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1  Introduction
The chaos network router is a high-performance chip used for interprocessor
communication.  Every processor has a router that is used for communicating with other
processors.  When a processor needs to send data to another, it breaks it up into messages
and injects them into its router.  The router will then send the messages to other routers.
The messages flow through various routers until they reach their destination, where they
are ejected to the target processor.  It is the routers' responsibility to ensure that messages
are delivered to their target processors.  The chaos router creates a network with a mesh
topology.  The edges of the mesh are wrapped around to form a torus.  Figure 1 shows
part of a network with a sample message route.
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1.1  The Chaos Router

The chaos router is composed of numerous functional blocks.  Among these are the
channel controller, input frame, output frame, crossbar and multiqueue.  Figure 2 shows
the relationship of these functional blocks.
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Data enters a router via the channel.  (In this document, the term channel refers to the
physical interconnect between two routers.  The terms channel controller and controller
refer to the functional block within the router that sends and receives data across the
channel.)  As data is received, it is placed in the input frame, where it waits until it can be
moved to either an output frame or the multiqueue.  The input frame contains a FIFO that
can hold an entire message.  When a message in the multiqueue or an input frame is
available to be routed to another router, it is placed in an output frame.  The output frame,
like the input frame, contains a FIFO that can hold an entire message.  The data waits in the
output frame until the channel controller can transmit it across the channel.  The channel is
bi-directional, so the controller must arbitrate for its ownership.  The multiqueue serves as
a holding place for data that cannot be quickly moved to an output frame.  It is important to
note that messages can cut through the input and output frames as well as the multiqueue.
They do not have to wait until the FIFOs get full.
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1.2  Speed Limitation of the Synchronous Controller

This report makes frequent reference to two channel controllers, referred to as the phase-
adjusting controller and the synchronous controller.  The phase-adjusting controller is the
object of this report.  The synchronous controller is the one currently in use by the chaos
router.

The synchronous controller assumes that a flit (messages are composed of a sequence of
words which are called flits) of data can be transferred from one router to another in a
single clock cycle.  This assumption limits the speed at which the router can operate and
requires that the clocks of all the routers be in phase with each other to a high degree of
tolerance.  The minimum transmission time of a single flit is the sum of the delay through
two latches, the pad delay and the delay across the interconnect.  Data begins to go across
the channel at the beginning of ϕ1 and is latched at the destination at the end of ϕ2.
Therefore, the minimum clock cycle is the sum of the transmission time, the clock underlap
(the time from the end of ϕ2 to the beginning of ϕ1) and the desired skew tolerance.  The
minimum clock cycle is limited almost entirely by factors that cannot be altered.

The motivation for designing the phase-adjusting controller is to overcome the interconnect
delay (including the pad delays) as the speed-limiting factor.  If flits are pipelined across the
interconnect, the limiting factor becomes the speed of the logic within the router.  The cycle
time of the router can then be shortened by optimization of critical paths, retiming, addition
of pipeline stages and various other well-known techniques.  The goal of this project was
to design a channel controller that can operate at speeds independent of the pad and
interconnect delays, while increasing bandwidth and decreasing router-to-router latency.

2  Design
2.1  Overview

The key to overcoming the interconnect delay as a bottleneck is to pipeline the data.  If the
delay is assumed to be arbitrary, the data is no longer guaranteed to be synchronous with
the clock.  The phase difference between the data and the local clock is determined by the
delay of the interconnect and the pads and the skew between the clocks.

An integral component to the phase-adjusting router is the phase adjuster.  The phase
adjuster takes as inputs the data to be synchronized, a forwarded clock that is synchronous
with the data and the local clock.  The output of the phase adjuster is data that is
synchronous with the local clock.  The phase adjuster is a modification of a circuit provided
by Mark Greenstreet [1], [2].  Figure 3 contains a block diagram of the channel with the
channel controllers, showing where the phase adjuster is in the data path.
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It was desirable that the phase-adjusting controller be compatible with the synchronous
controller.  The controller was designed in such a way that it may be substituted for the
synchronous controller without any modification to the router’s logic.

2.2  Communication Protocols

2.2.1  Input/Output Frame Communication

The input and output frames use a simple three-signal protocol.  The protocol is designed in
such a way that an input frame can be connected to an output frame and form a larger
FIFO.  The three signals are named DV (Data-Valid), TD (Taking-Data) and EOM (End of
Message).  The output frame asserts DV when it has data to transmit.  The input frame
asserts TD if it can take data.  When DV and TD are asserted in the same cycle, data is
transmitted.  EOM is asserted by the output frame on the last flit of the message.  Once the
first flit of a message has been transmitted, the remainder of the flits are guaranteed to be
transmitted without any delays.  Although the output frame and input frame can
communicate directly in this fashion, they are never connected directly together.  The
channel controller provides two virtual unidirectional connections across the bi-directional
channel.  Each controller communicates with one output frame, one input frame and one
other controller.

In addition to DV, TD and EOM, there are two other signals used to communicate between
the controller and the input/output frames, called leavingS1 and reqChanS1.  The input
frame asserts leavingS1 when the current message is leaving its FIFO.  It is used much like
an early TD signal.  If leavingS1 is low, the input frame may become full upon receipt of
the EOM flit.  The output frame asserts reqChanS1 to inform the controller that data will be
available soon.  reqChanS1 is used much like an early DV signal.  The controller will not
yield ownership of the channel if it receives it (ownership) after receiving a channel
request, even if it has not received a DV.  This can help reduce the latency of a message,
particularly when the channel is standing idle.  Figure 4 shows a graphical representation of
this protocol.
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 Input/Output Frame Communication Protocol
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2.2.2  Controller to Controller Communication

The controllers communicate with each other via the channel.  The channel is bi-directional,
so they must arbitrate for ownership.  The controllers alternate ownership of the channel.
When a controller gains ownership of the channel, it may send at most one message.

The channel consists of some data bits, a parity bit and three control bits.  The controllers
use the control bits to communicate with each other to arbitrate for the channel.  The three
control bits are called EOM, yield and nop.  EOM has the same function as the EOM in the
input/output frames.  yield is asserted when the owner wishes to yield the channel.  nop is
asserted when the data bits are invalid (i.e. the data should not be sent to the output frame).
A flit with nop asserted is called a nop flit and a flit without nop asserted is called a data flit.
A nop flit will always be sent following a flit with yield asserted.  Figure 5 shows a
graphical representation of this protocol.
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Channel Protocol
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Controller 1 drives the channel first, delivering a message and yielding during the EOM flit.
Controller 2 drives the channel next, but the data is not available for a cycle, so a Nop flit
is sent while waiting for the data to become available.  When the message is finally 
delivered, the input frame is not ready, so the controller yields the channel on the flit 
following the EOM flit.

Figure 5

2.3  Functional Blocks

The control logic has been partitioned into two blocks, an input block and an output block.
The input block communicates with an input frame and examines the data coming from the
interconnect.  The output block communicates with an output frame and drives the
interconnect.

The data path has also been partitioned into an input block and an output block.  The output
block puts data onto the interconnect and controls the pads.  The input block adjusts the
phase of the incoming data stream.

Figure 6 contains a block diagram showing the controller's major functional blocks.



7

Phase-Adjusting Controller Block Diagram

Output
Control

Input Data Path

Phase Adjuster

Output
Frame

Control

Data

Bi-directional
Pads

Channel

Input
Control

Input
Frame

Control

Data

Output
Data Path

Controller

Figure 6

2.3.1  Input Control

The input control logic receives data from the channel and pipes it to the input frame.  It
also performs a simple mapping from the channel control signals to the input frame control
signals.  The data lines and parity bit are passed directly to the input frame.  The
complement of nop is sent to the input frame as DV.  When yield is asserted, the input
control signals the output control logic that it can become active.

2.3.2  Output Control

The output control logic is a finite-state machine (FSM) that communicates with an output
frame and generates the control signals for the interconnect.  Figure 7 shows a block
diagram of the output control logic.
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All of the functional blocks shown above are finite-state machines, with exception of the
random logic.  The random logic generates the yield and nop signals for the channel.

The wants channel FSM indicates whether or not the controller would like to take
ownership of the channel.  When ownership of the channel is received, this FSM will
decide whether it is kept or given back.  The yielded FSM remembers if the channel was
yielded during the current message.  Because the channel can be yielded at different times
during the transmission of a message, this FSM is needed to keep the controller from
yielding the channel more than once.  The drive FSM controls the output enable of the bi-
directional pads.  The state FSM keeps track of the overall state the controller is in.  When
the controller is active, it will cycle through two or three states, called PreSend, Sending
and Sent.  Figure 8 shows the output control's state diagram.

State Diagram

SendingPreSend Sent

Figure 8

The output control logic becomes active when goS1 is asserted.  Upon being activated, the
controller always enters the PreSend state.  The sent state is the inactive state.
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During the PreSend  state, the channel controller will either yield the channel, if no data is
available and reqChanS1 has not been asserted, or will begin sending data.  If reqChanS1
has been asserted, but data is not yet available, nop flits will be sent until data is available.
If the channel is to be yielded during the PreSend state, the FSM will proceed directly to the
Sent state, otherwise it will proceed to the Sending state as soon as data is available.

During the Sending state, data is sent from the output frame to the channel.  The FSM will
remain in this state until an EOM is seen, at which time it will proceed to the Sent state.

When the channel controller reaches the Sent state, it becomes inactive.  It will remain in
this state until goS1 is asserted, at which time it will proceed to the PreSend state to start
the cycle over again.

The controller asserts yield when it wishes to yield ownership of the channel to the other
controller.  This can occur during the PreSend state if there is no data available for
transmission and reqChanS1 has not been asserted.  It can occur during the Sending state
when the last flit of the message is sent.  It will occur during the Sent state if it has not been
asserted previously.  The controller will never yield the channel unless the input frame is
guaranteed to be able to receive a message.  If the input frame is full, the controller will
send nop flits until there is room in it.

A flit with the yield signal asserted is always followed by a single nop flit.  This puts the
interconnect in a state in which the input logic can safely wait for a transmission from the
other controller.

The EOM signal is a faithful copy of the output frame's EOM.

2.3.3  Input Data Path

The input data path logic consists of a multiplexor, a clock doubler and the phase adjuster.
Figure 9 shows a block diagram of the input data path logic.
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Figure 9

The multiplexor selects between a static nop flit and the data from the pads.  When the
controller is driving the pads, the phase adjuster receives nop flits as input.  When the
controller is not driving the pads, the phase adjuster receives actual data from the pads.
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The phase adjuster requires a forwarded clock from the sender.  This clock is sent as a half-
frequency clock.  If a normal clock were forwarded, the interconnect for the clock would
require twice the bandwidth as that for the data.  The clock doubler reconstructs the original
clock of the sending controller.

2.3.4  Output Data Path

The output data path logic consists of a multiplexor, a register bank and a clock divider.
Figure 10 shows a block diagram of the output data path logic.
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The multiplexor sets the data lines to those of a nop flit whenever nop is asserted.  The
register bank holds the data and control signals steady for an entire cycle.  Because the
control signals arrive late during ϕ1, the register is used to hold these signals steady during
ϕ2 and ϕ1 of the following cycle.  The clock divider divides the clock frequency in half.
This half frequency clock is sent across the interconnect as the forwarded clock.

2.4 Verification

2.4.1  Phase Adjuster

It is fairly easy to prove the correctness of the phase adjuster.  To be correct, the phase
adjuster needs to be free of metastability and to be able to compensate for clock skew
adequately.

2.4.1.1  Metastability

The phase adjuster is composed of a series of cascaded asynchronous registers that form an
asynchronous FIFO.  Each asynchronous register is composed of two latches and has a
request and an acknowledge signal.  Each register also generates an acknowledge out and a
request out signal.  Asserting request puts data into the register and asserting acknowledge
takes it out.  acknowledge out is asserted when the register is taking the data and request
out is asserted when the register is ready to deliver data.  Figure 11 shows the schematics
for an asynchronous register.
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The registers can be cascaded by making the following connections.  acknowledge out is
connect to acknowledge of the previous register.  request out is connected to request of the
following register.  data out is connected to data in of the following register.

request for the first register is obtained by forwarding a clock that is synchronous with the
data.  acknowledge for the last register is obtained from the local clock.  Data enters the
FIFO via data in of the first register and exits via data out of the last.  The entire FIFO is
preceded and followed by latches that are clocked by the forwarded clock and the local
clock.  Figure 12 shows a two-stage FIFO composed of asynchronous registers.
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There are two criterion that must be satisfied for the FIFO to be free of metastability:  no
latch must close while the data on its input is changing and the C-elements must not
generate a metastable clock.  The following proof of correctness assumes that the minimum
time between rising transitions on either clock does not exceed the propagation delay
through a register.

Once a given latch is open, both inputs to its C-element must be low for it to close.  This
means that the previous latch must be closed and the following latch must be open.  If a
latch must be closed for its successor to close, no metastability can be introduced by a latch
closing on changing data (assuming that the propagation delay through the latch is less than
that through a C-element).

This argument applies to all the latches except for the first, since the first latch does not
receive its request from a C-element.  The request signal for the first register is obtained
from the forwarded clock.  The first latch can only open when the forwarded clock is high.
Because the forwarded clock is synchronous with the data, the data is guaranteed to be
stable as long as the clock is high.  The entire FIFO is prefixed by a latch which holds the
input to the FIFO steady while the clock is low.  Because the clock may not be faster than
the propagation delay of a register, the data is guaranteed to have entered the FIFO by the
time the forwarded clock rises again.  The FIFO therefore guarantees that no metastability
will be introduced as long as the time between rising transitions on the forwarded clock
does not exceed the propagation delay through a register.

The data leaving the FIFO is synchronous with the FIFO's acknowledge.  acknowledge is
obtained from the local clock, so the data leaving the FIFO is guaranteed to be synchronous
with the rest of the controller.

The second thing that needs to be shown is that the C-elements can never output a
metastable clock.  The only way for this to happen is for a C-element's inputs to change
simultaneously while one is high and the other is low.  The inputs to each C-element are
obtained from the output of the previous C-element and the complement of the output of the
subsequent C-element.  If the inputs to a C-element are not equal, the outputs of the
previous and subsequent C-elements must be the same.  If these outputs are changing
simultaneously, two adjacent registers must be in the same state and changing to the next
state simultaneously.  For this to happen, the clock cycle must be at least as fast as the
propagation delay through one register.  This violates the assumption that the minimum
time between clock transitions was not less than the propagation delay through an
asynchronous register.

We can therefore conclude that the phase adjuster is free of metastability as long as the
clock cycle time is not shorter than the propagation time of an asynchronous register.
However, noise on the forwarded or local clocks can shorten the cycle time for one cycle.
Rapid changes in skew between the two clocks has the same result.  Therefore, the cycle
time must be at least as long as the delay through an asynchronous register plus the
maximum change in skew per cycle.

There is one additional issue that needs to be addressed:  the pads are bi-directional.  It does
no good to assure that the phase adjuster is free of metastability if the data is not
synchronous with the forwarded clock (as is the case when a controller is driving the
channel).  Therefore, the input to the phase adjuster is multiplexed.  When the controller is
receiving data, the phase adjuster receives its input from the pads.  When the controller is
driving the channel, the phase adjuster receives a nop as input.  Since every transmission,
whether it be a message or just a yield, is terminated by a nop flit, the select line of the
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multiplexor can be guaranteed to change only when the data and control lines have a nop on
them.  Therefore, the data and control lines are guaranteed to never change asynchronously
with the forwarded clock.

2.4.1.2  Skew Tolerance

In the previous section it was shown that the phase adjuster can compensate for some
amount of skew.  An important consideration is the amount of skew it can compensate for,
and how much that skew can vary following initialization.  Figure 13 shows the model
used for analyzing how the phase adjuster behaves in the presence of skew.

Clock Delay Model

Router 1 Router 2δ

δ

δji

sGlobal Clock

Figure 13

δi represents the delay through the pads plus the delay across the interconnect and is strictly
positive.  δs represents the average skew between the clocks and can be either positive or
negative.  δj represents the jitter in a forwarded clock with respect to a local clock.  δi and δs
are both constants, determined by the fabrication process, the interconnect, etc.  δj, on the
other hand, is a time varying delay that is assumed to change slowly (less than half a cycle
per cycle).  To simplify things, let δd = δi+δj.  To router 1, router 2's clock is delayed by
δd+δs. To router 2, router 1's clock is delayed by δd-δs.

The simplest case is to assume that δd and δs, are both zero, that the FIFO is two deep and
is infinitely fast.  Upon initialization, the outputs of the C-elements are set such that the
FIFO is exactly half full.  When a flit is inserted into the FIFO, another taken out.  The
newly inserted flit will immediately fall to the bottom of the FIFO where it can be taken out
on the next cycle.  In this situation, the FIFO is always exactly half full.

Now assume that δs is not zero.  Because a clock that is delayed an integral number of
cycles is indistinguishable from itself, δs will be considered to be the actual skew modulo
one cycle, ranging from -180 to 180 degrees.  If δs is positive, router 2 will be late in
inserting data into router 1's FIFO, and router 1 will be early.  Therefore, Router 1's
FIFO, on average, will be less than half full and router 2's FIFO will be more than half
full.  If δs is negative, the opposite condition will exist.  Depending on the value of δs and
where in the cycle the reset occurred, the FIFOs could be, on average, nearly full or nearly
empty.

Now assume that δj is allowed to be some non-zero value.  If |δj+δs| exceeds a cycle, then
the phase adjusters will fail, just as before.  If δs is allowed to be any value, then no
guarantee can be made about how much δj can be tolerated.  This necessitates a longer
FIFO.
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Now assume that the FIFO is four deep and δi and δj are again constrained to be zero.
Upon leaving initialization (again, the FIFO is initialized to be half full), the FIFO will be,
on average, between one quarter and three quarters full.  If δj is no longer constrained to be
zero, the phase adjuster will operate correctly as long as δj is less than one cycle.  If the
FIFO were made even longer, it would be able to compensate for multiple cycles of jitter.

Now assume that δi is no longer constrained to be zero.  It has already been shown that the
phase adjuster will compensate for any value of δs even if it is greater than 180 degrees.
Since δi simply adds to δs, δi cannot affect the amount of skew and jitter that can be
tolerated.  δi will, however, affect the latency.

It has been shown that with infinitely fast logic, a four deep FIFO will be able to
compensate for any values of δs and δi, as long as δj is restricted to be less than one cycle.
However, the FIFO is made of real logic and therefore is less than ideal.  The amount of
jitter that can actually be tolerated is one cycle minus the delay through one asynchronous
register.

2.4.2  Protocol Correctness

There are several factors that need to be considered to show that the controller-to-controller
protocol is correct.  The data in the input frame should never be overrun, both controllers
should never output to the channel simultaneously and it should be deadlock free.

The data in the input frame can never be overrun.  The controller will never yield the
channel unless the input frame is ready to receive data.  Therefore, a controller, upon
receiving ownership of the channel, is guaranteed that it can safely send at most one
message.  The output control FSM, upon leaving the Sending state, always enters the Sent
state.  From the Sent state, the FSM will never send any data until it has yielded ownership
of the channel and received it back again.  When the controller receives ownership again, it
is again guaranteed that it can safely send a message.  Therefore, data will never be sent to
a full input frame.

Both controllers never output to the channel simultaneously.  With exception of the nop flit
that always follows the flit with yield asserted, a controller will only drive the channel
when it has ownership.  Upon initialization, one controller has ownership and the other
does not.  Ownership is always explicitly given, never taken.  Therefore, the two
controllers will never have ownership at the same time.  In order to tolerate varying
amounts of skew, there must be at least one cycle where neither controller drives the
channel.  The latency through the phase adjuster guarantees that at least two "dead" cycles
will always exist.

The controller is deadlock free.  The only possibility for deadlock is if an input frame never
became empty because its corresponding output frame was full.  Suppose controller 1 and
controller 2 both have full output frames and controller 1 sends a message to controller 2
and yields the channel at the end of the message.  Controller 2 now has full input and
output frames.  Controller 2 proceeds to send a message and receives another message into
its output frame.  When the message is delivered, the controller is in the only potential
deadlock situation.  Controller 2 has a full input frame and a full output frame.  It cannot
send a message and it cannot yield the channel.  However, the router guarantees that when
it puts a message into an output frame, it will remove a message from its corresponding
input frame, if there is one.  Therefore, in the above scenario the router guarantees that it
will eventually remove the message from the input frame when it puts the second message
into the output frame.  Therefore, it can never get into a deadlock situation.
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2.4.3  Functional Correctness

Verification that the logic actually implements the protocols was done by simulation.
Verification of the simulation results was done by hand using ad-hoc methods.  Extensive
simulations were performed to verify its correctness.

2.4.4  Speed Verification

The cycle time of the design was determined using irsim.  Irsim uses a simple RC model to
estimate delays.  Gate and drain capacitance is considered, but not wiring capacitance.
Resistance through the transistor is considered, but not wiring resistance.  The model used
by irsim is fairly accurate as long as wires are kept short.

2.5  Alternate Design Considerations

The phase-adjusting controller evolved over a number of months and various tradeoffs
were considered.  The design presented in this document represents the results of this
evolution.  The major factors considered for each tradeoff were cycle time, latency, and pin
count.  In general, cycle time was the primary consideration, followed by latency and last
of all pin count.

2.5.1  Latency vs. Pin Count

It is possible to reduce the pin count by eliminating the EOM pin.  This would require the
input control logic to delay the data by a cycle in order to reconstruct the EOM signal.
While removal of the EOM pin would increase the latency of a message by a cycle, it would
not waste a cycle on the interconnect.  The output frame could be delivering the first flit of a
message while the input frame is receiving the last flit of another message.  When the
network is lightly loaded, the latency of a message through the router (not counting the
channel latency) is very low, nominally three cycles.  An additional cycle of latency would
significantly impact a message's latency under these conditions.  Due to the big impact on
the minimum latency, this alternative was not taken.

It is also possible to reduce the pin count by eliminating one of the two control signals and
multiplexing one of the data pins.  The controller asserts yield during the last data flit of a
message whenever possible.  Elimination of one of the control pins would require an
additional flit to send the yield signal and hence would often tie up the channel for an
additional cycle.  The logic that generates the yield signal is the critical path in the
controller.  Multiplexing the pins would lengthen that critical path, in addition to increasing
the complexity of the controller.  Due to the increased latency and the longer cycle time, this
pin count reduction alternative was not taken.

A cycle of latency could have been eliminated by the addition of an ID pin.  The controller
depends on there being at least one nop flit between each message.  This allows the input
control logic to distinguish between an outgoing yield and an incoming one.  An ID pin
would allow the input control logic to distinguish between the two without requiring a
trailing nop flit.  However, this nop flit is important in avoiding metastability in the
synchronizer.  At one time the controller did use an ID pin, but it was removed for this
reason.



1 6

2.5.2  Latency vs. Cycle Time

The logic in the controller is fairly heavily pipelined.  By putting more logic in the critical
path, a cycle of latency could be eliminated.  When the input control logic asserts goS1, the
output control logic does not respond until the next cycle.  By allowing goS1 to directly
affect the state of the output control FSM (as opposed to waiting a cycle for it to affect the
state), the FSM could respond one cycle more quickly.  This was clearly the most difficult
tradeoff to decide upon.  The cycle time would have been impacted by approximately 10-15
percent while reducing the latency by a cycle.  Reducing the latency at the expense of the
cycle time makes the controller perform better for lightly loaded networks and perform
worse for heavily loaded networks.  Shortening the cycle time at the expense of an extra
cycle of latency has the opposite effect.  It is definitely not clear which alternative is the
best.

2.5.3  Intelligence vs. Cycle Time

It is possible for the controller to take advantage of cycles when the channel is standing idle
and there is work that could be done.  For example, the controller might have delivered a
message, but cannot yield the channel until the input frame becomes ready.  It is quite
possible that the receiving input frame could receive another message.  In this situation, a
second message could be delivered while the controller waits for the input frame to become
ready.

A fairly elaborate scheme was developed in which the sending controller could query the
receiving controller to determine if the input frame could take a second message or not.
The receiving controller would respond and the sender might be able to send a second
message.  The major drawback to such a design is that the cycle time would be impacted
and very little would be gained due to the long latency involved in turning the channel
around.

2.5.4  Receiver Feedback

In the synchronous router, the sending controller receives one bit of information from the
receiving controller.  This allows the sending controller to make intelligent decisions
concerning whether to yield the channel or not.  The controller will not yield the channel
unless it needs to or the other controller wants it.  This allows the synchronous router to
send back-to-back messages in one direction without any wasted cycles between them.  It
is much like the query-response flits described above, only much more efficient.  It can
also greatly reduce the number of times the channel is turned around in a lightly loaded
network.

It would be possible for the phase-adjusting controller to do the same.  However, there are
a number of reasons for not doing this:

1. The additional logic would impact the cycle time.
2. It would require an additional pin.
3. It would place an upper bound on the latency of the interconnect.

Receiver feedback was not included primarily because of reason number one.  Having no
upper bound on the latency of the interconnect is a nice property, but practically, it is not a
particular advantage.
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3  Results
Because the phase-adjusting controller was designed as a faster alternative to the
synchronous controller, the following results discussion consists of a comparison between
the two designs.

3.1  Quantitative Comparison with the Synchronous Controller

There are a number of quantitative measurements that can be made of this design.  Among
these are transistor count, cycle time, latency, hop time, bandwidth and channel utilization.

3.1.1  Transistor Count

Router Total Excluding Pads
Synchronous 2384 1304
Phase-Adjusting 4116 2929
Increase 1.73 2.25

3.1.2  Cycle Time

The cycle time for the phase-adjusting controller has been determined through simulation
using irsim.  The fabrication parameters used were those for a 1.2 micron n-well process.

The cycle time for the synchronous controller is not the cycle time for any actual router.  It
is the cycle time for a theoretical router representing the fastest possible router based on the
limitations induced by the synchronous controller.  The cycle time is based primarily on
pad, latch and interconnect delays.  The latch delays are approximate, the pad delays come
from the Seattle Silicon Databook [3].  The following table shows how the cycle time of
this theoretical router has been determined:

Minimum Cycle Time for the Synchronous Controller
Pad Delay (Input) 3.7 ns
Pad Delay (Output) 9.6 ns
Latch Delay (X2) 3.0 ns
Underlap 1.0 ns
Total (Minimum) 17.3 ns
Allowance for Interconnect Latency 1.0 ns
Allowance for 5% Skew 0.9 ns
Total 19.2 ns

The figures presented in this report assume the same clock underlap and the same
interconnect latency for the both routers.  With a 1 nanosecond underlap and a 1
nanosecond interconnect latency, the phase-adjusting controller will function correctly with
a 12 nanosecond cycle.

3.1.3  Latency

The following table shows the channel latency, which is the time required for one flit to
cross the channel, once the controller has ownership of the channel.  It does not include
any latency induced by the rest of the router or by channel contention.
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Channel Latency
Router Cycles nsec
Synchronous 1 19.2
Phase-Adjusting 4 48.0
Speed Up 0.25 0.4

The total latency of a message will be affected by the message length and the channel’s
traffic pattern.  The message length is always 20.  Three different traffic patterns are
considered:  heavy bi-directional, heavy unidirectional and sporadic.  Under all traffic
patterns, the input frames are always considered to be empty.  Non-empty input frames will
increase latency for both controllers.  Heavy bi-directional traffic assumes that all output
frames are always full.  Heavy unidirectional traffic assumes that one controller's output
frame is always full and the other's is always empty.  Sporadic traffic assumes that
whenever a message arrives at an output frame, the channel is idle.  Traffic is bi-
directional, with no bias towards one direction.  There is no correlation between the
direction of a message and the direction of previous messages.  The arrival time of a
message is independent of the state that the controllers are in.

The assumption that the input frames are always empty is reasonable for the bi-directional
and sporadic case, because under these conditions the input frame would have ample time
to begin to clear.  This assumption is not as valid for the unidirectional case, because the
input frame would be required to always clear in less than a message time.

Given these traffic patterns, we can now compute the latency involved in waiting for the
channel.  These figures represent the latency from when the message is available to when it
begins to be delivered.  It does not count the channel crossing time.

Arbitration Latency for
Heavy Bi-directional and Heavy Unidirectional Traffic

Bi-directional Unidirectional
Router Cycles nsec Cycles nsec
Synchronous 22 422.4 0 0.0
Phase-Adjusting 28 336.0 9 108.0
Speed Up 0.78 1.26 0 0.0

Arbitration Latency for Sporadic Traffic
Minimum Maximum Average

Router Cycles nsec Cycles nsec Cycles nsec
Synchronous 0 0 2 38.4 1.0 19.2
Phase-Adjusting 0 0 7 84.0 2.8 33.6
Speed Up --- --- 0.29 0.46 0.36 0.57

3.1.4  Hop Time

One of the most important latency-related figure is hop time, which is a composite of the
latencies described above.  The hop time is the total time required for a message to "hop"
from one router to an adjacent one.
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For the congested cases (bi-directional and unidirectional), the hop time cannot actually be
determined because it is affected by the traffic patterns of the other four channels.  The hop
time can be considered to be the sum of two latencies, which we will call input latency and
output latency.  Input latency is the time between the arrival of a message to an input frame
and its arrival to an output frame.  Output latency is the time between the arrival of a
message to an output frame and its arrival to an input frame on another router.  The input
latency cannot be determined from the traffic pattern on a single channel, but the output
latency can.  Even though the input latency cannot be determined, intuitively it will decrease
if the output latency is decreased.  The reasoning behind this is that the input latency exists
because of contention for the channels.  If the output latency is decreased, the incoming
messages will have to wait less time, thereby reducing the input latency.  The output
latency is summarized in the following table.

Partial Hop Time (Output Latency) for
Heavy Bi-directional and Heavy Unidirectional Traffic

Bi-directional Unidirectional
Router Cycles nsec Cycles nsec
Synchronous 42 806.4 20 384.0
Phase-Adjusting 51 612.0 32 384.0
Speed Up 0.82 1.32 0.63 1.0

The total hop time for the sporadic case can be easily determined if the network is assumed
to be empty.  In this situation, the router will add three cycles to the channel's latency.
This is the time required for a message to pass through the input frame, cross the crossbar
and enter the output frame.  The following table shows the hop time for sporadic traffic,
assuming the router adds three cycles of latency and the network is empty.

Hop Time for Sporadic Traffic
Minimum Maximum Average

Router Cycles nsec Cycles nsec Cycles nsec
Synchronous 4 76.8 6 115.2 5.0 96.0
Phase-Adjusting 7 84.0 14 168.0 9.8 117.6
Speed Up 0.57 0.91 0.42 0.69 0.36 0.82

3.1.5   Bandwidth and Channel Utilization

Bandwidth and channel utilization are presented together because they are direct functions
of one another.  Bandwidth is simply the channel utilization divided by the cycle time.  The
following comparisons use the same traffic patterns as before, except for the sporadic case.
This case omitted because the bandwidth and utilization change depending on the time
between messages.  In the following table, bandwidth is measured in millions of flits per
second.

Bandwidth and Channel Utilization for
Heavy Bi-directional and Heavy Unidirectional Traffic

Bi-directional Unidirectional
Router Bandwidth Utilization Bandwidth Utilization
Synchronous 49.4 95% 52.0 100%
Phase-Adjusting 69.1 83% 57.4 69%
Speed Up 1.4 .87 1.1 .69
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3.2  Qualitative Comparisons

There are a number of advantages and disadvantages that the phase-adjusting controller has
with respect to the synchronous controller that cannot be measured qualitatively.

1. The phase-adjusting controller will operate at clock speeds independent of the
interconnect speed.  Additional cycles of latency will be introduced as the
interconnect becomes slower, but the cycle time need not change.  The synchronous
controller, on the other hand, must have a slower clock to accommodate a slower
interconnect.

2. The phase-adjusting controller can have a very simple clock distribution
mechanism.  The synchronous controller requires a very tight tolerance on its clock
to get its cycle time low.  This will require phase-locked loops or some other
complex circuitry to keep the clocks in phase.

3. The phase-adjusting controller is more tolerant of noisy interconnects.  Because the
synchronous controller requires that timing be very tight, it is fairly intolerant of
noise.  The phase-adjusting controller, on the other hand, does not require tight
timing, and hence is much more tolerant of noise.

4. The high-level description of the synchronous controller is more readable and more
maintainable.  The logic that implements the controller is described in a hardware
description language.  The phase-adjusting controller, on the other hand, was
designed using logic gates.  All the random logic was designed by hand.  Future
modifications of the synchronous controller will require far less work than
modifications to the phase-adjusting controller.

5. The synchronous controller is more intelligent than the phase-adjusting controller.
This advantage is somewhat reflected in the quantitative comparisons made above,
but the figures do not tell the entire story.

4  Future Work
4.1  Alternate Phase Adjuster

The phase adjuster used in this design is large and slow.  There are other phase adjusters
that would perform this function better.  One of these is a variable delay line that
compensates for skew by dynamically changing the delay along the data path.

4.2  Message Length and Buffering Considerations

While the phase-adjusting controller is quite fast, it has a very large latency associated with
turning the channel around.  Much of the advantage gained by the faster clock cycle is
wasted turning the channel around.  The phase-adjusting controller would perform much
better if it did not have to turn the channel around so frequently.  One way of
accomplishing this would be to lengthen the messages.  An alternative to this would be to
put a FIFO in the controller.  This would allow two messages to be sent without turning the
channel around, thus eliminating half the arbitration latency.
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4.3  Retiming Test Case

A significant amount of retiming was done to shorten critical paths.  This design would
provide a nice test case for retiming research being done at the University of Washington.
In addition, a description in some type of hardware description language would be helpful
for other research being done in synthesizing circuits.

5  Summary
The phase-adjusting controller is a design for a replacement for the synchronous controller
used in the chaos router.  The goal was to design a controller that would eliminate the pad
and interconnect delays as the fundamental impediment to reducing the cycle time, while
increasing bandwidth and reducing latency.

This controller has some nice properties that make it an attractive alternative to the
synchronous controller.  Among these are clock skew compensation and a cycle time that is
independent of the pad and interconnect delays.

The controller has a higher bandwidth at the cost of higher latency.  Three traffic patterns
were examined to compare the latency, hop time and bandwidth of the two controllers.  The
phase-adjusting controller improved the bandwidth over the synchronous controller by 10
to 40 percent.  It increased the latency due to channel arbitration by 0 to 57 percent, while
reducing the total hop time by approximately -23 to 24 percent.  In general, the phase-
adjusting controller outperforms the synchronous controller under heavy loads, while the
synchronous controller outperforms the phase-adjusting controller under light loads.
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