1747�0.27% 1405�0.27% 21.80 16.33 24.4�0.45 29.30 19.91

N(3,2) 3 5785 5685 1356 1176 1884�0.29% 1518�0.32% 28.03 22.58 24.1�0.51 28.92 19.91

N(5,2) 5 5774 5685 1329 1176 2280�0.29% 1838�0.30% 41.70 36.03 24.1�0.47 28.02 19.91

N(2,5) 2 5813 5685 1366 1176 2427�0.48% 1867�0.53% 43.69 37.02 30.0�0.84 29.30 19.91

N(3,5) 3 5785 5685 1356 1176 2546�0.44% 1956�0.51% 46.72 39.91 30.1�0.89 28.92 19.91

N(5,5) 5 5774 5685 1329 1176 2766�0.52% 2196�0.55% 51.95 46.47 25.9�1.07 28.02 19.91

N(30,5) 30 5755 5685 1270 1176 9343�0.19% 7574�0.22% 86.40 84.48 23.4�0.33 28.02 19.91

L80{ 2 5813 5685 1366 1176 3391�1.19% 2603�1.28% 59.70 54.84 30.4�2.03 29.30 19.91

N(30,5) 7.6 5751 5685 1297 1176 3115�1.19% 2603�1.28% 58.35 54.84 19.8�2.07 26.89 19.91

Processor: len 8

L80(2,5) 2 5813 5685 1366 1176 1472�0.20% 1234�0.18% 7.16 4.76 19.2�0.34 29.30 19.91

2.6 5785 5685 1356 1176 1462�0.19% 1234�0.18% 7.22 4.76 18.4�0.32 28.92 19.91

L80(2,10) 2 5813 5685 1366 1176 1720�0.48% 1377�0.51% 20.56 14.61 24.9�0.84 29.30 19.91

3.6 5798 5685 1351 1176 1712�0.48% 1377�0.51% 21.08 14.61 24.4�0.88 28.78 19.91

L95(2,5) 2 5813 5685 1366 1176 1413�0.11% 1208�0.11% 3.29 2.70 16.9�0.17 29.30 19.91

2.15 5785 5685 1356 1176 1400�0.11% 1208�0.11% 3.15 2.70 15.9�0.19 28.92 19.91

L95(2,10) 2 5813 5685 1366 1176 1482�0.34% 1251�0.31% 7.81 6.00 18.6�0.60 29.30 19.91

2.4 5785 5685 1356 1176 1479�0.36% 1251�0.31% 8.29 6.00 18.2�0.55 28.92 19.91

N(2,2) 2 5813 5685 1366 1176 1510�0.22% 1246�0.23% 9.49 5.63 21.2�0.40 29.30 19.91

N(3,2) 3 5785 5685 1356 1176 1575�0.26% 1279�0.24% 13.88 8.11 23.1�0.57 28.92 19.91

N(5,2) 5 5774 5685 1329 1176 1649�0.27% 1385�0.29% 19.37 15.15 19.0�0.55 28.02 19.91

N(2,5) 2 5813 5685 1366 1176 1909�0.47% 1471�0.50% 28.40 20.07 29.7�1.08 29.30 19.91

N(3,5) 3 5785 5685 1356 1176 1987�0.47% 1518�0.51% 31.74 22.57 30.9�1.07 28.92 19.91

N(5,5) 5 5774 5685 1329 1176 1997�0.48% 1642�0.55% 33.45 28.42 21.6�0.89 28.02 19.91

N(30,5) 30 5755 5685 1270 1176 4565�0.26% 4297�0.28% 72.17 72.64 6.3�0.40 28.02 19.91

L80{ 2 5813 5685 1366 1176 2921�1.14% 2288�1.26% 53.22 48.62 27.6�2.26 29.30 19.91

N(30,5) 7.6 5751 5685 1297 1176 2530�1.12% 2288�1.26% 48.72 48.62 10.9�2.15 26.89 19.91

32

Table 18: Simulation results for benchmark: track

system OL Tst Bst Tins Bins Trt Brt TI% BI% Imp % Tsp% Bsp%

Processor: unlimited

L80(2,5) 2 6102 5853 421 398 517�1.16% 481�1.05% 18.52 17.28 7.2�1.52 20.41 15.78

2.6 6083 5853 408 398 494�1.03% 481�1.05% 17.44 17.28 2.6�1.57 17.85 15.78

L80(2,10) 2 6102 5853 421 398 624�2.70% 585�2.68% 32.51 31.97 6.7�3.96 20.41 15.78

3.6 6087 5853 408 398 600�2.55% 585�2.68% 31.96 31.97 2.2�3.92 17.85 15.78

L95(2,5) 2 6102 5853 421 398 482�0.75% 454�0.63% 12.61 12.43 6.1�1.00 20.41 15.78

2.15 6083 5853 408 398 463�0.58% 454�0.63% 11.91 12.43 2.0�0.98 17.85 15.78

L95(2,10) 2 6102 5853 421 398 508�1.94% 483�2.02% 17.16 17.70 4.9�2.69 20.41 15.78

2.4 6083 5853 408 398 492�1.85% 483�2.02% 17.07 17.70 1.7�2.99 17.85 15.78

N(2,2) 2 6102 5853 421 398 549�1.27% 502�1.29% 23.26 20.69 9.4�1.88 20.41 15.78

N(3,2) 3 6083 5853 408 398 551�1.30% 533�1.38% 25.97 25.33 3.5�2.02 17.84 15.78

N(5,2) 5 6082 5853 408 398 649�1.18% 625�1.27% 37.17 36.35 3.9�1.74 17.84 15.78

N(2,5) 2 6102 5853 421 398 754�1.98% 648�2.23% 44.10 38.57 16.6�3.32 20.41 15.78

N(3,5) 3 6083 5853 408 398 726�2.10% 696�2.25% 43.81 42.83 3.9�3.67 17.84 15.78

N(5,5) 5 6082 5853 408 398 789�2.09% 755�2.21% 48.34 47.31 4.9�3.64 17.84 15.78

N(30,5) 30 6063 5853 406 398 2206�0.90% 2194�0.88% 81.59 81.87 0.6�1.33 17.46 15.78

L80{ 2 6102 5853 421 398 1064�5.74% 957�5.93% 60.41 58.44 11.3�9.64 20.41 15.78

N(30,5) 7.6 6053 5853 406 398 928�5.62% 957�5.93% 56.25 58.44 -2.5�9.33 17.45 15.78

Processor: max 8

L80(2,5) 2 6102 5853 421 398 551�1.14% 508�1.09% 23.62 21.66 8.7�1.65 20.41 15.78

2.6 6083 5853 408 398 521�1.01% 508�1.09% 21.79 21.66 2.6�1.44 17.85 15.78

L80(2,10) 2 6102 5853 421 398 671�2.51% 620�2.59% 37.26 35.83 7.2�3.63 20.41 15.78

3.6 6087 5853 408 398 638�2.47% 620�2.59% 36.08 35.83 2.3�3.64 17.85 15.78

L95(2,5) 2 6102 5853 421 398 500�0.70% 469�0.66% 15.72 15.27 6.6�1.19 20.41 15.78

2.15 6083 5853 408 398 483�0.65% 469�0.66% 15.58 15.27 2.9�0.91 17.85 15.78

L95(2,10) 2 6102 5853 421 398 537�2.02% 498�1.92% 21.50 20.17 7.5�3.05 20.41 15.78

2.4 6083 5853 408 398 515�1.80% 498�1.92% 20.81 20.17 3.2�3.05 17.85 15.78

N(2,2) 2 6102 5853 421 398 567�1.21% 518�1.27% 25.73 23.25 9.2�2.03 20.41 15.78

N(3,2) 3 6083 5853 408 398 597�1.28% 567�1.35% 31.75 29.85 5.3�1.83 17.84 15.78

N(5,2) 5 6082 5853 408 398 728�1.07% 692�1.10% 44.00 42.52 5.2�1.75 17.84 15.78

N(2,5) 2 6102 5853 421 398 816�2.03% 717�2.05% 48.37 44.51 13.2�3.58 20.41 15.78

N(3,5) 3 6083 5853 408 398 790�1.87% 745�2.06% 48.40 46.58 6.5�3.22 17.84 15.78

N(5,5) 5 6082 5853 408 398 886�1.86% 837�1.89% 53.97 52.50 5.5�2.92 17.84 15.78

N(30,5) 30 6063 5853 406 398 2814�0.69% 2687�0.75% 85.57 85.20 4.7�1.21 17.46 15.78

L80{ 2 6102 5853 421 398 1122�5.65% 999�5.67% 62.47 60.18 11.9�9.62 20.41 15.78

N(30,5) 7.6 6053 5853 406 398 1021�5.37% 999�5.67% 60.24 60.18 1.5�8.87 17.45 15.78

Processor: len 8

L80(2,5) 2 6102 5853 421 398 522�1.14% 486�1.14% 19.25 18.08 7.2�1.94 20.41 15.78

2.6 6083 5853 408 398 498�1.09% 486�1.14% 18.11 18.08 2.8�1.64 17.85 15.78

L80(2,10) 2 6102 5853 421 398 634�2.66% 571�2.65% 33.54 30.37 10.8�3.68 20.41 15.78

3.6 6087 5853 408 398 596�2.58% 571�2.65% 31.54 30.37 4.6�3.07 17.85 15.78

L95(2,5) 2 6102 5853 421 398 483�0.79% 457�0.72% 12.83 12.91 6.0�1.37 20.41 15.78

2.15 6083 5853 408 398 466�0.73% 457�0.72% 12.54 12.91 2.0�1.15 17.85 15.78

L95(2,10) 2 6102 5853 421 398 508�1.89% 473�1.64% 17.09 15.92 7.6�3.07 20.41 15.78

2.4 6083 5853 408 398 490�1.81% 473�1.64% 16.84 15.92 4.1�2.43 17.85 15.78

N(2,2) 2 6102 5853 421 398 539�1.28% 501�1.25% 21.85 20.53 8.0�2.33 20.41 15.78

N(3,2) 3 6083 5853 408 398 559�1.24% 531�1.43% 27.09 25.11 5.5�2.12 17.84 15.78

N(5,2) 5 6082 5853 408 398 654�1.19% 616�1.20% 37.65 35.45 5.9�1.74 17.84 15.78

N(2,5) 2 6102 5853 421 398 737�2.46% 661�2.17% 42.87 39.82 10.9�3.78 20.41 15.78

N(3,5) 3 6083 5853 408 398 725�2.06% 695�2.32% 43.74 42.81 3.8�3.28 17.84 15.78

N(5,5) 5 6082 5853 408 398 792�1.94% 777�2.16% 48.54 48.78 2.0�2.91 17.84 15.78

N(30,5) 30 6063 5853 406 398 2294�0.87% 2242�0.86% 82.30 82.25 2.3�1.55 17.46 15.78

L80{ 2 6102 5853 421 398 1094�5.89% 943�5.75% 61.51 57.82 17.5�10.77 20.41 15.78

N(30,5) 7.6 6053 5853 406 398 1049�5.77% 943�5.75% 61.32 57.82 11.0�10.05 17.45 15.78

33

