
Bounds on Sample Space Size for

Matrix Product Veri�cation

Donald D. Chinn

�

Rakesh K. Sinha

y

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, Washington, U.S.A. 98195

November 28, 1992

Abstract

We show that the size of any sample space that could be used in Freivalds' prob-

abilistic matrix product veri�cation algorithm for n � n matrices is at least

n�1

�

if

the error probability is at most �. We also provide a characterization of any sample

space for which Freivalds' algorithm has error probability at most �. We then provide

a generalization of Freivalds' algorithm and provide matching lower and upper bounds

on the error probability in terms of the sample space size and running time.

1 Introduction

Given two n�n matrices A and B, computing their product is a classic problem in algebraic

complexity theory. We consider a related decision problem.

The matrix product veri�cation problem is to decide, given three n�nmatricesA, B, and

C, whether AB 6= C. We are assuming that all our matrices are over some integral domain

D. A probabilistic algorithm with one-sided error solves the matrix product veri�cation

problem if it rejects with probability 1 if AB = C, and accepts with probability at least

1

2

if

AB 6= C.

Freivalds' [4] original matrix product veri�cation algorithm is to choose a v 2 f0; 1g

n

from the 2

n

possible n-vectors and test whether (AB)v = Cv. This algorithm works when

the matrices have entries from some ring (which may or may not be an integral domain).

�

This material is based upon work supported in part by the National Science Foundation under Grant

CCR-9002891.

y

This material is based upon work supported in part by the National Science Foundation under Grants

CCR-8858799 and CCR-8907960.

1

Algorithm 1 (Freivalds' original algorithm)

1. Choose v 2 f0; 1g

n

randomly and uniformly.

2. if ABv 6= Cv

2a. then return \AB 6= C" (accept)

2b. else return \AB = C" (reject).

Using the associativity of matrix multiplication, we can perform the operations as follows:

(A(Bv)) = Cv, which only requires O(n

2

) operations. Contrast this with the best known

deterministic algorithm for matrix product veri�cation, which performs matrix multiplication

on A and B. Multiplication of two n� n matrices takes O(n

2:376

) steps [2].

Instead of choosing v from the set f0; 1g

n

, let us allow step 1 of Algorithm 1 to choose v

from an arbitrary set of n-vectors S. (Throughout this paper, we use vector to mean a tuple

of elements from D.)

Algorithm 2

1. Choose v 2 S randomly and uniformly, where S is a �nite set

of n-vectors.

2. if ABv 6= Cv

2a. then return \AB 6= C" (accept)

2b. else return \AB = C" (reject).

The motivation behind this generalization of Algorithm 1 is that the size of the sample

space in Algorithm 1 is 2

n

, which implies that n random bits are required to run the al-

gorithm. If we can �nd a smaller sample space S such that Algorithm 2 still has constant

error probability then we can reduce the number of random bits needed to solve the matrix

product veri�cation problem.

Naor and Naor [8] were the �rst to construct a polynomial size sample space for Algorithm

2. They gave two constructions, both of which achieve constant error probability. Their �rst

construction is of size O(n) but works only for matrices overGF (2). The second construction

works for matrices over an arbitrary ring but is of �(n

2

) size. Alon et al. [1] gave three

constructions for the case of matrices over GF (2). The sample spaces they constructed are

each of size (

n

2��1

)

2

, where � is the error probability of Algorithm 2.

Kimbrel and Sinha [6] constructed a sample space of size

l

n�1

�

m

such that the error

probability for Algorithm 2 is no more than �. Their algorithm works for the case when the

matrices have entries from an integral domain D with at least

l

n�1

�

m

elements. (For small

prime �elds, they construct a sample space of size

l

n�1

�

m

whose elements are vectors over

some extension �eld. In this case, computations are performed in the extension �eld and

therefore the algorithm is slightly ine�cient. The exact running time depends on the order

of the base �eld and the value of �.) Their algorithm is very simple to describe for the case

when jDj �

l

n�1

�

m

:

2

Algorithm 3 (Kimbrel and Sinha)

1. Let X be a set of

l

n�1

�

m

distinct elements of D.

2. Choose x 2 X randomly and uniformly.

3. v [x

0

x

1

: : : x

n�1

]

T

.

4. if ABv 6= Cv

4a. then return \AB 6= C" (accept)

4b. else return \AB = C" (reject).

Algorithm 3 still runs in O(n

2

) time with error probability at most �, yet uses only

dlog

2

(n� 1)e+

l

log

2

(

1

�

)

m

random bits [6, Theorem 5]. In particular, if � =

1

2

, then Algorithm

3 uses only dlog

2

(n� 1)e + 1 random bits. Can we �nd a smaller S such that Algorithm

2 works? For example, can we use a pseudorandom number generator that uses o(log

2

n)

random bits, such as the almost k-wise generators of Naor and Naor [8], Alon et al. [1], and

Even et al. [3], to generate the n-vectors of S for Algorithm 2 and still achieve an O(n

2

)

running time?

Section 2 answers this last question in the negative by providing a lower bound on the size

of the sample space in terms of the error probability. Section 3 provides a characterization

of those sample spaces S such that Algorithm 2 has an error probability that matches the

bound of Section 2. Sections 4, 5, and 6 provide a generalization of Algorithm 2 and give

matching lower and upper bounds on the error probability in terms of the sample space size

and running time.

We will be repeatedly using the following simple fact from linear algebra.

Fact 1: Given any n�m matrix A with entries from an integral domain D, rank(A) �

n� 1 if and only if there is a non-zero n-vector v such that vA = 0.

Fields are assumed to be the underlying structure in standard treatments of rank. Since

we are dealing with integral domains, we have to be careful in de�ning rank. Given any set

of vectors, we de�ne their rank to be the cardinality of the largest subset of vectors such that

any non-zero combination of these vectors is non-zero. The rank of a matrix A is de�ned as

the rank of the set of columns of A. This de�nition of rank turns out to be equivalent to the

standard de�nition of rank over the �eld of quotients, Q(D), of D. Note that Fact 1 would

be immediate if the row rank of A and the column rank of A were equal, a familiar fact if D

were a �eld. We include a proof for the general case of integral domains in the Appendix.

Notation: < a; b > denotes the dot product of two vectors a and b.

2 A Lower Bound on the Size of the Sample Space

Theorem 1: Let S be the sample space used in Algorithm 2. If S contains a set of k

distinct vectors fv

1

; v

2

; : : : ; v

k

g with rank at most n� 1, then there are matrices A, B, and

C such that AB 6= C and ABv

i

= Cv

i

for all i. Thus the probability of error is at least

k

jSj

.

3

Proof: Suppose the sample space S of n-vectors used in Algorithm 2 is such that there

are k vectors v

1

; v

2

; : : : ; v

k

with rank at most n� 1.

Now consider the n� k matrix

V = [v

1

j v

2

j : : : j v

k

]

That is, V is obtained by adjoining these n-vectors of S.

By assumption, rank(V) � n� 1. From Fact 1, there is a non-zero n-vector x such that

< x; v

i

> = 0 for all i.

Now consider the (non-zero) n � n matrix M whose �rst row is x and all other entries

are 0. The matrix product Mv

i

is 0 for any v

i

chosen in Algorithm 2, since < x; v

i

> and

< 0; v

i

> are both 0 for all i.

Now construct matrices A, B, and C such that M = (AB � C). Then AB 6= C and

ABv

i

= Cv

i

for all i. 2

Corollary 2: Let S be the sample space used in Algorithm 2. Then the probability of

error is at least minf

n�1

jSj

; 1g.

Proof: Follows from Theorem 1 and the fact that any set of n� 1 or fewer vectors has

rank at most n� 1. 2

Corollary 3: If the probability of error in Algorithm 2 is at most � < 1, then the

sample space for the algorithm must be of size at least (n � 1)=�, and therefore at least

log

2

(n� 1) + log

2

1

�

random bits must be used.

Proof: From Corollary 2, � �

n�1

jSj

, which gives the desired bound on jSj. 2

This lower bound is tight for su�ciently large integral domains: it is matched by Algo-

rithm 3.

3 A Characterization of the Sample Space

Under the conditions of Theorem 1, the probability of error is at least

k

jSj

. This section

provides a converse to that result.

Theorem 4: Let S be the sample space used in Algorithm 2. If every set of k distinct

vectors in S has rank n, then the probability of error of Algorithm 2 is no more than

k�1

jSj

.

Proof: We will prove that for every non-zero matrix M = AB � C, there are at most

k � 1 vectors in S whose product with M is 0.

Suppose this is not true. Then for at least k vectors of S (call them v

1

; : : : ; v

k

and view

them as column vectors) and some non-zero matrix M , Mv

i

= 0.

Consider the matrix V = [v

1

j v

2

j : : : j v

k

]. Since M is non-zero, there exists a non-zero

row m such that mV = 0. Therefore, by applying Fact 1, we conclude that rank(V) � n�1,

which contradicts our assumption that every set of k vectors has rank n. 2

4

Note that in Freivalds' original algorithm (Algorithm 1), every set of 2

n�1

+ 1 n-vectors

over f0; 1g has rank n (since there are too many vectors to be contained in a subspace of

dimension n� 1), so that the error probability is at most

2

n�1

2

n

=

1

2

. In Kimbrel and Sinha's

algorithm (Algorithm 3), every set of n vectors has rank n (since it forms a Vandermonde

matrix), so the error probability is at most

n�1

d(n�1)=�e

< �.

4 A Generalization of Freivalds' Algorithm

Algorithm 2 uses a single test vector v to decide whether AB = C. We can modify the

algorithm so that a carefully selected set of vectors v can be used to test whether AB = C.

The idea is to trade time for the amount of randomness used. Any randomized algorithm

running in time T and using R random bits can be easily transformed into a deterministic

algorithm that runs in T � 2

R

time. The hope is that some clever choice of parameters for

Algorithm 4 will yield a deterministic algorithm that is more e�cient than the best known

(deterministic) algorithm for multiplying matrices.

Algorithm 4

1. Let X = f1; : : : ; rg.

2. Let W be a nonempty �nite set of functions that map elements

of X to n-vectors.

3. Choose an l 2 X uniformly at random.

4. For each s 2 W

4a. Let v = s(l).

4b. if ABv 6= Cv, then return \AB 6= C" (accept).

5. return \AB = C" (reject).

Analysis: Steps 1 and 2 require no time, since we view X and W as �xed sets. Step 3

takes O(log r) steps. Step 5 takes one step.

Step 4a takes time t

s

(l), where t

s

(l) is the number of steps it takes to compute s(l)

from l. Steps 4b takes O(n

2

) steps. So step 4 takes a total of O(n

2

jW j + t) steps, where

t =

P

s2W

t

s

(l).

The entire algorithm takes O(n

2

jW j + t + log

2

r) steps and uses log

2

r random bits.

We can adapt this algorithm to run deterministically in O((n

2

jW j+ t+ log

2

r) r) steps by

examining all choices of l in X.

Notice that both Algorithm 1 and Algorithm 3 are special cases of Algorithm 4. For

Algorithm 1, X = f1; 2; : : : ; 2

n

g and W = fbin(x)g, where bin(x) is a vector corresponding

to the n-bit binary representation of the integer x� 1; for Algorithm 3, X = f1; : : : ;

l

n�1

�

m

g

and W = fJ(x)g, where J(x) = [x

0

x

1

: : : x

n�1

]

T

. In Section 6 we will see another example

of Algorithm 4, this one having jW j > 1 and jXj < d(n� 1)=�e.

5

5 A Lower Bound for the Generalized Freivalds Al-

gorithm

Theorem 5: For any choice of W and r in Algorithm 4, if there is a set of k � r distinct

indices fi

1

; i

2

; : : : ; i

k

g such that rankfs(i

j

) j s 2 W; 1 � j � kg is at most n� 1, then there

are matrices A, B, and C such that AB 6= C and Algorithm 4 rejects for each choice of

l 2 fi

1

; i

2

; : : : ; i

k

g in step 3. Thus the probability of error is at least

k

r

.

Proof: The proof mirrors that of Theorem 1. Consider the n�jW jk matrix V obtained

by adjoining the jW jk vectors fs(i

j

) j s 2 W; 1 � j � kg.

By assumption, rank(V) � n� 1. From Fact 1, there is a non-zero n-vector x such that

the inner product of x with each column in V is zero.

Now consider the (non-zero) n�n matrixM whose �rst row is x and all other entries are

0. The product of M with each column of V is zero. Construct matrices A, B, and C such

that M = (AB �C). Notice that Algorithm 4 rejects for l = i

j

if and only if the product of

M with each vector in fs(i

j

) j s 2 Wg is zero. Then AB 6= C and yet Algorithm 4 rejects

for each choice of l 2 fi

1

; i

2

; : : : ; i

k

g in step 3. 2

Corollary 6: For any choice of W and r in Algorithm 4, if jW j = w then there exists

an input < A;B;C > such that AB 6= C and Algorithm 4 rejects with probability at least

1

r

(

l

n

w

m

� 1).

Proof: Consider any k =

l

n

w

m

� 1 indices in the statement of Theorem 5. Then the set

fs(i

j

) j s 2 W; 1 � j � kg has at most w � k < w �

n

w

= n vectors and therefore has rank at

most n � 1. 2

Corollary 7: For any choice of W and r in Algorithm 4, if jW j = w, then w(r+1) > n.

Proof: Assume w(r + 1) � n. Then by Corollary 6, the probability that Algorithm 4

rejects is at least

1

r

(

l

n

w

m

� 1) �

1

r

(dr + 1e� 1) = 1. This contradicts the assumption that the

probability of error is less than 1. 2

Corollary 8: Let T be the running time of Algorithm 4. Then (r + 1)T � n

3

.

Proof: This follows directly from Corollary 7 and the running time analysis of Algo-

rithm 4, which shows that T � jW jn

2

. 2

Corollary 9: For Algorithm 4, if T = O(n

2

) then r =
(n).

This again shows that Kimbrel and Sinha's algorithm (Algorithm 3) is asymptotically

optimal, at least with respect to this generalization of Freivalds' algorithm.

The next theorem shows a matching upper bound for the generalized Freivalds algorithm.

6

6 An Upper Bound for the Generalized Freivalds Al-

gorithm

Theorem 10: For any choice of W and r in Algorithm 4, if for every set of k � r

distinct indices fi

1

; i

2

; : : : ; i

k

g the set of vectors fs(i

j

) j s 2 W; 1 � j � kg has rank n, then

the probability of error of is no more than

k�1

r

.

Proof: The proof mirrors that of Theorem 2. We will prove that for every non-zero

matrix M = AB � C, there are at most k � 1 choices of l in step 3 such that Algorithm 4

rejects.

Suppose this is not true. Then for at least k choices of l (call them i

1

; : : : ; i

k

) the algorithm

rejects. Again, notice that Algorithm 4 rejects for l = i

j

if and only if the product of M

with each vector in fs(i

j

) j s 2 Wg is zero. Consider the matrix V obtained by adjoining

the vectors in fs(i

j

) j s 2 W; 1 � j � kg. Then the product of M with each column in V is

zero. Since M is non-zero, there exists a non-zero row m such that mV = 0. Therefore, by

applying Fact 1, we conclude that rank(V) � n� 1, which contradicts our assumption. 2

From Corollary 6, the probability of error is at least

1

r

(

l

n

w

m

� 1). Here we give an explicit

algorithm that achieves this error probability. We assume that the elements of our matrices

are from an integral domain that has at least r elements. For the special case of small prime

�elds GF (p), we can use techniques similar to Kimbrel and Sinha [6, Section 4] to achieve

the same error probability by increasing the running time by a factor of log

p

r.

Theorem 11: For any integers w and r, and any integral domain D with at least r

elements, we can construct a set W of cardinality w such that the error probability of

Algorithm 4 for matrices over D is at most

1

r

(

l

n

w

m

� 1). Also, its running time is O(n

2

w).

Proof: Let X = f1; 2; : : : ; rg, and let x

1

; : : : ; x

r

be r distinct elements of D.

Let q =

l

n

w

m

:

De�ne s

1

; : : : ; s

w

to be mappings from integers to n-vectors such that

s

i;j

(l) =

(

x

(j mod q)

l

if (i� 1)q � j � min(iq � 1; n� 1)

0 otherwise

for 0 � j � n� 1, where s

i;j

(l) is the j-th element of s

i

(l).

The function s

i

can be viewed as a function that generates the powers (from 0 to q � 1)

of x

l

, places them in the i-th block of q elements, and sets all other components to 0.

Now let W = fs

1

; : : : ; s

w

g.

We now prove the correctness of Algorithm 4 with this X and W .

Case 1: If AB = C, then ABv = Cv for all v, so Pr(ABv = Cv) = 1.

Case 2: If AB 6= C, then we need to show that for at most (

l

n

w

m

� 1) = q � 1 choices of

l 2 X, (AB � C)s(l) = 0 for all s in W .

7

Let M = AB � C. Since M is non-zero, there is a non-zero row of M . Suppose

m = [m

1

m

2

: : : m

n

] is a non-zero row of M . Consider the set of integers l such that

(AB � C)s(l) = 0 for all choices of s in W . For each such l,

m

1

� (x

l

)

0

+m

2

� (x

l

)

1

+ � � �+m

q

� (x

l

)

q�1

= 0

m

q+1

� (x

l

)

0

+m

q+2

� (x

l

)

1

+ � � �+m

2q

� (x

l

)

q�1

= 0

: :

: :

: :

m

(w�1)q+1

� (x

l

)

0

+ � � �+m

n

� (x

l

)

n�(w�1)q�1

= 0:

These w equations correspond to each of the w functions of W .

Since m is non-zero, at least one of these polynomials is non-zero. Since each of these

polynomials has degree at most q � 1, there are at most q� 1 values of l for which all these

equations are satis�ed [7, Theorem 2, Section IV.3.3].

The running time of the algorithm is O(n

2

w), since t =

P

s2W

t

s

(l) = nw. 2

Corollary 12: If wr �

n

�

, then there is a choice of W of cardinality w such that the

error probability of Algorithm 4 is at most �. Thus, if � =

1

2

, then wr � 2n is su�cient.

Proof: From Theorem 11, the error probability of Algorithm 4 is at most

1

r

(

l

n

w

m

�1) �

1

r

(dr�e � 1) �

1

r

� r� = �. 2

7 Conclusions

We have proved that Naor and Naor, Alon et al., and Kimbrel and Sinha's algorithms use

an asymptotically optimal number of random bits with respect to the Freivalds approach to

matrix product veri�cation. We also have provided a generalization of the Freivalds approach

to matrix product veri�cation and have shown that Algorithm 3 is optimal with respect to

that generalization, in that the number of random bits used in Algorithm 3 matches the

lower bound for all instances of Algorithm 4 that run in O(n

2

) time.

We have shown that given w and r such that wr � 2n, there exist sets W and X with

cardinality w and r (respectively) such that Algorithm 4 runs in O(n

2

w) time and uses

log

2

r random bits with error probability at most

1

2

. Also, the bounds on the product wr

are tight (to within a factor of 2). Another way to view this result is that for each bit of

randomness we save by halving the size of X, we double the running time of Algorithm 4

(by doubling the size of W).

More importantly, we have shown that no pseudorandom number generator that uses

log

2

n�!(1) random bits can be used to produce an instance of Algorithm 2 or 4 that runs

in O(n

2

) time.

8

Appendix

Throughout this section, vector is understood to mean an n-tuple of elements from an integral

domain, whether or not the integral domain is a �eld.

Let D be an integral domain. A D-module is like a vector space except that the scalars

are from D, which is not necessarily a �eld. See [5] for a more careful and general de�nition.

(Modules are in general de�ned for rings.)

De�nition 13: Let M be a D-module. Let v

1

; : : : ; v

r

2 M . The vectors in the set

fv

1

; : : : ; v

r

g are linearly independent over D if

P

r

j=1

a

j

v

j

= 0 implies that a

j

= 0 for j =

1; : : : ; r.

De�nition 14: Let M be a D-module. Given any set of vectors fv

1

; v

2

; : : : ; v

r

g � M ,

rank

D

(fv

1

; v

2

; : : : ; v

r

g) is de�ned to be the cardinality of the largest subset of fv

1

; v

2

; : : : ; v

r

g

that is linearly independent over D.

De�nition 15: Let V be a vector space over a �eld F . Given any set of vectors

fv

1

; v

2

; : : : ; v

r

g � V , rank

F

(fv

1

; v

2

; : : : ; v

r

g) is de�ned to be the cardinality of the largest

subset of fv

1

; v

2

; : : : ; v

r

g that is linearly independent over F .

Let D be an integral domain. The �eld of quotients of D, denoted Q(D), bears the

same relation to D as the �eld of rational numbers to the integral domain of integers. See

[7, Section IV.2.2] for a precise de�nition. Elements of Q(D) can be represented by a pair

of elements (a; b) from D, where b is non-zero, and a is zero if and only if the element

represented in Q(D) is zero. For the rational numbers, this pair corresponds to the number

a

b

.

Theorem 16: Let M be the D-module consisting of the n-tuples over D (i.e. the direct

product D

n

) as its elements (and the usual \vector" operations de�ned for it). Let V be the

vector space consisting of n-tuples over Q(D).

Then if v

1

; : : : ; v

r

2M (v

1

; : : : ; v

r

can be viewed as elements of V),

r

X

i=1

a

i

v

i

= 0 and a

i

2 D) a

i

= 0 (i = 1; : : : ; r)

if and only if

r

X

i=1

b

i

v

i

= 0 and b

i

2 Q(D)) b

i

= 0 (i = 1; : : : ; r):

That is, fv

1

; : : : ; v

r

g are linearly independent overD if and only if fv

1

; : : : ; v

r

g are linearly

independent over Q(D), when v

1

; : : : ; v

r

are viewed as elements of M and V , respectively.

9

Proof: (() If there are no b

1

; : : : ; b

r

2 Q(D) (not all zero) such that

P

r

i=1

b

i

v

i

= 0,

there are no a

1

; : : : ; a

r

2 D (not all zero) such that

P

r

i=1

a

i

v

i

= 0, since D is isomorphic to

a subdomain of Q(D).

(: (:) Suppose there were b

1

; : : : ; b

r

2 Q(D) (not all zero) such that

P

r

i=1

b

i

v

i

= 0.

Then since b

i

2 Q(D), b

i

= (c

i

; d

i

) for c

i

; d

i

2 D, where not all the c

i

are zero, and none

of the d

i

is zero. Let d =

Q

r

i=1

(d

i

; 1). Then d

P

r

i=1

b

i

v

i

= 0 implies

P

r

i=1

db

i

v

i

= 0, which

implies that

P

r

i=1

[d ((c

i

; d

i

))] v

i

= 0.

But e

i

= d � (c

i

; d

i

) is the image of an element of D. Therefore there are a

1

; : : : ; a

r

2 D

(not all zero) such that

P

r

i=1

a

i

v

i

= 0, by letting a

i

= e

i

from above. 2

Corollary 17: Given any integral domain D, theD-moduleM consisting of the n-tuples

over D, and any set of vectors fv

1

; v

2

; : : : ; v

r

g �M ,

rank

D

(fv

1

; v

2

; : : : ; v

r

g) = rank

Q(D)

(fv

1

; v

2

; : : : ; v

r

g):

Proof of Fact 1: We �rst claim that rank

D

(columns of A) = rank

Q(D)

(columns of

A) = rank

Q(D)

(rows of A) = rank

D

(rows of A).

The �rst and third equalities follow from Corollary 17. The second equality is a well-

known fact from linear algebra.

So rank

D

(columns of A) � n� 1 () rank

D

(rows of A) � n� 1 () there is a non-zero

x such that xA = 0, where the second equivalence follows from the de�nition of rank

D

. 2

Acknowledgements

We are grateful to Martin Tompa for his encouragement and insights in this work.

References

[1] N. Alon, O. Goldreich, J. H�astad, and R. Peralta. Simple constructions of almost k-wise

independent random variables. In 31st Annual Symposium on Foundations of Computer

Science, pages 544{553, St. Louis, MO, October 1990. IEEE.

[2] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.

Journal of Symbolic Computation, 9:251{280, 1990.

[3] G. Even, O. Goldreich, M. Luby, N. Nisan, and B. Veli�ckovi�c. Approximations of general

independent distributions. In Proceedings of the Twenty Fourth Annual ACM Symposium

on Theory of Computing, pages 10{16, Victoria, BC, Canada, May 1992.

[4] R. Freivalds. Fast probabilistic algorithms. In Mathematical Foundations of Computer

Science: Proceedings, 8th Symposium, volume 74 of Lecture Notes in Computer Science,

pages 57{69. Springer-Verlag, 1979.

10

[5] I. N. Herstein. Topics in Algebra. John Wiley & Sons, second edition, 1975.

[6] T. Kimbrel and R. K. Sinha. A probabilistic algorithm for ver�ying matrix products using

O(n

2

) time and log

2

n+O(1) random bits. Technical Report TR 91-08-06, University of

Washington Department of Computer Science and Engineering, August 1991. To appear

in Information Processing Letters.

[7] John D. Lipson. Elements of Algebra and Algebraic Computing. Addison-Wesley, Read-

ing, MA, 1981.

[8] J. Naor and M. Naor. Small-bias probability spaces: e�cient constructions and appli-

cations. In Proceedings of the Twenty Second Annual ACM Symposium on Theory of

Computing, pages 213{223, Baltimore, MD, May 1990.

11

