
Relaxed Consistency and Synchronization

in Parallel Processors

Richard N. Zucker

Department of Computer Science and Engineering

University of Washington

Technical Report No. 92-12-05

December 1992

1

Relaxed Consistency and Synchronization

in Parallel Processors

by

Richard N. Zucker

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

University of Washington

1992

Approved by

(Chairperson of Supervisory Committee)

Program Authorized

to O�er Degree

Date

Doctoral Dissertation

In presenting this dissertation in partial ful�llment of the requirements for the Doctoral

degree at the University of Washington, I agree that the Library shall make its copies

freely available for inspection. I further agree that extensive copying of this dissertation is

allowable only for scholarly purposes, consistent with \fair use" as prescribed in the U.S.

Copyright Law. Requests for copying or reproduction of this dissertation may be referred

to University Micro�lms, 1490 Eisenhower Place, P.O. Box 975, Ann Arbor Michigan

48106, to whom the author has granted \the right to reproduce and sell (a) copies of

the manuscript in microform and/or (b) printed copies of the manuscript made from

microform."

Signature

Date

University of Washington

Abstract

Relaxed Consistency and Synchronization

in Parallel Processors

by Richard N. Zucker

Chairperson of the Supervisory Committee: Professor Jean-Loup Baer

Department of Computer Science

and Engineering

Parallel programs often do not obtain close to linear speed-up when compared to a se-

quential version of the program running on a uniprocessor. There are many reasons that

linear speed-up is not obtained. Two important ones are the overhead of synchronization

and memory latency.

Synchronization, the coordination of the work done by di�erent processors, is an

overhead that does not exist in uniprocessor programs. Therefore, excessive time spent

performing synchronization leads to a loss of performance. Many previous studies to

evaluate this overhead have used arti�cial benchmarks with high levels of lock contention.

In this dissertation I study both the e�ects of synchronization on the performance of

real parallel programs and the impact of the e�ciency of the implementation of the

synchronization algorithm. The results show that the frequency of synchronization is

the most signi�cant factor leading to performance loss. When synchronization occurs

su�ciently often, the implementation algorithm has a non-negligible e�ect.

Memory latency, the length of time from when a request to memory is initiated until

it completes, is a major problem in multiprocessors. Many hardware and software en-

hancements have been proposed to deal with the problem. One of the ideas is relaxed

models of memory consistency. Relaxed models, such as weak ordering or release con-

sistency, replace sequential consistency, the usual intuitive model of how the memory of

the system is implemented. With this change in the memory model, many architectural

features can now be used that are not allowed under sequential consistency, but at the

cost of imposing constraints to the programmer of parallel systems. In this dissertation

I consider many of these architectural features such as bypassing, lock-up free caches

and a software controlled cache coherence scheme I propose. I attempt to determine the

performance bene�ts of using such features and which features provide the most bene�t.

The results show that relaxed consistency can provide signi�cant performance gains for

some programs and architectures. The choice of a given relaxed model does not sig-

ni�cantly a�ect the gains. Software controlled cache coherence, a scheme that requires

a smaller hardware investment, can provide equivalent performance in some cases and

competitive performance in others.

Table of Contents

List of Figures : iv

List of Tables : vi

Chapter 1: Introduction : 1

Chapter 2: Locking Patterns : 5

2.1 Introduction : 5

2.2 Locking Techniques : 6

2.3 Methodology : 12

2.3.1 Traces : 12

2.3.2 Model architecture : 14

2.3.3 Benchmarks : 15

2.3.4 Locking Implementations : 18

2.4 Results : 19

2.4.1 Queuing Lock Implementation : 19

2.4.2 Importance of the Lock Implementation : : : : : : : : : : : : : : : 22

2.4.3 Conclusions : 24

Chapter 3: Relaxed Models of Memory Consistency : : : : : : : : : : : : : : : : : 26

3.1 Why Relaxed Consistency : 28

3.2 Weak Ordering : 31

3.3 Synchronization - Acquires and Releases : : : : : : : : : : : : : : : : : : : 33

3.4 Processor, Release, and Lazy Release Consistency : : : : : : : : : : : : : : 34

3.4.1 Processor Consistency : 34

3.4.2 Release Consistency : 35

3.4.3 Lazy Release Consistency : 36

3.5 Software Centric Views: DRF0 and DRF1 : : : : : : : : : : : : : : : : : : 38

3.6 E�ects of Relaxed Consistency : 40

Chapter 4: Performance Evaluation of Relaxed Models : : : : : : : : : : : : : : : : 43

4.1 Introduction : 43

4.2 Trace Driven Simulation Study : 43

4.2.1 Weak Ordering Results : 45

4.2.2 Limitations : 47

4.3 Instruction-Level Simulation Study : 48

4.3.1 Methodology : 48

4.3.2 Simulation Results : 60

4.3.3 Architectural Variations and Results : : : : : : : : : : : : : : : : : 67

4.4 Related Work and Comparisons : 72

4.4.1 Study Comparison : 72

4.4.2 Previous studies : 73

4.5 Relaxed Consistency in Software : 77

4.6 Conclusions : 79

Chapter 5: Software Controlled Cache Coherence : : : : : : : : : : : : : : : : : : : 80

5.1 SCCC in Detail : 81

5.1.1 Instructions for SCCC : 82

5.1.2 SCCC Line Size : 83

5.2 Relaxed Models and SCCC : 84

5.2.1 Why Relaxed Models and SCCC : : : : : : : : : : : : : : : : : : : 84

ii

5.2.2 DRF1 in More Detail : 88

5.2.3 Obeying DRF1 : 92

5.3 Methodology : 92

5.3.1 Basic Architecture : 93

5.3.2 Conforming to DRF1 : 98

5.3.3 Benchmarks : 101

5.4 Results : 108

5.4.1 Relax : 108

5.4.2 Gauss : 113

5.4.3 Higher Latency : 114

5.5 Prior Work : 116

5.6 Conclusions : 117

Chapter 6: Conclusion : 119

6.1 Synchronization : 119

6.2 Relaxed Consistency Models : 120

Bibliography : 123

Appendix A: Glossary : 135

A.1 Initiated, Issued and Performed : 135

A.2 Processor Consistency, Original De�nition : : : : : : : : : : : : : : : : : : 136

Appendix B: Su�cient Conditions for DRF0 and DRF1 : : : : : : : : : : : : : : : 137

B.1 Conditions for DRF0 : 137

B.2 Conditions for DRF1 : 138

Appendix C: Detailed Statistics : 141

Appendix D: Proof - Chen and Veidenbaum Obey DRF1 : : : : : : : : : : : : : : 143

iii

List of Figures

2.1 Locking using Test&Set : 7

2.2 Locking using Test&Test&Set : 8

2.3 Queuing Locks - Initial : 10

2.4 Queuing Locks - First processor about to enqueue : : : : : : : : : : : : : 11

2.5 Queuing Locks - First processor enqueued, has lock : : : : : : : : : : : : : 11

2.6 Queuing Locks - 2nd processor about to enqueue : : : : : : : : : : : : : : 12

2.7 Queuing Locks - 2nd processor enqueued : : : : : : : : : : : : : : : : : : : 13

2.8 Queuing Locks - 1st processor has released lock, 2nd has acquired it : : : 14

2.9 Model Architecture : 15

3.1 Violating sequential consistency - Bounded Bu�ers : : : : : : : : : : : : : 29

3.2 Violating sequential consistency : 29

3.3 Transitive performing of accesses in LRC : : : : : : : : : : : : : : : : : : : 37

4.1 Write before invalidation problem : 45

4.2 Model Architecture : 49

4.3 Performance by Line Size for SC1 : 55

4.4 Relax access pattern : 58

4.5 16 processors, 16K caches : 61

4.6 16 processors, 64K caches : 62

4.7 32 processors, Gauss : 63

4.8 16 processors, 16K caches, blocking loads : : : : : : : : : : : : : : : : : : 68

iv

4.9 16 processors, 64K caches, blocking loads : : : : : : : : : : : : : : : : : : 69

4.10 E�ect of improved code scheduling : 71

5.1 DRF1 Condition: Su�cient Conditions for DRF1, parts 1 and 2 : : : : : 90

5.2 DRF1 Condition: Su�cient Conditions for DRF1, part 3 : : : : : : : : : : 91

5.3 Alternate Data Requirement for DRF1 Condition : : : : : : : : : : : : : : 91

5.4 State transitions at barriers for \aging" of cache words : : : : : : : : : : : 96

5.5 Relax code : 102

5.6 Gauss code, hardware cache coherence, reduction : : : : : : : : : : : : : : 103

5.7 Gauss code, hardware cache coherence, back substitution : : : : : : : : : 104

5.8 Gauss code, software cache coherence, reduction : : : : : : : : : : : : : : 105

5.9 Gauss code, software cache coherence, back substitution : : : : : : : : : : 106

5.10 SCCC performance relative to WO : 108

5.11 Memory Latencies : 110

5.12 Memory Module Utilization : 110

5.13 Number of Messages (10,000's) to Memory : : : : : : : : : : : : : : : : : : 111

5.14 SCCC results graph, high latency : 114

v

List of Tables

2.1 Benchmark Ideal Statistics : 17

2.2 Benchmark's Ideal Lock Statistics : 17

2.3 Benchmark Runtime Statistics: Queuing Lock Implementation : : : : : : 20

2.4 Lock Contention Statistics: Queuing Lock Implementation : : : : : : : : : 21

2.5 Benchmark Runtime Statistics: Test&Test&Set : : : : : : : : : : : : : : : 22

2.6 Lock Contention Statistics: Test&Test&Set : : : : : : : : : : : : : : : : : 22

4.1 Weak Ordering Runtime Statistics : 46

4.2 Weak Ordering Lock Contention Statistics : : : : : : : : : : : : : : : : : : 46

4.3 Summary of Implementation Features : 50

4.4 Benchmark Statistics for SC1 for 16K and 64K caches : : : : : : : : : : : 54

4.5 Gauss, absolute and relative bene�ts : 72

4.6 Qsort, absolute and relative bene�ts : 72

4.7 Relax, absolute and relative bene�ts : 73

4.8 Psim, absolute and relative bene�ts : 73

5.1 Special Instructions for SCCC : 83

5.2 SCCC Cache States : 95

C.1 Benchmark statistics for reads for SC1 for 16K and 64K caches : : : : : : 141

C.2 Benchmark statistics for writes for SC1 for 16K and 64K caches : : : : : : 142

vi

C.3 Read and write frequency for SC1 for 16K and 64K caches with 16 byte

lines : 142

vii

Acknowledgements

Firstly, I would like to thank my advisor, Jean-Loup Baer, for his assistance, guidance

and encouragement in my work. Without him I would never have completed my work at

the University of Washington. I would also like to thank the current and past members of

my committee, Susan Eggers, Hank Levy, Larry Ruzzo, Larry Snyder and Arun Somani,

for their input.

DARPA and NASA provided me with a fellowship which greatly facilitated my re-

search. They also arranged for my internship with the Massively Parallel Computing

Intitiative (MPCI) Project at Lawrence Livermore National Labs, which allowed me to

use the Cerberus simulator, a vital tool in my research, for which I would like to thank

Eugene Brooks and the MPCI Project.

There are many current and former fellow graduate students at Washington who

have provided support and technical assistance to me during my time in graduate school

including: Gail Alverson, Craig Anderson, Rob Bedichek, Dave Bradlee, Tien-Fu Chen,

Terry Farrah, Ed Felten, Simon Kahan, Eric Koldinger, Brian Lockyear, Cathy McCann,

Rajendra Raj, Wendy Thrash, Raj Vaswani and Wen-Hann Wang. I also am grateful to

graduate students from elsewhere, Sarita Adve of Wisconsin and Kourosh Gharachorloo

of Stanford, for clarifying my understanding about relaxed consistency and as well as for

their comments about my papers.

My friend Diane Gorenberg provided signi�cant assistance with the writing style of

Chapter 4.

Finally, I would like to thank my parents and family for their support and encour-

agement throughout my time in graduate school and before.

viii

Chapter 1

Introduction

There is always a demand from users for more computing power than currently exists

and currently the most practical way to obtain the greatest computing power is to use

parallel processors. The use of parallel machines has become far more prevalent in the

past few years and will continue to expand in the future. However, obtaining the utmost

useful computing from multiprocessors is not easy. Many programs do not get anywhere

close to a linear speed-up in execution time when the performance is compared to that

on a single processor on the parallel machine, and the speed-up compared to a program

optimized for a uniprocessor will generally be even lower than that. What are the factors

that impede the performance gains?

The �rst factor, one that cannot be corrected, is that some problems simply are

not parallelizable and gain nothing from being run on a parallel processor. A second

factor is that there is a huge software base already in existence, which is designed to

run on uniprocessors, and in which users have a large amount of money invested. Users

do not want to discard these programs and write new ones from scratch. Rather, they

would like to have the programs parallelized automatically, or be able to modify them

only slightly so that they can be run in parallel. However, the basic algorithm of the

program, designed for a uniprocessor, may not be the best one for a multiprocessor. Also,

current automatic parallelization tools are not very advanced and fail to do a good job

2

of parallelizing many programs. Parallelizing a program manually can be very di�cult.

Writing parallel programs is an inherently more di�cult task than writing sequential

ones, and writing them for performance even more so (there are occasions where people

have written parallel versions of sequential programs, only to �nd that they ran slower

that the sequential one [71]).

Another major loss of performance for parallel programs is the e�ect of synchroniza-

tion. It is an inherent property of parallel programs that they must spend some of their

time coordinating their work, something which need not be done in the uniprocessor

case. The time spent in this coordination, called synchronization, is time lost in com-

parison to the uniprocessor version of the program. Therefore, e�cient synchronization,

and minimal use of it, is important when trying to get the most out of a multiprocessor.

Otherwise the synchronization overhead destroys the potential bene�t of running the

program in parallel.

A fourth factor is that parallelism adds another level of di�culty to the design of

e�cient operating systems and other run-time system support. Schedulers need to al-

locate processors fairly. They must give a program a reasonable number of processors.

If too few are allocated, a program may not run e�ciently. If too many are allocated,

then processors, a valuable resource, may not be used e�ciently. The scheduler must

also consider processor a�nity. If a thread has been running on a certain processor for a

while, its footprint is in the cache and TLB, and moving the thread will cause it to run

more slowly for a while due to the large number of cache and TLB misses. These are

issues that scheduler designers are still dealing with and trying to balance in designing

scheduling algorithms for multiuser multiprocessor machines. If they are not dealt with

well, then there can be a signi�cant degradation of performance. Also, whether threads

of control are implemented at the user or kernel level is very important and involves

certain tradeo�s that can adversely impact the user program, part of which depends

upon how the user wrote the program. However, it does seem that a good balance may

have been found in deciding at what level to implement threads [7].

3

Finally, the memory latency of parallel processors is higher than that of uniproces-

sors and hence, also leads to performance loss. There are various causes of this higher

latency. There are cache coherence e�ects which introduce additional tra�c on the

interconnection network. The architecture's physical organization may have a greater

processor-memory distance due to the constraints of organizing large numbers of proces-

sors and memory modules, so the base memory latency (in the case of no contention on

the interconnect) will often be higher. This is especially an issue in the case of an archi-

tecture with distributed shared memory. In such a non-uniform memory access (NUMA)

organization, data placement becomes a very important part of writing the program. If

it is not done well, then too many accesses are to memory that is far away, and the high

latency will drastically a�ect the program's performance.

I have studied two of the factors mentioned above that a�ect parallel program perfor-

mance on shared-memory multiprocessors, namely synchronization and memory latency,

and ways to deal with them. I have done this in the context of two di�erent architectures

for shared-memory multiprocessors. The �rst is a shared-bus multiprocessor. In such

a machine main memory modules and processors are connected to a single bus. Each

processor has a private cache for data and instructions. If data that is present in two

(or more) processors' cache is written by one of the processors, the other processor's

copy will be out of date. This cache coherence problem, can be solved in a number of

di�erent ways. In the shared-bus case cache coherence is maintained by using snoopy

cache protocols [12]. When a processor initiates a cache action that can a�ect or be

a�ected by other processors' cached values, it broadcasts the action on the bus so that

the other processors invalidate or update their own copy if they have one, or can supply

the updated copy if it is dirty in their cache. Each cache continually \snoops" on the

bus to see if it needs to take any actions.

Cache coherence can be maintained via other types of protocols, one of which uses

directories [29]. In such a scheme each line of memory has a bit vector associated

with it, with one bit for each processor in the system. For each processor that has

4

a cached copy of that line, the corresponding bit is set. When a processor wants to

write the line, an invalidation message must be sent to each processor with a copy of

the line (there are a number of variations on this scheme for dealing with its excessive

memory requirements [11, 31, 25, 58, 81]). Directories are often used when there is no

single broadcast medium like a bus. The other architecture that I will examine uses a

directory scheme to maintain cache coherence since it uses a multistage interconnection

network (MIN) arranged in an Omega network to interconnect the processors to the

main memory.

Both snoopy and directory protocols for cache coherence are considered to be hard-

ware enforced cache coherence (although LimitLESS [31] can be considered a mixture).

However, cache coherence can also be maintained in software. That is beyond the scope

of this introduction and will be considered in Chapter 5.

This dissertation is organized as follows. In Chapter 2 I introduce how synchro-

nization is used in parallel programs, concentrating on locks, and discuss hardware and

software issues to improve the e�ciency of locking. Then I present some studies on

locking in parallel programs. In Chapter 3 I introduce and review one technique for

alleviating the performance impact of high memory latency, namely relaxed models of

memory consistency. In Chapter 4 I will present several studies I have done on the per-

formance of relaxed memory models. These studies cover a wide range of architectural

features and their implications. Chapter 5 is devoted to software controlled cache coher-

ence (SCCC). I will explain why SCCC relates to relaxed models of memory consistency

and present some simulations of SCCC. In Chapter 6 I will present general conclusions.

Chapter 2

Locking Patterns

2.1 Introduction

There are many paradigms for programming shared-memory multiprocessors. These in-

clude Single Program, Multiple Data (SPMD), where each processor is executing the

same program, and threads, where each processor may be executing di�erent routines,

but all in the same shared address space. Regardless of the paradigm being used, the

various processes or threads must synchronize. Constructs typically used for synchro-

nization include semaphores, monitors, which can be built on top of semaphores and only

allow one processor to execute certain routines at a given time and tuple-space (from

Linda [27]) to atomically access shared data. At the lowest level though, all synchro-

nization methods have a common mechanism: locks.

Locks are one of the most important parallel programming constructs. They allow the

creation of critical sections, so that only a single process can access a set of data at a given

time. Critical sections allow a process to modify data without another process reading

the data at that time, and hence reading data in an inconsistent state, and stops another

process from trying to modify the data at the same time the �rst one is modifying it, and

hence causing the �nal state to be inconsistent. Also, other synchronization constructs

such as barriers and synchronizing read and writes are often implemented using locks,

6

making locks a crucial element for most synchronization.

There are many ways to implement locks and many proposed lock algorithms. How-

ever, there is no single best algorithm. Many algorithms depend upon special instruc-

tions, which some architectures do not implement. Also, the cache coherence mechanism,

interconnection network and memory latency a�ect the performance of lock algorithms.

Finally, how a program uses locks will a�ect the performance of a lock algorithm, thereby

favoring one algorithm over another. In this chapter I am going to give an overview of dif-

ferent locking techniques and present a trace-driven study of two of them on a shared-bus

multiprocessor and how the techniques, and the act of locking a�ect program behavior,

especially processor utilization.

2.2 Locking Techniques

Locking or mutual exclusion can be done totally in software. For example, Dekker's Al-

gorithm [40] requires only spin waiting, memory interlock and a sequentially consistent

1

system. However, the code for Dekker's Algorithm for more than two processors is

complicated and tricky to write correctly. To facilitate implementing locks most shared-

memory multiprocessors supply some sort of hardware instruction (e.g. atomic exchange,

Compare & Swap) which can be used to write cleaner and more e�cient lock algorithms.

The parallel programming libraries of such machines usually provide routines for locking

and unlocking that use these instructions. However, the way in which these instructions

are used can vary and a�ect the performance of the program.

Using an operation called Test&Set I will present a number of di�erent algorithms for

locking and discuss the rami�cations of each algorithm. I will assume that Test&Set is

implemented using an atomic exchange operation, which is considered to be an instruc-

tion that indivisibly exchanges a register with a memory location. A lock is represented

in memory as a zero (free) or one (held or busy). To acquire a lock, a processor puts a

1

This term will be explained in detail in Chapter 3. At this point, it is su�cient to

consider that the system is serializable [46].

7

one in a register and then exchanges that register with the lock's location in memory.

If the value brought into the register, the one that had been in the memory location, is

a zero, then this processor now holds the lock. If the value is a one, then some other

processor already holds the lock and the processor trying to acquire the lock must try

again at some later time. To release the lock, the processor holding it must write a zero

into the lock's memory location.

2

The key di�erence in most of the locking schemes is

when to attempt an atomic update and when to retry if necessary. I will consider this in

the context of a shared-bus multiprocessor with hardware enforced cache coherence using

an invalidate based protocol, although many of the concepts apply to other protocols

and other types of shared-memory multiprocessors. Much of this review is from work by

Anderson [8, 9, 10].

repeat

until (test-and-set(lock) == FREE);

Figure 2.1: Locking using Test&Set

The simplest way to implement a lock routine is to use a loop that continually

executes a Test&Set until the lock is acquired, as shown in Figure 2.1. The problem

with this scheme is that if several processors are waiting for the lock, then continually

executing Test&Sets will generate a great deal of bus tra�c. This is because when a

processor tries to do an atomic exchange, it must �rst invalidate the other cached copies.

So, it will always be requesting the bus to fetch a new copy of the line containing the lock

since its own copy will have been invalidated by the other processors (if locks are not

cached the same problem with bus tra�c will exist with just one waiting processor since

the exchange will be done directly at the memory module). This increased level of bus

tra�c will slow down the processors that are computing (as opposed to synchronizing),

including the processor holding the lock. Clearly we want to reduce the bus tra�c

2

On some systems it is necessary that the lock be released by using an exchange of

zero rather than a normal store, or the value does not get updated properly.

8

introduced by spin-waiting. A solution is to implement a Test&Test&Set sequence.

repeat

while (lock == BUSY);

until (test-and-set(lock) == FREE);

Figure 2.2: Locking using Test&Test&Set

Test&Test&Set was introduced by Segall and Rudolph [86]. In this scheme (see

Figure 2.2) the processor reads the lock variable until it observes that the lock is free.

Then it does a Test&Set and attempts to acquire the lock. If that fails (another waiting

processor acquired the lock before it could), the processor reverts to simply reading the

lock variable until the lock is released again. The advantage of this algorithm is that

the processor is only reading the variable while waiting; it is not writing it. So it can

read the copy that is in its cache, which does not cause any bus tra�c, and hence does

not adversely impact other processors. This provides a great performance gain over

Test&Set.

Under light loads Test&Test&Set works well, but it can cause excessive bus tra�c

at times. Consider a situation where there are n processors trying to acquire a lock and

they are all spinning on a cached copy of the lock and hence, not causing any bus tra�c.

When the lock is released, each spinning processor will have its cached copy invalidated.

Therefore each one will then attempt to fetch a new copy of the lock since each one is

continually reading the lock. Since the loop in Figure 2.2 is very small, there will be

n almost simultaneous bus requests.

3

Once a processor has fetched a new copy of the

line, it will complete its check of the lock and see that the lock is available. So the

processor will attempt a Test&Set. Because of the small size of the loop, there will again

be n almost simultaneous bus requests. But this time it has more serious repercussions.

Each of these requests is for exclusive access, in order that the requesting processor

3

If read snar�ng [72] is used many of those requests will be satis�ed without causing

bus transactions (if the bus uses split transactions, read snar�ng may provide less bene�t

than otherwise).

9

can do an atomic exchange in its cache. The �rst processor to do the exchange will

acquire the lock and enter the critical section. The next processor to do the exchange

will see that the lock is not free and start a read-only loop. The exchange by the third

processor to do the exchange will invalidate the copy of the lock in the cache of the

spinning processor. So that processor must request another copy from memory and then

both of those processors will spin. The next processor to do a Test&Set will invalidate

the copies of TWO spinning processors, both of which now must fetch new copies of

the lock from memory. And so on for the other processors. How much this behavior

impacts performance depends upon the type of bus, the arbitration protocol and some

nondeterministic elements such as bus usage by asynchronous I/O and other programs

running on other processors. In the worst case it can take O(n

2

) time for the system to

stabilize [10].

Anderson [10] considers a number of ways to implement locks that do not exhibit

under high loads the deleterious behavior of Test&Test&Set as do Mellor-Crummey and

Scott [76, 77]. However, I will review queuing locks from [56] which also deal with

this problem, since I implement them in my simulator (see Section 2.3). In a simulation

environment queuing locks will provide equivalent performance to MCS locks [76] (which

are implemented in a very similar fashion) and are more easily implemented than the

solutions in [10].

In queuing locks a processor wanting to acquire a lock performs a single atomic

exchange operation to get the address of a memory location, say M, and a special value,

say A. It also stores an address N and a value B for the next processor. It then spins

by reading the value stored in memory location M until that value is di�erent from A.

It does its spinning by reading the value in the cache, therefore causing no bus activity.

When the value is di�erent from A, it knows that it has acquired the lock. When it

releases the lock, it will change the value B in location N to some new value C thus

passing the lock to another waiting processor, if any. Each processor spins on a di�erent

memory location, and therefore there is no problem with contention since the lock is

10

handed o� to a speci�c processor. A similar scheme is described in Anderson [10], but

its implementation requires a ReadandIncrement instruction, or a small critical section.

Queuing locks requires only the atomic exchange.

An example of queuing locks is given in Figures 2.3 - 2.8. In Figure 2.3 is the state

of the lock structure after being initialized. In Figure 2.4 a processor has set up its own

data structure for an attempt to acquire the lock and in Figure 2.5 it has done an atomic

exchange on the lock structure and sees that it now has the lock. In Figure 2.6 a second

processor is about to attempt to acquire the lock and in Figure 2.7 it has done its atomic

exchange. When the processor sees that it does not have the lock, it will spin-wait. In

Figure 2.8 the �rst processor has released the lock and has changed the value in Cell 1

to something other than V 1, and the second processor now has the lock.

�

�

�

�

�

�

�

�:

Lock Structure

Is locked value: V0

Last cell:

Cell 0

:V0

Figure 2.3: Queuing Locks - Initial

Queuing locks clearly has higher overhead than the simpler lock algorithms due to

the more complex lock structure and the need to exchange two values atomically. But

the overhead is low enough that in the case of low lock contention it should have little

impact, and in the case of high contention the superiority of the algorithm should be

more important.

Comparison of the lock algorithms I have reviewed and others has been done in

Anderson [10], Graunke and Thakkar[56] and Mellor-Crummey and Scott [77]. However,

those studies used arti�cial benchmarks, sometimes with arti�cially high levels of lock

contention. The questions then are two-fold: what are the locking patterns of real

parallel programs, and how do more advanced locking algorithms work in the case of

11

�

�

�

�

�

�

�

�:

Lock Structure

Is locked value: V0

Last cell:

Cell 0

:V0

�

�

�

�

�

�

�

�:

Process 1's Structure

Is locked value: V1

Last cell:

Cell 1

V1

Figure 2.4: Queuing Locks - First processor about to enqueue

�

�

�

�

�

�

�

�:

Lock Structure

Is locked value: V1

Last cell:

Cell 1

V1

�

�

�

�

�

�

�

�:

Process 1's Structure

Is locked value: V0

Last cell:

Cell 0

:V0

Figure 2.5: Queuing Locks - First processor enqueued, has lock

12

�

�

�

�

�

�

�

�:

Lock Structure

Is locked value: V1

Last cell:

Cell 1

V1

�

�

�

�

�

�

�

�:

Process 1's Structure

Is locked value: V0

Last cell:

Cell 0

:V0

�

�

�

�

�

�

�

�:

Process 2's Structure

Is locked value: V2

Last cell:

Cell 2

V2

Figure 2.6: Queuing Locks - 2nd processor about to enqueue

real programs? This is what I have examined in a trace-driven study.

2.3 Methodology

2.3.1 Traces

My studies were done using trace-driven simulation. This performance evaluation tool

allows me to contrast a number of di�erent architectural variations as well as to assess

the e�ect of changes in system parameters. A very important aspect of the trace-driven

simulation, for the purposes of this study, is that I am able to analyze the \ideal" behavior

of the traced programs, i.e., I can determine how long any section of the program would

13

�

�

�

�

�

�

�

�:

Lock Structure

Is locked value: V2

Last cell:

Cell 2

V2

�

�

�

�

�

�

�

�:

Process 1's Structure

Is locked value: V0

Last cell:

Cell 0

:V0

�

�

�

�

�

�

�

�:

Process 2's Structure

Is locked value: V1

Last cell:

Cell 1

V1

Figure 2.7: Queuing Locks - 2nd processor enqueued

take given no interference from other programs or stalling due to cache misses.

I used traces of programs running on a Sequent Symmetry Model B with 20 Intel

80386 processors. These traces were collected using the MPTrace system [43]. MP-

Trace is an in-line tracing technique. It only saves the entry address of each basic block

and memory references within that block that cannot be statically reconstructed. In

a post-processing phase the trace is expanded to give the full memory reference trace.

This includes the number of cycles needed to execute each instruction, assuming no wait

states. All times given in the statistics are expressed in units of these cycles.

MPTrace provides us with a per processor trace �le of all memory references. All

lock-spinning is removed from the trace �le. Only the actual lock operation is left, and

14

�

�

�

�

�

�

�

�:

Lock Structure

Is locked value: V2

Last cell:

Cell 2

V2

�

�

�

�

�

�

�

�:

Process 2's Structure

Is locked value: V1

Last cell:

Cell 1

:V1

Figure 2.8: Queuing Locks - 1st processor has released lock, 2nd has acquired it

the lock operation must be simulated (see Section 2.3.4).

2.3.2 Model architecture

I simulated a bus-based architecture similar to the Sequent Symmetry Model B (cf.

Figure 2.9) from which the traces were collected. Each processor has a two way set-

associative 64 Kbyte cache. The line size is 16 bytes. The caches are write-back with LRU

replacement. The Illinois protocol is used for hardware enforced cache coherence [12].

The cache-bus interface includes a four element bu�er. All memory requests, write-

backs, cache-cache transfers, and coherence actions initiated by the processor must pass

through this bu�er. If a dirty line is in the bu�er to be written-back, it is visible to the

cache coherence mechanism.

The bus modeled is a 64 bits wide (data and address) split transaction bus. Arbi-

tration is round-robin. A split transaction occurs only on memory requests. While the

read/write is performed in the memory module or bu�ered in the memory controller,

the bus is not held so that it may be used by other devices. This implies that a request

15

1

��

��

v v v

N

��

��

?

6

Processor

Cache

Bu�er

Memory's

Bu�ers

Memory

Figure 2.9: Model Architecture

may arrive at the memory while a previous request is being processed. Hence my model

incorporates a two element bu�er at the memory input. This also means that the bus

may be busy when a memory access completes. Therefore I have incorporated a two

element bu�er at the memory output.

The memory has an access time of three cycles. Assuming no contention in the bu�ers

or on the bus, a cache read miss causes the processor to stall for six cycles: One cycle

to send the request to memory, three cycles to access memory, and two cycles to send

the 16 byte line back since the bus is eight bytes wide. The caches use a write allocate

strategy on a write miss and consequently a write miss also causes a six cycle stall.

2.3.3 Benchmarks

The programs that I simulated include VLSI CAD tools and scienti�c programs written

in either C or C++. The C++ programs (the �rst three in Table 2.1), were written using

the Presto [19] programming environment. Presto consists mainly of a number of C++

classes which provide for synchronization and user level threads. The scheduling and

context switching of the threads are executed at the user level. Thus, the instructions

16

that perform the thread management are in the trace. In the C traces (the last three in

Table 2.1) these system functions are not included.

The three Presto programs are Grav, Pdsa, and FullConn. Grav implements the

Barnes and Hut clustering algorithm for simulating the time evolution of large numbers

of stars interacting under gravity [47]. The program trace ran for three timesteps of

evolution for a system of 2000 stars. Pdsa [89] does topological optimization using

simulated annealing. FullConn is a run of a Synapse [92] distributed simulation of a

fully-connected processor network.

The three C programs are Pverify, Qsort, and Topopt. Pverify [45] is a combinational

logic veri�cation program which compares two di�erent circuit implementations to deter-

mine whether they are functionally (Boolean) equivalent. The circuits used for the trace

were combinational benchmarks for evaluating test generation algorithms. Topopt [45]

does topological compaction of MOS circuits using dynamic windowing and partitioning

techniques. It is based upon a simulated annealing algorithm for its topological opti-

mizations. Its input was a technology independent multi-level logic circuit. Qsort [63] is

a quicksort program run on 1,000,000 random integers. This is not the best benchmark

since sorting is more likely to be done as a subroutine of a program and therefore is not

typical of an entire program. In addition, this program was written for research purposes

and only sorts integers, which again may not be typical of real programs. Nonetheless,

it provides some useful insight as long as one keeps these limitations in mind.

Tables 2.1 and 2.2 list \ideal" (in the sense given in Section 2.3.1) statistics about

these traces. The programs were run on a system with either 9, 10, or 12 processors being

active. Due to the allocation scheme used in Presto most data in the Presto programs is

allocated as shared even when it need not be. This is reected in the numbers given; i.e.,

a very high proportion of shared data. By contrast, in the C programs only a little more

than a third of the data references are to shared data. The column \Work Cycles" refers

to the number of cycles that the traced instructions would take to execute assuming the

\ideal" conditions: no cache misses or other stalls. Grav and Qsort have been simulated

17

with signi�cantly longer traces than those shown in Table 2.1 with no change in the basic

results presented in Section 2.4.

Table 2.1: Benchmark Ideal Statistics

Cycles and references are averages per processor and are in 1000's.

Program # of Work References

Proc. Cycles All Data Shared

Grav 10 2,841 1,185 423 377

Pdsa 12 2,458 1,206 431 410

FullConn 12 3,848 967 346 332

Pverify 12 5,544 2,431 682 254

Qsort 12 2,825 1,177 252 142

Topopt 9 10,182 4,135 1,113 413

Table 2.2: Benchmark's Ideal Lock Statistics

Lock pairs and nested locks are averages per processor.

The average held and total held are in cycles.

Program Lock Nested Avg. Total % of

Pairs Locks Held Held Time

Grav 6389 2579 200 1,131 39.8

Pdsa 3110 1467 190 510 20.7

FullConn 652 134 334 210 5.5

Pverify 555 0 3642 2,021 36.5

Qsort 212 0 52 11 0.3

Topopt 0 0 N/A 0 0.0

In Table 2.2 the \ideal" data on locking patterns as taken from the traces is given.

\Total Held" refers to the total number of cycles during the run during which a lock was

held. The \% of Time" column is the percent of the run-time for which a lock was held

(\Total Held" divided by \Work Cycles"). The column \Nested locks" refers to when a

lock is locked while another lock, an outer lock, is already held by the same processor.

These nested locks occur only in Presto programs when threads are removed from the

18

run queue. The outer lock is the scheduler lock and the inner lock is the thread queue

lock. The inner one is sometimes held when the outer one is not held. However, this

does not often happen. So, as far as lock contention is concerned, the inner lock is not

usually a source of contention since it is rarely acquired without the outer lock having

been acquired �rst. Therefore, for Grav, Pdsa and FullConn I need only consider the

total number of locks minus the number of nested locks.

Most of the time, the locks are held for only a few hundred cycles. An exception is

Pverify where the locks are held for a very long time.

2.3.4 Locking Implementations

There are two main goals of the study. First to see how e�ective the more advanced

lock implementations really are, and secondly, to examine the pattern of locking in real

programs. So, an advanced locking algorithm which will hopefully have minimal impact

on the locking pattern and the processors doing useful work is needed, as is a more

mundane algorithm. Therefore, I did my studies using two locking implementations:

queuing locks and Test&Test&Set (see Figure 2.2).

For the queuing lock implementation on my simulator, when a processor wants to

acquire a lock, a memory access is made. When the result of that access returns to the

processor, the processor checks to see whether or not it has acquired the lock. If it has,

it enters the critical section. Otherwise the processor stalls. When the lock is released,

the processor releasing the lock does a memory access. Also, a cache to cache transfer

is done if another processor is waiting for the lock.

The simulator scheme is not a true representation of queuing locks. In an exact

queuing lock implementation, there would be an additional memory access in the phase

when a processor gets on the queue for the lock. In addition, in the Illinois protocol that

I am using, there would be an additional memory access after the release of the lock if

a processor is waiting and there would be no cache to cache transfer. I used the slightly

19

more e�cient scheme to minimize the implementation constraints.

4

With the results

that I have generated, I believe that the two missing bus transactions have no impact

on the validity of my results as applied to queuing locks.

2.4 Results

2.4.1 Queuing Lock Implementation

In this section I present the results that I found when I examined the behavior of the

benchmarks using my approximation to queuing locks. I am mostly interested in the

number of lock transfers and the number of processors waiting at the time of the transfer

and the impact of these numbers on the degradation in processor utilization. I would

also like to see which \ideal" statistics (e.g., number of lock pairs, how long locks are

held) are good predictors of lock contention.

The basic statistics that I collected from the simulation of the benchmarks are sum-

marized in Table 2.3. The run-time for Topopt is somewhat skewed compared to the

numbers in Table 2.1 because there is one processor whose trace has a much higher aver-

age cycle per instruction (CPI) although it has the same length in references. For a given

processor, its utilization is calculated as the number of work cycles for that processor

divided by the total number of cycles until that processor completed simulating its trace.

The processor utilization given in the tables is the average of each processor's utilization.

As shown in Table 2.3, the programs with the largest number of lock acquisitions

(cf. Table 2.2), Grav and Pdsa, have the lowest processor utilization and the highest

percentage of stalls due to waiting for a lock. It is of course not a surprise that the

program with the most locks shows this behavior. What is interesting is that although

the locks are held for almost the shortest period of time, on the average, they still end

up causing by far the most contention. Furthermore, the amount of time the program

executes in \locked mode" is not a signi�cant factor either since Pverify's percentage

4

Idiosyncrasies of the simulator made it di�cult to simulate queuing locks more

completely.

20

Table 2.3: Benchmark Runtime Statistics: Queuing Lock Implementation

The stall causes are the percent of stalls caused by that event.

Program run-time Processor Stall Causes

(cycles) Utilization cache lock

(%) miss wait

Grav 9,228,727 32.6 3.2 96.5

Pdsa 7,105,257 40.3 10.2 89.5

FullConn 4,407,243 95.5 86.9 10.2

Pverify 5,997,346 96.1 100.0 0.0

Qsort 4,307,966 67.8 99.7 0.3

Topopt 13,818,998 99.3 100.0 0.0

of time in that mode is much greater than Pdsa's and Pverify's processor utilization is

greatly superior to Pdsa's.

Some more details on the lock contention are shown in Table 2.4, including the

number of lock transfers, i.e., the number of times a lock is released by a processor and

acquired by another waiting processor. The level of contention for the lock is reected

in the number of waiters. This number is the average of the number of processors still

waiting for the lock after it has been released by one processor and acquired by the �rst

waiter. For Grav and Pdsa this number is slightly over half the number of processors.

This is extremely heavy contention since, by comparison, a barrier would yield a number

less than half the number of processors. By contrast, Pverify almost never has two

processors wanting the lock simultaneously and FullConn does not have this happen a

signi�cant number of times.

In summary, the best predictor for programs with high lock contention that can be

found through the \ideal" analysis is the number of lock acquisitions. Grav and Pdsa

have the most lock acquisitions by a factor of greater than four and a half and have

the worst behavior. This is what we would expect. As the number of lock acquisitions

increases, there is a greater chance of there being contention for the lock. This is true

even though Grav and Pdsa on the average hold locks for some of the shortest periods of

21

Table 2.4: Lock Contention Statistics: Queuing Lock Implementation

Lock holding times are averages in cycles.

Program Time Transfer Lock Stats

held Number Waiters Time

at Transfer held

Grav 211 28,725 5.19 336

Pdsa 203 16,977 6.18 356

FullConn 389 344 0.40 844

Pverify 3766 28 0.00 41

Qsort 120 180 0.89 174

time. The percentage of time that locks are held is not a predictor of locking behavior.

For example, in the \ideal" analysis of Pverify, locks are held for a percentage of time

almost as long as for Grav. However, the e�ect of lock contention is minimal on the

run-time of Pverify.

Some of the results might be inuenced by the Presto programming environment.

The two programs with the most lock contention are Presto programs. It is clear from

FullConn that writing a program in Presto does not automatically mean that there will

be a lot of lock contention. However, even if programming in Presto introduces many

stall cycles due to lock contention, it still is a useful tool. The Presto programming

environment is based on user-level threads instead of system level threads and thereby the

losses due to lock contention might be recouped since there are no traps to the kernel [7].

A version of the Grav and Pdsa programs written directly in C, and trying to attain the

same level of parallelism, would have this overhead to contend with. However, the lock

contention, while present at the system level, would not show up in the application level

traces. It is also interesting to note that the Presto program with the best lock behavior,

FullConn, was written by someone familiar with the inner workings of Presto as part of

his Ph.D. dissertation [91]. Grav and Pdsa, with their poorer behavior, were written as

part of a ten week seminar.

22

2.4.2 Importance of the Lock Implementation

Tables 2.5 and 2.6 show the same statistics as Tables 2.3 and 2.4, but with locks im-

plemented using the Test&Test&Set primitive. The di�erences between the two sets of

tables indicate the importance of an e�cient lock implementation.

Table 2.5: Benchmark Runtime Statistics: Test&Test&Set

The stall causes are the percent of stalls caused by that event.

Program run-time Processor Stall Causes

(cycles) Utilization cache lock

(%) miss wait

Grav 9,970,129 30.7 3.6 96.4

Pdsa 7,680,362 37.9 9.8 90.2

FullConn 4,416,720 94.6 88.0 12.0

Pverify 5,996,557 96.1 99.1 0.9

Qsort 4,310,056 67.6 99.4 0.6

Table 2.6: Lock Contention Statistics: Test&Test&Set

Lock holding times are averages in cycles.

Program Time Transfer Lock Stats

held Number Waiters Time

at Transfer held

Grav 217 28,742 5.16 343

Pdsa 208 16,882 6.21 363

FullConn 409 338 0.30 978

Pverify 3767 36 0.03 48

Qsort 130 166 0.61 181

Naturally, there won't be any major di�erence in the behavior and run-time of pro-

grams with low lock acquisitions, i.e., the last three programs. The interesting �gures

are for the two programs that exhibit high lock contention. As can be seen, Grav takes

8.0% longer when using Test&Test&Set than when using queuing locks and Pdsa takes

23

8.1% longer. In looking at Table 2.6 we see that locks in those two programs are not held

signi�cantly longer than when using queuing locks nor are there more processors waiting

at the transferring locks. The run-time increase is mainly due to three factors. The �rst

is the time needed to transfer the lock. When there are many processors waiting for a

lock, it takes approximately 21-25 cycles for any processor to get the lock versus 1.2-1.5

cycles for the queuing lock scheme that I simulated. Multiplying the di�erence by the

number of lock transfers gives us an idea of the magnitude of the increase due to this

factor. In Grav this results in 78% of the increase in run-time and in Pdsa 77%. The sec-

ond factor is the length of time that locks are held. Even though in the Test&Test&Set

implementation transferring locks are held only �ve to six cycles longer, this ends up

being an important di�erence. In the case of a transferring lock, this cost of �ve to six

cycles is paid by a waiting processor for each processor that precedes it in acquiring the

lock. So, for the two programs under consideration, this extra cost contributes approx-

imately thirty cycles to each time that a processor waits for a transferring lock. This

causes 17% of the increased run-time for both Grav and Pdsa. The third factor is that

with a high number of waiting processors, there is a concomitant urry of Test-and-Sets

that causes increased bus contention. This urry occurs after a processor has acquired

the lock and does not appear to a�ect that processor's behavior since the lock holding

times do not signi�cantly change. A plausible explanation is that the processor with

the lock must already have the working set for the critical section in its cache (for a

detailed description of what happens when the lock is released in Test&Test&Set see

Anderson [10]). However, the increased bus contention does have an overall impact. The

bus utilization for Grav doubled when using Test&Test&Set and for Pdsa increased 40%,

and this slows down even those processors that do not want the lock. We can surmise

that the remainder of the increase in execution time, 5% for Grav and 6% for Pdsa, is

caused by this factor.

In summary, an e�cient lock implementation can make a noticeable di�erence in the

execution times of programs with high lock contention. It appears that the decrease in

24

execution time is mostly due to the reduction in time for lock acquisition per se, and

secondarily to a decrease in lock holding time and to lower bus contention, allowing

better progress of those processors that are not waiting for the lock. However, if there

is high lock contention during much of the program's execution, then the serialization

e�ect of critical sections will be a much greater factor in the performance of the program

than the lock algorithm will be and the programmer should pay greater attention to

improving the synchronization pattern of the program.

2.4.3 Conclusions

Previous studies of locking algorithms have focused on arti�cial benchmarks. Although

these benchmarks have been useful in the development of new and more e�cient al-

gorithms for locking, they do not necessarily show how much performance is lost by

real programs with less e�cient locking schemes. In this study I used real parallel pro-

grams for my comparisons. These programs show that although there is a noticeable

performance improvement from using more advanced lock algorithms, the gain is not as

great as might be expected. This is because when the level of lock contention is high

enough to produce a bene�t for a scheme like queuing locks, the sequential nature of

the critical section has a greater impact on the program's run-time (cf. Amdahl's Law).

This e�ect overwhelms most of the bene�t that the better lock algorithm provides. The

synchronization pattern of the program is what really needs careful attention.

In my study, the two high contention programs, Pdsa and Grav, had high contention

locks that were not held for very long, roughly 350 cycles. However, Qsort's locks were

held for 52 cycles on the average in the ideal case and 130 in practice, and in some cases

for as few as 12 cycles. But the lack of lock contention in that program is too low to

allow us to reach any conclusion about lock algorithms. It does demonstrate that some

programs can be written with locks held for extremely short periods of time. However,

if an application is written such that the inherently sequential part of the program does

not dominate and there is a high level of contention for a lock, then it may be the case

25

that advanced lock algorithms will be crucial for that program's performance. However,

my benchmarks did not include any programs with such behavior. An example of a

program like that would be one where �ne-grained tasks are frequently added to and

removed from a shared work queue. If the enqueue and dequeue operations were merely

the modi�cation of pointers to add and remove queue elements, then we would have a

program where the lock algorithm might produce a signi�cant performance gain.

Chapter 3

Relaxed Models of Memory

Consistency

Memory latency, which can be de�ned as the time from when a processor requests a word

of memory that is not in its cache until that word arrives at the processor, is becoming an

ever greater performance bottleneck in modern computer systems. The disparity between

processor and memory speed (cycle time) is increasing, and main memory cannot keep up.

Moreoever, memory latency is an even greater problem for multiprocessors and this e�ect

stems from several causes. If a bus is used for the interconnection, the multiple processors

cause increased contention for the bus. This severely limits the scalability of bus-based

systems. If buses are not used, the distance from the processor to memory will increase

for large-scale multiprocessors due to the interconnection network. This is especially a

problem in systems using a multistage interconnection network (MIN), where the transit

time to memory increases as more processors are added. Even if distributed shared-

memory on a mesh-type interconnection is used, then some memory will be further

away as more processors are added. If shared data is being cached, as is most likely

the case in a high performance machine, then there is the issue of maintaining cache

coherence. Regardless of whether coherence is enforced by the hardware or the software,

maintaining coherence results in additional messages on the interconnect. There are

27

messages to invalidate cache lines and the invalidations will result in more cache misses

(although not every line invalidated will end up causing a miss). If an update protocol is

used instead, there may be fewer messages, but the messages will be longer because they

must contain the new data. These additional messages do not exist in the uniprocessor

version of the program and cause higher levels of contention on the interconnect, and

therefore higher latency. So, it is important to �nd ways to deal with memory latency.

Various ideas have been proposed, and some used, to deal with the cost of memory

latency on cache misses in multiprocessors. The two main techniques are (i) to reduce

the number of cache misses, and (ii) to reduce the penalty incurred when there is a miss.

Examples of the former include making caches larger, prefetching into the cache [14,

55, 66], and write generate [94]. Examples of the latter technique include two level

caches [15], hierarchies of caches [35], cache-only memory architectures [60] and memory

in the switches of a multistage interconnection network (MIN) [79]. Also, if a distributed

shared-memory system is used so that a portion of the memory is local to each processor

(as opposed to a dance hall structure), the cost of some of the misses will be reduced [6,

83]. Prefetching data into the cache can be said to fall into this category as well as the

�rst category. If a line has been prefetched but has not yet arrived from memory when

one of the words is referenced, at least the full latency will not be observed. Another

example of reducing the penalty on a cache miss is to do other useful work while waiting

for a memory request. For example, if there is cheap context switching, then when there

is a cache miss the processor can switch to another context in just a few cycles [6, 93].

Despite all these techniques, the degrading e�ects of high memory latency can be

quite signi�cant. Additional solutions to the problem are still needed. A promising

way to deal with high memory latency is to have a system that implements a relaxed

model of memory consistency.

1

When using a relaxed model of memory consistency,

the processor need not stall every time there is a miss. In addition, relaxed models of

consistency permit advanced architectural features to be used which cannot be used in

1

I will use the terms relaxed model(s) of memory consistency, relaxed memory models,

relaxed models of consistency and relaxed models to refer to the same concept.

28

normal multiprocessors and which may improve performance.

In the remainder of this thesis I will discuss and present results relating to relaxed

models of consistency. I will explain in detail what they are and what their architectural

and software rami�cations are. Then I will present some performance studies showing

the e�ects of using relaxed models.

It should be noted that most of the techniques mentioned in the above paragraphs

are not exclusive. They may be combined for additional bene�ts [57].

3.1 Why Relaxed Consistency

There a number of architectural features that can be used in a uniprocessor, but which

cannot be used without caution in a normal multiprocessor. The use of such features

relates to the memory model that the machine implements. A memory model is simply

a set of guarantees that the hardware makes to the software about how memory ac-

cesses will be done, or in other words, what the programmer can assume about memory

operations. Normally the programmer assumes, without even realizing it, a model like

sequential consistency (SC) [70]:

[A system is sequentially consistent if] the result of any execution is the

same as if the operations of all the processors were executed in some sequential

order, and the operations of each individual processor appear in this sequence

in the order speci�ed by its program.

2

Thus, in a sequentially consistent system the end result of the program must be as if each

shared access has completed before the next shared access is started and these accesses

are executed in program order. This is what one would naturally expect. If this is not

the case, then certain algorithms, such as Dekker's Algorithm for mutual exclusion [40]

may not work correctly.

2

In this and subsequent de�nitions operation means a shared memory access.

29

Initially ag = 0

P

1

P

2

WriteBu�er() repeat

ag = 1 until (ag == 1)

ReadBu�er()

Figure 3.1: Violating sequential consistency - Bounded Bu�ers

An example of the perils of non-sequential consistency that is simpler than Dekker's

Algorithm can be seen in the producer-consumer code in Figure 3.1. If the system on

which this code is executing is sequentially consistent, then after P

2

reads flag as having

a value of one, then it will always be reading the new values in the bu�er. However,

consider a non-sequentially consistent system with multiple memory modules. If the

bu�er is in a memory module which is a hot-spot, then the write of the bu�er may be

delayed. But if flag is in a memory module that is not busy, then the write of flag

will be done sooner. P

2

will read ag as having a value of one before the writes into

the bu�er have completed and it will read the old values from the bu�er that are in its

cache.

Initially X = Y = 0

P

1

P

2

X = 1 Y = 1

if (Y == 0) kill P

2

if (X == 0) kill P

1

Figure 3.2: Violating sequential consistency

A more subtle example of the perils from non-sequentially consistent systems is in

Figure 3.2 [4]. In a sequentially consistent system the end result of this code fragment

is that either process P

1

or P

2

will be killed or neither will be, but not both. However,

30

if sequential consistency is violated, then both could be killed. This could happen if

the writes to X and Y are put into write bu�ers which can then be bypassed by reads.

So, even if a process' own data dependencies are observed, as they were in both cases,

sequential consistency is still vital for the working of algorithms with interprocess data

dependencies [68].

It should be noted that the de�nition of sequential consistency says that the end result

of the execution has to be the same as if SC's constraints were obeyed. That means that

operations can be executed out of order if the result does not change. Guaranteeing an SC

execution for a uniprocessor in the presence of out of order instruction completion is very

simple. Before a context switch can be done, all outstanding shared memory references

must complete. As long as the process' own dependencies are observed, the result will

be an SC execution. Memory accesses may be done out of order because there is no

other executing process that is a�ected by these operations at that time and problems

such as those shown in Figures 3.1 and 3.2 cannot occur. Therefore, in a uniprocessor

loads can bypass stores in a write bu�er and the cache can be lockup-free [67], and the

system can still guarantee that all executions are sequentially consistent. However, in a

multiprocessor, since there are processes executing in parallel, accesses may be seen out

of order if care is not taken. Various ideas have been proposed to enhance the ability of

multiprocessors to guarantee sequential consistency while allowing greater exibility in

the ordering of memory accesses and dealing with memory latency [3, 51], but there could

be greater performance gains if the constraints of sequential consistency were loosened.

One way to loosen the constraints of sequential consistency is to change the memory

model. As shown in the examples in Figures 3.1 and 3.2, the reason that SC is important

is that any normal read or write can be used for synchronization (that is, communicating

state information between di�erent processes). When synchronizing processes, it is usu-

ally necessary that SC be maintained. But if SC is needed because of synchronization,

why not just enforce it at synchronization points? Most memory accesses are normal

loads and stores, which can be done in an e�cient fashion. A logical conclusion is to

31

single out the scarcer synchronization operations and execute them in an SC way, but

keep the common case fast. And this is exactly what Dubois, Scheurich and Briggs

suggested with weak ordering.

3.2 Weak Ordering

Weak ordering (WO) was the �rst proposed relaxed memory model. It is de�ned [41]:

In a multiprocessor system, storage accesses are weakly ordered if:

1. accesses to global synchronizing variables are strongly ordered and if

2. no access to a synchronizing variable is issued in a processor before all

previous global data accesses have been performed and if

3. no access to global data is issued by a processor before a previous access

to a synchronizing variable has been performed.

For our purposes, strongly ordered and sequentially consistent accesses can be consid-

ered as synonymous (distinctions between the two are examined in Adve and Hill [3])

and strong ordering will not be referred to again. Performed is de�ned formally by

Dubois et al. [41] and in Appendix A. Basically it means that a STORE is performed

when the value stored by the processor executing the instruction can be seen by all other

processors, and a LOAD is performed when the value to be returned by a LOAD has

been set and cannot be changed. The de�nition of weak ordering implicitly assumes that

uniprocessor data and control dependencies are obeyed. Unless noted otherwise, this is

also assumed in the de�nitions of all other relaxed models.

If hardware obeys this de�nition of weak ordering, then what was said at the end

of Section 3.1 is exactly true. Synchronization operations are sequentially consistent

with one another, but when executing the normal accesses between such points in the

program, the constraints on the hardware are relaxed. In terms of implementations,

this means that between synchronization points accesses can be done in any order that

obeys the uniprocessor dependencies. But when a synchronization point is reached, all

32

outstanding accesses must complete before the synchronization access is started. Then

the synchronization must complete totally before any new shared accesses are started.

If this new model of weak ordering is used, then programmers are not using their intu-

itive model of sequential consistency. Changing memory models makes the job of writing

parallel programs, an already di�cult task, even more di�cult. However, it has been

shown that hardware can appear sequentially consistent to programmers with minimal

constraint on their programming style [4], thereby allowing the programmer to continue

using the familiar model of sequential consistency, while the hardware implements a

more e�cient, relaxed model of consistency. The signi�cant restrictions in this case are

that the programs must contain no data races and that all synchronization operations

be visible to the hardware (so that the hardware knows when synchronization is being

done, and hence when to enforce rules two and three of the de�nition). The former is

not much of a restriction since a data race is usually an error on a sequentially consistent

machine as well. The latter condition is not a signi�cant restriction since most multipro-

cessors already provide hardware support for synchronization (e.g., Test-and-Set), and

these primitives are what the programmer usually uses for synchronization (as opposed

to normal loads and stores as in Dekker's Algorithm). If weak ordering were used in the

example given in Figure 3.2, then X and Y would need to be marked as special locations

used for synchronization or the operations to read and write them would need to be

marked as special synchronization operations. As said above, most synchronization in

real programs uses some special hardware synchronization and therefore would not need

to be modi�ed. This is true even for synchronization for DoAcross loops and barriers.

3

In a weakly ordered system, the only restriction on the access order of normal mem-

ory references is that imposed by the program's own dependencies. All other memory

references may be executed in any order. Therefore an order that maximizes system

performance may be used. This includes letting reads and instruction fetches take prece-

3

There are various barrier algorithms [61] which are commonly used and can be

implemented using normal loads and stores. These would need to be modi�ed in some

way for weakly ordered systems.

33

dence over writes, prefetching data, issuing instructions out of order or letting them

complete out of order, and delaying cache coherence invalidation signals until after the

write to a line in the cache has been performed.

Although weak ordering was the �rst weak memory model proposed, it is not the only

one. The others that I will describe are processor consistency and release consistency.

I will also talk about the more informal model of lazy release consistency. In addition,

there are the more software oriented views of DRF0, DRF1 and PLpc which I will also

discuss. However, a more detailed explanation of synchronization is needed �rst.

3.3 Synchronization - Acquires and Releases

Synchronization is used to coordinate the work done by di�erent parts of a parallel

program. It is usually done using barriers, locks and unlocks for mutual exclusion, or

synchronizing reads and writes in a DoAcross loop or a producer-consumer type prob-

lem. The semantics of synchronization operations are such that they can be classi�ed

as one of two di�erent types. Those operations which are signaling to other processors

that something has been done (usually that data has been written) are called release

operations (also called export) and operations that delay a processor until a signal from

another processor has been received are called acquire operations (also called import).

Release operations are releasing data to be seen by other processors, or exporting it to

them. For example, a synchronizing write, such as in a source statement of a DoAcross

loop, is a release. The signal is the writing into a ag to indicate that a certain operation

has completed. The write is a signal that something has been done, and the processor

doing the write does not really care exactly when the write completes.

4

Acquire opera-

tions are acquiring or importing the latest version of some data before proceeding. For

example, the synchronizing read in a DoAcross loop is an acquire. It is in a loop checking

4

In fact, there is no reason at all for the processor writing the ag to wait for the

writing of the ag to complete. It should be able to start the write and then continue on-

ward. A release is basically an asynchronous synchronization. Acquires are synchronous

though.

34

to see if the value has been written into the ag. The processor doing the read is explic-

itly waiting until it gets the signal that it can continue. Among usual synchronization

operations, locks are considered acquire operations, unlocks are releases; synchronizing

reads are acquires, and synchronizing writes are releases. A barrier is both an acquire

and a release, with the release implicitly being done �rst. Note that this taxonomy of

synchronization operations is not necessary for weak ordering, since all synchronizations

are treated in the same manner.

3.4 Processor, Release, and Lazy Release Consistency

3.4.1 Processor Consistency

The de�nition of processor consistency (PC) is di�erent from most of the other models

in that it does not mention synchronization at all. It was originally de�ned by Good-

man [54] (see Appendix A). However, Gharachorloo et al.'s [53] de�nition is the one now

commonly used:

1. before a LOAD is allowed to perform with respect to any other processor, all

previous LOAD accesses must be performed, and

2. before a STORE is allowed to perform with respect to any other processor, all

previous accesses (LOADs and STOREs) must be performed.

This basically means that loads are allowed to bypass pending stores, which can be very

useful in hiding write latency [50]. In a PC system, acquire operations are treated as

loads and releases as stores. Synchronizations are not treated any di�erently than other

shared accesses.

Under constraints that are similar to those of Adve and Hill's, Gharachorloo et al. [49,

53] showed that programmers can obtain sequentially consistent executions on a system

implementing PC.

Processor consistency is not clearly less or more restrictive than weak ordering. Each

model permits some ordering that the other does not permit. In a PC system, when a

35

release is done, the processor continues executing even if the release has not completed,

because a release is treated as a write, which can be bypassed by loads. In contrast, in

a weakly ordered system, when a synchronization point is reached, the synchronization

must complete totally before any new shared accesses may be issued. However, normal

accesses may be done in any order, whereas in a PC system the only optimization is that

reads may bypass writes. Clearly it would be nice to combine both models. This has

been done and the result is release consistency.

3.4.2 Release Consistency

Release consistency (RC) is an attempt to combine the features of weak ordering and

processor consistency. This results in an even more relaxed model of consistency which

stalls under fewer conditions. It is de�ned [53]:

1. before an ordinary LOAD or STORE is allowed to perform with respect to any

other processor, all previous acquire accesses must be performed, and

2. before a release access is allowed to perform with respect to any other processor,

all previous ordinary LOAD and STORE accesses must be performed, and

3. special accesses are processor consistent with respect to one another.

Special accesses can be considered to be just synchronization accesses. Distinctions are

examined in Gharachorloo et al. [49, 53].

RC di�ers from weak ordering in a number of ways. First, at an acquire operation it

is no longer required that all outstanding shared memory accesses complete before the

acquire is started. The purpose of the acquire is to make sure the issuing processor does

not try to access data that is due to be updated by another processor. The fact that

accesses of the processor issuing the acquire may be outstanding is unimportant. Second,

a release operation may be outstanding when an acquire is issued (if they were operations

on the same memory location, then there would be a uniprocessor data dependence,

which is assumed to be observed). The release, a signal to other processors, has nothing

36

to do with the acquire, a reading of a signal from another processor. Third, normal shared

accesses after a release operation are not delayed if the release has not completed. Again,

the release is a signal to other processors, so its lack of completion should not cause the

processor issuing it to stall. So, by taking advantage of the semantics of synchronization,

RC is able to relax the constraints of weak ordering and PC even further.

As in weak ordering, there are constraints on software, which, if obeyed by the pro-

gram, guarantee that all executions of the program on RC hardware will be sequentially

consistent. The constraints are similar to those for weak ordering. Programs must be

properly labeled (PL). The exact de�nition of PL and the proof that PL programs will

have SC executions on RC hardware appears in Gharachorloo et al. [49, 53]. However,

being PL and being data race free are very similar constraints on a program.

RC as I have described it here is sometimes called RCpc. That is, release consistent

with processor consistent synchronization operations. A variation, RCsc, where the syn-

chronization operations are only sequentially consistent has been considered [53]. In that

model a release operation must be performed before an acquire operation can be issued

(this means the second di�erence between RC and WO mentioned in the above para-

graph would not exist). This distinction matters because of certain properties that have

been proven about RCsc but not RCpc [1] and is discussed further in Section 3.5 and

Chapter 5. Note that this di�erence will only matter when the frequency of synchroniza-

tion or the time to perform a release are so high that release operations are frequently

outstanding at the time an acquire would be issued. Unless the notation RCpc or RCsc

is used instead of just RC or release consistency, RCpc is to be assumed.

Although RC relaxes the constraints on the memory system greatly, more can be

done.

3.4.3 Lazy Release Consistency

Keleher et al. [65] introduced the idea of lazy release consistency (LRC). The di�erence

between RC and LRC is based upon the semantics of what an acquire and release mean to

37

a program. Keleher et al. pointed out that a processor that needs to access data that has

been updated by another processor will always do an acquire to insure that it is seeing

the updated data. There is no need for all accesses that appear in program order before

a release to be globally performed at the time of a release. Rather, they do not need to

be performed until a following acquire, and then only with respect to the processor doing

the acquire (this basic idea also appeared in Adve and Hill [1] and Zucker [96]). The

di�culty with LRC is that there is a transitive e�ect that must be obeyed. Consider

the example in Figure 3.3. If P

1

writes some data while in the critical section, then

when P

3

does the acquire associated with its lock of X, not only must all of P

2

's writes

from within the critical section be performed with respect to P

3

, but so must all of P

1

's

writes. This aspect of LRC was noted in Keleher et al. [65] and a way to implement it

in software in Munin [18, 28] was described, but a true memory model description was

not given. It can be tricky to describe the transitive aspect of the de�nition in terms of

hardware conditions, but without an actual memory model de�nition, we cannot prove

that a properly labeled or data race free program will execute in a sequentially consistent

fashion on a system implementing LRC. Intuitively it does seem like it would, since the

updates are propagated to those processors that need the data. Although the transitive

performing of accesses could be done in software in a system such as Munin, in hardware

it is probably too complex to implement.

P

1

P

2

P

3

Lock X

....

Unlock X

Lock X

....

Unlock X

Lock X

Figure 3.3: Transitive performing of accesses in LRC

38

3.5 Software Centric Views: DRF0 and DRF1

All the models described up to this point have a basic framework in common. They all

describe how the hardware is to operate and then sometimes describe programming rules

for programmers, which if obeyed by a program, guarantee sequentially consistent exe-

cutions for that program on the hardware obeying the consistency model. For example,

weak ordering gives a precise de�nition of what happens at synchronization points and

when memory accesses need to be performed. The architect can design any system that

obeys WO's rules, but the hardware must obey them. An architect might be able to

design a system which is not WO, but was functionally equivalent. That is, if a program

were run on this system, it would produce the exact same result as if it were run on

a WO system. The programmer would not be able to write a program that would run

di�erently on this new system than on the WO system. But this new system would not

be considered WO because it did not obey the rules of WO (such a situation is very

possible for most programs in which we are interested. Consider LRC versus RC). This

problem is dealt with by Adve and Hill.

Adve and Hill [4] take a di�erent approach to the idea of relaxed memory models.

They �rst describe what conditions the software must obey (e.g., no data races) and then

say that any hardware that guarantees sequentially consistent executions to any software

obeying their conditions conforms to their memory model. This is a di�erent concept

of memory model, but it makes more sense in some respects. It gives the architect

greater freedom, and makes life easier for the programmer. The programmer can still

think about sequential consistency and does not even need to be told what the actual

hardware implementation is, and the architect can implement any system that provides

SC executions to programs that obey the conditions on the software.

Originally Adve and Hill said [4]:

Hardware is weakly ordered with respect to a synchronization model if

and only if it appears sequentially consistent to all software that obey the

synchronization model.

39

They proposed a synchronization model, data-race-free-0 (DRF0). It is de�ned as:

1. all synchronization operations are recognizable by the hardware and each accesses

exactly one memory location, and

2. for any execution on the idealized system (where all memory accesses are exe-

cuted atomically and in program order), all conicting accesses are ordered by the

happens-before relation corresponding to the execution.

The happens-before relation is de�ned formally in Adve and Hill [4]. Basically it means

that there can be no data races in the program (hence the name data-race-free). Later

in the paper they de�ne a set of su�cient conditions which if met by the hardware, mean

that the hardware is weakly ordered with respect to DRF0 (see Appendix B.1).

The end result of this is that the programmer is told to write a program without data

races and with hardware visible synchronization operations accessing only one memory

location, which is not a problem if system provided synchronization routines are used.

The architect can then implement any system that provides SC executions to programs

that obey DRF0. The hardware does not need to obey the conditions repeated in Ap-

pendix B.1 as they are su�cient conditions, but not necessary ones. So, the architects

are able to de�ne their own set of conditions. For example, in Zucker [96] I suggested

that condition �ve of the su�cient conditions for DRF0 be changed so that the writes

of P

i

do not need to be globally performed, but rather, performed with respect to any

processor doing a later synchronization operation on that location before that processor

does that later synchronization operation.

Adve and Hill [1] put forth another software-oriented view of relaxed memory models.

In this paper they de�ned a model, data-race-free-1 (DRF1):

Hardware obeys DRF1 if and only if the result of every execution of a

data-race-free program on the hardware can be obtained by an execution of

the program on SC hardware.

40

This is an even simpler de�nition than that for DRF0. There are no longer restrictions

on the type of synchronization. Adve and Hill [5] provide a set of su�cient conditions,

which I will refer to as the DRF1 Condition (The condition is in Appendix B.2; This

condition, its terminology and components will be explained in more detail in Chapter 5).

If a system obeys the DRF1 Condition, it is proof that the system obeys DRF1. The

term system is used because there are certain situations where it is necessary to consider

more than just the hardware, but also guarantees that the compiler will make as well

(see Chapter 5).

The �rst condition of the DRF1 Condition says that synchronization operations must

be sequentially consistent. They may not be processor consistent. So, RCpc does not

obey DRF1, but RCsc does. This will also be discussed at greater length in Chapter 5.

It is interesting to note that in some ways sequential consistency has more in common

with the software-oriented view than the hardware-centric ones. The de�nition of SC

does not say that hardware must obey certain rules. It simply says that the end result

of any execution must be the same as if the hardware had obeyed certain constraints.

Whether it actually obeys those constraints or not is for the architect to choose, as long

as the end result of all executions is the same as if they were obeyed. The programmer

again does not need to know how it is implemented.

3.6 E�ects of Relaxed Consistency

The di�erences between most of the relaxed models involve how they treat synchroniza-

tion operations. In general, normal reads and writes between synchronization points

are allowed to be performed and issued in any order that obeys the uniprocessor de-

pendencies. This allows numerous architectural features to be used that cannot be used

in sequentially consistent multiprocessors. In the next two chapters I will present sev-

eral studies considering the bene�ts of using various of these architectural features in

multiprocessors.

The feature most commonly mentioned in the literature when discussing advantages

41

of relaxed models is the bypassing of writes by reads (the whole basis of processor

consistency). Although several writes in a row can be bu�ered in an SC system, when a

read is about to be issued, the writes must �rst complete before the read can be done.

But in a relaxed system the read is allowed to bypass the writes in the write bu�er. This

is considered in Section 4.2.

Non-blocking loads can also be used more fully in a relaxed system. Non-blocking

loads mean that the processor does not stall just because there is a cache miss on a

read request. The processor can still issue and execute instructions until an attempt

is made to use the destination register of the load request. If the load and the �rst

register-register operation that uses the destination register are far enough separated in

the instruction stream, then the processor will not have to stall. Non-blocking loads

can be used in an SC system. But while the load is outstanding, the processor cannot

issue any other memory references. It can issue other references though in a relaxed

system and take better advantage of the non-blocking loads. In both cases, to take full

advantage of non-blocking loads compiler support is needed. This will be considered in

Section 4.3.

The logical progression from non-blocking loads, whose e�cient use depends upon

a static scheduling of instructions for hiding read latency, is to dynamic instruction

scheduling [62], where instructions that are ready to execute are issued out of order, not

just performed out of order. Again, dynamic scheduling can be done in an SC system.

But to gain the full bene�t, as in non-blocking loads, a system implementing a relaxed

memory model is needed. I will not present any studies of relaxed memory models and

dynamic scheduling in this thesis, but such a study has been done [52].

The way cache coherence is maintained can also be changed when relaxed models are

used. In a typical system with hardware enforced cache coherence using an invalidate-

based protocol [12], before a write can be done to a word belonging to a line in a shared

state, an invalidation signal must �rst be sent out and acknowledged (although the

acknowledgment may be implicit, as in a bus-based system) before the write is actually

42

done or the processor can continue. In a relaxed system the write can be done and the

processor may continue executing before the invalidation signal is sent out, let alone,

acknowledged. This option is considered in Section 4.2.

Software controlled cache coherence (SCCC) becomes far more practical with relaxed

memory models than under sequential consistency. However, it is not easily implemented

on all systems. Under weak ordering or release consistency it is still di�cult to implement

SCCC. It can be done though on a system obeying DRF1. This is examined in Chapter 5.

Chapter 4

Performance Evaluation of

Relaxed Models

4.1 Introduction

In the previous chapter I discussed several aspects of relaxed models of memory consis-

tency. What we really want to know though, is what, if any, are the performance bene�ts

of using these relaxed models. The purpose of this chapter and the next is to report

on performance studies of relaxed models. In this chapter I will present a trace-driven

simulation of a weakly ordered system [16]. Then I will discuss some of the limitations

of that study, and �nally present a more detailed instruction level simulation of various

relaxed memory models [97, 98].

4.2 Trace Driven Simulation Study

Although it appears intuitive that a relaxed model of memory consistency will provide

a performance gain, we would like to know how much of a gain it will really provide.

To that end I have done a study to see what performance advantage there is from some

features allowed under a weakly ordered system.

44

The study was done in the same manner as described in Section 2.3. It uses the

same traces, and for the baseline sequentially consistent system, the same simulated

architecture. For the weakly ordered system the bypassing of accesses in the bu�ers

between the caches and the bus is simulated. Any memory reference whose miss in the

cache would cause the processor to stall may be placed at the front of the bus access

bu�er for that processor. Such references are loads and instruction fetches (this could

also be done in a sequentially consistent system for the instruction fetch). The accesses

that can be bypassed are writes, write backs, and invalidation signals. An access is

considered performed when it is in the cache and any writes to it have completed. Once

it is in the cache, its value is visible to the other processors due to the hardware enforced

cache coherence.

When a synchronization operation occurs, the processor stalls until all the memory

accesses currently bu�ered or underway complete. This also means that all the lines

for the cache misses have returned and been installed in the cache. Once this has been

completed, then the synchronization variable may be accessed.

In my model there is neither prefetching, nor out of order issue or completion of

instructions, nor delaying of invalidation signals. Prefetching into the cache can be done

in both sequentially consistent and weakly ordered models since the hardware enforced

cache coherence protocol will assure correctness. Therefore its performance impact would

be essentially the same for both models. Moreover, any prefetching strategy, either

hardware or software based, is fairly elaborate and cannot be included given the trace

information. Similarly, modeling out of order instruction issue or completion is not

possible given the traces used. No instruction types are given, only the number of cycles

for the instruction to complete.

The delaying of invalidation signals would work if a single-word line size were simu-

lated, since both processors would be writing to the same word. The �rst invalidation

to be done (since this is a bus-based system, one must be done before the other) should

not only invalidate the other line but also cancel the second invalidation. It would not

45

matter which value survives the invalidations, since if there are no synchronization op-

erations to order them, either is a valid value according to the memory model. However,

this delaying is not possible with multi-word lines. If two processors both have a write

hit on a line in a shared state, then whichever invalidation is done �rst will cause the

cancellation of the other invalidation and convert it into a write miss. It will also inval-

idate this other processor's copy of the line. If the two writes are directed to di�erent

words in the same line (false sharing) and are executed before either invalidation, then

the �rst invalidation would cause the value written by the other processor to be lost (cf.

Figure 4.1). Since the model uses a multi-word line size, it does not allow the delay of

the invalidation and when there is a write hit on a line in a shared state, the write is not

done until the invalidation completes successfully.

P

a

(a):

0 0

P

b

0 0

(b):

1 0 0 2

(c):

1 0

{ {

In (a) the caches of both processors have the same values for both words

in the cache block. In (b) they have each written to a di�erent word in the

block before the invalidation signal has been sent out. In (c) P

a

's signal has

been sent out and invalidated this line in other caches including P

b

's. The

value of 2 which P

b

had written, is now lost.

Figure 4.1: Write before invalidation problem

4.2.1 Weak Ordering Results

Tables 4.1 and 4.2 summarize the results from running my benchmarks assuming a

weakly ordered memory system. The column di�erence (%) shows the percent decrease

46

Table 4.1: Weak Ordering Runtime Statistics

Di�erence is the di�erence between these numbers and those in Table 2.3.

Program run-time Processor Di�er- Write

(cycles) Util. ence Hit

(%) (%) (%)

Grav 9,221,719 32.6 0.08 90.9

Pdsa 7,084,835 40.5 0.29 90.5

FullConn 4,381,518 95.5 0.31 91.6

Pverify 5,987,383 96.3 0.17 98.4

Qsort 4,306,958 67.9 0.02 99.0

Topopt 13,796,023 99.4 0.17 97.4

Table 4.2: Weak Ordering Lock Contention Statistics

Di�erences with results from Table 2.4 are not signi�cant.

Program Time Transfer Lock Stats

held Number Waiters Time

at Transfer held

Grav 211 28,468 5.25 338

Pdsa 203 16,919 6.26 357

FullConn 390 373 0.34 857

Pverify 3758 21 0.00 40

Qsort 100 151 1.05 155

in execution time for the weak memory model. As can be seen, in all cases it is less

than 1%, and sometimes much less than that. Recall that in the system modeled, the

only bene�t of weak ordering is bypassing. This will usually result in a performance

improvement when there is a write miss that would otherwise cause a processor stall.

Grav and Pdsa, the �rst two programs in table 4.1, have cache write hit ratios lower than

the other programs but weak ordering has no signi�cant e�ect because the very high lock

contention overwhelms any possible bene�t. In the other cases, the programs with lower

write hit ratios show the best improvements but these improvements are still minuscule.

Qsort's improvement is surprisingly low given that its write hit ratio is almost the same

47

as that of Pverify. But its processor utilization is low because of a large number of read

misses due to the magnitude of the data set being sorted. These read misses dominate

(recall table 2.3) and are much more frequent than write misses since the reads almost

always precede the exchanges (writes) of the same lines.

Given these results it does not seem as if weak ordering is worth implementing in a

shared-bus system such as the one simulated. One cannot forget that there would be

extra costs involved in implementing weak ordering. Bypassing must be possible in the

memory access bu�er. Since the cache must be able to handle requests while a request

is outstanding, the caches must be lockup-free [67] thus increasing the complexity of

the cache and possibly increasing the cache cycle time. It is conceivable that this cost

could more than outweigh the bene�t obtained by reducing the number of stalls on write

misses.

Although weak ordering does not appear worthwhile in this architecture, it does not

mean that it is not worth investigating. If the miss penalty were greater, e.g., because

the memory latency is much higher as in a multistage interconnection based system, or

the number of writes to memory increased (as in the case of a write-through cache),

then the bene�t would be greater and might justify the cost [50]. Delaying of various

cache coherence signals does not appear to be as promising. These signals are generated

when there is a write hit on a line in a shared state. Since this is a write, it does not

cause a stall and I have already demonstrated that there are not enough writes to make

a signi�cant di�erence.

4.2.2 Limitations

There are various limitations with this study. It was done in the context of shared-bus

multiprocessor and with arguably low memory latency. In a system with a multistage

or mesh interconnection the memory latencies would be higher. In addition, the number

of processors was fairly low. Most importantly though is that the trace-driven nature

of the study is limiting. Without knowing what instructions are being executed, the

48

simulator must block for every load access. There is no information in the trace about

which registers are used by which instructions and no way to determine if a given load

need not cause an immediate stall if it results in a cache miss. It would also be useful to

simulate a greater number of processors. All these issues will be addressed in the next

section.

4.3 Instruction-Level Simulation Study

In order to address some of the de�ciencies of the trace-driven study, I did an instruction-

level simulation. In this study I considered two variations of a sequentially consistent

system and several systems using relaxed consistency. In particular, I assessed the im-

pact of various architectural enhancements that the di�erent models allow. In addition,

instruction-level simulation allowed me to consider features such as non-blocking loads,

which cannot be studied with trace-driven simulations. An interesting by-product of

instruction-level simulation was the ability to verify that programs did execute correctly

since they actually produce output, which was very important in debugging certain im-

plementations.

4.3.1 Methodology

Base Architecture

The architecture simulated is a typical \dance-hall" architecture (see Figure 4.2). It

consists of a number of processors, each with a local memory for private data and its own

cache, and a number of memory modules for global memory that contain shared data.

Processors and global memory are connected via two identical Omega networks, one for

the processor requests to memory and one for memory's responses. Cache coherence is

enforced by a full directory scheme [29].

I used the Cerberus instruction-level simulator [24] for my simulation studies. The

processor it simulates is a RISC processor similar to the Ridge 32 [84]. The caches are

49

��

��

��

��

L C L C

�

�

C

C

�

�

C

C

P P

? ?? ?

t t t

��

��

��

��

L C L C

�

�

C

C

�

�

C

C

P P

? ?? ?

Switch Switch

t t t

?

H

H

H

H

H

H

H

H

H

Hj

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Pq

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Xz

A

A

A

AU

@

@

@

@R

�

�

�

��

�

�

�

�	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�9

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�)

�

�

�

�

�

�

�

�

�

�
��

?

Switch Switch

t t t

�

��

�

��

�

��

�

��

M M M M

? ? ? ?

t t t

�

��

�

��

�

��

�

��

M M M M

? ? ? ?

P - Processors

M - Main Memory

C - Caches

L - Local (private) Memory

Figure 4.2: Model Architecture

two-way set associative and use a write-back write-allocate policy; I experimented with

a range of cache and line sizes. The caches are only for shared data. It is assumed that

there are no instruction cache misses and that the private data can be accessed from

local memory. The simulator is con�gured to use 4 � 4 switches in the interconnection

networks. There is a four element bu�er between the processor and the request network

as well as between the memory and the response network. The memory latency (no

contention) for the fetching of the �rst word of the line is 18 cycles for 16 processors and

20 cycles for 32 processors. The memory latency is independent of the line size due to

the pipelined nature of the network and of the memory accesses. However, the length

of time that the response network and the memory are busy is proportional to the line

size. Each stage of the network takes one cycle for every eight bytes. The memory access

takes seven cycles to initiate, after which the �rst word is available and put onto the

network. The rest of the line follows and the memory is kept busy for as many cycles

50

as there are words in the line. If the requested line is dirty in other caches or clean in

other caches and requested for write, then the latency is correspondingly higher due to

the need to send coherence messages and wait for the corresponding acknowledgments.

Model Implementations

Five system types were simulated. Two are sequentially consistent, two are weakly

ordered, and one is release consistent. A summary is given in Table 4.3.

Table 4.3: Summary of Implementation Features

System Major Features

SC1 sequentially consistent, non-blocking loads

SC2 SC1 + hardware directed non-binding prefetch at stalls

WO1 SC1 + hw visible synchronization operations, no stalls

on memory access while outstanding references

WO2 WO1 + bypassing of pending messages by loads

RC WO1 + no stalling while a release completes

no stalling for outstanding accesses at an acquire

Sequentially Consistent 1 - SC1 SC1, a sequentially consistent implementation,

is the baseline system. The programmer has complete freedom for the scheduling of

inter-processor communication and synchronization, but the hardware does not allow a

subsequent memory access

1

if one access is already outstanding. However, one optimiza-

tion is allowed, namely non-blocking loads. Therefore, the processor only stalls if it tries

to read from a register that is the destination of an uncompleted load or it attempts

another memory access. Since there can be only one outstanding reference at a time,

lockup-free caches [67] are not necessary; however, some form of register interlock or

scoreboarding is needed for the correctness of register-register operations. In the case

of a cache hit, the loads are delayed loads, and the value is not available for four cycles

1

All references to memory accesses and locations mean shared memory.

51

(The simulator initially forced me to use a (arguably long) delay of four cycles. I have

since repeated the experiments with a smaller delay and found the absolute bene�ts of

the models to be roughly the same. See Section 4.3.3). The processor also does not stall

in the case of a write miss. The value to be written is sent to the cache where the write is

performed when the line is received from memory. At the same time the source register

may be overwritten by a register-register operation.

Sequentially Consistent 2 - SC2 A more aggressive version of SC that does not

change the programmer's view of the system was also simulated. Non-binding prefetches

on stalls, as suggested by Gharachorloo et al. [51], were added to SC1. The processor still

stalls when there is an outstanding memory reference and another memory reference is

about to be made. But a request for this second access is nonetheless sent to the cache.

If the access to the corresponding cache line results in a miss, the line is prefetched into

the cache. Note that this prefetch is non-binding; the contents of the prefetched line

are still visible to the cache coherence mechanism since no value has been loaded into a

register in the case of a load, nor has a new value been written into the line in the case

of a store. The performance advantage brought upon by this prefetch is that the miss

rate, or at the very least the perceived memory latency, is reduced since the memory

accesses are pipelined.

For SC2 the cache is more complicated. The cache controller must be able to handle a

prefetch request while there is an outstanding reference. SC1 only needed to distinguish

between coherence requests and a line returning from memory, of which there could be

only one. SC2 must be able to determine which of its (two) outstanding requests is

returning from memory, and whether or not the processor can now be unstalled.

Weakly Ordered 1 - WO1 The �rst relaxed memory model I simulated obeys the

de�nition for weak ordering given in Section 3.2. With a WO1 implementation the pro-

grammer is limited to synchronization that is visible to the hardware. So WO1 provides

special synchronization instructions in the lock and barrier routines. The programmer

52

also has the option of using a SYNC instruction to indicate a synchronization point,

such as when writing into a shared ag. With respect to the hardware, the processor

must now stall at each synchronization point until all outstanding memory references

complete. Except for that restriction, memory accesses are allowed to complete in any

order as long as the data and control dependencies are observed.

With WO1 several memory references can be outstanding at a time and hence the

cache must be lockup-free. Information on each outstanding reference must be main-

tained in a miss information/status holding register (MSHR) [67] (�ve MSHR's are sim-

ulated). The MSHR's will cause the processor to stall when it makes a reference which

must be delayed due to data dependency requirements. In a WO1-like system, the non-

blocking loads can be especially useful since several loads can be initiated successively,

even in the absence of intervening register-register operations. The overlap of the mem-

ory accesses can hide some of their latency (Both read and write latency are hidden here.

In Section 4.3.3 blocking loads are used to determine how much of the hidden latency is

due to reads and how much is due to writes).

The hardware costs of WO1 can be signi�cant. The cache must be lockup-free; its

MSHR's must be (associatively) consulted when requests return from memory, for cache

coherence messages, and each time the processor issues a reference (in order to check for

an outstanding reference to that line and for data dependencies). Hardware recognizable

synchronization instructions are required. The processor must stall when it encounters

such an instruction if there are any outstanding references and be able to restart when

all references have completed. This requires the use of a counter and an associated

stall/restart mechanism.

Weakly Ordered 2 - WO2 WO2 is the same as WO1 except that it allows some

bypassing of stores by loads. Bypassing does not change the programmer's view of

the hardware. It is done because the completion of a load is more important than

the completion of a store since the loaded value generally will be required sooner than

the global performing of the store. Bypassing is limited to the bu�er that serves as

53

an interface between the processor and the interconnection network. Bypassing is not

simulated in the Omega network switches since the speed at which they must operate

seems to prevent such an optimization (moreover, since the requests would come from

di�erent processors, it is not certain that the priority argument still holds).

Bypassing introduces additional hardware complexity. The cache must treat load

and store misses di�erently when sending them to the network. Loads must be sent

to the head of the bu�er while the stores must be able to enter in the normal FIFO

manner. Unlike a system with blocking loads, where only one load can be outstanding,

the capability of dealing with multiple loads bypassing stores must exist. In my imple-

mentation, a bypassing load could bypass a load that is at the front of the bu�er. This

could be prevented if an entry could be inserted into the bu�er after the last load but

before the �rst store, or if there were two FIFO bu�ers, one for loads and one for stores

and a priority scheme always favoring the former. I will discuss in Section 4.3.2 why the

results are still valid despite the simple, but slightly awed, implementation.

Release Consistent - RC In the release consistent system the acquire and release

synchronization operations are treated di�erently, thus requiring the programmer to be

aware of the type of synchronization needed. However, the need to make this distinction

will not usually be a problem if system-provided synchronization routines are used. Un-

der the simulated RC, when an acquire operation is attempted, the processor stalls until

the acquire completes. It does not matter if there are any outstanding memory accesses.

There are several possible situations which can occur when a release operation is

encountered in the instruction stream. In all cases though, the processor continues

executing past that point in the program. The release operation can be issued if there

are no outstanding accesses. However, the release cannot proceed immediately if the

locations it operates on are not in the cache. In that case the request to do the release is

sent to the cache which will delay issuing the operation until the necessary lines arrive

from memory. If there are outstanding references when a processor encounters a release

operation, then a special bit is set in all the valid MSHR entries and a counter is set

54

equal to the number of such entries. Whenever an outstanding reference is resolved, this

bit in the corresponding MSHR entry is checked. If it is set, the counter is decremented.

When the counter is decremented to zero, the pending release operation is issued. This

scheme requires an extra bit in the MSHRs, a counter for the number of references still

outstanding from the time of the release operation (as opposed to a general counter of

outstanding references as in WO1), and the ability to keep track of the pending release

operation since the processor has continued executing past the location in the instruction

stream where the release was encountered.

Benchmarks

The benchmark programs used to compare the various memory models are all written

using PCP [23], a simple parallel extension to C. They were compiled to the simulator's

machine code and linked using Cerberus's compiler. Due to compiler limitations there is

no static allocation of private data. Any variable allocated globally is a shared variable

and resides in a shared memory module. The only private data are variables declared in

functions. Since the architecture supports non-blocking loads, the compiler attempts to

schedule the code so that loads to registers are issued far enough ahead of their use so

that the processor will hopefully not have to stall if there is a cache miss.

Table 4.4: Benchmark Statistics for SC1 for 16K and 64K caches

References are averages per processor and are in 1,000's.

Programs References Hit Rate (%) by line and cache size

(1,000's) 16K cache 64K cache

Reads Writes 8 16 64 8 16 64

Gauss 1074 314 64.3 80.9 94.4 95.9 97.4 98.8

Qsort 1171 310 70.2 73.8 81.8 73.2 76.0 82.3

Relax 2132 329 78.8 89.3 97.0 79.6 89.7 97.2

Psim 1827 319 88.4 88.6 90.7 89.5 89.6 91.3

The four benchmark programs are described below. Table 4.4 shows statistics on

55

16K caches

8 16 64

Line Size (bytes)

15

20

25

30

35

40

Run-time

in millions

of cycles

�

..........................

Gauss

�

..........................

Qsort

?

..........................

Relax

.

..........................

Psim

.

.

.

.
.
.
.

.

.

.

.

.
.
.
.
.

.

.

.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.
.
.
.
.

.

.

.
.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

..

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

�

�

�

..............................
.......................

...
...
...
...
...
...
...
...
..
...
...
...
...
...
...
...
...

�
�

�

..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
...
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..

?

?

?

.....
.....
......
.....
.....
.....
......
.....
.....
.....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

64K caches

8 16 64

Line Size (bytes)

15

20

25

30

35

40

Run-time

in millions

of cycles

�

..........................

Gauss

�

..........................

Qsort

?

..........................

Relax

.

..........................

Psim

.....
..........
...........

..........
..........

..
�

� �

..
.............

............
.............

............
...
...
...
...
...
...
...
....
...
...
...
...
...
...
...
...
.

�

�

�

..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
...
...
..
...
..
..
...
..
...
..
...
..
...
..
...
..
..
...
..
...
..
..

?

?

?

.
.....
.....
......
.....
.....
.....
.....
.....
.....
.....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 4.3: Performance by Line Size for SC1

the benchmarks for 16 processors for various cache (16K and 64K) and line sizes (8, 16

and 64 bytes) under SC1 and their run-times are given in Figure 4.3 (there are more

detailed statistics in Appendix C). The exact number of memory references can change

based upon the consistency model, and this can impact the hit rates as well. I observed

a change in the number of references of up to 8% and in the hit rates of up to 2.8%.

Gauss Gauss [39] performs the gaussian elimination of a 250 � 250 matrix. This

program exhibits a large amount of spatial locality, as can be seen from the 16K cache

data in Table 4.4 and Figure 4.3. The larger line sizes result in large performance gains:

the 64 byte line con�guration is 50% faster than with 8 byte lines and almost 25% faster

than with 16 byte lines. This gain is to be expected since the hit ratios increase from

64% for 8 byte lines to 81% for 16 bytes and to 94% for 64 bytes. However, when 64K

caches are used the hit ratios are uniformly high and the run-times vary very little with

the line sizes. Clearly the data set of each processor �ts in a 64K cache, but not in a

16K one.

Qsort Qsort [63] executes a parallel quicksort of 500,000 integers. It is dynamically

56

scheduled, unlike the other benchmarks which are statically scheduled. Units of work

are pushed onto and popped o� of a shared stack and allocated to processors on a FCFS

basis. Since any change in the architecture inuences the relative rate of execution of

each processor, the order in which tasks are pushed onto and popped o� the stack can

change and thereby a�ect the way the work is partitioned as well as the size of the

partitions [63]. In one case, when the implementation changed from WO1 to WO2, the

number of synchronization operations increased by a third, thereby demonstrating the

e�ect of dynamic scheduling. This natural variability prevents me from reaching general

conclusions from a single run of the benchmark. Because of the severe load on CPU

time brought upon by instruction-level simulations, I did not repeat this experiment

with di�erent seeds and compute appropriate con�dence intervals. I will not discuss the

generally small variations in performance I observed, since I cannot isolate the likely

causes due to the dynamic nature of the program.

As shown in Table 4.4, the hit ratios of Qsort are fairly low (69-81%). This is to

be expected due to its sequential access pattern. Also, when partitioned among the 16

processors, each processor's data set is still too large to �t into even the 64K cache. As

long as the cache capacity is too small, there is very little variation for a given line size in

Qsort's hit ratio between 16K caches and 64K caches. The line size does matter though.

With 8 or 16 byte lines the run-times are roughly the same. However, the systems with

64 byte line caches are the slowest in spite of the higher hit rates.

Initially I found the low write hit ratios curious. In the trace-driven study Qsort

had a write hit ratio of close to 100%. This is because before values are swapped, they

must be compared, which means that they are always read before being written, and

hence, are already in the cache when they are written. However, in this study write hit

ratios were around 70-80%. I �nally realized that this was because of a change in the

way write hits are counted due to the di�erent cache coherence protocol. In the study

reported in Chapter 2, a bus-based system was simulated. On that system, when a line

is brought into the cache, even if it is just for read, it could be written once the other

57

lines were invalidated, a fairly simple operation on a bus-based system and one that I

still counted as a write-hit. However, in this system, a line is requested for read or write.

If it has been brought in for read and then there is a write, the current copy of the line

is invalidated, and a new copy with write permission fetched. This is counted as a write

miss, and the cause of the lower write hit ratio. It is not strictly necessary to invalidate

the read-only line. However, it makes the protocol simpler at the expense of consuming

some additional network bandwidth. Regardless, the request still needs to be sent to

memory, and may need to wait for invalidations to be done.

This case does demonstrate the usefulness of a read with ownership request, a re-

quest which would not require the message to memory before proceeding with the write.

However, the compiler would need to be able to recognize the situation where this would

be useful. It is not automatically useful in Qsort as written. During the partition phase,

which is done in parallel, a processor references every nth element. The locations are

not strip-mined and therefore each processor references one word in a given cache line.

2

Since there is a great deal of sharing during this phase, it could be detrimental to per-

formance to do a read with ownership, when in the end ownership may not be needed if

there were no swapping by that processor. Later, when each processor is sorting its own

partition, then a read with ownership is worthwhile.

Relax Relax is an iterative relaxation procedure using a nine point stencil over a

514 x 514 matrix. Its main computation consists of summing the values of nine grid

points laid out in a square. Its access pattern can be described by using Figure 4.4. The

nine point stencil is moved to the right as j is incremented. When i is incremented, the

stencil is moved back to the �rst column, but one row further down. References to the

top two rows in the stencil will always result in cache hits at this point since they were

used while processing the previous row. Also, for a line size of eight bytes and a matrix

2

For the shared-bus system for which the program was written [63], the overhead of

the loop index computation was found to remove any bene�t strip-mining would have

otherwise generated. However, this may be di�erent in the case of a higher latency

system such as the one simulated here.

58

-

j

?

i

i,j

X

X - cache miss

for i = 2 to n do

for j = 2 to n do

<do relaxation>

Figure 4.4: Relax access pattern

of doubles (so each element takes up a single line), after the �rst two relaxations for

this value of i, references to locations (i + 1,j � 1) and (i + 1,j) will also be hits since

they were referenced in the previous iteration as locations (i + 1,j) and (i + 1,j + 1).

The reference to (i + 1,j + 1) will miss every time and only that reference will miss on

any given relaxation (except at the beginning of a new row or when there is cross or

self-interference [69]). There will also be one write miss per relaxation since Relax writes

the result of each relaxation into a temporary matrix (if the line size is 16 bytes, then

the read of location (i+ 1,j + 1) is a miss once every two relaxations as is the write of

the result. For 64 byte lines, it is a miss once every eight relaxations for both the read

and the write). Once all the processors have completed the relaxation phase for a given

iteration, then the relaxed values are copied back into the main matrix. During this

phase there will be one read miss and one write miss per inner loop iteration as each

value must be read from the temporary matrix and written into the main matrix.

If the compiler produces code that loads a value and adds it into the sum before

loading the next value, the processor will stall whenever it tries to add in a value whose

loading is still pending because of a cache read miss, and this will happen regardless of

the consistency model. However, after the write, there are a number of register-register

operations which hide the latency of the memory access even in SC1. The Cerberus

compiler does schedule all the loads before all the additions (this is discussed further in

Section 4.3.2).

59

The computation pattern described above dominates Relax so much that the memory

access pattern is extremely regular. The cache hit rates and the number of references

are almost the same for all processors. In fact, the access patterns are so regular that

the observed cache hit rates match up almost exactly with those predicted. As long as

the cache is large enough to hold two rows or columns of the sub-matrix the processor

is processing (whether it is a row or column depends upon the loop structure), then the

hit rates can be calculated ahead of time very easily. Any di�erences are due to self or

cross-interference [69] or coherence e�ects due to sharing at the edges of the sub-matrices

(although given the right matrix size relative to the cache size, the self-interference of

row i� 1 and row i could be very signi�cant).

As mentioned above, if the two previous rows do not �t in the cache, then the hit

rate will drop signi�cantly. However, as long as those two rows are still in the cache, the

hit rate is independent of the size of the data set. Unlike Gauss, the data set size would

need to be signi�cantly larger for there to be a large change in the cache hit rate.

Psim Psim is the simulator of the multi-stage network that the simulator itself uses

(Cerberus is written in PCP). It simulates a 64 processor network using 4 � 4 switches

with each processor issuing 513 references. Psim di�ers from the other benchmarks in

various ways. 70% of its cache misses are invalidation misses, which is indicative of a

high level of sharing. This increases the tra�c on the interconnection network. Also,

Psim's accesses to memory are not spread out evenly across the memory modules. The

utilization of the modules varies by as much as a factor of six, which produces some

minor hot spots. Both of these factors result in a much higher actual memory latency

in Psim. The latency is proportional to the line size, and as seen in Figure 4.3, can

have a major performance impact. The data set of Psim is fairly small and �ts into

a 16K cache, and hence its performance is fairly insensitive to the cache size. The hit

rate (but not the run-time) is also insensitive to the line size. Finally, Psim has the

highest synchronization rate of any of the benchmarks (over 80,000 synchronizations per

processor).

60

4.3.2 Simulation Results

My experiments were instruction-level simulations of 16 processor systems for all bench-

marks and of 32 processor systems for Gauss only because of time limitations. The

simulations were run with cache line sizes of 8, 16 and 64 bytes and two cache sizes: 16K

and 64K bytes. The results for 16 processors and 16K caches are shown in Figure 4.5,

the results for 16 processors and 64K caches are shown in Figure 4.6, and the results

for Gauss with 32 processors are shown in Figure 4.7. In these �gures, each graph has

plots for each of the three line sizes. The y-axes show the relative (percent) performance

improvements of the various memory models over the SC1 system for that line size. Note

that the scales of the y-axes are di�erent for each benchmark.

In the following sections I discuss the results for each benchmark and then compare

the results for the various memory models. This will allow me to draw some conclusions

on the relative merits of each hardware addition.

Analysis of Benchmarks

Gauss The greatest performance improvement from using relaxed models is attained

in the Gauss benchmark. In the case of 16K caches with 8 byte lines the systems

implementing relaxed models show a performance gain of over 35%. With 16 byte lines

the gain is about 20% and with 64 byte lines it is 8%. The greater gain for 8 byte lines

is due to the lower hit ratios since cache misses provide the opportunity to draw bene�ts

from the relaxed models. With the relaxed models there is also less of a gap between

the performance of the di�erent line sizes. Under WO1 there is only a 16% and 10%

improvement for 64 byte and 16 byte lines over the 8 byte line versus the 50% and 25%

mentioned earlier for SC1.

The case of the 64K cache is quite di�erent. As mentioned above, the cache hit rates

for 64K caches are quite high. Therefore we cannot expect much gain from the relaxed

models; the bene�ts never reach 2%.

The 32 processor results show the same trends that are seen with 16 processors. The

61

Gauss

SC2 WO1WO2 RC

Memory Model

0

9

18

27

36

%

Perform.

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
....
...
....
...
...
....
...
....
...
...
....
...
...
........
...
...
....
...
...
....
...
....
...
...
....
...
....
...

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.......
..................

..................
..................

..................
..................

......

�

�

�

�

.

.

.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..........
...

...........................
...

.

.
.

.

Qsort

SC2 WO1WO2 RC

Memory Model

0

5

10

15

20

%

Perform.

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
..
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....
...............

................
...............

....
..
...
...
..
...
..
...
..
...
..
...
...
..
...
..
...
..
...
...

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
...
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

Relax

SC2 WO1WO2 RC

Memory Model

0.0

1.2

2.5

3.8

5.0

%

Perform.

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
...
..
...
..
...
..
...
..
...
...
..
...
..
...
..
...
..
...
...
....
...
...
..
...
..
...
..
...
..
...
...
..
...
..
...
..
...
..
...
.

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
....
...
....
....
....
...
....
....
....
...
....
....
........
....
....
...
....
....
....
...
....
....
....
...
....
..

�

�

�

�

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.
.
.
.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

. . .

Psim

SC2 WO1WO2 RC

Memory Model

-3.3

0.0

3.3

6.7

10.0

%

Perform.

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
..

�

� �

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.......
.......
........
.......
.......
.......
.....

�

� �

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.......
.......
.......
.......
.......
.......
.........
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..

.

.

.

.

Figure 4.5: 16 processors, 16K caches

The performance improvement is relative to SC1 for that line size.

Note that the scale of the y axis in each graph is di�erent.

data set still does not �t in the cache when 16K caches are used. However, the perfor-

mance bene�t for each line size is slightly higher than was observed with 16 processors.

This is to be expected since the memory latency is higher due to the extra level needed

in the network. Despite the slight increase in memory latency, the speed-up with 32

processors was good. The system was faster by 80-86% with one instance of 76%. The

relaxed models showed a 1-4% better performance gain than SC1 did when using the

same cache structure. The reason studies of WO2 for 32 processors were not done is

explained in Section 4.3.2.

62

Gauss

SC2 WO1WO2 RC

Memory Model

0.0

0.4

0.8

1.2

1.6

%

Perform.

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

�

� � �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
...
..
...
..
...
..
...
..
...
..
...
..
..
...
..
...
..
...
..
...
..

�

�

� �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
..
...
..
..
...
..
...
..
...
..
...
..
...
..
..
...
..
...
..
....
..
...
..
...
..
..
...
..
...
..
...
..
...
..
...
..
...
..
..
...

.

.

.

.

Qsort

SC2 WO1WO2 RC

Memory Model

1.2

4.6

8.0

11.3

14.7

%

Perform.

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
...
..
..
..
...
..
..
...
..
..
...
..
..
...
..
..
..
...
..
..

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
...
.

�

� �

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......
.......
.......
.......
......
.......
.......
..

.

.

. .

Relax

SC2 WO1WO2 RC

Memory Model

0

1

2

3

4

%

Perform.

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

�

� � �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

. . .

Psim

SC2 WO1WO2 RC

Memory Model

-3.3

0.0

3.3

6.7

10.0

%

Perform.

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.......
.....................

.....................
....
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
...
..
..
..

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.......
.......
.......
.......
.......
.......
.....

�

� �

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
......
.....
.....
.....
......
.....
.....
.....
.....
...
..
...
..
..
...
..
...
..
..
...
..
..
...
..
...
..
..
...
..
..
...
.

.

.

.

.

Figure 4.6: 16 processors, 64K caches

The performance improvement is relative to SC1 for that line size.

Note that the scale of the y axis in each graph is di�erent.

One should not reach undue conclusions from the 64K cache experiment. Recall

that the data set was of a size that made it amenable to be run on a simulator. The

data set was a 250 � 250 matrix of doubles, which occupies only half a megabyte of

memory. Gaussian elimination on such a matrix takes about 10 CPU seconds on a

modern workstation. The problems that would be run on a real parallel processor will

be much larger. The data sets will probably be too large for the cache and the hit ratios

will be more like those recorded for the 16K cache.

63

16K caches

SC2 WO1 RC

Memory Model

0

10

20

30

40

%

Perform.

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.......

�

� �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....................
..............................

..

�

�
�

.

.

.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
...

.....

.

.
.

64K caches

SC2 WO1 RC

Memory Model

0.0

0.5

1.0

1.5

2.0

%

Perform.

gain

over SC1

�

..........................

8 bytes

�

..........................

16 bytes

.

..........................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

�

� �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
.

.

.

.

Figure 4.7: 32 processors, Gauss

The performance improvement is relative to SC1 for that line size.

Note that the scale of the y axis in each graph is di�erent.

Qsort The performance of Qsort is signi�cantly improved by the implementation of

relaxed models. The bene�ts range from 13% to 18% and are realized for both cache sizes.

These improvements stem from a moderately low hit rate (69-81% for both cache sizes

since neither cache size has the capacity to store the processor's working set) accompanied

by memory access patterns that allow overlapping. As mentioned in Section 4.3.1, the

variability of results for the various line sizes and models is caused by dynamic scheduling

e�ects.

Relax As can be seen in Figures 4.5 and 4.6, Relax obtains very little bene�t from the

relaxed models. The largest gain is 5%. Part of the reason for the lack of improvement

is Relax's high cache hit rate, from 79% to 98% depending mostly on the line size. Note

that the 79% hit rate is comparable to Qsort's and for that latter benchmark the relaxed

models yield better improvements. The compounding reason for Relax's low improvement

is its access pattern. The relaxed models cannot hide much of the memory latency. As

described in Section 4.3.1, most of it is already hidden in the case of a write miss (in

all implementations) by the network access bu�er and the register-register operations

64

following the write, or it cannot be hidden in the case of a read miss because an attempt

to use the destination register occurs almost immediately after the read miss, and this

results in a stall as described in Section 4.3.1.

This analysis of Relax made me realize that how the program is written or compiled

for peak performance depends upon the memory model to be used. If the compiler

can rearrange the code to schedule all the loads at the top of loop, then there may be

some bene�t from the relaxed models for Relax for 8 byte lines. The access that will

cause the miss (see Section 4.3.1) should be done �rst among the nine loads, thereby

allowing the main memory access to be overlapped with the loading of the other eight

registers from cache. For larger lines with high hit rates (over 90%), the e�ect of this

optimization, for this size data set, will probably be minimal. Even in SC1 the code

can be rearranged to minimize the memory access penalty. All the loads should again

be done at the top of the loop, but the one that causes the miss should be done last.

Otherwise the processor will stall when attempting a load after the miss. While that

line is being fetched from memory, the other eight values can be summed so that by the

time the register whose value was coming from main memory is added into the sum,

the line has arrived from memory (rearranging the additions can also be done for the

relaxed models). The optimizer in the Cerberus compiler does reorganize the code so

that all the loads are at the top of the loop. However, it is not smart enough to realize

which load will miss in the cache and schedule the code accordingly. I conducted some

experiments where I manually scheduled the code taking this e�ect into account. The

results are described in Section 4.3.3.

Psim Psim has a moderate (8-10%) performance improvement from the relaxed models

which is to be expected given its hit rate of approximately 90%. Since Psim has a much

higher average memory latency due to its high level of sharing and skewed memory

access distribution, it gets greater bene�t than programs with similar hit rates. For

SC2 with 64 byte lines Psim takes longer than for SC1. I surmise this is because of the

extra contention on the networks due to the additional requests. The observed memory

65

latency does increase due to the increased tra�c for 64 byte lines.

Relative Performance of the Consistency Models

Relaxed Model Bene�ts As a general rule, the relaxed models show a non-negligible

performance improvement as long as the cache hit rates are not too high. If hit rates

are in the high nineties, then the memory access times are less important and, as could

be expected, the use of sequential consistency won't degrade performance. In the case

of lower hit rates, the bene�ts of relaxed models can be mitigated if either a single

non-blocking load or store (as in SC1) already allows a substantial overlap of memory

access and computation, or, conversely, if a fetch for some value is almost immediately

followed by its use. In the latter situation, it is likely that the code could be reorganized

to take better advantage of the relaxed models, especially if the architecture supplies a

su�cient number of registers. I further discuss the general bene�ts of the relaxed models

in Section 4.4.2.

RC versus WO1 In all of the runs RC and WO1 performed in a similar manner. If

there was any di�erence, RC's improvement over SC1 was slightly better. The largest

instance, less than 1% better relative to SC1, occurred for Psim, the program with the

most synchronizations. Recall that RC and WO1 di�er only in the way acquires and

releases are implemented. Under RC when a release is encountered the processor does

not stall either for outstanding references or for the release to complete, whereas under

WO1, the processor does stall for the references to complete and then for the release

to complete. Also, for an acquire RC does not stall while outstanding memory accesses

complete. Clearly neither of these events were frequent enough for the processor to

spend a signi�cant portion of its time stalling at releases in the WO1 system. From

these benchmarks there is nothing to indicate that it is worthwhile implementing RC

instead of WO1 if implementing RC would in any way be more costly or detrimental to

the processor's cycle time.

66

WO2 - Bypassing Overall, it appears that bypassing of stores by loads is not worth-

while with lockup-free write-back caches and a pipelined interconnection network. Recall

that WO2's implementation of bypassing is such that loads bypass waiting stores and

waiting loads. On the average only one request was bypassed. In only one of the bench-

marks, Psim, was the bypassed request usually a write and this benchmark had the most

bypasses, 125,000 (roughly one every 200 cycles). However, as can be seen in Figures 4.5

and 4.6 this produced no di�erence in performance. In the other cases the number of

bypasses of writes was insigni�cant. Note that even if a read bypasses a write, the odds

are that the request is going to a di�erent memory module. Bypassing does not help

a read to get preferred treatment at the memory module where it is contending with

requests from other processors. Therefore the only advantage is for the read to be on

the network �rst, i.e., gain a cycle in the case of no or low contention. The slight drop

in performance for Gauss and Relax was probably due to my implementation since those

two benchmarks showed a small number of bypasses of reads by reads. Qsort showed

both a performance gain and a loss which is mostly due to variability. It almost never

had a write bypassed by a read. Since the WO2 experiment was su�ciently convincing, I

do not see any reason to consider implementing bypassing in a release consistent system

or studying it with 32 processors.

SC2 versus SC1 In general there is very little bene�t in prefetching one line when

a processor is stalled due to a cache miss. In fact, in one case (Psim, 64 byte lines)

prefetching was detrimental because it increased the congestion in the network. As

noted earlier, that benchmark has a high level of network tra�c due to coherence e�ects

and the network tra�c was exacerbated by the large line size. SC2 causes a clustering

of memory requests that further saturate the network, resulting in a net rise in the

memory latency, the opposite of what was sought. The probable cause for the general

lack of performance gain in SC2 is that the opportunity for it to be of any help, i.e., to

have consecutive cache misses to di�erent lines without an intervening register interlock

causing a processor stall, is rare. This paucity of limited prefetches increases for programs

67

with good locality.

4.3.3 Architectural Variations and Results

Blocking Loads

With my implementations of the relaxed models, both read and write latencies are

overlapped with computation. However, it cannot be determined how much of the hidden

latency is due to reads and how much is due to writes. Therefore, I modi�ed two of my

implementations to use blocking loads and compared the results with those I already had.

With blocking loads, when there is a read miss, the processor stalls until the requested

line returns from memory. So none of the read latency is hidden. Since there was little

variation among the sequentially consistent implementations and among the relaxed

consistency ones, the only two implementations that I modi�ed were SC1 and WO1.

The versions with blocking loads are designated bSC1 and bWO1. Graphs showing the

performance of SC1, bWO1 and WO1 relative to bSC1 are in Figures 4.8 and 4.9.

Non-blocking loads appear to have no signi�cant e�ect for the two systems that

are sequentially consistent. The performance of bSC1 and SC1 are basically the same

(di�erences for Qsort are still due to its dynamic nature). However, non-blocking loads

can still provide some bene�t in such systems (see the section on manual scheduling of

Relax below).

The e�ect of blocking loads in relaxed models varies with the benchmarks. In the

case of Relax there is almost no di�erence between bSC1, SC1, and bWO1 regardless of

line or cache size. However, there is a noticeable performance gain for WO1. Obviously

the non-blocking loads are important here. It is clear from the structure of the Relax

program that another memory access must occur shortly after loads that are missing;

this causes a stall in SC1 and bWO1. Thus, almost all the latency hidden by WO1 for

Relax is read latency.

In the case of Psim, a weakly ordered system with blocking loads provides 75-85%

of the performance improvement that is obtained with non-blocking loads. This shows

68

Gauss

SC1 bWO1WO1

Memory Model

0

9

18

27

36

%

Perform.

gain

over

bSC1

�

.............................

8 bytes

�

.............................

16 bytes

.

.............................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
..
.
..

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
...
..
...
..
...
..
...
..
..
...
..
...
..
...
..
...
..
...
..
...
..
..
...

�

�

�

.

..
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
........
...........

..........
..........

...........
.........

.

.

.

Qsort

SC1 bWO1WO1

Memory Model

-5

0

5

10

15

%

Perform.

gain

over

bSC1

�

.............................

8 bytes

�

.............................

16 bytes

.

.............................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

�

� �

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......
....
....
.....
....
.....
....
....
.....
....
....
.....
....
..

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..

.

.

.

Relax

SC1 bWO1WO1

Memory Model

0.0

1.2

2.4

3.6

4.8

%

Perform.

gain

over

bSC1

�

.............................

8 bytes

�

.............................

16 bytes

.

.............................

64 bytes

...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� �

�

..
........
........
........
.........
........
........
........
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

.

.....
........
.........
........
........
........
.........
...
.
.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.
.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

Psim

SC1 bWO1WO1

Memory Model

0

3

6

9

12

%

Perform.

gain

over

bSC1

�

.............................

8 bytes

�

.............................

16 bytes

.

.............................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
..
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.
.
.
.
.
.
.
.
.
.
.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..

.

.

.

Figure 4.8: 16 processors, 16K caches, blocking loads

The performance improvement is relative to bSC1 for that line size.

Note that the scale of the y axis in each graph is di�erent.

that although most of the latency being hidden is write latency, there is de�nitely a

noticeable amount of read latency which is hidden as well.

For Gauss with 16K caches it is mostly write latency which is overlapped with com-

putation. However, the scale of the y axis in Figure 4.8 can be misleading. There would

be a noticeable loss of performance in some cases if blocking loads were used. In the

case of 64K caches there appears to be a great deal of variability in Gauss' behavior (cf.

Figure 4.9). However, the di�erences are actually so small as to be unimportant.

69

Gauss

SC1 bWO1WO1

Memory Model

0.0

0.5

1.0

1.5

2.0

%

Perform.

gain

over

bSC1

�

.............................

8 bytes

�

.............................

16 bytes

.

.............................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.

�

�

�

...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.
.
.
.
.

.

.
.
.
.

.

.

.

.
.

.

.

.

.

.

.
.
.
.
.

.

.
.
.
.

.

.

.

.
.

.

.

.

.

.

.
.
.
.
.

.

.
.
.
.

.

.

.

.
.

.

.

.

.

.

.
.
.
.
.

.

..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.

.

.

.

Qsort

SC1 bWO1WO1

Memory Model

-5

0

5

10

15

%

Perform.

gain

over

bSC1

�

.............................

8 bytes

�

.............................

16 bytes

.

.............................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
...
..
..
..
...
..
..
..
..
...
..
..
..
...
..
..
..
..
...
..
..
..
...
..

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..
..
..
..
.
..

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
.

.

.

.

Relax

SC1 bWO1WO1

Memory Model

0

1

2

3

4

%

Perform.

gain

over

bSC1

�

.............................

8 bytes

�

.............................

16 bytes

.

.............................

64 bytes

....
.......
.......
.......
.......
.......
......
.......
.......
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

....
.......
.......
.......
.......
.......
......
.......
.......
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

......
.......
.......
......
.......
.......
.......
.......
.....
.
.

.

.

.
.
.
.
.
.

.

.

.

.

.
.

.

.

.
.
.
.
.

.
.
.
.
.
.

.

.

.

.

.
.

.

.

.

.
.
.
.

.
.
.
.
.
.

.

.

.

.

.
.
.

.

.

.
.
.
.

.

.
.
.
.
.
.

.

.

.

.
.
.

.

.

.
.
.

.

.

.

Psim

SC1 bWO1WO1

Memory Model

0

3

6

9

12

%

Perform.

gain

over

bSC1

�

.............................

8 bytes

�

.............................

16 bytes

.

.............................

64 bytes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
.
..
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.

.

.

.

Figure 4.9: 16 processors, 64K caches, blocking loads

The performance improvement is relative to bSC1 for that line size.

Note that the scale of the y axis in each graph is di�erent.

Hand Scheduled Relax Code

In Section 4.3.2 I described how simply moving all the loads to before all the oating

point adds, as the compiler did, would not automatically improve the e�ect of using

relaxed models of memory consistency as much as possible. The order of the loads is

important. In order to test the importance of the scheduling of the loads, I manually

scheduled the code in a more e�cient order, with one schedule for the SC systems and one

for the WO systems. As I described in Section 4.3.2, I took into account the knowledge

70

of which load (if any) would miss in the cache and scheduled the loads and additions

so that there would be the maximum amount of time between the load and operations

dependent upon the load (in the SC case this also meant guaranteeing that there were

no other memory access between those instructions). I also manually scheduled the code

in such a way to produce a deliberately bad schedule given the knowledge of which load

would miss. Given the compiler's lack of knowledge of the architecture, these schedules

were equally likely to have been produced.

Figure 4.10 shows the relative performance of the codes manually scheduled for good

and bad performance compared to the optimizer's default schedule. There is a noticeable

di�erence (up to 8%) in performance, and the range between the best and worst schedules

is even greater (about 10%). This shows that although rules on how to write programs

that execute correctly for systems implementing relaxed consistency (i.e., no data races)

have been proven correct, gaining maximum performance on such systems is still an

open question. Clearly, how programs are optimally compiled for such systems may be

di�erent than for a sequentially consistent system (manual scheduling of the code will

be impractical most of the time). For a program like Relax a compiler can produce the

same optimizations which I produced by hand [26]. However, Relax is a very regular

program, i.e., one which is relatively easy to analyze. Although there is some research

in this area [32], there is clearly a need for more.

Two Cycle Load and Branch Delays

Due to limitations of the simulator, my initial studies used a load and branch delay of

four cycles. It can be argued that this is overly long (although superpipelined machines

may have long delays as well). I duplicated the studies of SC1 and WO1 with load and

branch delays of two cycles (this includes the load delay for loads of private data). The

performance of the systems with this new parameter is shown in Tables 4.5 through 4.8.

The results show a great deal of variability. There are some cases where the relative and

absolute performance gains for two cycle delays are greater, some cases where the results

71

SC1, 16K

8 16 64

Line size (bytes)

-2

0

2

4

6

8

% Perform.

gain

over

default

optimal

bad

WO1, 16K

8 16 64

Line size (bytes)

-4

-2

0

2

4

6

% Perform.

gain

over

default

optimal

bad

SC1, 64K

8 16 64

Line size (bytes)

-2

0

2

4

6

8

% Perform.

gain

over

default

optimal

bad

WO1, 64K

8 16 64

Line size (bytes)

-4

-2

0

2

4

6

% Perform.

gain

over

default

optimal

bad

Figure 4.10: E�ect of improved code scheduling

The y axis is the change in run-time when using the optimal schedule

and a deliberately bad schedule compared to the compiler's default.

are mixed and some cases where four cycle delays have greater relative and absolute

gains. Thus, no furthere insight can be gained from the two-cycle experiments.

72

Table 4.5: Gauss, absolute and relative bene�ts

Bene�ts of WO1 over SC1 for load and branch delays of two and four cycles.

Absolute is in 1,000's of cycles, relative is in percent improvement.

Cache Delay 8 byte lines 16 byte lines 64 byte lines

Size (cycles) Absolute Relative Absolute Relative Absolute Relative

16K Two 7,938 46.8 3,528 22.9 855 6.1

Four 7,278 36.2 3,705 20.2 1,075 6.2

64K Two 308 2.4 239 1.9 157 1.2

Four 281 1.7 219 1.3 172 1.1

Table 4.6: Qsort, absolute and relative bene�ts

Bene�ts of WO1 over SC1 for load and branch delays of two and four cycles.

Absolute is in 1,000's of cycles, relative is in percent improvement.

Cache Delay 8 byte lines 16 byte lines 64 byte lines

Size (cycles) Absolute Relative Absolute Relative Absolute Relative

16K Two 2,348 16.0 2,671 18.9 2,109 13.9

Four 2,530 15.9 2,544 15.9 3,042 18.4

64K Two 2,261 16.5 1,860 13.0 2,337 15.1

Four 2,347 15.3 2,247 14.3 2,232 13.4

4.4 Related Work and Comparisons

4.4.1 Study Comparison

The study in Section 4.2 has very di�erent results than the one in Section 4.3. This

con�rms some of the observations made at the end of Section 4.2 about the limitations

of that study. Higher memory latencies needed to be considered and it can be argued that

the latencies I used still are not high enough [74]. Also, since read latency was clearly

being hidden in the case of Relax, some of the performance gains that were observed in

the instruction-level study could not have been seen in a normal trace-driven study.

73

Table 4.7: Relax, absolute and relative bene�ts

Bene�ts of WO1 over SC1 for load and branch delays of two and four cycles.

Absolute is in 1,000's of cycles, relative is in percent improvement.

Cache Delay 8 byte lines 16 byte lines 64 byte lines

Size (cycles) Absolute Relative Absolute Relative Absolute Relative

16K Two 1,651 6.3 993 4.1 543 2.3

Four 1,466 5.2 836 3.2 416 1.6

64K Two 1,256 4.8 779 3.2 435 1.9

Four 1,080 3.9 624 2.3 306 1.2

Table 4.8: Psim, absolute and relative bene�ts

Bene�ts of WO1 over SC1 for load and branch delays of two and four cycles.

Absolute is in 1,000's of cycles, relative is in percent improvement.

Cache Delay 8 byte lines 16 byte lines 64 byte lines

Size (cycles) Absolute Relative Absolute Relative Absolute Relative

16K Two 2,229 10.6 2,555 12.0 3,037 9.3

Four 2,383 9.0 2,806 10.6 4,387 11.6

64K Two 2,137 10.3 2,484 11.9 2,916 9.1

Four 2,267 8.7 2,711 10.3 4,211 11.3

4.4.2 Previous studies

There have been simulation performance studies of relaxed consistency models using the

architecture of a mesh connected multiprocessor based upon DASH, an experimental

system being built at Stanford [50, 52, 80]. These studies, which used instruction-

level simulation, are similar in scope to the study of Section 4.3 but their architectural

framework and memory model implementations are signi�cantly di�erent.

Methodology - 1st Stanford Study

The Stanford studies are based on a variant of the DASH [73, 74] architecture with

16 processors connected in a mesh-like fashion. Memory is globally distributed with a

portion of global memory associated with each processor and forming its local, or home,

memory; the remainder of the global memory is the remote (for that processor) memory.

74

Each processor has a two-level cache hierarchy with a write-through �rst level cache and

a write-back second level cache. There is a write bu�er between the two caches and if

a relaxed consistency model is being implemented, loads can bypass the stores that are

in the write bu�er. The �rst level cache has a one word line size and a fetch size on

read misses of four words [48]. Cache coherence is enforced by a hardware full directory

scheme with the directories being associated with the home memories. The memory

latency depends upon the type of memory reference (read, write, synchronization), the

memory location of the missing line (home or remote), and the state of the line (clean

or dirty). The memory latencies range from 20 to 80 cycles in the case of no contention

on the interconnect.

Gharachorloo et al. [50] studied a number of consistency models including: two forms

of sequentially consistent systems, a weakly ordered system, and a release consistent

system. The major di�erence between the systems involved the selection of events that

led to processor stalls. Speci�cally:

� In all four cases, after the issue of a read or an acquire the processor stalls until

the operation completes, i.e., blocking loads are used.

� In all systems except the release consistent one, all writes have to be performed

before an acquire or a release is issued.

� In the release consistent system, releases are delayed until all writes are performed

but the processor is not stalled. Pending writes do not cause the processor to stall

at an acquire.

� Upon issue of a write, either:

{ the processor stalls until the writes are performed (base sequentially consis-

tent)

{ writes are sent to the write bu�er but reads won't be allowed until writes are

performed (aggressive sequentially consistent)

75

{ writes are sent to the write bu�er and the processor continues on (weak or-

dering, release consistency)

Note that since blocking loads are used, no read latency is being overlapped with com-

putation. Only write latency is.

Results and Comparisons

My experiments show that a relaxed memory model (WO1) using non-blocking loads,

lock-up free caches, synchronization primitives visible to the hardware, and stalls on all

synchronization points when outstanding memory references are present is worthwhile.

Performance improvements over an aggressive sequential consistency model can reach

35%. However, with high cache hit rates the bene�t is limited.

The trends observed in the �rst Stanford study were the same as mine, but their

maximum reported performance gain, 40% over their base system in the case of the most

aggressive models, was higher. There are several reasons for the quantitative di�erences.

First, the memory latencies for the �rst Stanford study are much larger, thus giving a

greater advantage to relaxed memory models. Second, the implementation of my base

system, SC1, is more aggressive since it uses non-blocking loads and a compiler that

schedules for them. Third, the cache structures that were used are di�erent. In the

Stanford study the �rst level cache is direct-mapped and write-through (although write

hits in the second level cache take only two cycles). Therefore, writes are not performed

as quickly as in my write-back cache and consequently the relaxed models have more

opportunity to gain since all writes take several cycles to complete. Also, while simulating

several cache organizations, I showed that the bene�t could vary greatly depending upon

the cache and line size; it would be interesting to see whether this is true too of a DASH-

like architecture.

There was one case where we reached di�erent conclusions about the bene�t of one

of the models. In the Stanford study one benchmark, Pthor, was found to have sig-

ni�cant performance improvement when run on RC compared to when run on WO1.

76

In my comparable benchmark, Psim, which had a similar hit rate and a high level of

synchronization, although still only a third of Pthor's, the bene�ts of RC and WO1 were

essentially the same. Most likely the two main reasons for the di�erence in the level of

improvement are: (i) Pthor's higher synchronization rate and, as observed earlier, the

more frequent synchronization, the greater the opportunity to bene�t from RC, (ii) the

higher memory latency in the DASH-like system results in a greater likelihood of a write

being outstanding at a release (it is not expected that a read would be outstanding at a

release since its value would need to have been used before the release). These factors

provide RC with a greater opportunity for a bene�t over WO1.

2nd Stanford Study

Gharachorloo et al. [52] presented another study on an architecture similar to DASH.

Unlike their previous study, in this one they allowed loads to be non-blocking, thereby

allowing read latency to be hidden. However, unlike the study in Section 4.3.3, they

saw very minimal e�ect from the use of non-blocking loads since their compiler does not

schedule the code with non-blocking loads in mind as Cerberus' does.

In an attempt to further exploit the out of order execution allowed under relaxed

models, Gharachorloo et al. studied the e�ect of using a processor that allows dynamic

scheduling of instructions [62] on a system that implements RC. With this capability

instructions do not just complete out of order; they may actually be issued out of order.

Therefore the processor can often �nd instructions to execute in situations where it would

otherwise be stalled in the case of a statically scheduled processor. They did �nd that

with a large enough instruction window they were often able to hide the memory latency

of almost all normal memory accesses. But for maximum bene�t that instruction window

needed to be large enough to contain as many instructions as would be executed in the

length of time equal to the memory latency. Due to the complexity involved in building

such a large instruction window (since the size will have to be proportional to the high

memory latencies of a large scale multiprocessor), they were skeptical of the feasibility

77

of depending solely on dynamic scheduling to hide read memory latency and suggested

that a combination of memory latency tolerating techniques such as those described in

the introduction of Chapter 3 would more likely be a practical solution [57].

This study cannot really be compared to the study done using Cerberus. Due to

the di�erence in memory latency, modeling technique, benchmarks, compiler, and most

importantly, the scheduling of the processors, it is unfair to compare the two studies.

4.5 Relaxed Consistency in Software

Although all references in this dissertation to relaxed models of memory consistency

have been made to implementing these models in hardware, there is no need to restrict

it to that level. Several systems have been suggested, and some implemented, that relax

the consistency model at a higher level, usually in a system implementing some form of

shared virtual memory (SVM) [18, 20, 21, 28]. I will give a brief overview of some of

these systems. A more in-depth explanation is beyond the scope of this dissertation.

Munin [18, 28] runs on a network of workstations and provides the user with an image

of a single address space using shared virtual memory. However in order to provide

reasonable performance Munin supports release consistency. This is implemented in

software at the page level. Normally in an SVM system, when a processor wants to write a

page, it must either invalidate all other copies of that page before writing, or it must send

updates every time that it writes. Clearly both of these are more expensive operations

than the equivalent operations at the cache level in a shared-memory multiprocessor

with hardware coherent caches. Either there will be large numbers of write messages

being sent over the network, causing huge amounts of networks tra�c, or there will be

possibly large numbers of invalidation misses, causing fewer but much larger messages to

be sent. Because it uses release consistency, Munin does not require that all copies of the

page being written be invalidated on a write or that updates be sent with every write.

It delays the writes until a release is performed. Then it packages all the writes into a

single message. If the program has no data races, then it will still execute correctly. But

78

now there will only be one large message, instead of many smaller ones, each paying the

price of message overhead.

Because Munin is a software level system which must deal with much higher latencies

than at the cache level, it can treat di�erent parts of the system in di�erent ways and still

provide reasonable performance. For example, Munin allows the user to specify whether

or not an object should be kept coherent by using updates or invalidates, and allows

the program to change that option dynamically, something that would be impractical to

implement at the level of a hardware cache.

Midway [20] is another software level SVM system. It implements what the authors

describe as entry consistency. This is similar to release consistency. However, the key

di�erence is that in a system that is entry consistent, each synchronization variable

has speci�c shared data associated with it. When a synchronization operation is done,

whether it be an acquire or a release, the only accesses that need to be performed with

respect to the appropriate processor are those involving the data associated with the

synchronization variable upon which the acquire or release is being done. Clearly this

reduces the amount of network tra�c, always a major problem in an SVM system.

Entry consistency also allows the user to specify whether an acquire is for exclusive

access (such as a lock) or non-exclusive access (such as a barrier or a synchronizing read).

This distinction allows the run-time system to decide whether or not to replicate data,

again reducing network tra�c by not needlessly invalidating.

Software level systems can take advantage of relaxed models of memory consistency.

However, it is clear that due to the latencies of the operations they perform, the tradeo�s

are very di�erent than at the hardware level. Optimizations that can be done in software

are impractical in hardware. Also, software level systems can have access to information

that is not available to the hardware level. For example, an entry consistent system

needs to know what data is associated with which synchronization variable. This would

be di�cult to do in hardware, but fairly easy in software. Also, it would be di�cult to

implement in hardware the multiple coherence protocols that Munin supports, to say

79

nothing of changing them dynamically.

4.6 Conclusions

Relaxed consistency can clearly provide a signi�cant performance gain and I would rec-

ommend implementing a relaxed model of memory consistency in future shared-memory

multiprocessors. However, given the benchmarks and parameters used in my study there

is nothing to indicate that one form of relaxed consistency is superior over another. When

choosing one to implement one relaxed model over another, no choices should be made

that might be detrimental to the performance of other aspects of the system.

In this chapter I have presented studies using lock-up free caches and bypassing.

However, there are other architectural choices allowed with relaxed models of consis-

tency. One very important choice that may provide additional gain is the use of software

controlled cache coherence. This is considered in the next chapter.

Chapter 5

Software Controlled Cache

Coherence

For bus-based shared-memory multiprocessors cache coherence is usually maintained us-

ing snoopy protocols [12]. But these protocols are impractical for large-scale machines

which do not have a single broadcast medium such as a bus. Instead, directory based

coherence schemes [30] have been put forward as the solution to the cache coherence

problem in such machines. Implementing directory schemes presents some di�culties

though. Full directories do not scale well and directories in any form complicate the

memory controller. Also, the hardware enforced cache coherence (HWCC) that directo-

ries provide can lead to a loss of performance because of false sharing [44]. There have

been many suggestions on ways to deal with the scalability issue with directories [11,

25, 31, 58, 81]. However, these proposals still result in false sharing and at least some

increased hardware complexity and directory memory. All these problems are dealt with

by using software controlled cache coherence (SCCC) [2, 36, 38, 82].

In an SCCC system the hardware is much simpler than in an HWCC system. There

is neither a hardware directory nor a state machine at the memory or cache controllers

for processing the sending and receiving of coherence messages to and from processors

and memory modules. An SCCC system maintains cache coherence through actions

81

initiated by the processor and which have only a local e�ect. These local actions are

under software control and are due to special instructions inserted into the program

(usually a task of the compiler). The instructions read values directly from memory

or invalidate and write-back cached memory locations that are being actively shared

(if write-through caches are used, then no write-backs are needed [33]). There is very

little extra hardware needed at the memory controller to support SCCC (relative to a

uniprocessor memory controller) and false sharing need not be a problem. The main

drawback of SCCC is that because the decisions on when to invalidate or write-back a

memory location are made at compile-time, the decisions must be conservative. This

can cause unnecessary invalidations and writes to memory, leading to more tra�c on

the interconnection network and higher memory latency, and lower cache hit rates. The

question is whether the bene�ts of SCCC outweigh these costs. That is a question I want

to address in this chapter.

The rest of this chapter is organized as follows. Section 5.1 describes SCCC in more

detail. Section 5.2 is an explanation of why relaxed models are an integral part of any

system using SCCC. It also explains which memory models can be used in an SCCC

system, and which cannot as well as explaining why there have been some misunder-

standings about this in the past. In Section 5.3 a simulation of an SCCC system is

presented and in Section 5.4 its results are discussed. In Section 5.5 is a discussion of

previous work in this area.

5.1 SCCC in Detail

Directory-based HWCC is based upon having information that identi�es the processors

which have cached copies of a line. That information is usually located in a main memory

directory associating states with lines.

1

When a processor needs an exclusive copy of a

line, a message is sent to invalidate all other copies of the line. Global information is

1

An exception is SCI [59] which keeps a chain of pointers in the caches of the processors

caching a line.

82

maintained and action is taken globally. SCCC on the other hand relies only on local

information and local actions. Neither other processors nor the main memory know

anything about whether a processor is currently caching a copy of a line nor if it has

written to it.

Software controlled cache coherence can be implemented in several di�erent ways.

Regardless of how it is implemented, the main concept of SCCC is that it does not rely

on hardware to guarantee that the processor is reading the latest values for a location.

The compiler or the programmer inserts special instructions, described below, which

ensure that the values to be read are the latest. Which instructions are inserted and

where depends upon the program and the SCCC scheme. The set of instructions which

are implemented on a given system may vary. However, they are usually chosen from a

larger set (cf. Table 5.1.1) that I will review now.

5.1.1 Instructions for SCCC

An instruction that is almost always available is one that invalidates a speci�c memory

location in the cache. This instruction guarantees that the next time this address is

read, the line will be brought into the cache. If the line is dirty when the invalidation

is executed, the semantics of the operation may cause an exception or may simply write

the dirty value back to memory while leaving the line clean or invalid (the latter choice

is often called a ush). If a write-through cache is used, there are no dirty lines and this

is not an issue. Another instruction sometimes proposed in the literature is one that is

able to invalidate the entire cache; it is usually only considered for systems with write-

through caches and will not be considered in this dissertation. Invalidating the entire

cache is not usually considered an option for a write-back cache since writing back to

memory all the dirty lines in the cache would take too long and would require too much

hardware complexity. Instead of invalidation instructions, there could be a read memory

instruction that forces a value to be read from main memory, even if it is present in the

cache [34].

83

Table 5.1: Special Instructions for SCCC

Instruction E�ect

Invalidate causes the word (or line) in the cache to be invalidated

Write Back writes the value in the word back to memory if dirty

Flush same as invalidate, but writes back dirty words as well

Read Memory reads a location from memory, even if present in the cache

Write Through writes a value into the cache and to memory

If write-through caches are used, instructions to locally invalidate words are su�cient.

However, if write-back caches are used, then the program needs the ability to forcibly

write values back to memory. This can come in one of two forms: either write a speci�c

location back to memory (if dirty), a write-back or post instruction, or a normal write

to the cache of a new value accompanied by a write through to main memory, a write-

through instruction. Either alternative is su�cient, but there are gains to be made from

providing both, if practical (this is discussed further in Section 5.3.3).

All these instructions may be used in a number of ways. Typically though, before a

release operation all values that have been updated will be written-through or forcibly

written-back to memory, and before an acquire, any data to be accessed subsequent to

the acquire which might have been updated elsewhere will be locally invalidated in order

that the updated values will be subsequently read from memory. Some special cache

states may be provided which reduce how often the program will need to take action to

maintain coherence (see Section 5.3.1).

5.1.2 SCCC Line Size

An issue that is often raised in SCCC systems concerns the choice of the line size in

the cache. Most previous proposals for SCCC have assumed a line size of one word.

This assumption facilitates the analysis necessary to insert the instructions described in

Section 5.1.1. If the line size were greater than one word, then values could be brought

84

into the cache without being explicitly referenced. This complicates the determination

of what needs to be invalidated.

Most modern caches have a line size greater than one word due to the performance

bene�ts for programs that exhibit spatial locality (e.g., see Gauss in Figure 4.3). So

limiting cache line sizes to only one word is a choice most architects would not support.

In addition, SCCC may bene�t relative to HWCC when line sizes are greater than

one word because false sharing is not a problem for an SCCC system given the proper

hardware support. False sharing occurs in HWCC systems when multiple processors are

each writing di�erent words in the same cache line, causing thrashing of the cache line.

This can be avoided in an SCCC system by maintaining dirty bits on a per word basis.

When a line is replaced in the cache and must be written back to memory, the dirty bits

can be included with the line to make certain only the new values are written back to

memory. Otherwise a problem similar to that described in Figure 4.1 will occur.

5.2 Relaxed Models and SCCC

2

5.2.1 Why Relaxed Models and SCCC

Relaxed models of memory consistency are an important element of any system that

uses SCCC. To understand why this is, we must go back to the de�nition of sequential

consistency, repeated here:

[A system is sequentially consistent if] the result of any execution is the

same as if the operations of all the processors were executed in some sequential

order, and the operations of each individual processor appear in this sequence

in the order speci�ed by its program.

It is not clear what is meant by executed, a term for which we do not have a formal

de�nition. Performed seems the most likely synonym for this term. The de�nition of

2

The reader is advised to review Section 3.5 before reading this section and Sec-

tion 5.3.2

85

performed again is:

A LOAD by processor I is considered performed with respect to processor

K when issuing of a STORE to the same address by processorK cannot a�ect

the value returned to processor I . A STORE by processor I is considered

performed with respect to processor K, at a point in time when an issued

LOAD to the same address by processor K returns the value de�ned by the

STORE. An access by processor I is performed when it is performed with

respect to all processors. A STORE is globally performed when it is performed

with respect to all processors. A LOAD is globally performed if it is performed

with respect to all processors and if the STORE which is the source of the

returned value has been globally performed.

Note that the de�nition of performed says that a store is performed with respect to a

processor K at a point in time when K could read the new value if it were to issue a

load instruction. As far as the de�nition is concerned, it does not matter that we may

know that the processor will not be reading that location (e.g., because we know all

the programs have no data races). If K could issue a load and still read the old value,

the store is not performed with respect to K. If the term executed in the de�nition

of sequential consistency is really performed, then there can be no sequential order of

accesses in an SCCC system because accesses are not performed atomically. Consider

the following example. If a new value for location X has been written by processor A

into its cache, the access has been started. But the access has not yet completed. It will

not be performed until all processors have invalidated their old cached copies of X and A

has written the new value to main memory, which may be much later. In the meantime,

another access, a write of Y by processor B, may have been initiated and performed. So

the write of Y started after the write of X , but completed before the write of X . This

implies that there can be no sequential ordering of these two accesses, and therefore the

system is not sequentially consistent.

86

Since an SCCC system is not sequentially consistent, it is natural to consider if it

obeys any relaxed models. Consider the system Chen and Veidenbaum simulated in their

study of SCCC [33]. It had write-through caches, and the programs only used DoAll loops

to express parallelism, which meant that the only synchronization operations needed were

barriers. Since write-through caches were used, memory was always up-to-date and no

forced write-backs were ever needed. At every barrier the entire cache was invalidated.

This way, if data which had been updated by another processor in the previous epoch,

i.e., the code between two barriers, was needed by this processor in the next epoch, the

updated copy would be read from memory. Chen and Veidenbaum said that the system

they simulated is weakly ordered. However, it is not. It does not obey the second rule of

weak ordering: no access to a synchronizing variable is issued in a processor before all

previous global data accesses have been performed. Part of the de�nition of performed

says: a STORE by processor I is considered performed with respect to processor K, at

a point in time when an issued LOAD to the same address by processor K returns the

value de�ned by the STORE. Given this de�nition, it is clear that a write of a variable

in Chen and Veidenbaum's system is not performed until such time as all the processors

have invalidated their caches. If processor A writes locationX , the store is not performed

until all processors have invalidated their caches. Until that time, another processor, B,

could read from its cache a value previously stored in X . Since a processor's cache is not

invalidated until that processor is about to enter the barrier, A can enter the barrier,

that is, start the synchronization operation, before B has entered the barrier, and hence

before B has invalidated its cache. So, A will be issuing an access to a synchronization

variable before all its normal accesses have been performed (because B will not have yet

invalidated its cache, and could read an old value of X , if it were to try).

The argument might be made that because only data-race-free programs are con-

sidered, the system is still weakly ordered. This is not the case, as was pointed out

in Section 3.5. The de�nition of weak ordering describes what the hardware must do.

No mention is made about the properties of programs that run on such hardware. The

87

equivalence for programs without data races of weakly ordered (WO) and sequentially

consistent (SC) machines was not shown by Adve and Hill [4] until four years after weak

ordering was �rst proposed [41].

A similar problem exists in a paper by Dubois et al. [42]. In that paper the authors

present the idea of delayed consistency. They consider an HWCC multiprocessor that

is release consistent, and whose caches have a multi-word line size. In that system, an

invalidation message from a sending processor to a receiving processor is queued at the

receiver's end. The invalidation is not processed until the receiving processor is about

to perform an acquire. This delay in processing invalidation messages is what motivates

the name \delayed consistency". If the programs do not contain data races, then any

invalidation message must be due to false sharing, not true sharing. So delaying the

invalidation does not cause an incorrect execution since the value that was updated and

caused the invalidation message to be sent will not be used by the processor receiving the

message until it performs an acquire (this is the reasoning of lazy release consistency).

But a system that implements delayed consistency is not release consistent (RC). It is

the same problem that was shown above in Chen and Veidenbaum's system. In an RC

system all the accesses must be performed before the release is performed. Even though

data race free programs will not read the locations in the cache that are to be invalidated

by the queued messages, if the processor were to read one of those locations, it would be

reading an old value, and the ability to read an old value is a violation of the conditions

of release consistency.

The common problem in both these cases is the insight from lazy release consistency

and my dissertation proposal [96]; that in SC executions of data race free programs

accesses do not need to be globally performed at a release, but rather at the following

acquire, and this is not in agreement with the de�nition of WO or RC. The meta-problem

though is that the hardware de�nition of weak ordering and release consistency gave the

architects no latitude. Both Chen and Veidenbaum and Dubois et al. proposed systems

that would give SC executions to data race free programs. But they were not WO or

88

RC. This is why the software-centric view of relaxed models presented in Section 3.5 is

so important. In fact, it would be very di�cult to design a system using SCCC which

is WO or RC. But it is not di�cult to design one that obeys Adve and Hill's DRF1

Condition. In fact, in Appendix 5.2.3 I show that Chen and Veidenbaum's system obeys

DRF1, and therefore the validity of their work remains unchanged. In Section 5.3.2 I

show that a system I study obeys DRF1. However, DRF1 needs to be explained in more

detail �rst.

5.2.2 DRF1 in More Detail

As described in Section 3.5, Adve and Hill presented a set of conditions that I will refer

to as the DRF1 Condition [5]. They have proven that these conditions, repeated in

Figures 5.1 and 5.2, are su�cient conditions for DRF1; that is, any hardware that obeys

these conditions obeys DRF1, and therefore provides SC executions to any data race free

program. Before showing that these conditions are obeyed by the SCCC system in the

previous section, they need to be explained in greater detail.

The following are a series of de�nitions for paired operations,

so0

�!,

so1

�!,

xo

�!,

po

�!,

hb1

�!, sub-operations of a memory access (X (i)) and control. All these de�nitions are

taken from Adve and Hill [1, 5].

Synchronization operation S

1

is a release operation, synchronization op-

eration S

2

is an acquire operation, and S

1

and S

2

are paired with each other

if and only if

1. S

1

is a write operation, S

2

is a read operation, S

1

and S

2

access the

same location, and S

2

returns the value written by S

1

,

2. the processor that executes S

1

uses S

1

to communicate the completion

of all its memory operations ordered before S

1

by program order to the

processor that executes S

2

, and

3. the processor that executes S

2

uses S

2

to conclude the completion of

89

the operations of the processor that executed S

1

that are before S

1

by

program order.

Synchronization-order-1: In an execution, memory operation S

1

is ordered

before S

2

by the

so1

�! relation if and only if S

1

is a release operation, S

2

is an

acquire operation and S

1

and S

2

are paired with each other.

Synchronization-order-0: X

so0

�! Y if X and Y are conicting synchro-

nization operations and X(i)

xo

�! Y (i) for some i.

The program order (denoted by

po

�!) for an execution is a partial order

on the memory operation of the execution de�ned by the text of the pro-

gram [87].

An execution order, denoted by

xo

�!, for an execution of a program is a

total order de�ned on the sub-operations (de�ned by Collier, below) of the

execution such that a read sub-operation returns the value of the write sub-

operation ordered last before it that is to the same location and executes

in the same memory copy as the read. There may be more than one

xo

�!

corresponding to an execution. Sub-operations of an execution appear to

have executed in some order if an

xo

�! for that execution satis�es the order.

The

hb1

�! relation for an execution is the irreexive transitive closure of

po

�! and

so1

�!, i.e., (

po

�! [

so1

�!)

+

(

hb1

�! stands for happens before).

From Collier [37]:

A shared-memory system with n processors, P

1

, P

2

, : : :, P

n

is represented

as follows.

1. Each processor has a copy of the shared memory.

2. A write operation W , on location x, is comprised of atomic sub-opera-

tions W (1);W (2); :::;W (n), where the sub-operation W (i) atomically

updates the location x in the memory copy of P (i) to the speci�ed value.

90

3. A read operation R, by processor P

i

, on location x, is comprised of a

single atomic sub-operation R(i), that results in returning the value of

x in the memory copy of P

i

.

DRF1 Condition: Hardware satis�es Condition 2.1 (de�ned earlier in Adve and

Hill [5]) and therefore obeys the data-race-free-1 memory model if for every execution,

E

drf

, of a program, Prog, on the hardware, there is an

xo

�!, that satis�es the following

conditions:

1. Data - Let Rel and Rel

0

be release operations and Acq and Acq

0

be acquire

operations. Let Z be any operation. Let X and Y be conicting operations such

that at least one of X or Y is a data operation.

(a) Release-Acquire -

i. If Rel

so1

�! Acq, then Rel (i)

xo

�! Acq (j) for all i, j.

ii. If Z

po

�! Rel

0

so1

�! Acq

0

po

�! Rel

so1

�! Acq, then Z(i)

xo

�! Acq (j) for all

i, j.

(b) Post-Acquire -

i. If Acq

po

�! Z, then Acq (i)

xo

�! Z(j) for all i, j.

ii. If X

po

�! Rel

so1

�! Acq

po

�! Y , then X(i)

xo

�! Y (i) for all i.

(c) Intra-processor - If X

po

�! Y , then X(i)

xo

�! Y (i) for all i.

2. Synchronization - Let X , Y and Z be synchronization operations.

(a) If Y

po

�! Z, then Y (i)

xo

�! Z(j) for all i, j.

(b) If X is a write operation, Y is a read operation that conicts with X and

X

so0

�! Y

po

�! Z, then X(i)

xo

�! Z(j) for all i, j.

(c) If X and Y are conicting write operations, then either X(i)

xo

�! Y (i) for

all i or Y (i)

xo

�! X(i) for all i.

Figure 5.1: DRF1 Condition: Su�cient Conditions for DRF1, parts 1 and 2

Adve and Hill go on to say [5]:

Although real systems do not usually provide physical copies of the entire

memory to any processor, a logical copy of memory can be assumed to be

associated with every processor. For example, in a cache-based system, the

91

3. Control -

(a) Let read R control an operation X or determine the value that X writes

(if X is a write). Then R(i)

xo

�! X(j) for all i, j.

(b) Consider any sequentially consistent execution, E

sc

, of Prog and operations

X and Y such thatX

po

�! Y and eitherX and Y conict, orX is an acquire,

or Y is a release, or X and Y are synchronization operations in E

sc

. Let

operation X not be executed in E

drf

and operation Y be executed in E

drf

.

Let read R control operation X in E

sc

and let R be one of the reads in

E

drf

whose value determined that X would not be executed in E

drf

. Then

R(i)

xo

�! Y (j) for all i, j.

(c) If X

po

�! Y and X is an acquire, then X(i)

xo

�! Y (j) for all i, j.

(d) Let X and Y be synchronization operations. If X

po

�! Y , then X(i)

xo

�! Y (j) for all i, j.

Figure 5.2: DRF1 Condition: Su�cient Conditions for DRF1, part 3

1. IfX and Y are conicting operations, at least one ofX and Y is a data operation,

and X

hb1

�! Y , then X (i)

xo

�! Y (i) for all i.

Figure 5.3: Alternate Data Requirement for DRF1 Condition

logical copy of memory for a processor may be the union of the processor's

cache and all the lines from the main memory that are not in the cache.

Also, in a real system, some sub-operations may not be distinct physical

entities. However, logically distinct sub-operations can be associated with

every operation and a memory copy. For example, an update of main memory

on a write constitutes the sub-operations of the write in the memory copies

of the processors that do not have the line in their cache. Finally, in most

real systems, sub-operations appear to execute atomically, i.e., the result of

an execution is as if the sub-operations executed in some sequential order.

A read R controls memory operation X if (a) both R and X are by the

same processor, and (b) the value that R returns determines if X will be

92

executed, or determines the location accessed by X , or determines the value

written by X (if X is a write).

A condition such as \X (i)

xo

�! Y (j) for all i; j" implicitly refers to values

of i and j for which both X (i) and Y (j) are de�ned.

Adve and Hill also say that a reference to X(i) for all i in the case where X is a

read is only de�ned for the processor issuing the read. Also, \X(i)

xo

�! Y (i) for all i"

implicitly refers to values of I for which both X(i) and Y (i) are de�ned.

The DRF1 Condition in Figures 5.1 and 5.2 has three main parts. The data require-

ment has a number of subcomponents. Adve and Hill [5] also show that an alternate data

requirement with fewer subcomponents may be used in instead of sub-condition 1. In

certain proofs of obeying DRF1 I will use this alternate condition, which is in Figure 5.3.

5.2.3 Obeying DRF1

Chen and Veidenbaum

The proof that Chen and Veidenbaum's system obeys DRF1 is in Appendix D.

Dubois et al.

There is not enough information in Dubois et al. [42] to determine if their system obeys

DRF1. However, most likely it does as most systems obey DRF1.

3

Adve and Hill [5] do

explain why most systems obey DRF1 by describing what architectural features result

in a system obeying each of the requirements.

5.3 Methodology

In this section I will describe the methodology used in my simulation of an SCCC system.

Section 5.3.1 describes the basic architecture used. Section 5.3.2 shows that this system

3

If the system is RCpc instead of RCsc, it cannot obey DRF1. However, it is not

clear in from their paper [42] if the system is RCpc or RCsc.

93

does obey DRF1. Section 5.3.3 describes the benchmarks used.

5.3.1 Basic Architecture

This simulation uses the same Cerberus simulator and basic architecture described in

Section 4.3.1. Only di�erences between the two architectures will be expounded upon.

There is no cache coherence hardware at either the cache or the memory controller.

The memory controller now simply receives memory requests without any indication if a

request is for read or write. The request is satis�ed by the memory module and the line is

returned to the requesting processor. There is no possible delay for coherency messages

to be sent and acknowledged. Also, the memory latency in the case of no contention is

now one cycle shorter (17 cycles) since there is no longer any directory look-up phase.

There are three new features for the memory controller. The �rst two are both related

and simple features to implement. They entail writing of individual words or selected

words within a line rather than whole lines. First, the memory must now be able to

accept short messages which are updates to single words. Second, for reasons explained

below, when an entire line is written back, there is now a mask associated with the dirty

line. The mask is a bit vector indicating which words in the line from the processor are

actually dirty and need to be written back. If the bit for a given word is not set, then

no change is made to the memory copy of that word.

The third new feature of the memory controller relates to synchronization. Since

there is no hardware to maintain cache coherence, synchronization variables are not

cached, and all synchronization is done at the main memory. To avoid polling across the

network, the synchronization primitives implemented are similar to full/empty bits [88].

However, the bits are not separate from the memory word, but rather, are stored in the

word. So any memory location can be used for synchronization, but it must be accessed

with one of three special instructions. The �rst instruction is read empty, which is used

for locking. Read empty checks a memory location and if the location contains a non-

zero value, the instruction will return successfully allowing the processor to proceed while

94

also storing a zero in that location. If the location contains a zero, then the processor's

request is enqueued at the memory module until such time as it can be executed (a FIFO

queue of outstanding synchronization requests is maintained per memory module) and

the requesting processor blocks while the read empty request is outstanding. Read full

is very similar to read empty. However, instead of leaving a zero in the memory location

after reading it (reading it and leaving it empty), in this case it leaves the value unchanged

in the memory location. This instruction is useful when a number of processors need to

read a global ag for a synchronizing read. The third instruction is write sync which is

used for unlocking. It writes a given value into a memory location and then attempts

to see if the memory module's enqueued synchronization requests can now succeed.

Write sync does not stall the processor.

Three other instructions are added for SCCC. The executing program can direct that

a speci�c word in its cache (if present) be invalidated, thereby forcing the next reference

to that location to be fetched from main memory (an exception occurs if the word is

dirty). There is also an instruction to forcibly write a word from the cache back to the

main memory (if present in the cache). Finally, there is an instruction that performs a

write-through of the cache. If the word is in the cache, the word is updated there and

in main memory. Otherwise the word is just updated in main memory. If it is known

that a write to a location will always be executed and it is the last write to that address

before a release, it is preferable to use a write-through instead of write-back in order to

improve code density (this is discussed further in Section 5.3.3).

In the cache there is no longer a single dirty bit associated with each line. Instead

there are three state bits associated with each word in a cache line, and these can

represent one of �ve di�erent states (cf. Table 5.3.1). INVALID and DIRTY are self-

explanatory. Before explaining the other states, the programming model assumed must

�rst be explained.

In all programs the software will need to forcibly write-back to memory new values

95

Table 5.2: SCCC Cache States

State Meaning

INVALID word not valid, fetch from memory

STALE word valid if read before next barrier

DIRTY word in cache is dirty

FRESH word valid

GOOD word valid, just written back to memory

for a location.

4

If the program only uses barriers for synchronization (e.g. when only

DoAll loops are used to express parallelism), then the software need never explicitly

invalidate cached memory locations (why is explained in the next paragraph). If locks

or synchronizing reads or writes are used, then the software must explicitly invalidate

memory locations in addition to writing them back in order to maintain coherence.

To correctly execute programs that use only barrier synchronization, the architecture

takes advantage of the semantics of such programs. Between two barriers, i.e., an epoch,

there can be no inter-processor data dependency. If there were, then some form of

synchronization such as a synchronizing read/write pair would be needed. Therefore,

between barriers it is never the case that a processor writes data that another processor

needs before the next barrier. Before the barrier is reached the software must guarantee

that all data that is dirty and may be needed by another processor in the next epoch is

written back. If a processor reads a location in epoch i that was written by a di�erent

processor during epoch i�1, then it needs to read the updated value from main memory,

not its cache. The read from memory is guaranteed by the \aging" of words in the cache.

When there is a read miss in the cache, the necessary line is fetched from memory.

The word that is read is brought into the cache in state FRESH. All the other words

in the line are brought in state STALE. If a STALE word is read at any point, it is set

to state FRESH. When the barrier is reached, those words which have been referenced

4

Software here can refer to actions taken by the programmer or the compiler to ensure

coherence. It is irrelevant to the architecture who has that responsibility.

96

during the past epoch will be FRESH (or DIRTY). If they have been brought into the

cache only because of spatial locality, then they will be STALE. As part of the barrier

transition, FRESH words are changed to STALE ones, and STALE ones are changed

to INVALID ones. If the word was STALE, it was not referenced by this processor in

this past epoch, and therefore may have been written by another processor, and should

be invalidated since its value may be out of date during the next epoch. If the word

was FRESH, it can be kept valid in the cache into the next epoch since it could not

have been updated by another processor during that past epoch (if it had been, there

would be an inter-processor data dependency). However, it must be kept in the cache in

state STALE since we do not yet know if it will be referenced in the next epoch by this

processor. If it is not referenced by this processor in the next epoch, another processor

may write it, in which case this copy needs to be invalidated at the following barrier,

which happens if it is still STALE. If it is referenced by this processor during this epoch,

it will automatically be set to state FRESH by the read.

"!

"!

"!

"!

?

-

?

-

110 010

100 000

FRESH STALE

STALE INVALID

Toggle = 1

Toggle = 0

Figure 5.4: State transitions at barriers for \aging" of cache words

Although \aging" was simulated, the length of time for the process was not modeled.

There are two reasons that choice was made. Since \aging" occurs as part of a barrier, it

could easily be overlapped with the barrier code and not require extra time to implement

97

it, except perhaps for the �nal processor that arrives at the barrier, and in that latter case

it still may depend upon the type of barrier implemented and the number of processors

synchronizing. The other reason for not counting cycles \aging" is that given the right

state encodings, it can be implemented fairly easily and take very little time. Consider

the DIRTY, FRESH, INVALID and STALE states. Suppose three bits are used and

their encodings respectively are 001, 110, 000, and either 010 or 100 for STALE (see

Figure 5.4). When a word is set to the STALE state (e.g., when it is brought into the

cache because another word in the same line is referenced), the encoding for STALE that

is used is based upon a one bit toggle. When a barrier is reached, the �rst or second

leftmost state bit of every word in the cache is cleared and the bit that controls the

STALE state is toggled. Whether it is the �rst or second state bit that is cleared is

determined by the toggle bit. This way the bit cleared alternates at every barrier. This

also means that every word that is FRESH will be set to STALE after one barrier and

then INVALID after a second one (unless some other action changes the state). So a

word starts out in state 110, then transitions to 100 or 010 and then to 000. The state

transformation can be accomplished in a cycle or two since the bit is cleared for every

word in the cache, regardless of the state it is in.

An additional cache state is useful. This happens in the case of a synchronizing

read/write, where a memory location needs to be written back by the writing processor

and invalidated (forcing a memory read) in all the reading processors. In some programs,

such as gaussian elimination, the processor writing the value back also needs to read it.

There is no reason for it to invalidate its own copy, which is up-to-date. Rather than

requiring the software to check and see if it was the writing processor, and hence, it

need not do the invalidation (this extra test has detrimental aspects; see Section 5.4), a

simple solution was found. A new state, GOOD, was introduced. A word that is written

back is set to GOOD rather than FRESH. A GOOD word is treated the same as FRESH

except when an attempt is made to invalidate a GOOD word. In that situation its state

is changed to state FRESH rather than INVALID. If both the GOOD state and the fast

98

mechanism for \aging" are to be used, then four states bits would be needed.

Finally, it was decided that there is no change to the state of a word that is DIRTY

at a barrier. Initially it seemed that this should be an error and cause an exception.

However, it was realized that there are points in the program's execution, such as in the

iterative relaxation benchmark, when the programmer may realize that shared data is

not being shared. If the software does not force the data to be written back, then the

hardware trusts the software to know what it is doing.

5

Since there is no longer a directory at the memory controller, when a line is replaced

due to a conict or capacity miss, it is not the case that a message is automatically sent

to the memory to report the spill. A message is sent only if there is a dirty word in the

line being replaced. But care must be taken when writing the line back to memory. In

an SCCC system it is possible for two processors to have the same line dirty. Processor

A may have written the �rst word in a line and processor B may have written the second

word in the same line. If A writes back the line and memory totally overwrites its own

copy with A's and then B does the same, then A's update is lost (this is similar to the

problem described in Figure 4.1). So, when a dirty line is replaced in the cache, the

entire line is sent to main memory. However, a bit vector is sent along as well. A bit is

turned on only for those words which are dirty, and only those words with a bit on are

updated in main memory (recall the features required for the memory controller at the

beginning of this section).

5.3.2 Conforming to DRF1

While showing that my system obeys DRF1, I will not use the data requirement of the

DRF1 Condition in Figure 5.1. I will show that my SCCC system obeys the alternate

data requirement in Figure 5.3, although for the rest of the proof, I will use the control

and synchronization requirements of the DRF1 Condition.

5

This may only be necessary because the Cerberus compiler does not allow global

private data, forcing Relax to use the shared data space at times when it is not truly

necessary.

99

Data Requirement

There are two major situations to consider for the condition in Figure 5.3. X and Y could

both be issued by the same processor or they could be issued by di�erent processors. If

they are on the same processor and one of X and Y is a read, then X (i)

xo

�! Y (i) is

only de�ned for i equal to the issuing processor. Since they are conicting operations,

they are accessing the same location, and the data dependence hardware will not allow

Y to be issued until X completes. The hardware always stalls whenever an attempt is

made to execute an access to an address that already has an outstanding access.

If both X and Y are writes, then it is more complicated. X has completed when

the new value written by X is written back to main memory and each processor has

invalidated its cached copy of the location (or did not have a cached copy of the location

initially). As said in the previous paragraph, if an attempt is made to execute Y if X has

not completed, it will result in the processor stalling. So X(i) for i equal to the issuing

processor will always complete before Y (i). If the value in the cache is to be written back

to memory, and the value is still that written by X , it cannot be received at memory

after Y 's value if Y 's value is written back later or even immediately following as part

of a write-through. There is no bypassing in the network, and it is an omega network,

so there is only one path from each processor to memory. A message M sent from A

to B before a message N , will always arrive at B before N . So there is no way for

the write by X to arrive at memory after the write of Y , and other processors will only

see the new value by loading it from memory. There is no direct processor to processor

communication which would allow the value of Y 's write to arrive at another processor

before X 's.

If X and Y are on di�erent processors, the process is similar. For the

hb1

�! relation to

hold, there must be an intervening Rel

so1

�! Acq relation. The release operation will not be

issued until such time as all reads have returned values and all writes have completed to

main memory. The acquire paired with the release will not complete until the release has

completed and the processor issuing the acquire will stall until the acquire completes.

100

Remember that if X or Y is a read, X(i)

xo

�! Y (i) for all i refers only to i equal to

the processor issuing the read. If Y is the read, then the reading processor will have

invalidated the location Y references before the acquire (this is part of the system, as

enforced by the compiler). Therefore Y (i) will refer to the memory copy, which will be

up-to-date because it will have been written back to main memory before the release was

issued, and X(i) will have completed for i equal to the reading processor before Y (i)

is issued. If X is the reading processor, the read will have completed before the release,

and hence, before Y is even issued.

If X and Y are both writes, then X(i)

xo

�! Y (i) for all i refers to all processors. This

condition is only not obeyed if Y (i)

xo

�! X(i) for some i. As mentioned in the previous

paragraph, before Y is even issued, X 's value is written to main memory. A processor

cannot read the value Y writes and then the value X wrote. A request is satis�ed �rst

by the cache, and then by memory if necessary, not by another processor. Until Y 's

value is written back to memory, thereby overwriting X 's, only X 's value is read from

memory. The processor that originally executed X will not write the value back again

since it is clean in its cache and neither will any processor that cached it. The processor

that executes Y will read Y 's value from its cache before Y is written back to memory.

But it will never read X from memory since before it would read that location from

memory, it would have written the dirty value in its cache back.

Synchronization Requirement

Sub-condition 2.a basically says that synchronization operations need to be sequentially

consistent. My implementation of SCCC implements processor consistent synchroniza-

tion operations. However, this is not really an issue in performance or correctness.

Synchronizations were made PC for implementation simplicity. However, given the data

sets used in my simulation, synchronizations do not occur frequently enough that a re-

lease overlaps with a subsequent acquire. Therefore, the fact that the synchronizations

are PC instead of SC never comes into play. However, if I were to rewrite the simulator,

101

I would implement SC synchronization operations.

As in the Chen and Veidenbaum system, sub-conditions 2.b and 2.c are obeyed

because synchronization variables are not cached.

Control Requirement

3.a: There is a data dependence somewhere between R and X . Since instructions are

issued in order, the processor will stall before possibly executing X due to the hardware

enforcement of data dependences and the condition is obeyed.

3.b: In SCCC instructions are issued in order. Since R controls X , R must complete

before it can be determined that X is not executed. Therefore R (i) for all i is true

before Y is even issued since X

po

�! Y and there is in order instruction issue.

3.c: Since X is an acquire, and the processor issuing X stalls until X has completed

and there is only one copy of a synchronization variable, X(i) for all i completes when

the acquire has completed, which is before Y is even issued. So X (i)

po

�! Y (j) for all

i, j holds.

3.d: This is the same condition as 2.a.

This completes the proof that my implementation of SCCC on the model architecture

obeys DRF1.

5.3.3 Benchmarks

The two benchmarks used are Gauss and Relax from Section 4.3.1. In order to run them

on the SCCC version of the simulator, special instructions for invalidations, write-backs

and write-throughs were added by hand to the source and assembly language versions of

the programs. The analysis needed for the addition of these instructions was too complex

to allow the use of the other Section 4.3.1 benchmarks, Qsort and Psim. It would have

been too laborious to do the marking manually, although a compiler would hopefully be

able to do the marking automatically (albeit more conservatively).

To provide some idea of the work needed and to facilitate later observations, I will

102

present the modi�cations that were necessary for the SCCC versions of the programs.

However some constructs need to be explained �rst. The statement MASTER guarantees

that only one processor will execute the following statement or block. It is used during

initialization or to simulate a sequential code block (SCB) of a barrier by using MASTER

between two of Cerberus' buttery barriers [22], which is a type of barrier that does

not permit an SCB. \read full" is a routine that implements the read full instruction

described previously. The unlock routine implements the write sync instruction. Asm(

\sync") inserts into the assembler code a SYNC instruction, which stalls the processor

until such time as there are no outstanding memory accesses. This was used in the WO

system since there was no instruction to simulate synchronizing reads and writes.

for (steps = 0; steps < iters; steps++) f

/� �rst do all the calculations. �/

for (x = xstart; x < xstart + xrange; x++) f

for (y = ystart; y < ystart + yrange; y++) f

mytile [x�xstart] [y�ystart] =

/� average of A [x] A [y] and its eight neighbors �/

g

g

BARRIER;

/� then write them into the matrix. �/

for (x = xstart; x < xstart + xrange; x++) f

for (y = ystart; y < ystart + yrange; y++) f

? ? ? A [x] [y] = mytile [x�xstart] [y�ystart];

g

g

BARRIER;

g

Figure 5.5: Relax code

The code for the heart of Relax on a hardware cache coherent machine is given in

Figure 5.5. Each processor computes the result of the relaxation on a sub-matrix of

103

size xrange by yrange starting at location (xstart, ystart). The processor writes the result

of this computation into the matrix mytile (each processor has its own, dynamically

allocated mytile matrix, but it is in shared memory). After the barrier synchronization,

each processor copies the new sub-matrix from mytile back into the main matrix, A. The

only di�erence between this code and the version for the SCCC system is that the line

marked with ? ? ? is a write-through for SCCC. That is, it is written directly to memory

as well as the cache.

for (k = 0; k < dims; k++) f

asm(\sync");

while (ags [k] == 0);

for (i = k + 1 + (TINDEX + TSIZE � (k % TSIZE)) % TSIZE;

i < dims;

i + = TSIZE) f

double temp = A [i] [k];

if (temp != 0.0) f

A [i] [k] = 0.0;

temp /= A [k] [k];

for (j = k+1; j < dims; j++) f

if ((i != j) jj ((A [k] [j] � temp) != A [i] [j]))

A [i] [j] � = A [k] [j] � temp;

g

B [i] � = B [k] � temp;

g

if (i == k+1) f

asm(\sync");

ags [i] = 1;

g

g

g

Figure 5.6: Gauss code, hardware cache coherence, reduction

The code for Gauss on a hardware coherent machine is given in Figures 5.6 and 5.7.

Figure 5.6 has the code for the reduction phase and Figure 5.7 the code for the back

substitution phase (including the SCB between the two phases of the computation).

104

BARRIER;

MASTER f

B [dims � 1] /= A [dims�1] [dims�1];

ags [dims � 1] = 0;

g

BARRIER;

for (i = dims�1; i >= 1; i��) f

if (TINDEX == ((i�1) % TSIZE)) f

asm(\sync");

while (ags [i] == 1);

B [i�1] � = A [i�1] [i] � B [i];

B [i�1] /= A [i�1] [i�1];

asm(\sync");

ags [i�1] = 0;

g

else f

asm(\sync");

while (ags [i] == 1);

g

for (k = TINDEX; k < i � 1; k + = TSIZE) f

B [k] � = A [k] [i] � B [i];

g

g

Figure 5.7: Gauss code, hardware cache coherence, back substitution

The SCCC version is similarly divided in Figures 5.8 and 5.9. Write-throughs are again

labeled with ? ? ?. Write-backs and invalidations are indicated by routines with those

names (in actuality, the assembly language version of the program was modi�ed manually

for all three operations).

If Figures 5.6 and 5.8 are compared it is clear that a fair amount of code has been

added for the SCCC version and this code needs to be explained. The SYNC instruction

and the while loop on the second and third lines of Figure 5.6 are replaced by the

read full call in Figure 5.8. This synchronization is necessary so that the processor

does not attempt to read A [k] [j], j > k and B [k] before they have been updated (the

105

for (k = 0; k < dims; k++) f

if ((k > 0)) f

INVALIDATE(&B [k]);

for (j = k+1; j < dims; j++) f

INVALIDATE(&A [k] [j]);

g

g

read full(&ags [k]);

for (i = k + 1 + (TINDEX + TSIZE - (k % TSIZE)) % TSIZE;

i < dims;

i + = TSIZE) f

double temp = A [i] [k];

if (temp != 0.0) f

A [i] [k] = 0.0;

temp /= A [k] [k];

for (j = k+1; j < dims; j++) f

if ((i != j) jj ((A [k] [j] � temp) != A [i] [j])) f

A [i] [j] � = A [k] [j] � temp;

g

if (i == k+1) f

WRITE BACK(&A [i] [j]);

g

g

B [i] � = B [k] � temp;

g

else f

for (j = k+1; j < dims; j++) f

WRITE BACK(&A [i] [j]);

g g

if (i == k+1) f

WRITE BACK(&B [i]);

unlock(&(ags [i]));

g

g

g

Figure 5.8: Gauss code, software cache coherence, reduction

106

BARRIER;

MASTER f

B [dims � 1] /= A [dims�1] [dims�1];

for (i = 1; i < dims; i++) f

? ? ? ags [i] = UNLOCKED;

g

? ? ?ags [dims � 1] = LOCKED;

g

BARRIER;

for (i = dims-1; i >= 1; i��) f

if (TINDEX == ((i-1) % TSIZE)) f

INVALIDATE(&B [i]);

read full(&ags [i]);

B [i�1] � = A [i�1] [i] � B [i];

? ? ? B [i�1] /= A [i�1] [i�1];

unlock(&ags [i�1]);

g

else f

read full(&ags [i]);

g

for (k = TINDEX; k < i � 1; k + = TSIZE) f

? ? ? B [k] � = A [k] [i] � B [i];

g

g

Figure 5.9: Gauss code, software cache coherence, back substitution

updating is signaled by the writing of ags by the call to unlock at the bottom). The

two invalidates, one in a loop, just before the call to read full are to ensure that when

this processor reads A [k] [j], j > k and B [k], it reads the new values for those locations

that were updated by the processor that \unlocked" ags. Before ags is \unlocked",

the new values must be written to memory. Hence the write-back of B before the call to

unlock, and the write-back of A [i] [j]. The write-back of A [i] [j] is a good example of

the complexity of e�cient marking for SCCC. When I �rst modi�ed the code for SCCC,

there were far fewer additions. However, that code did not perform very well. It was

107

clear that new values were being written back to main memory for a given location too

many times and that too many invalidations were being done. The value computed in

the line A [i] [j] � = A [k] [j] � temp; was originally written-through every time this

statement was executed. But that caused many unnecessary writes. Instead it is now

forcibly written-back in one of two places: in the if statement inserted after the above

mentioned assignment statement or in the for loop in the else clause of the test of temp.

6

This reduces the consumption of interconnection network bandwidth and produces a

shorter run-time. However, there is a cost paid in how much code is executed. This is

examined in more detail in Section 5.4.

The code added to the back substitution phase is fairly straight-forward. The writing

of ags is replaced by calls to unlock and the spin-waiting on ags is replaced by read full

calls. The new values of B are written-through to main memory. This phase could be

more e�cient. However, the program spends only 5% of its time back substituting and

this simple scheme already was faster than on WO.

Another aspect of the SCCC modi�cations that I realized while conducting my ex-

periments is the di�culty in \getting it right". The original, overly conservative marking

of the program was easy to produce, and executed correctly. However, it executed a huge

number of unnecessary write-throughs to memory. The more e�cient version whose end

product can be found in Figures 5.8 and 5.9 required a fair bit of work. There were sev-

eral versions between the original and �nal ones that were incrementally more e�cient,

but not e�cient enough and not all the modi�cations were immediately more e�cient

and correct. Of course these transformations will hopefully all be done automatically by

a compiler or a tool that is part of a parallel programming environment. However, as is

always the case, the programmer may be able to place the modi�cations more e�ciently

based upon knowledge of the program's behavior.

6

There could be an if statement here checking to see if i equals k+1, but this was

found to be of negligible bene�t.

108

5.4 Results

16K, Relax

8 16 64

Line size (bytes)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

% Run-time

increase

over

WO

64K, Relax

8 16 64

Line size (bytes)

0

0.5

1.0

1.5

% Run-time

increase

over

WO

16K, Gauss

8 16 64

Line size (bytes)

0

5

10

15

20

% Run-time

increase

over

WO

64K, Gauss

8 16 64

Line size (bytes)

0

5

10

15

20

% Run-time

increase

over

WO

Figure 5.10: SCCC performance relative to WO

In Figure 5.10 are the results of comparing the performance of SCCC to WO (the

WO numbers are from Section 4.3.2). The bar graphs show the percent run-time in-

crease/decrease from using SCCC compared to WO for the range of cache line sizes used

previously.

5.4.1 Relax

For Relax SCCC provided equivalent performance to WO. The performance varied from

2% better to 1.5% worse. However, this should not be a surprise for Relax. The only

change made to the program was that one write be write-through. As described in

Section 4.3.2, those values that are being written-through would be replaced in the

109

cache naturally as part of the normal replacement process due to conict misses. So the

quantity of memory bandwidth consumed by SCCC and WO is the same. SCCC simply

uses the bandwidth a little sooner. As seen in Figures 5.11 - 5.13, there is little di�erence

in latency and memory module utilization between SCCC and WO. There is a di�erence

in the number of messages received at the memory modules, but it does not appear to

be large enough to make a di�erence in performance. WO performs slightly better with

larger line sizes and SCCC with smaller line sizes. There are two probable sources of this

di�erence. One is the replacement of clean lines. In WO when a clean line is replaced

in the cache, a message indicating the spill of the line must be sent to main memory

so that the directory can be updated. In the case of SCCC, if a clean line is replaced,

there is no message sent. The second di�erence occurs when writing the new values back

into the A matrix. Since write-through is used, if there is a miss in the cache, the line

is not fetched. That is, there is no write-allocate. In WO when there is a miss for this

write, a request for the line (which is not actually needed) is sent to memory, which

does not occur in the SCCC system. It should be noted that because a write-through

is executed for each element of the matrix, as the line size increases, there should be a

bene�t for WO since there will only be one message per line sent to memory when the

line is replaced instead of one per matrix element, a oating point double in SCCC. This

is reected by the graphs in Figure 5.13 which show more messages to memory for WO

with 8 byte lines, but fewer with 64 byte lines.

There was one statistic which indicated a signi�cant di�erence in the behavior of the

two systems. The SCCC system stalled for millions of cycles due to all the MSHR's

being full. Recall that whenever a write-through or write-back is done in the SCCC

system, the hardware must keep track of this outstanding access. This is needed so that

at a release point it is known whether or not all outstanding accesses have completed.

Thus for every write to memory, which refers to spills of dirty lines, write-throughs and

write-backs, an MSHR entry is used to keep track of the outstanding access. Upon

completing the actual write, the memory module must then send an acknowledgment so

110

Relax

8 16 64

Line Size

0

5

10

15

20

Latency

in

cycles

�

..........................

WO, 16K

�

..........................

WO, 64K

.

...........

SCCC, 16K

�

...........

SCCC, 64K

.....
..........

..........
..........

..........
.......
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.

�

�

�

........
...........

..........
..........

..........
...
..
.
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
.
..
..

�

�

�

...........
.

..
..
...

..
..
...
..
..

..
...
..
..
..

...
..

.

.

.

...........
...........

..........
.

.....
..........
.

.......
...

�

�

�

Gauss

8 16 64

Line Size

0

10

20

30

40

Latency

in

cycles

�

..........................

WO, 16K

�

..........................

WO, 64K

.

....................

SCCC, 16K

�

....................

SCCC, 64K

....................
..............................

..
.
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..

�
�

�

.
..
...
...
...
...
..
...
...
...
...
..
...
...
...
...
..
...
...
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

.........
.............

............
.
........
..
........
..
.......
....
...

.

.

.
....
...............................

..
...
..
..

..
..
..
..
...

.
..
..
...
..
.

...
..

� �

�

Figure 5.11: Memory Latencies

Relax

8 16 64

Line Size

0

6

12

18

24

Memory

Module

Utilization

(%)

�

..........................

WO, 16K

�

..........................

WO, 64K

.

....................

SCCC, 16K

�

....................

SCCC, 64K

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.
.
.

.
.
.
.
.

.

.
.
.
.
.
.

.

.

.
.

.
.
.
.
.
.
.
.
.

.

.

.

.

.

.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.

.

.
.
.

.

.

.
.
.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.

.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.

.

.
.
.
.

�

�

�

Gauss

8 16 64

Line Size

0

8

16

24

32

40

Memory

Module

Utilization

(%)

�

..........................

WO, 16K

�

..........................

WO, 64K

.

....................

SCCC, 16K

�

....................

SCCC, 64K

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

�

�

.....
......
.....
.....
......
.....
.....
......
.....
.............

..................
..................

.....

�

�

�

.

.

.

.

.

.

.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
..
.
.

.

.
.
.
.
.
.
.
..
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.

.

.

..
.....
....

....
.....
..
.
.....
....
.
..
.......
..
......
.....
...
.......
.
....

�

�

�

Figure 5.12: Memory Module Utilization

that the cache controller knows that it can clear the corresponding MSHR entry. When

a large number of writes to memory are done in comparatively short order, as in Relax,

there are often not enough MSHR entries. The processor is then stalled, hence the large

number of stall cycles. This does not appear to be a performance loss since SCCC was

still competitive with the WO system. A hypothesis was that SCCC would perform even

better if this bottleneck were removed. To this end I increased the number of MSHR's

from �ve to one hundred. The run-times were essentially the same. Given this behavior,

111

Relax, 16K

8 16 64

Line size (bytes)

0

25

50

75

100

Messages

to

Memory

WO

SCCC

Relax, 64K

8 16 64

Line size (bytes)

0

25

50

75

100

Messages

to

Memory

WO

SCCC

Gauss, 16K

8 16 64

Line size (bytes)

0

25

50

75

100

Messages

to

Memory

WO

SCCC

Gauss, 64K

8 16 64

Line size (bytes)

0

2.5

5

7.5

10

Messages

to

Memory

WO

SCCC

Figure 5.13: Number of Messages (10,000's) to Memory

it is clear that stalling until these writes can be completed at the memory module is not

a bottleneck. It seems likely that the memory module is continually busy during this

phase due to the large number of writes. There are enough writes to process that it

does not matter whether the processor sends out �ve and then sends out pending ones

individually as MSHR's become available, or if 100 are sent to memory in comparitively

short order. The memory is apparently equally busy in both cases. It may not seem like

this is the case given low memory module utilization (approximately 15%). However,

it should be remembered that this is an average over the entire run of the program

and that Relax writes to memory in a bursty fashion, mostly in the second phase of its

computation. Since there is a barrier at the end of this phase, the processor cannot

enter the barrier until all the writes have completed. It does not matter if the processor

112

stalls for a while before sending a write to memory which cannot be processed because

the memory module is already busy. If it did not stall, it would simply end up waiting

longer before entering the barrier.

Although lack of MSHR's was not a major bottleneck in this case, it could be in

some situations. For example, if a large number of writes were initiated with no barrier

following shortly after, then a processor would stall due to lack of MSHR's. Increasing

the number of MSHR's is undesirable as the MSHR's are a very complex structure [75]

and using them to monitor outstanding writes to memory is overkill. All that is needed

is a counter since it is the number of outstanding writes that must be kept track of, not

which individual ones are outstanding. With a counter, every time that a write-through,

write-back or a spill of a dirty line is initiated, we increment the counter. When an

acknowledgement returns from memory, we decrement the counter. When the counter

is zero, a pending release may be initiated. With a simple eight bit counter up to 255

outstanding accesses could be kept track of, a negligible amount of hardware compared

to a much smaller number of MSHR's.

There is one problem with the counter scheme and it occurs when a release operation

is delayed due to outstanding accesses, but the processor continues executing past that

point in the program. If the processor initiates more writes to memory, the counter

will be incremented and the release will be delayed until these post-release writes have

completed. The release cannot be initiated unless the counter is zero. One way to deal

with this problem is to stall the processor at the �rst write to memory after an uninitiated

release and restart the processor once the outstanding writes have completed and the

release has been initiated. A higher performance solution is to have two counters. One

of the counters is the current counter and all writes to memory increment that counter.

When a release is encountered in the instruction stream while there are outstanding

writes, all subsequent writes to memory increment the other counter. Each write to

memory carries a one bit tag to indicate which counter it used, and this tag is included

in the acknowledgement sent back to the processor. So the processor knows which counter

113

to decrement. Since the processor cannot have two release operations outstanding, two

counters are su�cient. The counter used by writes to memory would simply be toggled

every time an attempt is made to initiate a release. If there is a release operation waiting

on outstanding writes, it can be issued once its counter goes to zero.

5.4.2 Gauss

SCCC produces a noticeable performance di�erence for Gauss. Run-time increases 15-

20% compared to WO. These numbers are rather surprising at �rst given some of the

other statistics (see Figures 5.11 - 5.13) about the behavior of Gauss under HWCC and

SCCC which showed superior performance for SCCC in each of those statistics. It was

not a surprise that HWCC had a memory latency about 50% higher than SCCC. After all,

under HWCC the memory module may need to wait for responses to coherence messages.

However SCCC also had a lower memory module utilization and fewer requests received

by memory, indicating that the instructions added to maintain coherence were added

in a very e�cient manner. This demonstrates that the marking used was not overly

conservative and leading to excessive memory tra�c and increased run-time. The reason

for the increase in run-time was found through careful instrumentation of the program. It

turns out that the processors are spending millions of cycles executing extra instructions

to explicitly write-back and invalidate shared-memory locations. This overhead is from

all the extra instructions manually added as seen in Figures 5.8 and 5.9. However, when

approaches were used with fewer added loops, then the run-time was even greater due

to the excessively conservative approach producing extra messages to memory.

An increase of run-time of 15-20%, although not as good as the -2% to 1.5% per-

formance of Relax, is still competitive. In addition, it should be remembered that in

SCCC the cache and memory controllers are much simpler. This may provide other

gains that are di�cult to simulate (as mentioned above, I have already simulated a one

cycle speed-up in memory access time due to the lack of a directory look-up at the

memory module). The simpler controllers should be faster. In addition, cache coherence

114

hardware is notoriously di�cult to design, and the simpler design may speed-up the time

to market.

5.4.3 Higher Latency

16K, Relax

8 16 64

Line size (bytes)

0

2

4

6

% Run-time

increase

over

WO

64K, Relax

8 16 64

Line size (bytes)

0

1

2

3

% Run-time

increase

over

WO

16K, Gauss

8 16 64

Line size (bytes)

-5

0

5

10

15

% Run-time

increase

over

WO

64K, Gauss

8 16 64

Line size (bytes)

0

5

10

15

20

% Run-time

increase

over

WO

Figure 5.14: SCCC results graph, high latency

The observed memory latency in SCCC is much lower than in HWCC systems since no

coherence messages need to be sent when a line is requested from memory. This raises the

question of whether SCCC would perform better relative to WO if the memory latency

were higher since it would have more to gain. To attempt to answer that hypothesis

I increased the memory latency as best I could given the constraints of my simulator's

implementation. The memory access time was increased from seven to twenty-one cycles.

The network cycle time was also tripled. Due to the pipelined nature of the network

this did not totally increase the network latency in the desired way, but it did increase

115

the network contention. The observed latencies roughly doubled. The results are in

Figure 5.14.

Relax now has a slight across the board advantage when using HWCC. It is not quite

clear why this is the case or if it is large enough to be signi�cant. However, with the

higher latency, the number of stalls due to all MSHRs being full more than doubled.

Increasing the number of MSHRs to 100 did not produce a major change in the number

of stall cycles. So it seems likely now that stalls due to full MSHRs is a source of the

performance di�erence in this case (the number of stalls is much higher than it was for

the lower latency). However, it is not clear if the stalls are all from the writes in the

write-back phase of the program, or if some now are from the computation phase of the

program.

Gauss produces some interesting results with higher latency. For the 64K systemWO

still runs about 20% faster than SCCC. The hit rates are still high. So SCCC, which

has a lower memory latency, has very little opportunity to provide bene�t. Instead the

overhead of writing-back and invalidating dominates. For the 16K cache system though,

where before WO was 15-18% faster than SCCC, with the higher latency it is now from

�5 to 14% faster, a much greater spread, and one data point, for 16 byte lines, where

SCCC is faster. The explanation of this range a performance is somewhat complex as

it is the result of the interaction of two factors. First, Gauss has a tendency to write

large amounts of data sequentially. This is a gain for large cache lines for HWCC. If

40 consecutive doubles are to be written, then with 64 byte lines only �ve requests for

write access are made to memory (plus possible invalidation messages). If 16 byte lines

are used, then there are 20 such requests to memory. This is part of the reason that

Gauss has higher hit rates for larger line sizes. When hit rates are higher, it is usually

to the advantage of HWCC, since SCCC has lower latency and gains when there are

more messages to memory. The other factor to consider is that Gauss has some false

sharing, a behavior which does not adversely impact SCCC the way it does HWCC (see

Section 5.1.2). When 8 byte lines are used, false sharing is not a problem since Gauss

116

operates on doubles. So for Gauss, SCCC gains relative to HWCC when false sharing is

more of a problem, but HWCC gains when the hit rate increases with large line sizes.

This results in SCCC performing better for 16 byte lines, but HWCC performing better

for 8 and 64 byte lines. It should always be remembered that SCCC is �ghting against

the overhead of the invalidation and write-back instructions.

5.5 Prior Work

There have been very few trace-driven or instruction level simulation studies comparing

software controlled cache coherence to hardware coherent systems. The paucity of studies

is mostly due to the di�culty of experimentation. Marking of programs for SCCC is

di�cult. Address traces do not normally have the information necessary for a simulation

of SCCC; for example, when does a location need to be invalidated or written-back.

Therefore most studies have either used numerical models or probabilistic simulations.

Owicki and Agarwal [82] compared HWCC to SCCC using an analytic model. They

only compared SCCC to HWCC in a bus-based system which is really not comparable

to a large-scale multiprocessor with a multistage interconnection network.

Adve et al. [2] compared SCCC to HWCC using mean value analysis [90]. Using

various parameters, such as the type of access and sharing, they determined the relative

performance of SCCC to HWCC systems over a range of parameter values. They found

that for a large range of programs SCCC provided performance to within 10% of that of

HWCC depending upon the type of accesses. Not surprisingly, the major determining

factor for the system performance was how conservative the SCCC system was. However,

it also depended upon the type of data that was hitting in the cache; whether it was

read-mostly, migratory, write-mostly, etc. They only considered systems with one word

line sizes, so they do not take into account the advantage SCCC gains dealing with the

false sharing problem. Also, there is no indication in their paper that they consider the

e�ect of increased memory latency that HWCC must deal with as I observed in Gauss.

Chen and Veidenbaum [33] did a trace-driven study comparing SCCC and HWCC.

117

They considered caches with both eight and thirty-two byte lines. So they did con-

sider systems with line sizes larger than one word, which allowed them to study the

bene�t of SCCC over HWCC when there is false sharing. Chen and Veidenbaum had

a very simple architecture and set of benchmarks. As described in Section 5.2.1 their

program contained only DoAll loops and only synchronized using barriers. Their caches

were write-through, so main memory was always up-to-date. At barriers they simply

invalidated the entire cache. Their results showed that SCCC provided equivalent per-

formance in some cases, and was not a major loss of performance in others. However,

their study had several weaknesses. They did not consider the programs' run-time, only

the hit ratio. So it is di�cult to say what the real di�erence in performance was. Also,

write-through caches certainly make it easier to implement SCCC, but are not the usual

choice in a modern, large-scale, shared-memory multiprocessor. Finally, there are many

parallel programs that do not use DoAll loops, or only do so for part of their execution.

The e�ect of the explicit invalidations and write-backs that such programs require as

well as the e�ect of such instructions on code density was not considered.

Min [78] used trace-driven simulation to compare a SCCC system which he proposed

to other SCCC systems and to a HWCC system using directories. He found that his

system had equivalent hit ratios to the HWCC system. The HWCC system had lower

levels of write tra�c, but higher levels of network tra�c (due to invalidation messages).

However, this does not tell us what the run-time is, and therefore, which system has

greater performance. The study also only used programs with DoAll loops to express

parallelism and the caches had a line size of only one word, neither of which is realistic.

5.6 Conclusions

The experiments in this chapter showed performance for SCCC that was no worse than

20% relative to HWCC. This was while quantifying almost no bene�t from the simpli�ca-

tion of the cache and memory controller (memory access was one cycle faster in SCCC).

In many cases the performance of SCCC was similar to that of HWCC. In a few cases

118

the performance was slightly to noticeably better. The bene�t varied depending upon

the memory latency, the program and the cache size and structure. Based upon these

results it would seem that SCCC is de�nitely an option to consider in future large-scale

shared-memory multiprocessors, where the sheer system size results in excessive costs in

hardware, design time and run-time overhead for supporting hardware enforced cache

coherence.

The study in this chapter used only Gauss and Relax two array processing programs.

They were chosen because the relative simplicity of their access patterns and the short-

ness of the programs made it practical to do the marking for SCCC for them manually.

However, in the future a large variety of program types must be used as benchmarks.

This will clearly require the use of compiler marking of programs. The lack of compiler

support has been the paramount reason for the lack of good simulation study of SCCC

in the general case (as opposed to programs that only use DoAll loops) and must be

recti�ed. Also manual optimization of the marking process as I did for Gauss may not

provide us necessarily with an accurate image of what would happen on a real system.

Many compilers will not be as good as a person who knows something about the pro-

grams expected behavior. That is why tools that allow the user to give the compiler some

idea about the behavior of the program (e.g., range of values for a variable, especially

index variables, access patterns) are also necessary.

Chapter 6

Conclusion

In this dissertation we have seen how various features of the architecture and program

can a�ect the performance of parallel programs. The choice of synchronization primitives

and their use in high-level constructs such as barriers can have a de�nite impact on the

execution time of parallel programs. However, the pattern of synchronization operations

used by the programs is even more important. I have also demonstrated that implement-

ing a model of memory consistency that is more relaxed than sequential consistency can

yield signi�cant performance improvement by allowing the use of architectural assists

whose features that cannot be used under sequential consistency.

6.1 Synchronization

If a program's critical sections are extremely short (perhaps 100 cycles or even less)

and there is high contention for locks, then the lock algorithm will become a major

performance factor. However, the situation did occur in my experiments. There was

high contention for locks, but the critical sections were too long and they themselves

became the bottlenecks. There was too much sequential code and Amdahl's Law was

the limiting factor. So although how synchronization is supported in the hardware and

implemented in the software can have some performance impact, how the programmer

120

uses synchronization can be far more signi�cant.

Various types of synchronization including locking have been studied using arti�cial

benchmarks [10, 13, 56, 61, 76, 95]. Although these techniques are adequate for studying

di�erent alternatives for implementing synchronization, they only provide an \upper

bound" on the e�ciency of the mechanisms. The e�ect of di�erent synchronization

techniques on real programs, should be considered, a study I performed using trace-

driven simulation. However, a comparison of the two locking algorithms I chose could

easily be performed using actual runs of the programs on a real system. Future research

into synchronization should be encouraged to use real systems and real programs where

practical, something that is not usually done in the same study.

6.2 Relaxed Consistency Models

We have seen that sequential consistency provides a very natural memory model for the

programmer. However, although SC can be e�ciently implemented on a uniprocessor,

in the case of multiprocessors the model excessively constrains the architect. Under SC

many techniques for defraying the e�ects of memory latency cannot be used. Therefore,

relaxed models of memory consistency were developed. Relaxed models allow the archi-

tect to use more advanced architectural techniques while allowing the programmers to

still view machines as being SC if they are willing to accept the very natural restriction

of data-race-free programs.

My execution-driven simulation of four benchmarks in a \dance-hall" architecture

demonstrated that the use of relaxed models can provide signi�cant performance im-

provements to parallel programs. The performance gain is usually inversely proportional

to the cache hit rate. As memory latencies increase, relaxed models will provide even

greater bene�t.

I also showed that how programs are compiled for di�erent memory models mat-

ters. A schedule of instructions that provides the best performance for a program on

a weakly ordering system may provide sub-optimal performance on a sequentially con-

121

sistent version of the same architecture. In one of my benchmarks I uncovered a 10%

range in performance according to the ability of the instruction scheduler to take advan-

tage of features of the architecture that varied depending upon the consistency model

implemented.

Relaxed models do not specify architectural features to be used. They simply permit

these features to be used without violation of the memory model. A question that I

addressed was what features provide the greatest bene�t. It would appear that most

important was lock-up free caches, which in my system allowed reads to complete while

writes were outstanding (this can be allowed in di�erent ways on other systems [50]).

The next most important feature was non-blocking loads. However, they require compiler

support to be e�ective in a statically scheduled processor. The choice of which relaxed

memory model was implemented did not appear to be signi�cant.

Software controlled cache coherence, which can only be used on a system that imple-

ments a relaxed model of consistency, is an idea for future computer systems that should

be studied in more depth. I have presented a more realistic study than any previous

one. It used DoAcross loops instead of just DoAll loops, simulated write-back caches

with a multiword line size and was execution driven, so programs had actual invalida-

tion and write-back instructions included. I showed that depending upon the program,

cache structure and size, and the memory latency, SCCC can provide a slight perfor-

mance degradation, equivalent performance, or even a performance bene�t. However,

I used two fairly simple, array processing programs. More complicated programs must

be considered and compiler support and tools to allow for programmer guidance must

be developed if SCCC is ever to be practical. A true quanti�cation of gains from the

simpli�cation of the cache and memory controllers would also be useful information.

I have also explained why SCCC systems can obey neither sequential consistency

nor most of the usual relaxed models. I have shown that my and other SCCC systems

do obey the constraints of a software-centric model, data-race-free-1. DRF1 integrates

the rules a programmer must obey to obtain sequential consistent execution with the

122

consistency model, but it provides the architect with greater freedom in his or her design

and divorces the programmer from concerns about how the hardware is implemented.

Although multiprocessors have brought about huge increases in computing power/$,

many programs have yet to take full advantage of these machines. Simply building

machines with large numbers of processors, which have high peak performance rates is

not enough [17]. We need to learn how to better use these machines and how to design

them so they can be better used.

Bibliography

[1] Sarita Adve and Mark Hill. A uni�ed formalization of four shared-memory models.

To appear in IEEE Transactions on Parallel and Distributed Systems.

[2] Sarita V. Adve, Vikram S. Adve, Mark D. Hill, and Mary K. Vernon. Comparison

of hardware and software cache coherence schemes. In 18th Annual International

Symposium on Computer Architecture, pages 298{308, 1991.

[3] Sarita V. Adve and Mark D. Hill. Implementing sequential consistency in cache-

based systems. In 1990 International Conference on Parallel Processing, pages

I{47{50, 1990.

[4] Sarita V. Adve and Mark D. Hill. Weak ordering - A new de�nition. In 17th Annual

International Symposium on Computer Architecture, pages 2{14, 1990.

[5] Sarita V. Adve and Mark D. Hill. Su�cient conditions for implementing the data-

race-free-1 memory model. Technical Report #1107, Department of Computer Sci-

ence, University of Wisconsin, Madison, September 1992.

[6] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. APRIL: A

processor architecture for multiprocessing. In 17th Annual International Symposium

on Computer Architecture, pages 104{114, 1990.

[7] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler Activa-

tions: E�ective kernel support for the user-level management of parallelism. ACM

Transactions on Computers Systems, 10(1):53{79, February 1992.

124

[8] Thomas E. Anderson. The performance implication of spin-waiting alternatives for

shared-memory multiprocessors. In International Conference on Parallel Processing

1989, pages II{170{174, 1989.

[9] Thomas E. Anderson. The performance implication of spin-waiting alternatives for

shared-memory multiprocessors. Technical Report 89-04-03, Department of Com-

puter Science, University of Washington, April 1989.

[10] Thomas E. Anderson. The performance of spin-lock alternatives for shared-memory

multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 1(1):6{16,

January 1990.

[11] James Archibald and Jean-Loup Baer. An economical solution to the cache coher-

ence problem. In 11th Annual International Symposium on Computer Architecture,

pages 355{362, June 1984.

[12] James Archibald and Jean-Loup Baer. Cache coherence protocols: Evaluation using

a multiprocessor simulation. ACM Transactions on Computers Systems, 4(4):273{

298, November 1986.

[13] Norbert S. Arenstorf and Harry F. Jordan. Comparing barrier algorithms. Technical

Report 87-1-2, Department of Electrical and Computer Engineering, University of

Colorado, June 1987.

[14] Jean-Loup Baer and Tien-Fu Chen. An e�ective on-chip preloading scheme to reduce

data access penalty. In Supercomputing '91, pages 176{186, 1991.

[15] Jean-Loup Baer and Wen-Hann Wang. Multi-level cache hierarchies: Organiza-

tions, protocols and performance. Journal of Parallel and Distributed Computing,

6(3):451{476, 1989.

[16] Jean-Loup Baer and Richard N. Zucker. On synchronization patterns of parallel

programs. In 1991 International Conference on Parallel Processing, pages II{60{67,

1991.

125

[17] Gordon Bell. Ultracomputers: A teraop before its time. Communications of the

ACM, 35(8):26{47, August 1992.

[18] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Munin: Distributed shared

memory based on type-speci�c memory coherence. In Second ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming, pages 168{175, March

1990.

[19] Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. PRESTO: A System

for Object-Oriented Parallel Programming. Software - Practice and Experience,

18(8), August 1988.

[20] Brian N. Bershad and Matthew J. Zekauskas. Midway: Shared memory parallel pro-

gramming with entry consistency for distributed memory multiprocessors. Technical

Report CMU-CS-91-170, School of Computer Science, Carnegie Mellon University,

September 1991.

[21] Lothar Borrmann and Petro Istavrinos. Store coherency in a parallel distributed-

memory system. In Arndt Bode, editor, 2nd European Distributed Memory Com-

puting Conference, pages 32{41, April 1991.

[22] Eugene D. Brooks III. The buttery barrier. International Journal of Parallel

Programming, 15(4):295{308, August 1986.

[23] Eugene D. Brooks III. PCP: A Parallel Extension of C that is 99% Fat Free.

Technical Report UCRL-99673, Lawrence Livermore National Laboratory, 1988.

[24] Eugene D. Brooks III, Tim S. Axelrod, and Gregory A. Darmohray. The Cerberus

multiprocessor simulator. In G. Rodrigue, editor, Parallel Processing for Scienti�c

Computing, pages 384{390. SIAM, 1989.

[25] Eugene D. Brooks III and Joseph E. Hoag. A scalable coherent cache system with

incomplete directory state. In 1990 International Conference on Parallel Processing,

pages I{553{554, 1990.

126

[26] David Callahan. personal communication.

[27] Nicholas Carriero and David Gelernter. The S/Net's Linda Kernel. ACM Transac-

tions on Computers Systems, 4(2):110{129, May 1986.

[28] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation and

performance of Munin. In 13th ACM Symposium on Operating Systems Principles,

pages 152{164, 1991.

[29] Lucien M. Censier and Paul Feautrier. A new solution to coherence problems in mul-

ticache systems. IEEE Transactions on Computers, C-27(12):1112{1118, December

1978.

[30] David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant Agarwal. Directory-

based cache coherence in large-scale multiprocessors. Computer, 23(6):49{58, June

1990.

[31] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS directories: A

scalable cache coherence scheme. In Fourth International Conference on Architec-

tural Support for Programming Languages and Operating Systems, pages 224{234,

1991.

[32] Tien-Fu Chen and Jean-Loup Baer. Reducing memory latency via non-blocking and

prefetching caches. In Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 51{61, 1992.

[33] Yung-Chin Chen and Alexander V. Veidenbaum. Comparison and analysis of soft-

ware and directory coherence schemes. In Supercomputing '91, pages 818{829, 1991.

[34] Hoichi Cheong and Alexander V. Veidenbaum. Compiler-directed cache manage-

ment in multiprocessors. Computer, 23(6):39{47, June 1990.

[35] David R. Cheriton, Anoop Gupta, Patrick D. Boyle, and Hendrik A. Goosen. The

VMP Multiprocessor: Initial experience, re�nements and performance evaluation.

127

In 14th Annual International Symposium on Computer Architecture, pages 410{421,

1987.

[36] David R. Cheriton, Gert A. Slavenburg, and Patrick D. Boyle. Software-controlled

caches in the VMP Multiprocessor. In 13th Annual International Symposium on

Computer Architecture, pages 366{374, 1986.

[37] W. W. Collier. Reasoning about Parallel Architectures. Prentice Hall, Inc., 1991.

[38] Ron Cytron, Steve Karlovsky, and Kevin P. McAuli�e. Automatic management

of programmable caches. In 1988 International Conference on Parallel Processing,

pages 229{238, 1988.

[39] Gregory A. Darmohray. Gaussian techniques on shared-memory multiprocessors.

Master's thesis, University of California, Davis, April 1988.

[40] Edgar W. Dijkstra. Cooperating Sequential Processes. In F. Genuys, editor, Pro-

gramming Languages. Academic Press, 1968.

[41] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory access bu�ering in

multiprocessors. In 13th Annual International Symposium on Computer Architec-

ture, pages 434{442, 1986.

[42] Michel Dubois, Jin Chin Wang, Luiz A. Barroso, Kangwoo Lee, and Yung-Syau

Chen. Delayed consistency and its e�ects on the miss rates of parallel programs. In

Supercomputing '91, pages 197{206, 1991.

[43] S. J. Eggers, D. R. Keppel, E. J. Koldinger, and H. M. Levy. Techniques for

e�cient inline tracing on a shared-memory multiprocessor. In ACM SIGMETRICS

and Performance '90, International Conference on Measurement and Modeling of

Computer Systems, pages 37{47, 1990.

[44] Susan J. Eggers and Tor E. Jeremiassen. Eliminating false sharing. In 1991 Inter-

national Conference on Parallel Processing, pages I{377{381, 1991.

128

[45] Susan J. Eggers and Randy H. Katz. Evaluating the performance of four snooping

cache coherency protocols. In 16th Annual International Symposium on Computer

Architecture, pages 396{406, 1989.

[46] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency

and predicate locks in a database system. Communications of the ACM, 19(11):624{

633, November 1976.

[47] E. Felten. personal communication.

[48] Kourosh Gharachorloo. personal communication.

[49] Kourosh Gharachorloo, Sarita Adve, Anoop Gupta, John Hennessy, and Mark Hill.

Programming for di�erent memory consistency models. Journal of Parallel and

Distributed Computing, 13(2):399{407, August 1992.

[50] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Performance evaluation

of memory consistency models for shared-memory multiprocessors. In Fourth In-

ternational Conference on Architectural Support for Programming Languages and

Operating Systems, pages 245{257, 1991.

[51] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Two techniques to en-

hance the performance of memory consistency models. In 1991 International Con-

ference on Parallel Processing, pages I{355{364, 1991.

[52] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Hiding memory latency

using dynamic scheduling in shared-memory multiprocessors. In 19th Annual In-

ternational Symposium on Computer Architecture, pages 22{33, 1992.

[53] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop

Gupta, and John Hennessy. Memory consistency and event ordering in scalable

shared-memory multiprocessors. In 17th Annual International Symposium on Com-

puter Architecture, pages 15{26, 1990.

129

[54] James R. Goodman. Cache consistency and sequential consistency. Technical Report

#1006, Computer Sciences Department, University of Wisconsin-Madison, February

1991.

[55] Edward H. Gornish, Elana D. Granston, and Alexander V. Veidenbaum. Compiler-

directed data prefetching in multiprocessors with memory hierarchies. In 1990 In-

ternational Conference on Supercomputing, pages 354{368, 1990.

[56] Gary Graunke and Shreekant Thakkar. Synchronization algorithms for shared mem-

ory multiprocessors. Computer, 23(6):60{70, June 1990.

[57] Anoop Gupta, John Hennessy, Kourosh Gharachorloo, Todd Mowry, and Wolf-

Dietrich Weber. Comparative evaluation of latency reducing and tolerating tech-

niques. In 18th Annual International Symposium on Computer Architecture, pages

254{263, 1991.

[58] Anoop Gupta, Wolf-Dietrich Weber, and Todd Mowry. Reducing memory and

tra�c requirements for scalable directory-based cache coherence schemes. In 1990

International Conference on Parallel Processing, pages I{312{321, 1990.

[59] David B. Gustavson. The Scalable Coherent Interface and related standards

projects. IEEE Micro, 12(1):10{22, February 1992.

[60] E. Hagersten, S. Haridi, and D.H.D. Warren. The cache-coherence protocol of the

Data Di�usion Machine. In Cache and Interconnect Architectures in Multiproces-

sors, pages 165{188. Kluwer Academic Publisher, Norwell, Mass, 1990.

[61] Debra Hensgen, Raphael Finkel, and Udi Manber. Two algorithms for barrier syn-

chronization. International Journal of Parallel Programming, 17(1):1{18, February

1988.

[62] M. Johnson. Super-scalar processor design. Technical Report CSL-TR-89-383, Stan-

ford University, June 1989.

130

[63] Simon Kahan and Larry Ruzzo. Parallel quicksand: Sorting on the sequent. Tech-

nical Report 91-01-01, Department of Computer Science, University of Washington,

January 1991.

[64] Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice Hall, Inc., 1992.

[65] Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy consistency for software

distributed shared memory. In 19th Annual International Symposium on Computer

Architecture, pages 13{21, 1992.

[66] Alexander C. Klaiber and Henry M. Levy. An architecture for software-controlled

data prefetching. In 18th Annual International Symposium on Computer Architec-

ture, pages 43{53, 1991.

[67] David Kroft. Lockup-free instruction fetch/prefetch cache organization. In 8th An-

nual International Symposium on Computer Architecture, pages 81{87, June 1981.

[68] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. Wolfe. Dependence graphs

and compiler optimizations. In ACM Symposium on Principles of Programming

Languages, July 1981.

[69] Monica Lam, Edward E. Rothberg, and Michael E. Wolf. The cache performance

and optimizations of blocked algorithms. In Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems, pages

63{74, 1991.

[70] Leslie Lamport. How to make a multiprocessor computer that correctly exe-

cutes multiprocess programs. IEEE Transactions on Computers, C-28(9):690{691,

September 1979.

[71] Edward D. Lazowska. personal communication.

131

[72] Joonwon Lee and Umakishore Ramachandran. Synchronization with multiprocessor

caches. In 17th Annual International Symposium on Computer Architecture, pages

27{37, 1990.

[73] Dan Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John Hen-

nessy. The directory-based cache coherence protocol for the DASH multiprocessor.

In 17th Annual International Symposium on Computer Architecture, pages 148{159,

1990.

[74] Dan Lenoski, James Laudon, Luis Stevens, Truman Joe, Dave Nakahira, Anoop

Gupta, and John Hennessy. The DASH prototype: Implementation and perfor-

mance. In 19th Annual International Symposium on Computer Architecture, pages

92{103, 1992.

[75] Brian Lockyear. personal communication.

[76] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchro-

nization on shared-memory multiprocessors. ACM Transactions on Computers Sys-

tems, 9(1):21{65, February 1991.

[77] John M. Mellor-Crummey and Michael L. Scott. Synchronization without con-

tention. In Fourth International Conference on Architectural Support for Program-

ming Languages and Operating Systems, pages 269{278, April 1991.

[78] Sang-Lyul Min. Memory Hierarchy Management Schemes in Large Scale Shared-

memory Multiprocessors. PhD thesis, University of Washington, 1989.

[79] Haim E. Mizrahi, Jean-Loup Baer, Edward D. Lazowska, and John Zahorjan. Intro-

ducing memory into the switch elements of multiprocessor interconnection networks.

In 16th Annual International Symposium on Computer Architecture, pages 158{166,

1989.

132

[80] Todd Mowry and Anoop Gupta. Tolerating latency through software-controlled

prefetch in shared-memory multiprocessors. Journal of Parallel and Distributed

Computing, 12(2):87{106, June 1991.

[81] BrianW. O'Krafka and A. Richard Newton. An empirical evaluation of twomemory-

e�cient directory methods. In 17th Annual International Symposium on Computer

Architecture, pages 138{147, 1990.

[82] Susan Owicki and Anant Agarwal. Evaluating the performance of software cache

coherence. In Third International Conference on Architectural Support for Program-

ming Languages and Operating Systems, pages 230{242, 1989.

[83] G. F. P�ster and et al. The IBM Research Parallel Processor Prototype (RP3):

Introduction and Architecture. In International Conference on Parallel Processing

1985, pages 764{771, 1985.

[84] Ridge Computers. Ridge 32 User's Guide.

[85] Christoph Scheurich and Michel Dubois. Correct memory operations of cache-based

multiprocessors. In 14th Annual International Symposium on Computer Architec-

ture, pages 234{243, 1987.

[86] Zary Segall and Larry Rudolph. Dynamic decentralized cache schemes for an mimd

parallel processor. In 11th Annual International Symposium on Computer Architec-

ture, pages 340{347, June 1984.

[87] Dennis Shasha and Marc Snir. E�cient and correct execution of parallel programs

that share memory. ACM Transactions on Programming Languages and Systems,

10(2):282{312, April 1988.

[88] Burton J. Smith. Architecture and Applications of the HEP Multiprocessor Com-

puter System. In Real-Time Signal Processing IV, volume 298, pages 241{248.

Society of Photo-Optical Instrumentation Engineers, 1981.

133

[89] M. Upton, K. Samii, and S. Sugiyama. Integrated Placement for Mixed Standard

Cell and Macro-Cell Designs. In Proceedings of the 27th Design Automation Con-

ference, 1990.

[90] Mary K. Vernon, Edward D. Lazowska, and John Zahorjan. An accurate and e�-

cient performance analysis technique for multiprocessor snooping cache consistency

protocols. In 15th Annual International Symposium on Computer Architecture,

pages 308{315, 1988.

[91] David B. Wagner. Conservative Parallel Discrete-Event Simulation: Principles and

Practice. Technical Report 89-09-03, Department of Computer Science, University

of Washington, September 1989.

[92] David B. Wagner. The Design of an Object-Oriented Parallel Simulation Environ-

ment. In SCS Multiconference on Object-Oriented Simulation, 1991.

[93] Wolf-Dietrich Weber and Anoop Gupta. Exploring the bene�ts of multiple hard-

ware contexts in a multiprocessor architecture: Preliminary results. In 16th Annual

International Symposium on Computer Architecture, pages 273{280, 1989.

[94] C. Wittenbrink, A. K. Somani, and C. Chen. Cache write generation for high

performance parallel processing. Revised and submitted to ACM Transactions on

Computers Systems.

[95] Philip J. Woest and James R. Goodman. An analysis of synchronizationmechanisms

in shared-memory multiprocessors. In International Symposium on Shared Memory

Multiprocessing, pages 152{165, April 1991.

[96] Richard N. Zucker. A study of weak consistency models, March 1991. Ph.D. dis-

sertation proposal, Department of Computer Science and Engineering, University

of Washington.

134

[97] Richard N. Zucker and Jean-Loup Baer. A performance study of memory consistency

models. In 19th Annual International Symposium on Computer Architecture, pages

2{12, 1992.

[98] Richard N. Zucker and Jean-Loup Baer. A performance study of memory consis-

tency models. Technical Report 92-01-02, Department of Computer Science and

Engineering, University of Washington, March 1992.

Appendix A

Glossary

A.1 Initiated, Issued and Performed

These de�nitions come from Dubois et al. [41, 85].

Initiated - a request is initiated when a processor has sent the request and completion

of the request is out of its control.

Issued - An initiated request is issued when it has left the processor environment (which

includes the CPU and local bu�ers) and is in transit in the memory system.

Performed - A LOAD by processor I is considered performed with respect to processor

K when issuing of a STORE to the same address by processor K cannot a�ect the

value returned to processor I . A STORE by processor I is considered performed

with respect to processor K, at a point in time when an issued LOAD to the same

address by processor K returns the value de�ned by the STORE. An access by

processor I is performed when it is performed with respect to all processors. A

STORE is globally performed when it is performed with respect to all processors.

A LOAD is globally performed if it is performed with respect to all processors and if

the STORE which is the source of the returned value has been globally performed.

136

A.2 Processor Consistency, Original De�nition

This is the original de�nition of processor consistency and comes from Goodman [54]:

A multiprocessor is said to be processor consistent if the result of any

execution is the same as if the operations of each individual processor appear

in the sequential order speci�ed by its program.

So operations of one processor, as seen by two other processors, may be in di�erent

orders.

Appendix B

Su�cient Conditions for DRF0

and DRF1

B.1 Conditions for DRF0

Adve and Hill [4] show that the �ve conditions below are su�cient conditions for hard-

ware to be weakly ordered with respect to DRF0. However, some de�nitions are �rst

needed. These de�nitions and the �ve conditions are taken verbatim from Adve and

Hill [4].

A commit point is de�ned for every operation as follows. A read commits

when its return value is dispatched back towards the requesting processor. A

write commits when its value could be dispatched for some read. A read-write

synchronization operation commits when its read and write components are

globally performed. We will say that an access is generated when it \�rst

comes into existence".

Hardware is weakly order with respect to DRF0 if it meets the following

requirements.

1. Intra-processor dependencies are observed.

138

2. All writes to the same location can be totally ordered based on their

commit times, and this is the order in which they are observed by all

processors.

3. All synchronization operations to the same location can be totally or-

dered based upon their commit times, and this is also the order in which

they are globally performed. Further, if S

1

and S

2

are synchronization

operations and S

1

is committed and globally performed before S

2

, then

all components of S

1

are committed and globally performed before any

in S

2

.

4. A new access is not generated by a processor until all its previous syn-

chronization operations (in program order) are committed.

5. Once a synchronization S by processor P

i

is committed, no other syn-

chronization operations on the same location by another processor can

commit until after all reads of P

i

before S (in program order) are com-

mitted and all writes of P

i

before S are globally performed.

B.2 Conditions for DRF1

Adve and Hill [5] show that a set of conditions, which I refer to as the DRF1 Condition,

are su�cient conditions to show that hardware obeys DRF1. The terminology used and

conditions are explained in more detail in Section 5.2.2.

DRF1 Condition: Hardware satis�es Condition 2.1 (de�ned earlier in Adve and

Hill [5]) and therefore obeys the data-race-free-1 memory model if for every execution,

E

drf

, of a program, Prog, on the hardware, there is an

xo

�!, that satis�es the following

conditions:

1. Data - Let Rel and Rel

0

be release operations andAcq and Acq

0

be acquire operations.

Let Z be any operation. Let X and Y be conicting operations such that at least

139

one of X or Y is a data operation.

(a) Release-Acquire -

i. If Rel

so1

�! Acq, then Rel (i)

xo

�! Acq (j) for all i, j.

ii. If Z

po

�! Rel

0

so1

�! Acq

0

po

�! Rel

so1

�! Acq, then Z(i)

xo

�! Acq (j) for all i,

j.

(b) Post-Acquire -

i. If Acq

po

�! Z, then Acq (i)

xo

�! Z(j) for all i, j.

ii. If X

po

�! Rel

so1

�! Acq

po

�! Y , then X(i)

xo

�! Y (i) for all i.

(c) Intra-processor - If X

po

�! Y , then X(i)

xo

�! Y (i) for all i.

2. Synchronization - Let X , Y and Z be synchronization operations.

(a) If Y

po

�! Z, then Y (i)

xo

�! Z(j) for all i, j.

(b) If X is a write operation, Y is a read operation that conicts with X and

X

so0

�! Y

po

�! Z, then X(i)

xo

�! Z(j) for all i, j.

(c) If X and Y are conicting write operations, then either X(i)

xo

�! Y (i) for all

i or Y (i)

xo

�! X(i) for all i.

3. Control -

(a) Let read R control an operation X or determine the value that X writes (if

X is a write). Then R(i)

xo

�! X(j) for all i, j.

(b) Consider any sequentially consistent execution, E

sc

, of Prog and operations

X and Y such that X

po

�! Y and either X and Y conict, or X is an acquire,

or Y is a release, or X and Y are synchronization operations in E

sc

. Let

operation X not be executed in E

drf

and operation Y be executed in E

drf

.

Let read R control operation X in E

sc

and let R be one of the reads in E

drf

whose value determined that X would not be executed in E

drf

. Then R(i)

xo

�! Y (j) for all i, j.

140

(c) If X

po

�! Y and X is an acquire, then X(i)

xo

�! Y (j) for all i, j.

(d) Let X and Y be synchronization operations. If X

po

�! Y , then X(i)

xo

�! Y (j)

for all i, j.

Appendix C

Detailed Statistics

These tables contained more detailed statistics than those presented in Table 4.4.

Table C.1: Benchmark statistics for reads for SC1 for 16K and 64K caches

Reads are averages per processor and are in 1,000's.

Program Reads Hit Rate (%) by line and cache size

16K cache 64K cache

8 bytes 16 bytes 64 bytes 8 bytes 16 bytes 64 bytes

Gauss 1074 75.9 87.0 96.1 95.8 97.5 98.9

Qsort 1171 73.3 76.4 84.0 75.7 78.2 84.3

Relax 2132 87.2 93.4 98.1 88.1 94.0 98.4

Psim 1827 92.8 92.9 94.0 93.8 93.8 94.6

142

Table C.2: Benchmark statistics for writes for SC1 for 16K and 64K caches

Writes are averages per processor and are in 1,000's.

Program Write Hit Rate (%) by line and cache size

16K cache 64K cache

8 bytes 16 bytes 64 bytes 8 bytes 16 bytes 64 bytes

Gauss 314 21.1 59.2 88.3 96.4 97.1 98.2

Qsort 310 58.8 64.0 73.5 64.1 67.8 74.7

Relax 329 24.6 62.1 89.9 24.6 62.1 90.0

Psim 319 62.6 64.0 68.4 64.6 65.7 69.4

Table C.3: Read and write frequency for SC1 for 16K and 64K caches with 16 byte lines

Frequencies are the number of cycles between references on average.

Program Cycles between references

16K caches 64K caches

Reads Writes Reads Writes

Gauss 19.6 70.0 15.4 52.8

Qsort 16.1 59.5 15.5 57.6

Relax 12.8 83.5 12.7 82.9

Psim 16.0 92.0 15.8 90.8

Appendix D

Proof - Chen and Veidenbaum

Obey DRF1

Chen and Veidenbaum's simulated system does obey DRF1, which will be shown in the

next several paragraphs. The processor they simulated was a MIPS R3000/3010 [64],

which does issue instructions in order. The reader should keep this in mind as this is an

important feature which simpli�es proving that their system obeys DRF1 as is the fact

that all synchronization was done using barriers. I will show that their system obeys the

DRF1 Condition, and hence, obeys DRF1.

It should be noted that Chen and Veidenbaum do not specify how barriers are im-

plemented. I assume that there is a barrier instruction with an implicit release and

then an acquire. If barriers are implemented in software using a counter or some other

algorithm, then when showing that Chen and Veidenbaum's system obeys DRF1, the in-

dividual synchronization operations (which are not described) must be considered when

the DRF1 Condition refers to an access as being a synchronization operation.

Data Requirement

1.a(i) is obeyed trivially because synchronization variables are not cached. There is only

one copy of any synchronization variable, the memory copy, so there is no question of

144

when the other copies are updated.

1.a(ii): Z (i) completes for each i when the ith processor invalidates its cache before

entering the barrier of which Rel

0

is a part. At that point in time, Z (i) becomes the

memory copy, which is up-to-date since write-through caches are used. Once every

processor has entered the barrier, Z is complete, which is before Acq.

1.b(i): There is no caching of synchronization variables, so once Acq is performed

by the issuing processor, Acq (i) for all i is done. Since the processor will stall until an

acquire completes, Z will not be issued until after the acquire is performed, and therefore

if Acq

po

�! Z, then Acq (i)

xo

�! Z(j) for all i, j.

1.b(ii): X(i) for all i is true when each processor has invalidated its cache before en-

tering the barrier. Since each processor will have entered the barrier before any processor

can leave the barrier, X completes before Y can be issued.

1.c: Because of data dependences, the processor that executes X and Y will execute

them in order. If one of X and Y is a read, then X (i)

xo

�! Y (i) for all i is only de�ned

for i equal to the issuing processor and the condition holds. If both X and Y are writes,

it is su�cient to show that it is not the case that Y (i) is completed and then X (i)

completes for any i. Since the caches are write-through, the write of X to memory is

completed before the write of Y (there is no bypassing in the network). That leaves only

the cached copies of the location that X and Y reference. If a processor caches the value

written by Y , it could only have done so by reading that location from main memory. If

it read that location from main memory, Y must have completed at main memory, and

there is no way for the value written by X to be subsequently cached by that processor.

Synchronization Requirement

2.a: Since synchronization variables are not cached, there is only one copy of each. Since

a processor must complete one barrier before entering a second one, two barriers will

always complete in program order.

[5] says that 2.b and 2.c are obeyed automatically by any system that does not cache

145

synchronization variables. So no separate proof of these two sub-conditions is necessary.

Control Requirement

3.a is obeyed because the processor used obeys uniprocessor dependencies. If R controls

X , then there is a data or control dependency, and the processor must complete R before

X is issued, and hence before X (j) is performed for any j.

3.b: For the same reasons that 3.a is obeyed, this condition is obeyed. There is a

data dependence caused by the testing of the value that R reads, and hence R completes

before X would be issued if it were executed, and hence, before Y is issued.

According to [5] Conditions 3.c and 3.d are met by the data and synchronization

conditions of the DRF1 Condition. They were included for completeness since alternate

data or synchronization conditions may not automatically obey 3.c and 3.d. So there is

no need to show that the system obeys them.

Vita

Richard N. Zucker was born in New York City on March 31, 1960. After graduating

from Stuyvesant High School, he attended Union College in Schenectady, New York. He

received a Master of Science and Bachelor of Science degrees from Union in December

1982. He then worked as a software engineer for The BDM Corporation until 1986,

where upon he started his doctoral studies at the University of Washington, which he

completed in 1992.

