
Reordering Iterations in Runtime Loop

Parallelization

Shun-Tak Leung and John Zahorjan

Department of Computer Science and Engineering

University of Washington

Technical Report 92-12-07

December 1992



Reordering Iterations in Runtime Loop Parallelization

Shun-Tak Leung and John Zahorjan

�

Department of Computer Science & Engineering

University of Washington

December 1992

Abstract

When a loop in a sequential program is parallelized, it is normally guaranteed that all 
ow depen-

dencies and anti-dependencies are respected so that the result of parallel execution is always the same

as sequential execution. In some cases, however, the algorithm implemented by the loop allows the

iterations to be executed in a di�erent sequential order than the one speci�ed in the program. This

opportunity can be exploited to expose parallelism that exists in the algorithm but is obscured by its

sequential program implementation.

In this paper, we show how parallelization of this kind of loop can be integrated into the runtime

parallelization scheme of Saltz et al. [17, 18]. Runtime parallelization is a general technique appropriate

for loops whose dependency structures cannot be determined at compile time. The compiler generates

two pieces of code: the inspector examines dependencies at run time and computes a parallel schedule;

the executor executes iterations in parallel according to the computed schedule.

In our case, the inspector has to solve two problems: choosing an appropriate sequential order for the

iterations and computing a parallel schedule. The two problems are treated as a single graph coloring

problem, which is solved heuristically. Two methods to do so are described. Furthermore, the basic

runtime parallelization scheme for shared-memory multiprocessors pays no attention to locality when

scheduling iterations onto processors. One of our methods takes locality consideration into account when

making these decisions. The performance implications of reordering are examined experimentally on a

KSR1 parallel machine as well as through a simple analytic model of execution time.

1 Introduction

Scienti�c applications written in sequential programming languages (e.g., HPF or Fortran D [7]) typically

have large loops that can be parallelized to exploit the computing power of multiple processors. However, if

a loop contains complicated or data dependent array indexing expressions, the inter-iteration dependencies

cannot be fully determined at compile time. Unable to parallelize the loop, the compiler must generate

code to execute the loop sequentially. To address this problem, Saltz et al. [17, 18] have proposed runtime

parallelization as an alternative. We have been looking into various ways to improve the performance of

runtime parallelization [12, 13]. Although runtime parallelization can be carried out on various multiprocessor

architectures, we concentrate on its use in shared-memory multiprocessors, scalable versions of which have

recently been proposed [4, 11, 2]. This paper presents one aspect of our work.

�

Support for this work was provided in part by the National Science Foundation (Grants CCR-8619663, CCR-9123308,

and CCR-9200832), the Washington Technology Center, and Digital Equipment Corporation (Systems Research Center and

External Research Program). Authors' addresses: Department of Computer Science & Engineering, University of Washington,

Seattle, WA 98195; shuntak@cs.washington.edu, zahorjan@cs.washington.edu.

1



for i = 1 to n do

a[i] = F(a[g(i)], a[h(i)], ...);

enddo

Figure 1: Sequential Source Loop

In general, when we parallelize a loop, the sequential order of the iterations has to be preserved in the sense

that parallel execution of the iterations respects the dependencies in the sequential loop. However, there

are many cases in which the algorithm expressed by the loop in fact permits a di�erent sequential order

of executing the iterations than the one speci�ed by the sequential program. Under these circumstances,

reordering the iterations and then parallelizing the reordered loop may produce more parallelism than simply

parallelizing the original loop.

In this section, we �rst review the basic idea of runtime parallelization proposed by Saltz et al. [17, 18].

We then discuss the notion of reordering iterations to gain parallelism, and some implications of providing

programming support for it.

1.1 Runtime Parallelization of Loops

Let us call the loop being parallelized the source loop. The form of source loops we focus on is shown

in Figure 1, which is adapted from Saltz et al. [17]. The objective is to identify iterations that can be

executed concurrently and assign them to di�erent processors in a shared-memory multiprocessor. In the

loop, each array element a[i] in order is assigned a value computed from other elements of a, leading to

dependencies that must be respected in a parallel execution of the loop. Naturally, the loop body may

contain other statements which do not lead to inter-iteration dependencies, or the source loop may be nested

inside another loop. For simplicity, these are not shown.

We are interested in those cases where the dependency pattern is sparse. In other words, each iteration

depends on only a small fraction of all iterations. In this case, there are many iterations that share no

dependencies and thus may be executed in parallel. However, if the array index expressions g(i), h(i), etc.

are complicated functions of i or, worse, involve data not available at compile time, the compiler cannot

completely determine the dependencies and therefore cannot parallelize the loop. Sparse matrix operations

are good examples of this class of computation. In these operations, g(i), h(i) would be indirection arrays

containing indices into the array a, which in turn contains the non-zero elements.

The basic idea of runtime parallelization, due to Saltz et al. [17, 18], is for the compiler to generate two

code fragments for each source loop: inspector and executor. At run time, the inspector calculates the array

index functions, determines the inter-iteration dependencies, and use these to compute a parallel schedule

for the iterations. The executor then executes the iterations in parallel according to the computed schedule.

The parallel schedule computed partitions the set of all source loop iterations into distinct subsets, called

wavefronts. The executor goes through the wavefronts sequentially in some speci�ed order but, within

each wavefront, the iterations are executed in parallel. A schedule is valid if iterations executed in parallel

according to this schedule always achieve the same e�ect as if they were executed sequentially in the source

loop.

In this paper, we call the number of wavefronts in a schedule its depth. For any given source loop, there

are normally many di�erent schedules with di�erent depths. As a heuristic, we wish to �nd a schedule with

minimal depth because a smaller schedule depth allows the e�cient use of larger numbers of processors, and

for a �xed number of processors usually (though not necessarily) leads to a shorter parallel execution time.

2



1.2 Reordering Iterations to Expose Parallelism

Generally, when the source loop is parallelized, we must ensure that the inter-iteration dependencies in

the sequential source loop are respected in the parallel execution. When implementing an algorithm as

the source loop, the programmer assumes sequential execution of iterations in the order that the program

speci�es. As the parallelizing compiler has no knowledge of the semantics of the application, it must preserve

the sequential iteration order to assure that the algorithm implemented is always correctly executed.

However, there are cases in which the algorithm in fact permits a di�erent sequential order of executing the

iterations than the one speci�ed by the sequential program. For example, the class of Gauss-Seidel iterative

numerical algorithms [3] falls into this category.

Like other types of iterative numerical algorithms, Gauss-Seidel type algorithms �nd a solution vector x to

some problem by repeatedly computing a new estimate x

(t+1)

from an old estimate x

(t)

until convergence.

The distinguishing characteristics of Gauss-Seidel is that when new values are computed, the \most recent"

values are used as they become available

1

:

x

(t+1)

i

= F

i

(x

(t+1)

1

; :::; x

(t+1)

i�1

; x

(t)

i

; :::; x

(t)

n

)

where x

(t)

i

is the value of the i-th component of x

(t)

and we assume that the elements of x

(t+1)

are calculated

in index order. In a sequential programming language, this is normally implemented as a single data array

representing both x

(t)

and x

(t+1)

, and a loop that goes through the array elements one by one in index order.

In each iteration, a new value is computed from whatever values are then stored in the array; the result is

written into the same array and perhaps used to compute other new values later in the loop.

In many situations, the order of going through the array elements is not critical for correctness [3]. Di�erent

orders all produce valid answers, within an acceptable level of accuracy. Intuitively, this is because the

components are indexed arbitrarily anyway. Processing them in a di�erent order is conceptually equivalent

to re-indexing the components and then processing them in the new index order. For a concrete example,

suppose we want to solve the Poisson equation on a rectangular grid. The grid points can be indexed in a

row-major manner, a column-major manner, or any other manner we may feel like. There is no inherent

reason why it must be done one way or another. The choice is usually just a matter of programming

convenience.

If any sequential order of performing the source loop iterations is acceptable, we have extra freedom in

deciding how to execute the iterations in parallel. Speci�cally, it allows us to reorder the source loop

iterations so as to reduce the depth of the parallel schedule for the reordered loop and thereby expose

parallelism that is inherent in the algorithm but is obscured by its sequential program implementation.

In the mathematical notations above, for generality, every vector component is expressed as a function of

all other components. However, in many practical applications, a component actually depends only on a

much smaller number of other components. One notable example is sparse matrix operations in which x

(t+1)

j

depends on x

(t)

i

or x

(t+1)

i

only if the corresponding element in a certain coe�cient matrix is non-zero. In

these cases, changing the sequential order of the iterations can change the resultant schedule and reduce its

depth dramatically.

1

In mathematical parlance, Gauss-Seidel refers to a more restricted form of algorithms than what we describe. However, in

this paper we will use Gauss-Seidel in the looser sense de�ned above, for lack of a better term.

3



1.3 Support for Iteration Reordering

Researchers in numerical algorithms have long recognized that sometimes more parallelism can be identi�ed

if operations in a serial algorithm are performed in an appropriate sequential order. For example, numerous

parallel algorithms for solving partial di�erential equations on rectangular grids have been proposed [16].

They generally obtain parallelism by partitioning the set of grid points in certain regular ways speci�cally

chosen for the problem so that points within the same subset are unrelated and thus can be processed in

parallel. The subsets themselves are processed in some sequential order. The overall e�ect is the same as a

serial algorithm that goes through the grid points in a corresponding sequential order.

Given suitable compiler and runtime support, programmers need only to implement a serial algorithm as a

sequential loop in the most straightforward manner. The compiler and runtime system can then cooperate

to choose an iteration order and parallelize the sequential loop automatically. Moreover, the runtime system

can also handle loops having irregular dependency structures or whose dependencies are not known until

run time.

However, in a sequential programming language the compiler cannot automatically determine whether the

ordering of the iterations can be changed. Since the language is sequential, the programmer has to specify

an order, whether or not an order is mandated by the algorithm that the loop implements. The compiler

cannot tell if the speci�ed order is what the programmer intends or something the programmer is forced

into by the language. Therefore, while the compiler and runtime system can provide support for iteration

reordering, the language has to be suitably extended so that the programmer can explicitly indicate that

reordering is permissible.

Strictly speaking, di�erent sequential orders for the iterations lead to di�erent results and possibly di�erent

convergence rates, but these do not necessarily preclude the reordering of iterations to expose more paral-

lelism. Undoubtedly, iteration reordering leads to di�erent intermediate results. However, if the numerical

algorithm converges to a unique solution, the �nal results are the same, within some tolerance. On the other

hand, suppose that what the algorithm converges to or even whether it converges at all is dependent on the

iteration order. To deal with this, the programmer either carefully chooses an appropriate order or uses an

arbitrary order but handles the problem in other ways. In the �rst case, certainly the chosen order should be

preserved and reordering not permitted. In the second case, the original order (which is arbitrary anyway)

is not any better than the new order. The case of convergence rate is similar. If it is known in advance

that one order converges signi�cantly faster than others, reordering may not be desirable. The decision of

whether to allow reordering always rests with the programmer.

The usefulness of reordering iterations depends on the number of processors available and the cost of barrier

synchronization. Reordering can dramatically reduce the schedule depth and hence increase the number of

iterations that can potentially be executed concurrently. However, these iterations are actually executed in

parallel only if there are enough processors. Therefore, if there are a relatively large number of processors,

parallel speedup may improve signi�cantly because previously idle processors can now be put to work. If, on

the other hand, the number of processors is only modest, the impact on performance would be less signi�cant.

However, having fewer wavefronts still improves performance by reducing the total barrier synchronization

overhead and also the load imbalance within each wavefront.

Finally, we note that there are explicitly parallel algorithms which do not correspond to the parallelization

of serial algorithms [6, 14]. Since our focus is mainly the parallelization of loops speci�ed in sequential

programming languages such as Fortran D [7], these algorithms do not fall into the scope of this paper.

4



1.4 Paper Organization

The remainder of this paper is organized as follows. Section 2 explains the methods we have used to reorder

source loop iterations and at the same time compute a parallel schedule for the reordered loop. Two heuristics

will be described. One takes locality into account when reordering the iterations while the other does not.

Section 3 presents results of measurements on a small-scale shared-memory multiprocessors and studies the

performance implications of schedule depth on massively parallel shared-memory machines. Finally, Section 4

concludes this paper.

2 Reordering Iterations and Computing Parallel Schedule

Logically, the inspector consists of two steps. The �rst is to choose an order for the source loop iterations;

the second is to compute a parallel schedule for the reordered loop. In the �rst step, the new order is to be

chosen so that the depth of the schedule computed in the second step is minimized. As we shall see, these

two steps can be combined into a single procedure.

In this section, we �rst formulate the related problems of choosing an iteration order and computing a parallel

schedule as a single graph coloring problem. Then two simple heuristics we have used to solve this problem

are described. One of them considers locality when scheduling iterations onto processors, while the other

ignores locality but attempts to minimize schedule depth.

2.1 Parallelization as Graph Coloring

If the sequential order of source loop iterations has to be preserved in parallel execution, the schedule should

have this property: if there is a 
ow dependency or an anti-dependency from iteration k to iteration l,

iteration k is in a wavefront before that of l

2

. In general, output dependencies impose further restrictions,

but the form of source loop we focus on (Figure 1) does not contain output dependencies because each

iteration writes a di�erent element of the array. Therefore, output dependencies are not considered in the

following discussion.

If we have the freedom to change the source loop's sequential order, it seems possible to simply assign

iterations k and l to di�erent wavefronts and change the sequential order so that the iteration that is

assigned to an earlier wavefront also comes earlier in the new sequential order. In a sense, in order that

dependencies are respected in the schedule, the sequential order of the iterations is changed to suit the

schedule rather than the other way round. If, say, k < l and iteration k writes an array element read by l,

iteration l may or may not be reading the value written by k, depending on the order of the iterations. Given

a speci�c order, if l is before k, then the value which l should read is the one stored in the array element

before the current pass, not the one k computes in that pass. In this case, placing k in a later wavefront

becomes legitimate.

More speci�cally, the problems of reordering the iterations and computing a parallel schedule for the reordered

source loop can be formulated as a single graph coloring problem. This was motivated by the problem-speci�c

ordering schemes used in many parallel numerical algorithms (see Section 1.3) and by a general technique

that does not handle anti-dependencies [3]. In our graph, nodes represent iterations and edges represent

potential dependencies. If iteration k writes to an array element read by iteration l, then nodes k and l are

connected by an undirected edge.

2

Saltz et al. [17, 18] make special provisions in their executor to deal with anti-dependencies so their schedule in fact respects

only 
ow dependencies.

5



colored graph

1 A
1

1 A

A

1 A

A

2 3 4

5 6 7

9 10 11 12

8

2 2

3 2 2

4 5 3 4

B B

C B B

B C

original iteration order

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

new iteration order

1, 3, 5, 10, 11 2, 4, 7, 8, 9 6, 12

parallel schedule for original loop

wavefronts: 1 2 3 4 5

iterations: 1 2 6 9 10

3 4 11 12

5 7

8

parallel schedule for reordered loop

colors: A B C

wavefronts: 1 2 3

iterations: 1 2 6

3 4 12

5 7

10 8

11 9

Figure 2: Computing a Schedule by Graph Coloring

To compute a schedule, the nodes are colored in such a way that adjacent nodes have di�erent colors. All

iterations of the same color constitute a wavefront in the parallel schedule. The wavefronts are arranged

in an arbitrary order; any ordering is acceptable although each ordering of the wavefronts corresponds to a

di�erent reordered source loop. Given a speci�c ordering of wavefronts, the reordered source loop consists

of the iterations (in, say, index order) in the �rst wavefront, followed by those in the second, etc.

Figure 2 illustrates an example source loop with twelve iterations. In the graph shown, the ovals represent

iterations and the edges the dependency relations among them. The numerical labels outside the ovals give

the iteration indices. Inside each oval, the left label is that iteration's wavefront in the parallel schedule

for the original source loop. The right labels specify a valid coloring (in fact, the one that results from

the coloring heuristic we use, described in Section 2.2). In this example, coloring reduces the depth of the

schedule from �ve to three. Without reordering, iteration 9 must be in wavefront 4 because of its dependency

on iteration 6. Reordering puts iteration 9 before iteration 6 and thus allows it to be executed in wavefront

2. Other iterations assigned to wavefronts 4 and 5 in the schedule for the original loop are treated similarly.

Note that while we show a new sequential order of the iterations that is consistent with the parallel schedule

obtained by coloring, this new order is never explicitly generated by the coloring algorithm. All we need to

know is that the parallel execution according to the schedule behaves as if the reordered source loop were

executed sequentially.

It is not di�cult to see why the parallel schedule is valid for the reordered source loop. If, in the reordered

loop, there is a 
ow dependency or an anti-dependency from iteration k to iteration l (there can be no output

dependencies), one of them must write an array element read by the other. Therefore, their corresponding

6



for i = 1 to n do

C = empty set

for j such that node j is adjacent to i do

add wf[j] to C

enddo

wf[i] = smallest positive integer not in C

enddo

Figure 3: Coloring Heuristic

nodes are connected. The two nodes will have di�erent colors and thus the two iterations are in di�erent

wavefronts. In other words, k's wavefront must be either before or after l's. Recall that the order of iterations

in the reordered source loop follows the order of wavefronts in the parallel schedule. Thus, if, say, iteration l is

after iteration k in the reordered loop, l's wavefront must be after k's wavefront. Flow and anti-dependencies

in the reordered loop are therefore respected in the parallel schedule.

2.2 Reordering to Minimize Schedule Depth

Naturally, we wish to minimize the number of wavefronts. Since there is a one-to-one correspondence

between colors and wavefronts, minimizing schedule depth is equivalent to using the fewest possible colors.

Unfortunately, the problem of �nding the minimum number of colors needed is NP-complete [8]. It is doubtful

that a reasonably e�cient algorithm to do this can be found.

Because of this, we have used a simple coloring heuristic, as shown in Figure 3. Colors are represented by

positive integers. Starting from a colorless graph, the heuristic examines the nodes one by one and assigns

to each node the \smallest" color (i.e. the smallest positive integer) di�erent from the colors, if any, of all

its adjacent nodes. After all the nodes have been colored, no two connected nodes will have the same color

because the node colored later in the heuristic must have a color di�erent from that of the node colored

earlier.

2.2.1 Implementation

A straightforward implementation of this heuristic involves complex dynamic data structures representing

the graph and color sets, as well as time-consuming graph traversal. This would be highly ine�cient. To

minimize the cost of the inspector, our actual implementation uses arrays and loops; it requires only a single

pass over the iterations in some order, although multiple passes may be needed in some very rare cases.

Our implementation is outlined in Figure 4. A compiler can generate it from the source loop automatically.

In the following discussion on this implementation, we refer to the order in which iterations are processed

by the inspector when we say that an iteration is \earlier" or \later" than another. In the �gure as well as

in our actual code, the iterations are processed in the original index order. This simpli�es explanation and

coding, but is not strictly necessary; the iterations could have been processed in any order, though there

seems no reason to choose any order other than the original one.

Note that node j is adjacent to node i either because iteration i reads a[j] (which iteration j writes) or vice

versa. In our implementation, lr[i] is the set of colors denied to iteration i because they have already been

used for earlier iterations that read a[i]. When the color of iteration i is to be selected, lr[i] is consulted to

7



/* lr is initially all empty sets */

for i = 1 to n do

C = lr[i]

add wf[g(i)], wf[h(i)], etc. to C

wf[i] = smallest positive integer not in C

add wf[i] to lr[g(i)], lr[h(i)], etc.

enddo

Figure 4: Implementation of Coloring Heuristic

�nd out what these colors are. Furthermore, iteration i itself reads a[g(i)], a[h(i)], etc. If iterations g(i),

h(i), etc. have already been processed earlier and assigned colors, iteration i cannot use these colors either.

After gathering necessary information, we pick a color for iteration i to satisfy all these constraints. Then,

wf [i] and relevant lr[j]'s are udpated to supply the necessary information when we handle later iterations.

Representation of color sets has to satisfy two conditions. In the common case, only a handful colors are

needed for all iterations. The data structure must facilitate operations like \add a color to set", \�nd smallest

color not in set", etc. On the other hand, in the worst case, a di�erent color is needed for each iteration,

as when every iteration reads all elements. We do not want to impose an arti�cial limit on the number of

colors that can be handled.

To achieve these ends, we represent a color set as an integer, which is interpreted as a 32-bit bitmap. It is

extremely unlikely that more than 31 colors are needed. Nevertheless, if none of the colors 1 through 31

can be chosen for an iteration, it is assigned color 32 and linked to a list of such iterations. After going

through all iterations, those of color 32 are processed again. In this second pass, iterations that have not

been colored 32 in the �rst pass are ignored. Again, colors are represented as 32-bit bitmaps except that

the least signi�cant bit now means color 32, not color 1. This process can be repeated as many times as

necessary until all iterations have been properly colored. In each pass, adding a color to a set is simply an

or operation while �nding the \smallest" color not in a set involves a few arithmetic shifts and bitwise ands.

All these can be performed very e�ciently and no penality is su�ered by the common case in order to handle

the unlikely cases.

2.2.2 Discussion

Although this heuristic is not guaranteed to use the smallest possible number of colors, it does tend to use

very few colors in practice. If each node has degree at most d, this heuristic will use no more than d + 1

colors. In the worst case, when the heuristic processes a node of degree d, all its d adjacent nodes have been

colored with di�erent colors. Even so, there must be a color among 1 to d + 1 that can be picked for this

node without violating the constraint that adjacent nodes must have di�erent colors.

Recall that an edge connects two nodes if one node reads an array element written by the other. Therefore,

the degree of node k is at most the number of distinct array elements read by iteration k plus the number

of iterations which read a[k]. Both are likely to be much smaller than the total number of iterations. So is

d and hence d+ 1, the upper bound on the number of wavefronts.

Another interesting observation on this heuristic is that the parallel schedule it computes has the fewest

wavefronts among schedules valid for its corresponding reordered source loop. A practical implication of

this is that there is no point in generating the new ordering of iterations explicitly and �nding a parallel

schedule for it by applying some inspector algorithm. Even if we do, we cannot further decrease the number

8



of wavefronts.

To see that the schedule indeed has the fewest possible wavefronts among valid schedules, let us assume that

there exists a valid schedule with even fewer wavefronts. Let w

S

(i) be the wavefront to which iteration i

belongs according to schedule S. Let C be the schedule computed by the coloring heuristic and H be the

hypothetical schedule. Since H has fewer wavefronts than C, there must be one or more iterations i such

that w

H

(i) < w

C

(i). Suppose m is the �rst such iteration. Note that being \�rst" means appearing �rst in

the reordered source loop, not having the smallest iteration index.

Since w

C

(m) > w

H

(m) > 0, we have w

C

(m) > 1. The coloring heuristic's decision to assign iteration m to

wavefront w

C

(m) must be that some iterations which have dependencies with m and are examined before

m are given colors 1, 2, ..., w

C

(m) � 1. For any such iteration k, w

C

(k) < w

C

(m) and hence k is before m

in the reordered source loop. Let l be one of these iteration such that w

C

(l) = w

H

(m). There are two cases

to consider:

� w

H

(l) < w

C

(l). This leads to contradiction because iteration m is supposed to be the �rst iteration

satisfying this condition but l is before m.

� w

H

(l) � w

C

(l). In this case, there is a 
ow dependency or an anti-dependency between iterations l

and m. Moreover, l is before m in the reordered source loop. However, w

H

(l) � w

C

(l) = w

H

(m).

The schedule H is therefore invalid. If w

H

(l) = w

H

(m), iterations l and m will be executed in

the same wavefront and there is nothing to ensure that they are performed in the right order. If

w

H

(l) > w

H

(m), it is even worse. Iteration l, which appears earlier in the reordered source loop, is

executed after iteration m. They are guaranteed to be executed in the wrong order.

Finally, we note that this heuristic automatically produces some common grid point ordering schemes used in

the SOR solution of partial di�erential equations on rectangular grids. For instance, the SOR method with

5-point stencils can be parallelized using the classical red-black ordering [9] while 9-point stencils require a

similar ordering with four colors[1]. If the programmer implements the SOR algorithm in these cases as a

simple loop going through the grid points row by row, our coloring heuristic will automatically reorder the

iterations to achieve the same schedule as those commonly used orderings.

2.3 Reordering for Locality

In the previous section, we presented a graph coloring heuristic whose goal was to minimize schedule depth,

with the motivation being in part that this minimizes barrier synchronization overhead. In this section we

present an alternative heuristic whose goal is to minimize overhead due to a degradation in locality that

often accompanies replacing a sequential execution with a parallel one. This often arises because the data

structures are laid out in a way that corresponds to the sequential code. Therefore, it may be bene�cial to

try preserving the original order while reordering iterations to expose parallelism. What we need is a method

to strike a balance between these two seemingly con
icting goals.

The key to scheduling for locality is to notice that when we have to pick a color for iteration k, the only

constraint is that the color chosen is di�erent from colors of adjacent nodes. In the previous section, we always

choose the \smallest" candidate color in an attempt to minimize the total number of colors used. A di�erent

strategy that tends to better preserve the original sequential order is to choose for iteration k the color of

iteration k � 1 if that color is permitted; otherwise, choose the \smallest" permissible color, as before. If,

using this scheme, iterations k and k�1 have been assigned to the same wavefront, they are further assigned

to the same processor so that this processor can execute iterations k� 1 and k consecutively. This increases

the likelihood that consecutive iterations in the sequential source loop are also executed consecutively in the

parallel execution.

9



The implementation is almost identical to that of the previous heuristic. The only change is that, in Figure 4,

wf [i � 1] is checked to see if it is in C. If not, it is selected as wf [i], the color of iteration i.

This new strategy may lead to more or fewer wavefronts than the earlier strategy of always choosing the

\smallest" permissible color, since the latter is only a heuristic. Super�cially, it seems that more wavefronts

may be needed since this new strategy is less aggressive in using as few colors as possible. However, the

number of wavefronts is still bounded by d+ 1, where d is the maximum degree of a node. This is because,

as in the earlier strategy, a new color is never used unless there are no other alternatives. Since d is normally

very small relative to the number of iterations, the resultant number of wavefronts is not likely to be a major

concern.

3 Performance

In this section, we compare the impact on executor performance of three di�erent ways of computing a

parallel schedule for the source loop:

� no reordering. The original sequential order of the source loop iterations is preserved in the parallel

execution. The computed schedule has minimal depth among schedules valid for the original order.

� locality-oblivious reordering. The source loop iterations are reordered and the schedule computed

using the coloring heuristic described in Section 2.2. The \smallest" permissible color is always chosen.

� locality-sensitive reordering. The source loop iterations are reordered and the schedule computed

using the coloring heuristic in Section 2.3. If possible, the color of the previous iteration is used.

First, we present some measurement results on a shared-memory multiprocessor with tens of processors.

These results serve to illustrate the potential performance advantage of iteration reordering. We then use

a simple analytic model of execution time to study the performance implications of iteration reordering on

massively parallel machines with up to thousands of processors.

3.1 Measurements on a Small-Scale Multiprocessor

The application that we used is the solution of a sparse linear system by means of Successive Over-Relaxation

(SOR). The linear equations are the global balance equations [10] corresponding to a queueing network model

with blocking [15]. The model itself consists of a number of service centers in series, each with a �nite capacity

queue. Such models are commonly used to evaluate the performance of communication networks built from

switches with �nite bu�er space.

The results for two models are presented here. Model A has a 174090�174090 coe�cient matrix with about

1146000 non-zero elements. Model B has a 45676� 45676 matrix with about 252000 non-zero elements

3

.

Measurements were taken on a Kendall Square Research KSR1 shared-memory multiprocessor [4] running

OSF/1. All programs were written in C using KSR1's pthreads. The translation of the source loop into the

inspector and the executor was done manually.

3

In fact, global balance analysis leads to a coe�cient matrix which is sparse except for one dense row whose elements are

all equal to one. In a naive implementation of SOR, this row would become a sequential bottleneck. We assume that this row

is handled in a separate loop, which in fact is the typical approach even for sequential execution since it avoids the storage

of a row of 1's. The source loop we measured is the main loop that deals with the other rows each having only a handful of

non-zeros. The number of non-zeros here does not include the special row.

10



Model A Model B

Schedule Average Iterations Schedule Average Iterations

Reordering Strategy Depth per Wavefront Depth per Wavefront

No Reordering 26 6696 67 682

Locality-Oblivious Reordering 6 29015 8 5710

Locality-Sensitive Reordering 4 43522 5 9135

Table 1: Schedules from Di�erent Reordering Strategies

0 4 8 12 16

Number of Processors

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

nc
y

No Reordering
Locality-Oblivious Reordering
Locality-Sensitive Reordering

0 4 8 12 16

Number of Processors

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

nc
y

No Reordering
Locality-Oblivious Reordering
Locality-Sensitive Reordering

(a) Model A (174090 � 174090) (b) Model B (45676 � 45676)

Figure 5: Executor E�ciencies for Di�erent Reordering Strategies

Table 1 shows the depths of schedules computed by the three methods and the average numbers of iterations

per wavefront. We can see a dramatic decrease in schedule depth brought about by reordering the source

loop iterations. There is also a corresponding increase in the number of iterations per wavefront. Notice

that locality-sensitive reordering, which seems to be less \aggressive" in using as few wavefronts as possible,

may actually lead to fewer wavefronts.

Figure 5 shows the measured executor e�ciencies for di�erent reordering strategies. E�ciency is de�ned as

parallel speedup divided by the number of processors. Parallel speedup is the execution time of the best

sequential implementation to the time of parallel execution using the executor.

First of all, we note that the e�ciencies, in all cases, are far from ideal. We believe that this has to do with

the extremely high cost of a local cache miss on the KSR1 (stalling a processor for 150 cycles) and hence the

need to preserve locality when iterations are assigned to di�erent processors for execution. We have been

exploring various other techniques to improve the performance of parallel loop execution, but these do not

fall within the scope of this paper.

Since the machine used for measurements has only a modest number of processors, we do not expect iteration

reordering to dramatically improve executor performance by identifying enough parallel work to keep other-

wise idle processors busy. This e�ect can, however, be felt on massively parallel machines having thousands

of processors.

11



Nevertheless, in the measurements presented here, iteration reordering still produces signi�cant performance

bene�ts. Not surprisingly, e�ciency declines with the number of processors in all cases. However, the

e�ciency of no reordering declines faster than that of iteration reordering. At 8 or more processors, no

reordering clearly has the lowest e�ciency among the three options considered here. Since there are already

plenty of iterations per wavefront per processor even without reordering, we believe that the improvement

is due to a smaller total cost of barrier synchronization.

Notice that at 1 processor, executions of the same source loop using di�erent schedules can have very di�erent

e�ciencies, all of which are potentially much lower than 100%. This is partly because in our application, the

sparse matrix data structures are laid out in such a way that executing iterations in the order of the original

sequential loop best preserves data locality. When iterations are executed in wavefronts, even on only one

processor, successive iterations in the source loop may not be executed in sequence. This results in poorer

locality and hence degraded performance. Furthermore, di�erent execution orders correspond to di�erent

execution times. Locality-sensitive reordering attempts to exploit this by placing successive iterations in the

same wavefront as far as possible so that they can later be assigned to the same processor for execution in

sequence.

Looking at the performance of locality-sensitive reordering, we observe that it is consistently better than the

other two options. For model A, the di�erence is relatively small (but clearly evident). Conceivably, one may

suspect that its superior performance here is only because it happens to yield the schedule with the fewest

wavefronts. The same cannot be said of model B. Locality-sensitive reordering performs much better than

both no reordering and locality-oblivious reordering. If its superiority over locality-oblivious reordering were

due to a di�erence of 3 wavefronts, then the improvement of locality-oblivous reordering over no reordering

should have been much much greater.

In conclusion, we see that in these experiments, reordering does improve performance at larger numbers of

processors, even though we do not expect to observe its full potential on a small-scale multiprocessor. More-

oever, changing the order of the iterations can adversely a�ect locality and thus lead to lower performance,

but this may be remedied in part by taking locality into account when we select the new iteration order.

3.2 Performance on Massively Parallel Machines

In this section, we use a simple model of execution time to study the performance implications of iteration

reordering on massively parallel shared-memory machines. Examples of such machines are the Kendall

Square Research KSR1 [4] and the Tera Computer Corporation multiprocessor design.

We assume that the time it takes to run the executor once consists of two components. The �rst is the time

to execute the iterations themselves; the second is a constant synchronization overhead for each wavefront.

We �rst derive an expression for parallel execution time, T (P ), of I iterations on P processors in W wave-

fronts. Let t

i

and t

b

be respectively the time to execute one iteration and the per-wavefront synchronization

overhead. We assume that all iterations take the same time to perform. To get the �rst component of

execution time, we assume that the I iterations are roughly equally divided among W wavefronts so that

each wavefront has, on the average,

I

W

iterations and thus takes t

i

d

I

WP

e to complete. The second component

is simply t

b

W . The parallel execution time can then be written as:

T (P ) = t

i

�

I

WP

�

W + t

b

W

The per-wavefront synchronization overhead is due to barrier synchronization between successive wavefronts.

First, executing the barrier code takes time. The importance of this would be small, though, if there is direct

hardware support for barrier operations, as in new machines like the Thinking Machines CM-5 [5]. Secondly,

12



since all processors must arrive at the barrier before any one of them can pass through and proceed to the

next wavefront, processors arriving earlier have to wait idly for the last arrival. Two processors may arrive

at di�erent times because one of them has one more iteration to execute than the other. The �rst component

of the execution time has already accounted for this by means of the ceiling operation. However, even if

two processors have exactly the same number of iterations, one may �nish later than the other because of

delays caused by random events like bus contention. This is attributed to the per-wavefront synchronization

overhead.

As a �rst approximation, we account for these two factors with a constant overhead per wavefront. In fact, it

is likely that the overhead due to these factors increases with the number of processors. For example, in our

barrier implementation, the time for all processors to go through the barrier code (assuming simultaneous

arrivals) is of the order of logP . If the overhead does increase with P , reducing schedule depth when there

are many processors would be even more important than this simple model may suggest. Thus, our analysis

is conservative with respect to the bene�t of reducing schedule depth.

Next we �nd the sequential execution time of the source loop. Obviously, the implementation of the loop

body in the executor would be more complicated than its implementation in the original sequential loop.

For simplicity, however, we assume that the two implementations take the same time to execute. If they

di�er signi�cantly in execution time, the e�ect is roughly to scale all parallel e�ciencies by a constant factor,

which does not a�ect our conclusions on how schedule depth a�ects parallel e�ciency. With this assumption,

the sequential execution time is simply:

T

s

= t

i

I

The e�ciency, de�ned as parallel speedup divided by the number of processors, is thus:

E(P ) =

T

s

=T (P )

P

=

t

i

I

t

i

�

I

WP

�

+ t

b

1

WP

In Figure 6, we plot e�ciency (E) against the number of processors (P ) for di�erent numbers of wavefronts

(W ) and di�erent values of t

b

=t

i

. The numbers of iterations and wavefronts are chosen from model B

described in the previous section. The value of t

b

=t

i

is a function of both the source loop body and how

barriers are implemented. In our case, the ratio is roughly of the order of 10. Curves for lower values of t

b

=t

i

are plotted so as to see how e�ciency varies with the number of processors on machines with faster barriers

and/or for applications having more time-consuming source loop body.

When there are only a dozen or so processors, executor e�ciency depends very little on schedule depth.

Reordering can signi�cantly reduce the depth but this does not have much e�ect on performance. At the

other extreme, when there are thousands of processors, the number of wavefronts becomes very important.

For example, with t

b

=t

i

= 1:0 and P = 2048, the e�ciency for 8 wavefronts is about 4 times the e�ciency

for 67 wavefronts. Naturally, for lower values of t

b

=t

i

(because barriers are faster and/or iterations take

longer than our case), the di�erence is smaller but still extremely signi�cant. When there are so many

processors, the main reason of ine�ciency is not the synchronization overhead but starvation experienced

by some processors. Therefore, if changing the order of source loop iterations helps to reduce the number

of wavefronts and hence identify more work that can be done in parallel, it can bring about signi�cant

performance improvement on massively parallel machines.

13



8 16 32 64 128 256 512 1024 2048

Number of Processors

0.00

0.20

0.40

0.60

0.80

1.00

E
ff

ic
ie

n
cy

67 wavefronts
8 wavefronts
5 wavefronts

8 16 32 64 128 256 512 1024 2048

Number of Processors

0.00

0.20

0.40

0.60

0.80

1.00

E
ff

ic
ie

n
cy

67 wavefronts
8 wavefronts
5 wavefronts

8 16 32 64 128 256 512 1024 2048

Number of Processors

0.00

0.20

0.40

0.60

0.80

1.00

E
ff

ic
ie

n
cy

67 wavefronts
8 wavefronts
5 wavefronts

(a) t

b

=t

i

= 0:05 (b) t

b

=t

i

= 0:2 (c) t

b

=t

i

= 1:0

Figure 6: Executor E�ciencies for Di�erent Numbers of Wavefronts

4 Conclusion

In general, when a loop speci�ed in a sequential programming language is parallelized, all its 
ow depen-

dencies and anti-dependencies must be respected to ensure that the algorithm implemented by the loop is

always correctly executed. The e�ect of parallel execution is as if the original loop were executed sequen-

tially. However, sometimes the sequential order of the iterations can be legitimately changed, as in loops

implementing Gauss-Seidel iterative numerical algorithms. This gives us extra freedom in choosing how to

perform the iterations in parallel. In particular, the original sequential order can be changed so as to reduce

the depth of the parallel schedule for the reordered loop.

The parallelization of these loops can be done within the framework of the runtime parallelization scheme

proposed by Saltz et al. The inspector chooses a new order of the iterations and computes a parallel schedule

for the reordered loop. These two problems are solved together as a single graph coloring problem. Though

�nding an e�cient algorithm to minimize the number of wavefronts is unlikely, we have used two related

heuristics that work reasonably well. They both guarantee that no more than d+ 1 wavefronts are needed

if each iteration is involved in at most d 
ow dependencies and anti-dependencies. Moreover, one of the

heuristics attempts to take locality into consideration when producing the schedule.

Measurements were made on a small-scale shared-memory multiprocessor. Reordering source loop iterations

does bring some performance improvement. A side e�ect, however, is that the reordered loop may have less

desirable locality properties. Taking locality into account can help to alleviate this e�ect. Furthermore, we

used a simple execution time model to study the relationship between schedule depth and executor e�ciency

on machines with many more processors. With thousands of processors, schedule depth becomes extremely

important. Reordering the iterations helps to keep schedule depths down and thus could lead to much better

executor performance.

References

[1] L. Adams and J. Ortega. A mutli-color SOR method for parallel computation. In Proceedings of 1982

International Conference on Parallel Processing, pages 53{56, August 1982.

14



[2] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porter�eld, and Burton

Smith. The Tera computer system. In Proceedings of International Conference on Supercomputing,

pages 1{6, 1990.

[3] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.

Prentice Hall, Englewood Cli�s, 1989.

[4] Henry III Burkhardt, Steven Frank, Bruce Knobe, and James Rothnie. Overview of the KSR1 computer

system. Technical Report KSR-TR-9202001, Kendall Square Research, Boston, February 1992.

[5] CM-5 Technical Summary. Thinking Machines Corporation, Cambridge, MA., 1991.

[6] R. De Leone and O. L. Mangasarian. Asynchronous parallel successive overrelaxation for the symmetric

linear complementarity problem. Mathematical Programming, 42(2):347{361, November 1988.

[7] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu. Fortran d language

speci�cation. Technical Report TR90-141, Department of Computer Science, Rice University, December

1990.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman, San Francisco, 1979.

[9] Jules J. Lambiotte, Jr. and Robert G. Voigt. The solution of tridiagonal linear systems on the CDC

STAR-100 computer. ACM Transactions on Mathematical Software, 1(4):308{329, December 1975.

[10] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik. Quantitative System

Performance. Prentice Hall, Englewood Cli�s, 1984.

[11] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. The

directory-based cache coherence protocol for the DASH multiprocessor. In Proceedings of the 17th

Annual International Symposium on Computer Architecture, pages 148{159, May 1990.

[12] Shun-Tak Leung and John Zahorjan. Improving executor performance in runtime loop parallelization.

Technical report, Department of Computer Science and Engineering, University of Washington, 1992.

In preparation.

[13] Shun-Tak Leung and John Zahorjan. Improving the performance of runtime parallelization. In Proceed-

ings of Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 1993.

To appear.

[14] O. L. Mangasarian and R. De Leone. Parallel successive overrelaxation methods for symmetric linear

complementarity problems and linear programs. Journal of Optimization Theory and Applications,

54:437{446, 1987.

[15] Raif O. Onvural. Survey of closed queueing networks with blocking. ACM Computing Surveys, 22(2):83{

121, June 1990.

[16] J. Ortega and R. Voigt. Solution of partial di�erential equations on vector and parallel computers.

SIAM Review, 27(2):149{240, June 1985.

[17] J. Saltz, R. Mirchandaney, and K. Crowley. Runtime parallelization and scheduling of loops. IEEE

Transactions on Computers, 40(5):603{612, May 1991.

[18] Joel Saltz, Harry Berryman, and Janet Wu. Multiprocessors and runtime compilation. In Proceedings

of International Workshop on Compilers for Parallel Computers, Paris, 1990.

15


