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Abstract

We present a method for solving the following problem: Given a set of data points scattered in

three dimensions and an initial triangular mesh M

0

, produce a mesh M , of the same topological

type asM

0

, that �ts the data well and has a small number of vertices. Our approach is to minimize

an energy function that explicitly models the competing desires of conciseness of representation

and �delity to the data. We show that mesh optimization can be e�ectively used in at least

two applications: surface reconstruction from unorganized points, and mesh simpli�cation (the

reduction of the number of vertices in an initially dense mesh of triangles).

CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational

Geometry and Object Modeling.

Additional Keywords: Geometric Modeling, Surface Fitting, Three-Dimensional Shape Re-

covery, Range Data Analysis, Model Simpli�cation.

1 Introduction

The mesh optimization problem considered in this paper can be roughly stated as follows: Given a

collection of data points X in R

3

and an initial triangular mesh M

0

near the data, �nd a mesh M

of the same topological type as M

0

that �ts the data well and has a small number of vertices.
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Figure 1: Examples of mesh optimization. The meshes in the top row are the initial meshes M

0

;

the meshes in the bottom row are the corresponding optimized meshes. The �rst 3 columns are

reconstructions; the last 2 columns are simpli�cations.

As an example, Figure 11b shows a set of 4102 data points sampled from the object shown in

Figure 11a. The input to the mesh optimization algorithm consists of the points together with the

initial mesh shown in Figure 11c. The optimized mesh is shown in Figure 12c. Notice that the

sharp edges and corners indicated by the data have been faithfully recovered and that the number

of vertices has been signi�cantly reduced (from 1572 to 163).

To solve the mesh optimization problem we minimize an energy function that captures the com-

peting desires of tight geometric �t and compact representation. The tradeo� between geometric

�t and compact representation is controlled via a user-selectable parameter c

rep

. A large value of

c

rep

indicates that a sparse representation is to be strongly preferred over a dense one, usually at

the expense of degrading the �t.

We use the input mesh M

0

as a starting point for a non-linear optimization process. During

the optimization we vary the number of vertices, their positions, and their connectivity. Although

we can give no guarantee of �nding a global minimum, we have run the method on a wide variety

of data sets; the method has produced good results in all cases (see Figure 1).

We see at least two applications of mesh optimization: surface reconstruction and mesh simpli-

�cation.

The problem of surface reconstruction from sampled data occurs in many scienti�c and engi-

neering applications. In [2], we outlined a two phase procedure for reconstructing a surface from a

set of unorganized data points. The goal of phase one is to determine the topological type of the

unknown surface and to obtain a crude estimate of its geometry. An algorithm for phase one was

described in [5]. The goal of phase two is to improve the �t and reduce the number of faces. Mesh

optimization can be used for this purpose.

Although we were originally led to consider the mesh optimization problem by our research
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on surface reconstruction, the algorithm we have developed can also be applied to the problem of

mesh simpli�cation. Mesh simpli�cation, as considered by Turk [16] and Schroeder et al. [11], refers

to the problem of reducing the number of faces in a dense mesh while minimally perturbing the

shape. Mesh optimization can be used to solve this problem as follows: sample data points X from

the initial mesh and use the initial mesh as the starting point M

0

of the optimization procedure.

For instance, Figure 14a shows a triangular approximation of a minimal surface with 2032 vertices.

Application of our mesh optimization algorithm to a sample of 6752 points (Figure 14b) from this

mesh produces the meshes shown in Figures 14c (487 vertices) and 14d (239 vertices). The mesh

of Figure 14c corresponds to a relatively small value of c

rep

, and therefore has more vertices than

the mesh of Figure 14d which corresponds to a somewhat larger value of c

rep

.

The principal contributions of this paper are:

� It presents an algorithm for �tting a mesh of arbitrary topological type to a set of data points

(as opposed to volume data, etc.). During the �tting process, the number and connectivity

of the vertices, as well as their positions, are allowed to vary.

� It casts mesh simpli�cation as an optimization problem with an energy function that directly

measures deviation of the �nal mesh from the original. As a consequence, the �nal mesh

naturally adapts to curvature variations in the original mesh.

� It demonstrates how the algorithm's ability to recover sharp edges and corners can be ex-

ploited to automatically segment the �nal mesh into smooth connected components (see

Figure 12e).

2 Mesh Representation

Intuitively, a mesh is a piecewise linear surface, consisting of triangular faces pasted together along

their edges. For our purposes it is important to maintain the distinction between the connectivity

of the vertices and their geometric positions. Formally, a mesh M is a pair (K; V ), where: K is a

simplicial complex representing the connectivity of the vertices, edges, and faces, thus determining

the topological type of the mesh; V = fv

1

; : : : ;v

m

g, v

i

2 R

3

is a set of vertex positions de�ning

the shape of the mesh in R

3

(its geometric realization).

A simplicial complex K consists of a set of vertices f1; : : : ; mg, together with a set of non-empty

subsets of the vertices, called the simplices of K, such that any set consisting of exactly one vertex

is a simplex in K, and every non-empty subset of a simplex in K is again a simplex in K (cf.

Spanier [15]). The 0-simplices fig 2 K are called vertices, the 1-simplices fi; jg 2 K are called

edges, and the 2-simplices fi; j; kg 2 K are called faces.

A geometric realization of a mesh as a surface in R

3

can be obtained as follows. For a given sim-

plicial complex K, form its topological realization jKj in R

m

by identifying the vertices f1; : : : ; mg

with the standard basis vectors fe

1

; : : : ; e

m

g of R

m

. For each simplex s 2 K let jsj denote the

convex hull of its vertices in R

m

, and let jKj = [

s2K

jsj. Let � : R

m

! R

3

be the linear map that

sends the i-th standard basis vector e

i

2 R

m

to v

i

2 R

3

(see Figure 2).
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Simplicial complex K
1{ } 2{ } 3{ }, ,
1 2,{ } 2 3,{ } 1 3,{ }, ,
1 2 3, ,{ }

vertices:
edges:
faces:

Topological realization K

e1

e2
e3

Rm

v1

v3

v2
φ

R3

Geometric realization V( )

b

z

x

y

p

φ
V

K( )

Figure 2: Example of mesh representation: a mesh consisting of a single face.

The geometric realization ofM is the image �

V

(jKj), where we write the map as �

V

to emphasize

that it is fully speci�ed by the set of vertex positions V = fv

1

; : : : ;v

m

g. The map �

V

is called

an embedding if it is 1-1, that is if �

V

(jKj) is not self-intersecting. Only a restricted set of vertex

positions V result in �

V

being an embedding.

If �

V

is an embedding, any point p 2 �

V

(jKj) can be parameterized by �nding its unique

pre-image on jKj. The vector b 2 jKj with p = �

V

(b) is called the barycentric coordinate vector of

p (with respect to the simplicial complex K). Note that barycentric coordinate vectors are convex

combinations of standard basis vectors e

i

2 R

m

corresponding to the vertices of a face of K. Any

barycentric coordinate vector has at most three non-zero entries; it has only two non-zero entries

if it lies on an edge of jKj, and only one if it is a vertex.

3 De�nition of the Energy Function

Recall that the goal of mesh optimization is to obtain a mesh that provides a good �t to the point

set X and has a small number of vertices. We �nd a simplicial complex K and a set of vertex

positions V de�ning a mesh M = (K;V ) that minimizes the energy function

E(K;V ) = E

dist

(K; V ) +E

rep

(K) + E

spring

(K;V ):

The �rst two terms correspond to the two stated goals; the third term is motivated below.

The distance energy E

dist

is equal to the sum of squared distances from the points X =

fx

1

; : : : ;x

n

g to the mesh,

E

dist

(K; V ) =

n

X

i=1

d

2

(x

i

; �

V

(jKj)):
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The representation energy E

rep

penalizes meshes with a large number of vertices. It is set to

be proportional to the number of vertices m of K:

E

rep

(K) = c

rep

m:

The optimization allows vertices to be both added to and removed from the mesh. When a vertex

is added, the distance energy E

dist

is likely to be reduced; the term E

rep

makes this operation incur

a penalty so that vertices are not added inde�nitely. Similarly, one wants to remove vertices from

a dense mesh even if E

dist

increases slightly; in this case E

rep

acts to encourage the vertex removal.

The user-speci�ed parameter c

rep

provides a controllable trade-o� between �delity of geometric �t

and parsimony of representation.

We discovered, as others have before us [7], that minimizing E

dist

+E

rep

does not produce the

desired results. As an illustration of what can go wrong, Figure 11d shows the result of minimizing

E

dist

alone. The estimated surface has several spikes in regions where there is no data. These spikes

are a manifestation of the fundamental problem that a minimum of E

dist

+E

rep

may not exist.

To guarantee the existence of a minimum (see Appendix A.1), we add the third term, the spring

energy E

spring

. It places on each edge of the mesh a spring of rest length zero and spring constant

�:

E

spring

(K; V ) =

X

fj;kg2K

�kv

j

� v

k

k

2

It is worthwhile emphasizing that the spring energy is not a smoothness penalty. Our intent

is not to penalize sharp dihedral angles in the mesh, since such features may be present in the

underlying surface and should be recovered. We view E

spring

as a regularizing term that helps guide

the optimization to a desirable local minimum. As the optimization converges to the solution, the

magnitude of E

spring

can be gradually reduced. We return to this issue in Section 4.4.

For some applications we want the procedure to be scale-invariant, which is equivalent to de�ning

a unitless energy functionE. To achieve invariance under Euclidean motion and uniform scaling, the

points X and the initial mesh M

0

are pre-scaled uniformly to �t in a unit cube. After optimization,

a post-processing step can undo this initial transformation.

4 Minimization of the Energy Function

Our goal is to minimize the energy function

E(K;V ) = E

dist

(K;V ) + E

rep

(K) +E

spring

(K; V )

over the set K of simplicial complexes K homeomorphic to the initial simplicial complex K

0

, and

the vertex positions V de�ning the embedding. We now present an outline of our optimization

algorithm, a pseudo-code version of which appears in Figure 3. The details are deferred to the next

two subsections.

To minimizeE(K;V ) over bothK and V , we partition the problem into two nested subproblems:

an inner minimization over V for �xed simplicial complex K, and a outer minimization over K.
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In Section 4.1 we describe an algorithm that solves the inner minimization problem. It �nds

E(K) = min

V

E(K;V ), the energy of the best possible embedding of the �xed simplicial complex

K, and the corresponding vertex positions V , given an initial guess for V . This corresponds to the

procedure OptimizeVertexPositions in Figure 3.

Whereas the inner minimization is a continuous optimization problem, the outer minimization

of E(K) over the simplicial complexes K 2 K (procedure OptimizeMesh) is a discrete optimization

problem. An algorithm for its solution is presented in Section 4.2.

The energy function E(K;V ) depends on two parameters c

rep

and �. The parameter c

rep

controls the tradeo� between conciseness and �delity to the data and should be set by the user.

The parameter �, on the other hand, is a regularizing parameter that, ideally, would be chosen

automatically. Our method of setting � is described in Section 4.4.

4.1 Optimization for Fixed Simplicial Complex

(Procedure OptimizeVertexPositions)

In this section, we consider the problem of �nding a set of vertex positions V that minimizes the

energy function E(K;V ) for a given simplicial complex K. As E

rep

(K) does not depend on V , this

amounts to minimizing E

dist

(K;V ) + E

spring

(K;V ).

To evaluate the distance energy E

dist

(K;V ), it is necessary to compute the distance of each

data point x

i

to M = �

V

(jKj). Each of these distances is itself the solution to the minimization

problem

d

2

(x

i

; �

V

(jKj)) = min

b

i

2jKj

kx

i

� �

V

(b

i

)k

2

;

in which the unknown is the barycentric coordinate vector b

i

2 jKj � R

m

of the projection of x

i

onto M (Figure 4). Thus, minimizing E(K;V ) for �xed K is equivalent to minimizing the new

objective function

E(K; V;B) =

n

X

i=1

kx

i

� �

V

(b

i

)k

2

+ E

spring

(K;V )

=

n

X

i=1

kx

i

� �

V

(b

i

)k

2

+

X

fj;kg2K

�kv

j

� v

k

k

2

over the vertex positions V = fv

1

; : : : ;v

m

g;v

i

2 R

3

and the barycentric coordinatesB = fb

1

; : : : ;b

n

g;b

i

2

jKj � R

m

.

To solve this optimization problem (procedure OptimizeVertexPositions), our method alternates

between two subproblems:

1. For �xed vertex positions V , �nd optimal barycentric coordinate vectors B by projection

(procedure ProjectPoints).

2. For �xed barycentric coordinate vectors B, �nd optimal vertex positions V by solving a linear

least squares problem (procedure ImproveVertexPositions).
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OptimizeMesh(K

0

,V

0

) f

K := K

0

V := OptimizeVertexPositions(K

0

,V

0

)

{ Solve the outer minimization problem.

repeat f

(K

0

,V

0

) := GenerateLegalMove(K,V )

V

0

= OptimizeVertexPositions(K

0

,V

0

)

if E(K

0

; V

0

) < E(K;V ) then

(K,V ) := (K

0

,V

0

)

endif

g until convergence

return (K,V )

g

{ Solve the inner optimization problem

{ E(K) = min

V

E(K;V )

{ for �xed simplicial complex K.

OptimizeVertexPositions(K,V ) f

repeat f

{ Compute barycentric coordinates by projection.

B := ProjectPoints(K,V )

{ Minimize E(K;V;B) over V using conjugate gradients.

V := ImproveVertexPositions(K,B)

g until convergence

return V

g

GenerateLegalMove(K,V ) f

Select a legal move K ) K

0

.

Locally modify V to obtain V

0

appropriate for K

0

.

return (K

0

,V

0

)

g

Figure 3: An idealized pseudo-code version of the minimization algorithm.
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φ
V

bi( )

xi

v1

v3

v2

Figure 4: Distance of a point x

i

from the mesh.

Because we �nd optimal solutions to both of these subproblems, E(K; V;B) can never increase,

and since it is bounded from below, it must converge. In principle, one could iterate until some

formal convergence criterion is met. Instead, as is common, we perform a �xed number of iterations.

As an example, Figure 11e shows the result of optimizing the mesh of Figure 11c over the vertex

positions while holding the simplicial complex �xed.

It is conceivable that procedure OptimizeVertexPositions returns a set V of vertices for which the

mesh is self-intersecting, i.e. �

V

is not an embedding. While it is possible to check a posteri-

ori whether �

V

is an embedding, constraining the optimization to always produce an embedding

appears to be di�cult. This has not presented a problem in the examples we have run.

4.1.1 Projection Subproblem

(Procedure ProjectPoints)

The problem of optimizing E(K;V;B) over the barycentric coordinate vectors B = fb

1

; : : : ;b

n

g,

while holding the vertex positions V = fv

1

; : : : ;v

m

g and the simplicial complex K constant, de-

composes into n separate optimization problems:

b

i

= argmin

b2jKj

kx

i

� �

V

(b)k

In other words, b

i

is the barycentric coordinate vector corresponding to the point p 2 �

V

(jKj)

closest to x

i

.

A naive approach to computing b

i

is to project x

i

onto all of the faces of M , and then �nd the

projection with minimal distance. To speed up the projection, we �rst enter the faces of the mesh

into a spatial partitioning data structure (similar to the one used in [17]). Then for each point x

i

only a nearby subset of the faces needs to be considered, and the projection step takes expected

time O(n). For additional speedup we exploit coherence between iterations. Instead of projecting

each point globally onto the mesh, we assume that a point's projection lies in a neighborhood of

its projection in the previous iteration. Speci�cally, we project the point onto all faces that share
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a vertex with the previous face. Although this is a heuristic that can fail, it has performed well in

practice.

4.1.2 Linear Least Squares Subproblem

(Procedure ImproveVertexPositions)

Minimizing E(K; V;B) over the vertex positions V while holding B and K �xed is a linear least

squares problem. It decomposes into three independent subproblems, one for each of the three

coordinates of the vertex positions. We will write down the problem for the �rst coordinate.

Let e be the number of edges (1-simplices) in K; note that e is O(m). Let v

1

be the m-

vector whose i-th element is the �rst coordinate of v

i

. Let d

1

be the (n + e)-vector whose �rst n

elements are the �rst coordinates of the data points x

i

, and whose last e elements are zero. With

these de�nitions we can express the least squares problem for the �rst coordinate as minimizing

kAv

1

� d

1

k

2

over v

1

. The design matrix A is an (n+ e)�m matrix of scalars. The �rst n rows of

A are the barycentric coordinate vectors b

i

. Each of the trailing e rows contains 2 non-zero entries

with values

p

� and �

p

� in the columns corresponding to the indices of the edge's endpoints.

The �rst n rows of the least squares problem correspond to E

dist

(K; V ), while the last e rows

correspond to E

spring

(K; V ). An important feature of the matrix A is that it contains at most 3

non-zero entries in each row, for a total of O(n+m) non-zero entries.

To solve the least squares problem, we use the conjugate gradient method (cf. [3]). This is an

iterative method guaranteed to �nd the exact solution in as many iterations as there are distinct

singular values of A, i.e. in at most m iterations. Usually far fewer iterations are required to get

a result with acceptable precision. For example, we �nd that for m as large as 10

4

, as few as 200

iterations are su�cient.

The two time-consuming operations in each iteration of the conjugate gradient algorithm are

the multiplication of A by an (n+ e)-vector and the multiplication of A

T

by an m-vector. Because

A is sparse, these two operations can be executed in O(n+m) time. We store A in a sparse form

that requires only O(n + m) space. Thus, an acceptable solution to the least squares problem

is obtained in O(n + m) time. In contrast, a typical noniterative method for solving dense least

squares problems, such as QR decomposition, would require O((n+m)m

2

) time to �nd an exact

solution.

4.2 Optimization over Simplicial Complexes

(Procedure OptimizeMesh)

To solve the outer minimization problem, minimizing E(K) over K, we de�ne a set of three ele-

mentary transformations, edge collapse, edge split, and edge swap, taking a simplicial complex K

to another simplicial complex K

0

(see Figure 5).

We de�ne a legal move to be the application of one of these elementary transformations to an

edge of K that leaves the topological type of K unchanged. The set of elementary transformations

is complete in the sense that any simplicial complex in K can be obtained from K

0

through a
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edge collapse edge split edge swap

i

j

k
l

h

hk k kl l l

i i

j j

Figure 5: Local simplicial complex transformations

sequence of legal moves

1

.

Our goal then is to �nd such a sequence taking us from K

0

to a minimum of E(K). We do this

using a variant of random descent: we randomly select a legal move,K ) K

0

. If E(K

0

) < E(K), we

accept the move, otherwise we try again. If a large number of trials fails to produce an acceptable

move, we terminate the search.

More elaborate selection strategies, such as steepest descent or simulated annealing, are possible.

As we have obtained good results with the simple strategy of random descent, we have not yet

implemented the other strategies.

Identifying Legal Moves An edge split transformation is always a legal move, as it can never

change the topological type of K. The other two transformations, on the other hand, can cause a

change of topological type, so tests must be performed to determine if they are legal moves.

We de�ne an edge fi; jg 2 K to be a boundary edge if it is a subset of only one face fi; j; kg 2 K,

and a vertex fig to be a boundary vertex if there exists a boundary edge fi; jg 2 K.

An edge collapse transformation K ) K

0

that collapses the edge fi; jg 2 K is a legal move if

and only if the following conditions are satis�ed (proof in Appendix A.2):

� For all vertices fkg adjacent to both fig and fjg (fi; kg 2 K and fj; kg 2 K), fi; j; kg is a

face of K.

� If fig and fjg are both boundary vertices, fi; jg is a boundary edge.

� K has more than 4 vertices if neither fig nor fjg are boundary vertices, or K has more than

3 vertices if either fig or fjg are boundary vertices.

1

In fact, we prove in Appendix A.3 that edge collapse and edge split are su�cient; we include edge swap to allow

the optimization procedure to \tunnel" through small hills in the energy function.
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An edge swap transformation K ) K

0

that replaces the edge fi; jg 2 K with fk; lg 2 K

0

is a

legal move if and only if fk; lg 62 K.

4.3 Exploiting Locality

The idealized algorithm described so far is too ine�cient to be of practical use. In this section, we

describe some heuristics which dramatically reduce the running time. These heuristics capitalize

on the fact that a local change in the structure of the mesh leaves the optimal positions of distant

vertices essentially unchanged.

4.3.1 Heuristics for Evaluating the E�ect of Legal Moves

Our strategy for selecting legal moves requires evaluation of E(K

0

) = min

V

E(K

0

; V ) for a simplicial

complex K

0

obtained from K through a legal move. Ideally, we would use procedure OptimizeVer-

texPositions of Section 4.1 for this purpose, as indicated in Figure 3. In practice, however, this is

too slow. Instead, we use fast local heuristics to estimate the e�ect of a legal move on the energy

function.

Each of the heuristics is based on extracting a submesh in the neighborhood of the transforma-

tion, along with the subset of the data points projecting onto the submesh. The change in overall

energy is estimated by only considering the contribution of the submesh and the corresponding

point set. This estimate is always pessimistic, as full optimization would only further reduce the

energy. Therefore, the heuristics never suggest changes that will increase the true energy of the

mesh.

De�nition of neighborhoods in a simplicial complex To refer to neighborhoods in a simpli-

cial complex, we need to introduce some further notation. We write s

0

� s to denote that simplex

s

0

is a non-empty subset of simplex s. For simplex s 2 K (Figure 6):

star(s;K) = fs

0

2 K : s � s

0

g

star(s;K) = fs

0

2 K : 9t 2 star(s;K) : s

0

� tg

link(s;K) = star(s;K) n star(s;K).

Evaluation of Edge Collapse To evaluate a transformation K ) K

0

collapsing an edge fi; jg

into a single vertex fhg (Figure 5), we take the submesh to be star(fig;K) [ star(fjg;K), and

optimize over the single vertex position v

h

while holding all other vertex positions constant.

Because we perform only a small number of iterations (for reasons of e�ciency), the initial choice

of v

h

greatly in
uences the accuracy of the result. Therefore, we attempt three optimizations, with

v

h

starting at v

i

, v

j

, and

1

2

(v

i

+ v

j

), and accept the best one.
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s star{s,K} star{s,K}

t star{t,K} star{t,K}

Figure 6: Neighborhood subsets of K.

k

j

i

l

k

l

i

j

j

i

Figure 7: Two local optimizations to evaluate edge swap

The edge collapse should be allowed only if the new mesh does not intersect itself. Checking for

this would be costly; instead we settle for a less expensive heuristic check. If, after the local opti-

mization, the maximum dihedral angle of the edges in star(fhg;K

0

) is greater than some threshold,

the edge collapse is rejected.

Evaluation of Edge Split The procedure is the same as for edge collapse, except that the

submesh is de�ned to be star(fi; jg;K), and the initial value of the new vertex v

h

is chosen to be

1

2

(v

i

+ v

j

).

Evaluation of Edge Swap To evaluate an edge swap transformation K ) K

0

that replaces

an edge fi; jg 2 K with fk; lg 2 K

0

, we consider two local optimizations, one with submesh

star(fkg;K

0

), varying vertex v

k

, and one with submesh star(flg;K

0

), varying vertex v

l

(Figure 7).

The change in energy is taken to best of these. As is the case in evaluating an edge collapse, we

reject the transformation if the maximum dihedral angle after the local optimization exceeds a
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threshold.

4.3.2 Legal Move Selection Strategy

(Procedure GenerateLegalMove)

The simple strategy for selecting legal moves described in Section 4.2 can be improved by exploiting

locality. Instead of selecting edges completely at random, edges are selected from a candidate set.

This candidate set consists of all edges that may lead to bene�cial moves, and initially contains all

edges.

To generate a legal move, we randomly remove an edge from the candidate set. We �rst

consider collapsing the edge, accepting the move if it is legal and reduces the total energy. If the

edge collapse is not accepted, we then consider edge swap and edge split in that order. If one of

the transformations is accepted, we update the candidate set by adding all neighboring edges. The

candidate set becomes very useful toward the end of optimization, when the fraction of bene�cial

moves diminishes.

4.4 Setting of the Spring Constant

We view the spring energy E

spring

as a regularizing term that helps guide the optimization process

to a good minimum. The spring constant � determines the contribution of this term to the total

energy. We have obtained good results by making successive calls to procedure OptimizeMesh, each

with a di�erent value of �, according to a schedule that gradually decreases �.

As an example, to obtain the �nal mesh in Figure 12c starting from the mesh in Figure 11c,

we successively set � to 10

�2

; 10

�3

; 10

�4

, and 10

�8

(see Figures 11f{12c). This same schedule was

used in all the examples.

5 Results

5.1 Surface Reconstruction

From the set of points shown in Figure 11b, phase one of our reconstruction algorithm [5] produces

the mesh shown in Figure 11c; this mesh has the correct topological type, but it is rather dense, is

far away from the data, and lacks the sharp features of the original model (Figure 11a). Using this

mesh as a starting point, mesh optimization produces the mesh in Figure 12c.

Figures 13a-13f show two examples of surface reconstruction from actual laser range data (cour-

tesy of Technical Arts, Redmond, WA). Figures 13a and 13b show sets of points obtained by sam-

pling two physical objects (a distributor cap and a golf club head) with a laser range �nder. The

outputs of phase one are shown in Figures 13c and 13d. The holes present in the surface of Fig-

ure 13c are artifacts of the data, as self-shadowing prevented some regions of the surface from being

scanned. Adaptive selection of scanning paths preventing such shadowing is an interesting area of
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future research. In this case, we manually �lled the holes, leaving a single boundary at the bottom.

Figures 13e and 13f show the optimized meshes obtained with our algorithm.

5.2 Mesh Simpli�cation

For mesh simpli�cation, we �rst sample a set of points randomly from the original mesh using

uniform random sampling over area. Next, we add the vertices of the mesh to this point set.

Finally, to more faithfully preserve the boundaries of the mesh, we sample additional points from

boundary edges.

As an example of mesh simpli�cation, we start with the mesh containing 2032 vertices shown in

Figure 14a. From it, we obtain a sample of 6752 points shown in Figure 14b (4000 random points,

2032 vertex points, and 720 boundary points). Mesh optimization, with c

rep

= 10

�5

, reduces the

mesh down to 487 vertices (Figure 14c). By setting c

rep

= 10

�4

, we obtain a coarser mesh of 239

vertices (Figure 14d).

As these examples illustrate, basing mesh simpli�cation on a measure of distance between the

simpli�ed mesh and the original has a number of bene�ts:

� Vertices are dense in regions of high Gaussian curvature, whereas a few large faces span the


at regions.

� Long edges are aligned in directions of low curvature, and the aspect ratios of the triangles

adjust to local curvature.

� Edges and vertices of the simpli�ed mesh are placed near sharp features of the original mesh.

5.3 Segmentation

Mesh optimization enables us to detect sharp features in the underlying surface. Using a simple

thresholding method, the optimized mesh can be segmented into smooth components. To this end,

we build a graph in which the nodes are the faces of mesh. Two nodes of this graph are connected if

the two corresponding faces are adjacent and their dihedral angle is smaller than a given threshold.

The connected components of this graph identify the desired smooth segments. As an example,

Figure 12e shows the segmentation of the optimized mesh into 11 components. After segmentation,

vertex normals can be estimated from neighboring faces within each component, and a smoothly

shaded surface can be created (Figure 12f).

5.4 Parameter Settings and Performance Statistics

Table 1 lists the speci�c parameter values of c

rep

and � used to generate the meshes in the examples,

along with other performance statistics. In all these examples, the table entry \varied" refers to

a spring constant schedule of f10

�2

; 10

�3

; 10

�4

; 10

�8

g. In fact, all meshes in Figure 1 are also

created using the same parameters (except that c

rep

was changed in two cases). Execution times

were obtained on a DEC uniprocessor Alpha workstation.
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Fig. #vertices #faces #data Parameters Resulting energies time

m n c

rep

� E

dist

E (min.)

11c 1572 3152 4102 - - 8:57�10

�2

- -

11e 1572 3152 4102 10

�5

10

�2

8:04�10

�4

4:84�10

�2

1:5

11f 508 1024 4102 10

�5

10

�2

6:84�10

�4

3:62�10

�2

(+3:0)

12a 270 548 4102 10

�5

10

�3

6:08�10

�4

6:94�10

�3

(+2:2)

12c 163 334 4102 10

�5

10

f�2;�3;�4;�8g

4:86�10

�4

2:12�10

�3

17:0

13c 9220 18272 12745 - - 6:41�10

�2

- -

13e 690 1348 12745 10

�5

10

f�2;�3;�4;�8g

4:23�10

�3

1:18�10

�2

47:0

13d 4059 8073 16864 - - 2:20�10

�2

- -

13f 262 515 16864 10

�5

10

f�2;�3;�4;�8g

2:19�10

�3

4:95�10

�3

44:5

14a 2032 3832 - - - - - -

14c 487 916 6752 10

�5

10

f�2;�3;�4;�8g

1:86�10

�3

8:05�10

�3

9:9

14d 239 432 6752 10

�4

10

f�2;�3;�4;�8g

9:19�10

�3

4:39�10

�2

10:2

Table 1: Performance statistics for meshes shown in Figure 11.

6 Related Work

Surface Fitting There is a large body of literature on �tting embeddings of a rectangular domain;

see Bolle and Vemuri [1] for a review. Schudy and Ballard [12, 13] �t embeddings of a sphere to

point data. Goshtasby [4] works with embeddings of cylinders and tori. Sclaro� and Pentland [14]

consider embeddings of a deformed superquadric. Miller et al. [8] approximate an isosurface of

volume data by �tting a mesh homeomorphic to a sphere. While it appears that their method

could be extended to �nding isosurfaces of arbitrary topological type, it it less obvious how it could

be modi�ed to handle point instead of volume data. Mallet [6] discusses interpolation of functions

over simplicial complexes of arbitrary topological type.

Our method allows �tting of a parametric surface of arbitrary topological type to a set of three-

dimensional points. In [2], we sketched an algorithm for �tting a mesh of �xed vertex connectivity

to the data. The algorithm presented here is an extension of this idea in which we also allow the

number of vertices and their connectivity to vary. To the best of our knowledge, this has not been

done before.

Mesh Simpli�cation Two notable papers discussing the mesh simpli�cation problem are Schroeder

et al. [11] and Turk [16].

The motivation of Schroeder et al. is to simplify meshes generated by \marching cubes" that

may consist of more than a million triangles. In their iterative approach, the basic operation is

removal of a vertex and re-triangulation of the hole thus created. The criterion for vertex removal in

the simplest case (interior vertex not on edge or corner) is the distance from the vertex to the plane

approximating its surrounding vertices. It is worthwhile noting that this criterion only considers

deviation of the new mesh from the mesh created in the previous iteration; deviation from the
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original mesh does not �gure in the strategy.

Turk's goal is to reduce the amount of detail in a mesh while remaining faithful to the original

topology and geometry. His basic idea is to distribute points on the existing mesh that are to

become the new vertices. He then creates a triangulation containing both old and new vertices,

and �nally removes the old vertices. The density of the new vertices is chosen to be higher in areas

of high curvature.

The principal advantage of our mesh simpli�cation method compared to the techniques men-

tioned above is that we cast mesh simpli�cation as an optimization problem: we �nd a new mesh of

lower complexity that is as close as possible to the original mesh. This is recognized as a desirable

property by Turk (Section 8, p. 63): \Another topic is �nding measures of how closely matched a

given re-tiling is to the original model. Can such a quality measure be used to guide the re-tiling

process?". Optimization automatically retains more vertices in areas of high curvature, and leads to

faces that are elongated along directions of low curvature, another property recognized as desirable

by Turk.

7 Summary and Future Work

We have described an energy minimization approach to solving the mesh optimization problem.

The energy function we use consists of three terms: a distance energy that measures the closeness of

�t, a representation energy that penalizes meshes with a large number of vertices, and a regularizing

term that conceptually places springs of rest length zero on the edges of the mesh. Our minimization

algorithm partitions the problem into two nested subproblems: an inner continuous minimization

and an outer discrete minimization. The search space consists of all meshes homeomorphic to the

starting mesh.

Mesh optimization has proven e�ective as the second phase of our method for surface recon-

struction from unorganized points, as discussed in [5]. (Phase two is responsible for improving the

geometric �t and reducing the number of vertices of the mesh produced in phase one.)

Our method has also performed well for mesh simpli�cation, that is, the reduction of the number

of vertices in a dense triangular mesh. It produces meshes whose edges align themselves along

directions of low curvature, and whose vertices concentrate in areas of high Gaussian curvature.

Because the energy does not penalize surfaces with sharp dihedral angles, the method can recover

sharp edges and corners.

A number of areas of future research still remain, including:

� Investigate the use of more sophisticated optimization methods, such as simulated annealing

for discrete optimization and quadratic methods for non-linear least squares optimization, in

order to avoid undesirable local minima in the energy and to accelerate convergence.

� Gain more insight into the use of the spring energy as a regularizing term, especially in the

presence of appreciable noise.

� Improve the speed of the algorithm and investigate implementations on parallel architectures.

16



� Develop methods for �tting higher order splines to more accurately and concisely model

curved surfaces.

� Experiment with sparse, non-uniform, and noisy data.

� Extend the current algorithm to other distance measures such as maximum error (L

1

norm)

or average error (L

1

norm), instead of the current L

2

norm.

A Mathematical Appendix

In this appendix, we address some mathematical issues alluded to in the body of the paper. Sec-

tion A.1 contains a proof that there is a mesh (K

min

; V

min

) at which the absolute minimum of the

energy function is attained. In Section A.2, it is shown that the simplicial operations introduced

in Section 4.2 are complete in the sense that they may be used to generate all triangulations of

topological surfaces. In Section A.3, we prove the necessity and su�ciency of the criteria for legality

of an edge collapse given in Section 4.2

A.1 Absolute Minima for the Energy Functional Can be Attained

Recall that one of the reasons for adding the spring energy term E

spring

to the energy functions

was to insure the existence of a mesh realizing a minimum. In this appendix, we prove that this is

the case.

To see what is involved, let e � 0 be the absolute minimum of E and let K

k

; V

k

) be a sequence

of meshes with lim

k!1

E(K

k

; V

k

) = e. Without the spring energy term, it is possible to construct

examples in which the vertex con�guration V

k

becomes unbounded as k approaches in�nity.

This cannot happen if the spring energy term is included. We will show that for su�ciently

large V the energy functional E(K;V ) is bounded from below by a multiple of the square of the

Euclidean norm of V . Consequently, the minimizing sequence (K

k

; V

k

) is contained in a �nite ball

and must, therefore, contain a subsequence converging to a mesh (K

min

; V

min

). By construction

E(K

min

; V

min

) = e.

Theorem 1 There is a mesh (K

min

; V

min

) with the property that

E(K; V ) � E(K

min

; V

min

)

for every mesh (K; V ).

Remark 1 It is important to note here that the map �

V

min

: jK

min

j ! R

3

may not be an embed-

ding. In general, the minimum of E may be attained by a degenerate mapping whose image may

not be an embedded manifold.

We proceed now with the technicalities of the formal proof.
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Recall that for a mesh (K; V ) and a data set X , n is the number of data points and m is the

number of vertices of K. Assume that X is contained in a ball of radius r > 0 centered at the

origin. If V = (v

1

;v

2

; : : : ;v

m

) is viewed as a vector in R

3m

then its Euclidean norm on R

3m

is

given by the formula

kV k =

v

u

u

t

m

X

i=1

kv

i

k

2

where kv

i

k is the standard Euclidean norm of R

3

.

Lemma 1 Suppose that kV k � 4

p

mr. Then

E(K; V ) � min

�

4�

m

2

; 1

�

kV k

2

16

+ c

rep

m

Proof. Recall that

E(K;V ) = E

spring

(K;V ) + E

dist

(K;V ) + E

rep

(K) :

Let b = max

j

kv

j

k and a = min

j

kv

j

k. Notice that b satis�es the inequality

b �

kV k

p

m

:

There are two cases to consider: a � b=2 or a > b=2.

Suppose that a � b=2. Choose v

max

and v

min

in fv

1

; : : : ;v

m

g such that a = kv

min

k and

b = kv

max

k. There is a sequence of k � m edges of K connecting v

max

to v

min

. The spring energy

of these connecting edges is easily shown to be greater than � k(b� a)

2

=k

2

. Since

k

�

b� a

k

�

2

�

(b� a)

2

m

�

b

2

4m

�

kV k

2

4m

2

;

the inequality

E

spring

(K; V ) �

�

4m

2

kV k

2

holds when a < b=2.

Now suppose that a > b=2. Then for all x

i

2 X ,

dist

2

(x

i

; �

V

(jKj)) � (a� r)

2

�

�

b

2

� r

�

2

�

�

kV k

2

p

m

� r

�

2

�

�

kV k

2

p

m

�

kV k

4

p

m

�

2

=

kV k

2

16m

:

Hence,

E

dist

(K;V ) =

n

X

i=1

dist

2

(x

i

; �

V

(jKj)) �

1

16

kV k

2

:

Consequently, if kV k � 4

p

mr then

E

spring

(K; V ) +E

dist

(K; V ) � min

�

1

4

;

�

m

2

�

kV k

2

4
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from which the inequality in the statement of the lemma follows. Q.E.D.

The next lemma is an immediate consequence of Lemma 1 and the de�nition of the energy

functional.

Lemma 2 Let b = E(K

0

; V

0

) where (K

0

; V

0

) is a mesh. Suppose that (K;V ) is another mesh such

that E(K;V ) � b and let m be the number of vertices of K. Then

� m � b=c

rep

.

� kV k � 4max

 

p

mr;

s

b

min(4�=m

2

; 1)

!

� 4max

 
s

b

c

rep

r;

s

b

min(4�c

2

rep

=b

2

; 1)

!

.

Proof. (of Theorem 1) Choose a sequence of meshes (K

k

; V

k

) with lim

k!1

E(K

k

; V

k

) = e.

Let m

k

be the number of vertices of K

k

. First note that since E(K

k

; V

k

) � c

rep

m

k

, the number

of vertices in K

k

is bounded by an integer M . But there are only a �nite number of simplicial

complexes with at most M vertices. Consequently, we may choose a subsequence k

j

0
with K

k

j

0

=

K

k

j

0

+1

for all j

0

and with lim

j

0

!1

E(K

k

j

0

; V

k

j

0

) = e. Let K

min

denote such a complex.

By Lemma 2 the vectors V

k

j

0

all lie within a ball of �nite radius. By compactness, there is a

subsequence of V

k

j

0

which converges to a vector V

min

. The mesh (K

min

; V

min

) satis�es the condition

of the theorem. Q.E.D.

A.2 Completeness of Operations

We want to show that the operations of edge split, edge swap and edge collapse form a complete

set in the sense that if K and L are simplicial surfaces with homeomorphic topological realizations

then L can be obtained from K by a �nite sequence of edge splits, edge swaps and edge collapses.

Although edge swaps have proved useful in our optimization procedure, the next proposition

shows that they are not needed to prove completeness.

Proposition 1 An edge swap is equivalent to an edge split followed by an edge collapse.

Proof. Let T

1

= fv

1

; v

2

; v

3

g and T

2

= fv

1

; v

2

; v

4

g be two triangles of a simplicial surface K with

common edge e = fv

1

; v

2

g. An edge swap along e, modi�es K to give a new complex K

0

obtained

by replacing e with the edge e

0

= fv

3

; v

4

g and T

1

and T

2

with the new triangles T

0

1

= fv

1

; v

3

; v

4

g

and T

0

2

= fv

2

; v

3

; v

4

g This is equivalent to performing an edge split along e followed by an edge

collapse (see Figure 8). Q.E.D.

Theorem 2 (Completeness) Let K and L be two simplicial surfaces such that jKj and jLj are

homeomorphic. Then L is isomorphic to a simplicial complex obtained from K by a �nite sequence

of edge collapses and edge splits.
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(a) (b) (c) (d)

v

4

v

3

v

2

v

1

T

2

T

1

e

K

v

3

v

4

v

2

v

1

T

0

1

T

0

2

e

0

K

0

Figure 8: An Edge swap is equivalent to an edge split followed by an edge collapse.

To facilitate the proof of the theorem, we review of some basic facts about simplicial complexes

(see [10]). Recall that a simplicial surface K is a �nite simplicial complex whose topological

realization jKj is homeomorphic to a compact 2-dimensional manifold, possibly with boundary. If

M is a compact topological surface, a triangulation of M is a simplicial surface K, together with

a homeomorphism from jKj to M .

A subdivision of K, writtenK

0

/K, is a simplicial complex K

0

, together with a homeomorphism,

� : jK

0

j ! jKj, which is a�ne linear on j�j for each simplex � 2 K

0

. Thus, the vertices of K

0

can

be identi�ed with points of jKj and K

0

induces a triangulation of each each 2-simplex of jKj.

If K and L are two simplicial surfaces, a simplicial map, � : K ! L is a map from the set of

vertices of K to the set of vertices of K, such that if � = fv

0

; v

1

; : : : ; v

k

g is a k-simplex of K then

�(�) = f�(v

0

); �(v

1

); : : : ; �(v

k

)g is contained in a simplex of L. A simplicial map � : K ! L is

called a simplicial isomorphism if it is a bijection and �

�1

is a simplicial map.

A simplicial map � extends to a piecewise linear map j�j : jKj ! jLj by the formula

j�j(

X

i

b

i

v

i

) =

X

i

b

i

�(v

i

) ;

where v

i

are the vertices

2

of K and b

i

are the barycentric coordinates of a point in jKj. If � is a

simplicial isomorphism then j�j is a piecewise linear homeomorphism.

We need the following well known theorem from piecewise linear topology [9, Theorem 5, page

64]

Theorem 3 If K and L are two simplicial surfaces with homeomorphic topological realizations

then there are subdivisions K

0

/ K and L

0

/ L and a simplicial isomorphism � : K

0

! L

0

.

Our proof of Theorem 2 relies on the observation that the operation of performing an edge

collapse can be undone by a sequence of edge splits and edge collapses.

2

As is standard, we abuse notation slightly and identity vertices, 0-simplices, and their images in the topological

realization of the complex. That is, v = fvg = jvj.
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(a) (b) (c) (d)

q

q

1 q

n

s

0

s

e

t

Figure 9: An edge collapse ((a) ) (b)) can be reversed by a sequence of edge splits ((b) ) (c))

followed by a sequence of edge collapses ((c)) (d)).

Lemma 3 Suppose that the simplicial surface L is obtained from the simplicial surface K by an

edge collapse. Then K is isomorphic to a simplicial surface obtained from L by a sequence of edge

splits followed by a sequence of edge collapses.

Proof. Suppose that L is obtained from K by collapsing the edge e = fs; s

0

g which is common

to the two triangles T = fq; s; s

0

g and T

0

= fs; s

0

; tg. Suppose the link of vertex s

0

consists of the set

of vertices fq = q

0

; q

1

; q

2

; q

3

; : : : ; q

n

; t = q

n+1

; sg. Let T

j

= fq

j�1

; q

j

; rg, j = 1; : : : ; (n+ 1). Thus, L

is obtained from K by identifying s

0

with s and removing the triangles T and T

0

(see Figure 9 (a)

and (b)).

To recover K from L, begin by sequentially performing edge splits along the edges fs; q

1

g,

fs; q

2

g,: : : , fs; q

n

g. Label the new vertices thus obtained s

1

, s

2

,: : : s

n

, and let L

0

denote the �nal

simplicial surface (see Figure 9 (c)).

Let L

00

denote the simplicial surface obtained by sequentially collapsing the edges fs

1

; s

2

g,

fs

2

; s

3

g,: : : , fs

n�1

; s

n

g and denoting by s

0

the single vertex to which s

1

,: : : s

n

collapse. It is not

di�cult to see that, with this labeling, L

00

= K. (see Figure 9(d)).

A similar argument applies in the case where e is a boundary edge and, thus, common to only

one triangle. We leave a formal proof of this case to the reader. Q.E.D.

Lemma 4 If K

0

is a subdivision of a simplicial surface K, then K can be obtained from K

0

via a

sequence of edge collapses.

Proof. Because K

0

is a subdivision of K there is a piecewise linear homeomorphism � : jK

0

j !

jKj. We will obtain K from K

0

in three steps:

Step 1. For each triangle T of K, let V

T

denote the set of vertices of K

0

which map under �

to the interior of jT j. (For some triangles, V

0

T

may be empty.) Suppose that K

1

is the simplicial

surface obtained by identifying the vertices of each non-empty V

T

with a single vertex v

T

. This

can be done via a sequence of edge collapses along edges joining vertices formed by identifying

vertices of V

T

. To see that K

1

is a subdivision of K, we need only construct a piecewise linear

homeomorphism �

0

: jK

1

j ! jKj. Set �

1

(v) = �(v) if v is not of the form v

T

and let �(v

T

) be the
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barycenter of jT j for each v

T

, for V

T

6= ;. It is not di�cult to verify that �

1

extends uniquely to a

piecewise linear homeomorphism �

1

: jK

1

j ! jKj.

Step 2. Let V

E

denote the set of vertices of K

1

mapping under �

1

to the interior of an edge of

jKj. Let K

2

be the simplicial surface obtained by identifying the vertices of each non-empty V

E

to

a single vertex v

E

. Notice that K

2

can be obtained from K

1

by a sequence of edge collapses along

edges joining only pairs of vertices contained in a single set of the form V

E

. It is not di�cult to

show that K

2

is a subdivision of K and that the homeomorphism �

2

: jK

2

j ! jKj can be chosen

so that �

00

(v

E

) is the barycenter of the edge E for each non-empty V

E

.

Step 3. Let K

3

be the simplicial complex obtained from K

2

by collapsing each edge joining a

vertex of the form v

E

to a vertex of K. Each vertex of K

3

can be identi�ed with either a vertex of

K or with the barycenter of a triangle of K and the piecewise linear map �

3

: jK

3

j ! jKj induces

by this identi�cation is a homeomorphism. Thus, K

3

is a subdivision of K.

Step 4. Finally, for each vertex of K

3

of the form v

T

, collapse an edge of K

3

joining v

T

to a

vertex of K. The resulting complex is K. Q.E.D.

Proof.(of Theorem 2) . First note that by Theorem 3, there are subdivisions K

0

/ K and

L

0

/ L, such that K

0

and L

0

are isomorphic.

By Lemma 4, K can be obtained from K

0

and L from L

0

by �nite sequences of edge collapses.

But, by Lemma 3, each edge collapse can be reversed by a sequence of edge splits and edge

collapses. Consequently K

0

can be obtained from K by a �nite sequence of edge collapses and edge

splits.

Since there is a �nite sequence of edge collapses and edge splits transforming K into K

0

, which

is isomorphic to L

0

, and there is a �nite sequence of edge splits and edge collapses transforming L

0

into L, it follows that there is a �nite sequence of edge splits and edge collapses transforming K

into a simplicial complex which is isomorphic to L. Q.E.D.

A.3 Tests for Legality of an Edge Collapse

The purpose of this appendix is to prove Theorem 4 which shows that the conditions given in

Section 4.2.1 are necessary and su�cient for an edge collapse to be legal.

Let K be a simplicial complex whose topological realization jKj is a compact surface with

possibly non-empty boundary. Let K

0

be the simplicial complex obtained by identifying the vertices

i and j, where fi; jg is a 1-simplex of K. We say that K

0

is obtained from K by an edge collapse.

Recall that we require that jK

0

j be homeomorphic to jKj. When such is the case, we say that the

edge collapse fi; jg ! h is legal. Not all edge collapses are legal.

Theorem 4 Let K

0

be the simplicial complex obtained from the simplicial complex K by collapsing

the edge fi; jg. Then jK

0

j is homeomorphic to jKj if and only if the following conditions are all

satis�ed:
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1. K has more than 4 vertices if neither fig nor fjg are boundary vertices, or K has more than

3 vertices if either fig or fjg are boundary vertices.

2. If i and j are both boundary vertices, fi; jg is a boundary edge.

3. For all vertices k adjacent to both i and j (i.e. fi; kg 2 K and fj; kg 2 K), fi; j; kg is a face

of K.

We consider �rst the case where K has fewer than 5 vertices. Observe that no edge collapses

are legal if K has only 3 vertices. For each simplicial surface has at least 3 vertices (since it must

have at least one 2-simplex). Since this is true of K

0

, the complex K must have at least 4 vertices.

Now suppose that K has exactly 4 vertices. Then condition (3) is automatically satis�ed. If K

admits an edge collapse, then K

0

has 3 vertices and so jK

0

j is homeomorphic to a disk. But then

jKj is also homeomorphic to a disk and so has non-empty boundary. Notice, that in this case, K

may have only two possible con�gurations (either 2 or 3 faces), and conditions (1) and (2) ensure

that only legal edge collapses are allowed.

We have now shown that conditions (1){(3) are necessary and su�cient in the case where K

has fewer than 5 vertices. Henceforth, we shall assume that K has at least 5 vertices.

The proof of Theorem 4 relies on �nding a useful characterization of simplicial surfaces. To give

it, we need a few de�nitions. If s is a simplex of K then

�

s

denotes the interior of the topological

space jsj. Thus, if s is a 2-simplex then

�

s

is homeomorphic to an open disk, if s is a 1-simplex then

�

s

is homeomorphic to an open interval and if s is a 0-simplex

�

s

= jsj. If L is a subset of K (not

necessarily a subcomplex) then the topological realization of L (also called the underlying topological

space of L) is the topological subspace

jLj =

[

s2L

�

s

� jKj :

The standard open disk is the set of points D = f(x; y) j x

2

+ y

2

< 1g � R

2

and the standard

half-open disk is the subset set D

+

= f(x; y) 2 D j y � 0g. The closures of D and D

+

in R

2

are written D and D

+

, respectively. The standard circle, written S, is the boundary of D. The

half-circle S

+

is the intersection S \D

+

.

By de�nition, a simplicial surface K is a simplicial complex with the property that, for each

vertex v, there is a homeomorphism between j ? v;Kj and either D or D

+

sending v to the origin.

If v is an interior vertex then j ? v;Kj is homeomorphic to D and if v is a boundary vertex then

j ? v;Kj is homeomorphic to D

+

. For our purposes, a di�erent (but equivalent) characterization is

needed. It is not di�cult to show that j ? v;Kj is homeomorphic to D if and only if jlink(v;K)j is

homeomorphic to S and that it is homeomorphic to D

+

if and only if jlink(v;K)j is homeomorphic

to the half-circle S

+

. This leads to the characterization of simplicial surfaces given in the next

lemma.
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Lemma 5 A simplicial complex K of dimension 2 is a simplicial surface if and only if for each

vertex v of K the topological space jlink(v;K)j is homeomorphic to either the circle S (in which

case, v is an interior vertex) or a half-circle S

+

(in which case, v is a boundary vertex).

Proof of Necessity. We now show that conditions (2) and (3) are necessary conditions for

fi; jg ! h to be legal.

Consider �rst condition (2) by showing that the if the edge collapse fi; jg ! h is legal and i

and j are boundary vertices then fi; jg must be a boundary edge. Suppose that i and j are both

boundary vertices and suppose by way of contradiction that fi; jg is not a boundary edge. The

vertices i and j are each incident to two boundary edges and the boundary edges incident to i and

to j are disjoint (since they necessarily have distinct endpoints). But then a total of 4 boundary

edges of K

0

will be incident to h. Since h can only be incident to 2 boundary edges we have reached

a contradiction.

To prove the necessity of condition (3). Suppose that k is a vertex of K such that fk; ig and

fk; jg are in K but fi; j; kg is not a simplex of K. There are two cases to consider: (i) k an interior

vertex and (ii) k a boundary vertex.

(i) Suppose that k is an interior vertex. Then jlink(k;K)j is homeomorphic to a circle. Hence,

there are vertices p

a

, a = 1; 2; : : :n, n > 2 such that

link(k;K) = ffp

1

g; fp

2

g; : : : ; fp

n

gg [ ffp

1

; p

2

g; fp

2

; p

3

g; : : : ; fp

n

; p

1

gg :

Moreover, fp

a

; p

a+1

; kg is a simplex of K for a = 1; 2; : : : n (where p

n+1

= p

1

). We may arrange

that i = p

1

and because fi; j; kg is not a simplex of K, j = p

a

for some 1 < a < n. The existence

of such a con�guration, however, implies that the space K

0

is not a surface. For the link of k in K

0

is the simplicial complex obtained from link(k;K) by identifying the points p

1

and p

a

. It is easily

seen that the topological realization of this is a \�gure-8". But this contradicts Lemma 5 with K

replaced by K

0

.

(ii) Consider next the case where k is a boundary vertex. Then there are vertices p

a

, a =

1; 2; : : :n, n > 1 such that

link(k;K) = ffp

1

g; fp

2

g; : : : ; fp

n

gg [ ffp

1

; p

2

g; fp

2

; p

3

g; : : : ; fp

n�1

; p

n

gg :

Moreover, fp

a

; p

a+1

; kg is a simplex of K for a = 1; 2; : : : n � 1 and fk; p

1

g and fk; p

n

g are both

boundary edges. In this case, jlink(k;K)j is homeomorphic to the half-circle. Again link(k;K

0

)

is obtained from link(k;K) by identifying i and j and again Lemma 5 applies. Thus jlink(k;K

0

)j

must be homeomorphic to either the circle or the half-circle.

If either of i or j is p

a

for 1 < a < n then the jlink(k;K

0

)j is easily seen to homeomorphic to

neither the circle nor the half-circle (it is the spaced obtained by identifying an interior point of

the closed unit interval with another point of the interval). Hence, we may assume that p

1

= i and

p

n

= j. The union of the three edges fi; jg, fj; kg and fk; ig then forms a boundary component of

K, and the e�ect of the edge collapse fi; jg ! h is to remove one of the boundary components of

K. Hence, although it may happen that K

0

is a simplicial surface, the two topological spaces jKj
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and jK

0

j cannot be homeomorphic since (if they are both surfaces) their boundaries have di�erent

numbers of boundary components.

Proof of Su�ciency. Now suppose that the number of vertices of K is at least 5 and that

conditions (2) and (3) are satis�ed. We want to show that the spaces jKj and jK

0

j are homeomor-

phic.

Observe thatK and K

0

agree outside of simplicial neighborhoods of fi; jg and h. More precisely,

if we set

N = ?i;K [ ?j;K and N

0

= ?h;K

0

and

C = L \N = L \N

0

; (1)

then

L := K �N = K

0

�N

0

:

The topological space jLj can thus be viewed in two ways:

� as the space obtained by removing the open set j ? i [ ?jj from jKj

� or as the space obtained by removing the open set j ? hj from jK

0

j.

This construction can be reversed:

jKj = jLj [ jN j and jKj \ jN j = jCj

and

jK

0

j = jLj [ jN

0

j and jK

0

j \ jN j = jCj

(i.e. jKj is obtained by attaching jN j to jLj along the set jCj and jK

0

j is obtained attaching jN

0

j

to jLj along jCj).

Thus, jKj and jK

0

j are homeomorphic if and only if there is a homeomorphism between jN j

and jN

0

j which is the identity on jCj. We show that this is in fact the case. It is best to consider

separately the three cases: (a) i and j both interior vertices, (b) exactly one of i and j are interior

vertices and (c) both i and j are boundary vertices.

Case (a). Suppose that i and j are both interior vertices. Then there are exactly two vertices

p

0

and q

0

such that the simplices fj; i; p

0

g and fi; j; q

0

g are in K. Because K is a simplicial surface,

the links of i and j are circles. Hence, there are vertices

p

0

; p

1

; : : : ; ; p

m

= q

0

and q

0

; q

1

; : : : ; ; q

n

= p

0

;

such that

fj; p

a

; p

a+1

g is in K for a = 0; 1; : : : ; m� 1

and

fi; q

b

; q

b+1

g is in K for b = 0; 1; : : : ; n� 1 :
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j

i

p

0

= q

n

p

1

p

2

p

m

= q

0

q

1

q

2

j

i

r

0

r

1

r

`

= p

0

p

1

p

2

p

m

= q

0

q

1

q

n

j

i

p

0

p

1

p

m

= q

0

q

1

q

2

q

n

Figure 10: The sets N in the cases where: (a) i and j are both interior vertices, (b) i is a boundary

vertex and j is an interior vertex, and (c) i and j are both boundary vertices.

Thus,

j?j;Kj = jfi; j; p

0

gj [

m�1

[

a=0

jfj; p

a

; p

a+1

gj [ jfi; j; q

0

gj

and

j?i;Kj = jfi; j; q

0

gj [

n�1

[

b=0

jfi; q

b

; q

b+1

gj [ jfi; j; p

0

gj

We claim that the vertices

p

0

; p

1

; : : : ; p

m�1

; q

0

; q

1

; : : : ; q

n�1

are distinct. To see this note �rst that p

a

, a = 0; 1; : : : ; m are distinct because jlink(j;K)j is a

circle. By the same reasoning, q

b

, b = 0; 1; : : : ; n are distinct. Now if p

a

= q

b

for some 0 � a � m

and 0 � b � n, then condition (3) implies that fi; j; p

a

g is in K. Hence, either (a; b) = (m; 0) or

(a; b) = (0; n).

Observe also that m + n > 2. For suppose not then fi; p

0

; q

0

g and fj; p

0

; q

0

g are in K from

which it is not di�cult to show that K has only 4 vertices and is a tetrahedron.

Thus,

jN j =

m�1

[

a=0

j�

p

a

j [

n�1

[

b=0

j�

q

b

j

is homeomorphic to D and jCj (the boundary of jN j) is homeomorphic to S. It is now easy to

construct a homeomorphism between jN j and jN

0

j which is the identity on jCj from which it follows

that jKj and jK

0

j are homeomorphic.

Case (b). Suppose that i is a boundary vertex and j is an interior vertex. Then there are

exactly two vertices p

0

and q

0

such that fj; i; p

0

g and fi; j; q

0

g are in K. Because K is a simplicial

surface, the link of i is a half-circle and the link of j is a circle. Hence, there are vertices

r

0

; r

1

; : : : ; ; r

`

= p

0

; and p

0

; p

1

; : : : ; ; p

m

= q

0

; and q

0

; q

1

; : : : ; ; q

n

;

such that

fi; r

a

; r

a+1

g 2 K for a = 0; 1; : : : ; `� 1 ;
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fj; p

b

; p

b+1

g 2 K for b = 0; 1; : : : ; m� 1

and

fi; q

c

; q

c+1

g 2 K for c = 0; 1; : : : ; n� 1 :

Consequently,

j?j;Kj =

m�1

[

b=0

jfj; p

b

; p

b+1

gj [ jfi; j; q

0

gj [ jfi; j; p

0

gj

and

j?i;Kj =

`�1

[

a=0

jfi; r

a

; r

a+1

gj [ jfi; j; p

0

gj [ jfi; j; q

0

gj [

n�1

[

c=0

jfi; q

c

; q

c+1

gj

We claim that the vertices

r

0

; : : : ; r

`�1

; p

0

; : : : ; p

n�1

; q

0

; : : : ; q

m�1

are distinct. The reasoning is the same as that used in case (a); we leave it to the reader to �ll in

the details. This implies that

jN j =

`�1

[

a=0

jfi; r

a

; r

a+1

gj [

m�1

[

b=0

jfj; p

b

; p

b+1

gj [

n�1

[

c=0

jfj; q

c

; q

c+1

gj

is homeomorphic to the closed half-disk D

+

and jCj to the half-circle S

+

. The construction of a

homeomorphism between jN j and jN

0

j which is the identity on jCj and which sends i to h is then

routine. Thus, in this case, too, the spaces jKj and jK

0

j are homeomorphic.

Case (c) Reasoning similar to that of cases (a) and (b) shows that jN j is homeomorphic to the

half-disk D

+

and jCj is homeomorphic to the half-circle S

+

, and that there is a homeomorphism

from jN j to jN

0

jwhich is the identity on jCj and sends i to h. Hence, jKj and jK

0

j are homeomorphic.

Details are left to the reader.
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(a) Object to be sampled (b) Sampled points X (n = 4102)

(c) Output of phase one (M

0

) (d) Result of mesh optimization without E

spring

(e) Optimization for �xed K

0

(� = 10

�2

) (f) Optimization with � = 10

�2

Figure 11: Surface reconstruction from simulated multi-view range data.
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(a) Optimization with � = 10

�3

(b) Optimization with � = 10

�4

(c) Final optimization with � = 10

�8

(e) Surface segmentation (11 components) (f) Smooth shading after segmentation

Figure 12: Surface reconstruction (continued).
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(a) Points from laser range �nder (n = 12; 745) (b) Points from laser range �nder (n = 16; 864)

(c) Output of phase one (d) Output of phase one

(e) Output of phase two (optimized mesh) (f) Output of phase two (optimized mesh)

Figure 13: Surface reconstruction from actual range data.

32



(a) Original mesh M

0

(b) Sampled point set X (n = 6752).

(c) Simpli�ed mesh (c

rep

= 10

�5

) (d) Simpli�ed mesh (c

rep

= 10

�4

)

Figure 14: Mesh simpli�cation example.
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