
Hierarchical Constraint

Logic Programming

Molly Wilson and Alan Borning

Technical Report 93-01-02a

Department of Computer Science and Engineering

University of Washington

May 1993

Abstract

Constraint Logic Programming (CLP) is a general scheme for extending logic programming to include

constraints. It is parameterized by D, the domain of the constraints. However, CLP(D) languages,

as well as most other constraint systems, only allow the programmer to specify constraints that

must hold. In many applications, such as interactive graphics, planning, document formatting, and

decision support, one needs to express preferences as well as strict requirements. If we wish to

make full use of the constraint paradigm, we need ways to represent these defaults and preferences

declaratively, as constraints, rather than encoding them in the procedural parts of the language.

We describe a scheme for extending CLP(D) to include both required and preferential constraints.

An arbitrary number of strengths of preference are allowed. We present a theory of such constraint

hierarchies, and an extension, Hierarchical Constraint Logic Programming, of the CLP scheme to

include constraint hierarchies. We give an operational, model theoretic and �xed-point semantics

for the HCLP scheme. Finally, we describe two interpreters we have written for instances of the

HCLP scheme, give example programs, and discuss related work.

Authors' addresses:

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, Washington 98195

internet: molly@cs.washington.edu

borning@cs.washington.edu

This is a preprint of a paper that will appear in the Journal of Logic Programming, special issue on

constraint logic programming. It is a slightly revised version of Technical Report 93-01-02, January

1993.

1 Introduction

Constraint Logic Programming is an extension of logic programming that signi�cantly increases

the expressiveness of such languages. Ja�ar and Lassez [34] describe a general scheme for such

extensions, which is parameterized by D, the domain of the constraints. The language that arises

from a �xed vocabulary of constraints over D can be denoted by CLP(D). In place of uni�cation

(which can be viewed as testing the satis�ability of equations over the Herbrand universe), constraints

are accumulated and tested for satis�ability over D, using techniques appropriate to the domain.

Several such languages have now been implemented, including CLP(R) [35, 36], Prolog III [11],

CHIP [14, 77], CAL [61], CLP(�*) [79], and Echidna [69].

The formal semantics of such languages di�er primarily in the choice of underlying domain

and constraints, as was shown formally in [34]. It was also shown that for every CLP language,

numerous desirable properties of the declarative and operational semantics hold|properties that had

been considered characteristic of logic programming. In particular, CLP languages have coincident

logical, �xed-point, and operational semantics.

Constraints have also been embedded in a number of other languages and systems, and have

proven useful for a wide variety of applications, including user interface toolkits, geometric layout,

physical simulations, user interface design, document formatting, algorithm animation, and design

and analysis of mechanical devices and electrical circuits. (See [20, 39] for surveys.)

Many applications of constraints either need, or would bene�t from, support for default and

preferential constraints, as well as required ones. Such constraints are sometimes called soft con-

straints; the required ones are hard constraints. A set consisting of both hard and soft constraints

is a constraint hierarchy.

Our own work on constraint hierarchies has been application-oriented and driven primarily by

pragmatic concerns. ThingLab [3], for example, was a constraint-based laboratory that allowed a user

to construct simulations of such things as electrical circuits, mechanical linkages, demonstrations of

geometric theorems, and graphical calculators using interactive direct-manipulation techniques. All

the explicit constraints in ThingLab|for example, that a line in a geometric �gure be horizontal, or

that a resistor in an electrical simulation obey Ohm's Law|were required. The user's edit requests

were implicitly treated as strong preferences rather than requirements, so that if the edit con
icted

with a required constraint, the user's constraint would be overridden. (One of the HCLP examples

in Section 4.1 is taken from the original ThingLab, and illustrates this behavior.) In addition, there

were implicit weak or very weak constraints that parts of an object keep their old values as the

object was being manipulated by the user, unless it was necessary for them to change to satisfy the

user's edit or the explicit required constraints. Some of these implicit weak constraints needed to

be stronger than others to achieve intuitive behavior. For example, suppose that we have a simple

graphical calculator, which includes a constraint A +B = C. Now suppose the user edits the value

of A. As we might expect, ThingLab would re-satisfy the + constraint by changing C, rather than

by changing B. Also, if a preferential constraint cannot be satis�ed, we may still wish to satisfy it as

well as possible, rather than simply ignoring it if it can't be satis�ed completely (again see Section

4.1).

ThingLab lacked a separate, declarative theory of hard and soft constraints that speci�ed what

to do in cases such as that described above. Instead, these choices were embedded in the procedural

code of the constraint satis�er. (This was also true of all the other early applications-oriented

constraint systems, such as Sketchpad [74], Magritte [29], and Juno [49].) This situation became

increasingly troublesome when we tried to improve on ThingLab's constraint satis�er, since there

was no declarative speci�cation that we could use to decide whether a particular optimization would

lead to a correct answer. In response, a version of the constraint hierarchy theory described in this

paper was developed, and was used in subsequent versions of ThingLab.

This theory has served well to describe declaratively the behavior we desired in interactive graph-

ics applications. For example, we can use weak constraints to specify that objects in a picture remain

1

stationary during editing, unless there is some constraint or user edit that forces them to move. Er-

ror metrics associated with the constraints allow us to minimize the error in satisfying constraints,

if they cannot be satis�ed completely.

It has also turned out that the constraint hierarchy theory has been useful for domains other

than interactive graphics. For example, in a scheduling application, some constraints might be

requirements, while others would be only preferences (such as not scheduling a meeting too early

in the morning). As before, some of the preferences may be stronger than others. For example,

it might be strongly preferred that the meeting last an hour, but only weakly preferred that it

begin at 9:00 a.m. In a graph layout application, it might be required that two nodes be at least

a minimum distance apart, and preferred that they be aligned vertically. In a planning system for

manufacturing, there may be required constraints on the order in which operations are done on a

part, and preferences about which machines are to be used to perform the operations.

ThingLab, as well as the other applications, used a constraint package built on top of an existing

language. However, there are many bene�ts to having constraint hierarchies completely integrated

with a programming language. For example, in an integrated language we will be assured that

the constraints are considered, and there is no need to call the constraint satis�er explicitly. (In a

package, the programmer might simply ignore the constraints.) An integrated system allows more

opportunities for optimizing the implementation. Finally, in the case of logic programming, there is

an elegant theory available (the CLP scheme).

We are thus led to extend the CLP scheme to include both hard and soft constraints and to im-

plement instances of this language scheme. The Hierarchical Constraint Logic Programming scheme

HCLP(D; C) is parameterized both by the domain D of the constraints and by the comparator C,

which is used to select among alternate ways of satisfying the soft constraints. In the remainder

of the paper, we �rst present a theory of constraint hierarchies. We then describe the HCLP(D; C)

scheme, give examples of its use for various domains and comparators, and describe a formal se-

mantics for this family of languages. We also describe two HCLP interpreters we have written.

The �rst is a straightforward interpreter, written in CLP(R), for HCLP(R;LPB), where LPB is

the locally-predicate-better comparator to be described in the next section. The second is a more

exible but complex interpreter, written in Common Lisp, for HCLP(R; ?). In this version the

comparator used can be selected by the programmer from a number of possibilities.

Our original publication of the HCLP work is in reference [7]. The present paper signi�cantly

extends and modi�es that work: it includes a revised theory of constraint hierarchies, a formal

semantics that properly accounts for the preferential levels of constraints and that includes both

a model theory and a �xed-point semantics, a discussion of the new HCLP(R; ?) interpreter, and

an extended set of HCLP examples. A more complete discussion appears in Molly Wilson's Ph.D.

dissertation [80]. Other related work is discussed in Section 10.

2 Constraint Hierarchies

A constraint is a relation over some domain D. The domain D determines the constraint predicate

symbols �

D

of the language, which must include =. A constraint is thus an expression of the form

p(t

1

; : : : ; t

n

) where p is an n-ary symbol in �

D

and each t

i

is a term. A labeled constraint is a

constraint labeled with a strength, written lc, where l is a strength and c is a constraint. The

strengths are totally ordered.

A constraint hierarchy is a �nite set of labeled constraints. Given a constraint hierarchy H, H

0

is

a vector of the required constraints in H, in some arbitrary order, with their labels removed. H

1

is a

vector of the constraints in H at the strongest non-required level, and so forth through the weakest

constraints H

n

, where n is the number of non-required levels in the hierarchy. We also de�ne H

k

= ;

for k > n.

A valuation for a set of constraints is a function that maps the free variables in the constraints

2

to elements in the domain D over which the constraints are de�ned. A solution to a constraint

hierarchy is a set of valuations for the free variables in the hierarchy. We require any valuation in

the solution set to satisfy at least the required constraints. In addition, the solution set contains

those valuations that satisfy the non-required constraints at least as well as any other valuation that

also satis�es the required constraints. In other words, there is no valuation satisfying the required

constraints that is \better" than any valuation in the solution. There are a number of reasonable

methods for comparing valuations to determine which is better. We call such methods comparators.

In the following sections we give formal de�nitions for the solution to a constraint hierarchy and for

various comparators.

2.1 Error Functions

In order to compare valuations, we will need some measure of how well a particular valuation satis�es

a given constraint. The error function e(c�) is used to indicate how nearly constraint c is satis�ed

for a valuation �. This function returns a non-negative real number and must have the property

that e(c�) = 0 if and only if c� holds. (c� denotes the result of applying the valuation � to c.) For

any domain D, we can use the trivial error function that returns 0 if the constraint is satis�ed and

1 if it is not. A comparator that uses this error function is a predicate comparator. For a domain

that is a metric space, in place of the trivial error function, we can de�ne an error function by using

the domain's metric. For example, the error for X = Y would be the distance between X and Y.

Such a comparator is a metric comparator. Because the de�nition of a speci�c comparator depends

on the error function used, metric comparators are domain dependent.

The error function E(C�) maps e over a vector of constraints C = [c

1

; : : : ; c

k

]:

E(C�) = [e(c

1

�); : : : ; e(c

k

�)]

An error sequence is a vector [E(H

1

�);E(H

2

�); : : : ;E(H

n

�)].

Finally, the error v

i

for the i

th

constraint can be weighted by a weight w

i

. Each weight is a

positive real number.

2.2 Combining Functions

Some of the comparators that we are interested in will �rst combine the errors at a given level in

the hierarchy before comparing valuations. We now introduce the notion of a combining function,

g, that is applied to real-valued vectors and that returns some value that can be compared using

the associated relations <>

g

and <

g

. For example, g may sum a vector of numbers, or select the

maximum of a vector of numbers. We require <

g

to be irre
exive, antisymmetric, and transitive.

We require <>

g

to be re
exive and symmetric. (We use the notation <>

g

rather than = because,

for some of the comparators, the relation is not transitive. The symbol <>

g

indicates that two

valuations cannot be ordered using <

g

. For some comparators, this will be because they are equal;

for others, because they are incomparable.)

The combining function G is a generalization of g that is applied to error sequences and that

returns a sequence of values that can be compared using <>

g

and <

g

. Such a sequence is a combined

error sequence. Let R = [E(H

1

�); : : : ;E(H

n

�)]. Then

G(R) = [g(E(H

1

�)); : : : ; g(E(H

n

�))]

A lexicographic ordering <

g

can be de�ned on combined error sequences u

1

; : : : ; u

n

and w

1

; : : : ; w

n

in the standard way:

3

u

1

; : : : ; u

n

<

g

w

1

; : : : ; w

n

if

9k 2 1 : : :n such that

8i 2 1 : : :k � 1u

i

<>

g

v

i

^

u

k

<

g

v

k

Finally, we can de�ne the solution set S to a constraint hierarchy H, by using the comparator

de�ned by the combining function g, its associated function G, and the lexicographic ordering

de�ned by <

g

.

S

0

= f� j 8c 2 H

0

e(c�) = 0g

S = f� j � 2 S

0

^ 8� 2 S

0

:(G([E(H

1

�); : : : ;E(H

n

�)]) <

g

G([E(H

1

�); : : : ;E(H

n

�)]))g

S

0

is the set of solutions to the required constraints (ignoring the soft constraints). The desired set

S is all valuations in S

0

for which no better valuations in S

0

exist, where better is determined using

the lexicographic ordering de�ned by <

g

.

2.3 A Brief Example

Before we give de�nitions for various comparators, a brief example will help to solidify the notion

of a solution to a constraint hierarchy.

Let us consider the following simple constraint hierarchy over the domain of the reals:

required X > 0

strong X < 10

weak X = 4

The set S

0

consists of all valuations that map X to a positive real number. The solution set

S consists of the single valuation that maps X to 4. Let us call this valuation �. Consider the

valuation � that maps X to 5. Then e((X < 10)�) is 0. e((X < 10)�) is also 0. E([(X < 10)�])

is [0]. (There is only one constraint at the strong level.) E([(X < 10)�]) is also [0]. e((X = 4)�)

is 0. e((X = 4)�) is 1. E([(X = 4)�]) is [0]. E([(X = 4)�]) is [1]. The combined error sequence

G(E([(X < 10)�]);E([(X = 4)�])) evaluates to [[0]; [0]]. (Again, there is only one constraint at

each level in the hierarchy, so the combining function has no e�ect.) The combined error sequence

G(E([(X < 10)�]);E([(X = 4)�])) evaluates to [[0]; [1]]. Since [[0]; [0]]<

g

[[0]; [1]], � is not in S.

Moreover, there is no valuation in S

0

that is less than [[0]; [0]] in the lexicographic order de�ned by

any <

g

where <

g

and <>

g

have the properties de�ned above. So � is in S.

2.4 Comparators

We now de�ne a number of comparators, each of which gives rise to a di�erent way of de�ning the set

of solutions to a constraint hierarchy. We can classify types of comparators (as opposed to de�ning a

speci�c comparator) as either global, local, or regional. Since the error sequences for the constraints

at levelsH

1

; : : : ;H

n

are being compared using a lexicographic ordering, if a solution � is better than a

solution �, there is some level k in the hierarchy such that for 1 � i < k, g(E(H

i

�)) <>

g

g(E(H

i

�)),

and at level k, g(E(H

k

�)) <

g

g(E(H

k

�)).

For a local comparator, each constraint is considered individually. Solution � must do exactly

as well as � for each constraint in levels 1 : : :k � 1, and at level k, � must do at least as well as

� for all constraints, and strictly better for at least one. For a global comparator, the errors for

4

all constraints at a given level are aggregated using g. For a regional comparator, each constraint

at a given level is considered individually (as with a local comparator). However, unlike a local

comparator, two solutions that are incomparable at strong levels may still be compared at weaker

levels and one discarded, so that a regional comparator will, in general, discriminate more than a

local one.

We now de�ne a number of useful classes of comparators, by de�ning the combining function

g and the relations <>

g

and <

g

for each. Each of these classes de�nes some number of actual

comparators by specifying the error function and weights on constraints.

Weighted-sum-better, worst-case-better, and least-squares-better are global comparators, in which

the constraint errors at a given level are combined by taking the weighted sum, the weighted max-

imum, and weighted sum of the squares respectively. Locally-better and regionally-better are local

and regional comparators, respectively.

For weighted-sum-better, g(v) =

P

jvj

i=1

w

i

v

i

, <

g

is de�ned as for the reals, and <>

g

is equivalent

to = for the reals.

For worst-case-better, g(v) = maxfw

i

v

i

j 1 � i � jvjg, <

g

is de�ned as for the reals, and <>

g

is equivalent to = for the reals.

For least-squares-better, g(v) =

P

jvj

i=1

w

i

v

2

i

, <

g

is de�ned as for the reals, and <>

g

is equivalent

to = for the reals.

For locally-better, g(v) = v and <>

g

and <

g

are de�ned as follows:

v <

g

u � 8i v

i

� u

i

^ 9j such that v

j

< u

j

v <>

g

u � 8i v

i

= u

i

For regionally-better, g(v) = v and <>

g

and <

g

are de�ned as follows:

v <

g

u � 8i v

i

� u

i

^ 9j such that v

j

< u

j

v <>

g

u � :((v <

g

u) _ (u <

g

v))

Orthogonal to the choice of a global, local, or regional combining function, we can choose an

appropriate error function for the constraints. Locally-predicate-better (LPB) is locally-better using

the trivial error function that returns 0 if the constraint is satis�ed and 1 if it is not. Locally-metric-

better is locally-better using a domain metric in computing the constraint errors. Weighted-sum-

predicate-better, weighted-sum-metric-better, and so forth, are all de�ned analogously.

2.5 A Simple Example of the Di�erences Among the Comparators

As a simple example to illustrate some of the di�erences among the comparators, consider a

constraint-based spreadsheet, or a graphical calculator such as was described in [3]. Suppose there

is a \sum" constraint relating real-valued variables A, B, and C. Previously, the values for these

variables were A = 2, B = 3, and C = 5. The user has just edited C to be 7. The following

constraint hierarchy expresses the desired semantics:

required C = A+ B

strong C = 7

weak A = 2

weak B = 3

The required C = A + B constraint represents the sum constraint. The strong C = 7 constraint

represents the user's edit. (Making this constraint a strong preference rather than a requirement

allows the system to refuse to accept the edit if it con
icts with some required constraint; if instead

we wished to be noti�ed of a failure in this case we would make the edit also required.) The two

constraints weak A = 2 and weak B = 3 express a desire that the rest of the system be changed as

5

little as possible in accommodating the edit to C. Without them, A = 1000000, B = {999993, and

C = 7 would be a perfectly valid result.

We now list the solutions for a number of the comparators, assuming that the domain of the

problem is the reals.

Locally-predicate-better yields two solutions:

A = 2, B = 5, C = 7

A = 4, B = 3, C = 7

In the �rst solution, the A = 2 constraint is satis�ed but not B = 3; in the second, B = 3 is satis�ed

but not A = 2.

Locally-metric-better yields an in�nite number of solutions:

A = x, B = 7� x, C = 7 for all x 2 [2 : : :4]

None of the solutions in the set is better than any other in the set. For example, the solution A = 2:9,

B = 4:1, C = 7 doesn't satisfy the constraint on A as well as A = 2, B = 5, C = 7, but does better

for the constraint on B. However, outlying solutions such as A = 1000000, B = {999993, and C = 7

are ruled out.

Weighted-sum-predicate-better yields the same two solutions as locally-predicate-better if the

weights on the two weak constraints are equal; otherwise it picks one solution or the other depending

on which weight is larger. (More generally, weighted-sum-predicate-better with weights of 1 for each

constraint counts the number of unsatis�ed constraints in comparing solutions, a useful property.)

Weighted-sum-metric-better yields the same in�nite set of solutions as locally-metric-better if

the weights on the two weak constraints are equal; otherwise it picks either A = 2, B = 5, C = 7,

or A = 4, B = 3, C = 7 respectively, depending on whether the weight on the constraint on A or on

B is larger.

Least-squares-metric-better yields a single solution, which is A = 3, B = 4, C = 7 when the

weights on the weak constraints are equal. (This is also the solution for worst-case-metric better

with equal weights.)

For this example, the regional comparators yield the same solutions as their local counterparts.

2.6 Which Comparator to Use?

There has not yet been enough experience to make any conclusive statements about which compara-

tors, embedded in an HCLP language, are most appropriate for which classes of problems. However,

there is considerable work in related areas that sheds some light on the question. (The comparators

are all derived from previous formalisms, rather than being ad hoc inventions.)

The global comparators weighted-sum-error-better, worst-case-error-better, and least-squares-

error-better are all derived from (and are generalizations of) the standard statistical measures of

deviation L

1

-norm, L

1

-norm, and L

2

-norm respectively. Locally-error-better is derived from the

concept of a vector minimum (or pareto-optimal point, or nondominated feasible solution) in mul-

tiobjective linear programming problems [45]. In operations research, the choice between an L

1

-,

L

1

-, or L

2

-approximation seems often to be made on the class of constraints (for example, are they

linear or nonlinear?) and the consequent di�culty of solving the resulting problem. The set of

vector-minimum solutions is appealing mathematically|the only solutions that could reasonably

be of interest belong to this set|but working with this set of solutions has not been particularly

practical [45].

As discussed in the introduction, our own work on constraint hierarchies originated as a rational

reconstruction of the behavior of ThingLab and other constraint-based systems. Our recent work on

constraint-based systems for user interface toolkits (ThingLab II [44, 43] and Multi-Garnet [56]) has

used the locally-predicate-better comparator. This choice has been based primarily on pragmatic

rather than aesthetic or theoretical grounds: the existence of e�cient incremental algorithms|

DeltaBlue [20] and a derivative algorithm SkyBlue [55]|for �nding LPB solutions. For user interface

applications, we do have extensive experience in the practical use of LPB [57]. It also been used by

6

a considerable number of researchers at other institutions as well. LPB has generally proved quite

satisfactory. However, for precise layout least-squares-better will often yield more aesthetic results.

(The graphical layout system TRIP [37], for example, uses least-squares-better.)

2.7 Existence of Solutions

If the set of solutions S

0

for the required constraints is non-empty, intuitively one might expect

that the set of solutions S for the hierarchy would be non-empty as well. However, there are some

pathological hierarchies for which this is not the case. Consider the hierarchy required N > 0,

strong N = 0 for the domain of the real numbers, using a metric comparator. Then S

0

consists of all

valuations mapping N to a positive number, but S is empty, since for any valuation fN 7! dg 2 S

0

,

we can �nd another valuation, for example fN 7! d=2g, that better satis�es the soft constraint

N = 0.

However, the following propositions do hold:

Proposition 1 If S

0

is non-empty and �nite, and if the <>

g

relation associated with the chosen

comparator is transitive, then S is non-empty.

Proof: Suppose to the contrary that S is empty. Pick a valuation �

1

from S

0

. Since �

1

62 S,

there must be some �

2

2 S

0

such that better(�

2

; �

1

;H). Similarly, since �

2

62 S, there is an

�

3

2 S

0

such that better(�

3

; �

2

;H), and so forth for an in�nite chain �

4

; �

5

; : : :. Since better is

transitive, it follows by induction that 8i; j > 0 [i > j ! better(�

i

; �

j

;H)]. The irre
exivity

property of better requires that 8i > 0 :better(�

i

; �

i

;H). Thus all the �

i

are distinct, and so

there are an in�nite number of them. But, by hypothesis S

0

is �nite, a contradiction.

Proposition 2 If S

0

is non-empty, and if a predicate comparator is used, then S is non-empty.

Proof: Suppose to the contrary that S is empty. Using the same argument as before, we show

that there must be an in�nite number of distinct valuations �

i

2 S

0

. However, if the comparator

is predicate, one valuation cannot be better than another if both valuations satisfy exactly the

same subset of constraints in H. Therefore each of the �

i

must satisfy a di�erent subset of the

constraints in H. However, this is a contradiction, since H is �nite.

3 Operational Semantics of HCLP

An HCLP rule (or clause) takes the form

p(t) :� q

1

(t); : : : ; q

m

(t); l

1

c

1

(t); : : : ; l

n

c

n

(t):

where t is a list of terms, p(t); q

1

(t); : : : ; q

m

(t) are atoms and l

1

c

1

(t); : : : ; l

n

c

n

(t) are labeled con-

straints. (In actuality, the atoms and constraints may include di�erent lists of terms, but for sim-

plicity we use t, which is a list of all terms contained in the predicates and constraints of the rule.)

An HCLP program is a collection of rules. A goal, or query, is a multiset of atoms. Whereas

in practice, a goal may also contain constraints, without loss of generality, we will view goals as

consisting only of atoms. (Any goal consisting of constraints can be renamed as a new predicate,

and then this predicate can become the new goal.) Operationally, goals are executed as in CLP,

temporarily ignoring the non-required constraints, except to accumulate them. After a goal has

been successfully reduced, the answer may still not be unique. In this case, the accumulated hierar-

chy of non-required constraints is then solved, using a method appropriate for the domain and the

comparator C, thus further re�ning the valuations in the solution. Additional valuations may be

produced by backtracking.

We present the notion of a derivation for a query Q to capture the operational behavior of an

HCLP program. We assume in what follows that selected rules undergo a variable transformation

7

to ensure that they do not clash with existing variables. For each step in the derivation, an atom

from the goal list is matched against the head of a rule in the program P, that atom is removed

from the list of goals, and the atoms on the right hand side of the rule are added to the new goal

list. (A computation rule determines which atom will be selected next. A fair computation rule is

one in which each atom that appears in the derivation is chosen at some step.) The constraints are

added to the constraint hierarchy. In addition, required equality constraints are created between the

arguments in the selected atom and the arguments in the head of the selected rule. These constraints

are treated no di�erently than any other constraints and are merely accumulated and added to the

hierarchy. If there is no solution to the required constraints in the hierarchy, then the derivation is

said to have failed. If there is some element in the derivation sequence such that all of the goals in

the goal list have been reduced, and if there is a solution to the resulting constraint hierarchy, then

the derivation is said to have succeeded. The �nal constraint hierarchy is the hierarchy associated

with this empty goal list. A solution to this �nal hierarchy is then a solution to the original query.

More formally, a derivation for a program P and a query Q with selection rule R is a (possibly

in�nite) sequence of tuples G

0

; G

1

; : : : Each tuple G

i

consists of a goal list and a constraint hierarchy.

We de�ne

G

0

= hQ;H

0

= ;i

Note that H

0

;H

1

; : : : are the hierarchies for G

0

; G

1

; : : :, in contrast to H

0

;H

1

; : : : ;H

n

, which are

the sets of constraints in the hierarchy H at levels 0; 1; : : : ; n repectively.

Let G

i

be a of tuple of the form hfp

1

(x

1

); : : : ; p

n

(x

n

)g;H

i

i where S

0

(H

i

) 6= ;. If there is a rule

p

j

(t) :� q

1

(t); : : : ; q

m

(t); l

1

c

1

(t); : : : ; l

k

c

k

(t):

in P , and if R selects the atom p

j

(x

j

) at step i, then

G

i+1

= hfp

1

(x

1

); : : : ; p

n

(x

n

)g � fp

j

(x

j

)g [fq

1

(t); : : : ; q

m

(t)g ;

H

i

[fl

1

c

1

(t); : : : ; l

k

c

k

(t)g [ft = x

j

g

�

In the above equation, fp

1

(x

1

); : : : ; p

n

(x

n

)g � fp

j

(x

j

)g are the remaining unreduced goals

from G

i

, fq

1

(x

1

); : : : ; q

m

(x

m

)g are the new goals from the rule, H

i

is the previous hierarchy,

fl

1

c

1

(t); : : : ; l

k

c

k

(t)g are the new constraints from the rule, and ft = x

j

g are the required con-

straints that result from equating each argument in t with its corresponding argument in x

j

. For

this derivation to be successful, it must be the case that S

0

(H

i+1

) 6= ;. We emphasize that this

derivation step is relative to the rule

p

j

(t) :� q

1

(t); : : : ; q

m

(t); l

1

c

1

(t); : : : ; l

k

c

k

(t):

i.e. if some other rule with head p

j

were used at this step, then another derivation would result.

A derivation is successful if there is some tuple G

f

= h;;H

f

i in the derivation sequence, and if

the hierarchy H

f

has a solution. H

f

is known as the �nal constraint hierarchy. A valuation s is a

computed solution for the query Q i� Q has a successful derivation with �nal constraint hierarchy

H

f

and s is a solution for H

f

. A derivation is �nitely failed if there is no rule in P whose head has

the same predicate symbol as the atom selected at a given step, or if the set of required constraints

at some step in the derivation has no solutions, or if the �nal constraint hierarchy has no solutions.

(See Section 2.7 for cases where there are no solutions to constraint hierarchies even when there is

a solution for the required constraints.) A query is �nitely failed if every derivation for that query

is �nitely failed. Let FF

P

denote the �nite failure set with respect to a program P .

FF

P

= fQ j Q is �nitely failed g

If a goal succeeds, an interpreter will return an answer. An answer consists of a set of constraints

(without strength annotations) on the variables in the initial goal. Additional answers may be

8

Figure 1: Moving an endpoint of a horizontal line

produced by backtracking. Each answer represents one or more valuations in the solution to the

constraint hierarchy. For example, the answer X = 2 represents the single valuation that maps X

to 2, while the answer Y > 5 represents an in�nite set of valuations, with each member of the set

mapping Y onto a di�erent number greater than 5. We make this distinction between answers and

valuations since, on the one hand, we obviously prefer that an algorithm return Y > 5 rather than

an in�nite number of valuations. On the other hand, it is easier to de�ne the comparators in terms

of valuations rather than answers.

4 HCLP Examples

In this section we present a number of examples of HCLP programs. The programs here are all

simple, but are illustrative of the use of constraint hierarchies for a variety of application areas. In

the discussions, we try to emphasize the signi�cance of the di�erent possible comparators, and how

one or another might be most appropriate for a given application. All of the sample programs here

are for the domain of the real numbers. (However, implementations of HCLP languages for other

domains are of course possible as well, and would be useful for other applications. For example,

the HCLP language CHAL [62, 63] includes support for the domain of the booleans, as well as for

polynomial equations over algebraic numbers. See also the discussion of this language in Section 10

on related work.)

Regarding the comparator to be used, if it is signi�cant, we will refer to the program as e.g. an

HCLP(R;LPB) one; but if any of various comparators might be appropriate, we will refer to the

code simply as an HCLP(R) program.

An HCLP program can include a list of symbolic names for the strength labels, which in an

implementation are then mapped to the non-negative integers. If the label on a constraint is omitted,

the label defaults to required; weights default to 1. For brevity, we assume that for all the program

examples in this paper, the following strengths have been de�ned: required , strong , medium, weak .

4.1 Interactive Graphics Examples

As discussed in the introduction, our original motivation for the de�nition of constraint hierarchies

was to support interactive graphics in a more declarative manner. The following example is illus-

trative of a wide class of such programs. We have a horizontal line displayed on the screen, and

we are moving one endpoint with the mouse (Figure 1). There is a required constraint that the

line be horizontal, a medium constraint that one endpoint of the line follow the mouse, and a weak

constraint that the endpoints of the line remain �xed. This weak constraint gives stability to the

line as it is moved, so that, for example, it doesn't suddenly triple in length as we move the endpoint

by some small distance.

The HCLP(R) rule below expresses the desired update behavior. It takes as arguments terms

representing the old and new states of the horizontal line, and a third term that is the x-y distance

by which one endpoint should be moved. Any or all of the terms may contain variables. However,

in typical use in an interactive graphics application, the old state of the line and the displacement

would be ground, while the new state of the line would be a variable, whose value would be computed

as a result of satisfying the constraints.

9

Figure 2: Moving an endpoint of an anchored horizontal line

move_horiz_end2(line_segment(OldX1,OldY1,OldX2,OldY2),

line_segment(NewX1,NewY1,NewX2,NewY2),

delta(DX,DY)) :-

required OldY1 = OldY2, required NewY1 = NewY2,

medium OldX2 + DX = NewX2, medium OldY2 + DY = NewY2,

weak OldX1 = NewX1, weak OldY1 = NewY1,

weak OldX2 = NewX2, weak OldY2 = NewY2.

Suppose now we anchor the other end of the horizontal line, so that this other end becomes

di�cult to move (Figure 2). We'll use a strong rather than a required constraint, so that the anchor

could be moved if needed by using an even stronger mouse constraint.

move_horiz_end2_anchor_end1(line_segment(OldX1,OldY1,OldX2,OldY2),

line_segment(NewX1,NewY1,NewX2,NewY2),

Displacement) :-

move_horiz_end2(line_segment(OldX1,OldY1,OldX2,OldY2),

line_segment(NewX1,NewY1,NewX2,NewY2),

Displacement),

strong OldX1 = NewX1, strong OldY1 = NewY1.

Since in this version the anchor constraints are stronger than the mouse constraints, now the line

will stretch in the x direction, following the mouse, but its y position will remain constant. In other

words, the mouse constraint on the new x value of end2 will be satis�ed, but the mouse constraint

on the new y value will be overridden by the stronger constraint that it be the same as the old y

value. This is the same behavior as was exhibited by the original ThingLab [3], but now produced

as a consequence of declaratively represented hard and soft constraints.

In a similar manner, we can (without any hard thinking required) translate all of the ThingLab

examples into HCLP(R). For the more complex examples, the HCLP code becomes tediously long.

However (as with ThingLab), we envision such code being written automatically by the interactive

graphics application, rather than by a programmer.

If we could do nothing beyond expressing previously implemented interactive graphics examples

in HCLP, of course, the current research would not be of great interest. However, since we have

the full power of logic programming available, we can do considerably more. For example, �lters

are a powerful metaphor for the declarative construction of user interfaces. In the �lter browser

described in [15], the screen view of some source object is constructed by passing the object through

a series of �lters to produce the �nal image. Each �lter is represented as a collection of constraints

(some of which may be required and some non-required) relating its input and output. Thus the

view is updated if the source is changed. Further, since the constraints are bidirectional, we can

edit the image to make some change to the source. ThingLab supported such �lter networks for

�xed topologies, but it was di�cult to make the shape of the network depend on the data. Such

dynamically con�gured constraint networks are needed, for instance, if we want to view a tree,

applying a sub�lter to each node in the tree to produce its screen image. Such a tree-viewing �lter

is simple to write in HCLP|we write a recursive view tree rule that sets up a node-viewing �lter

for each corresponding node in the source and view trees.

10

view_tree(Source,Image) :-

view_node(Source,Image),

view_subtrees(Source,Image).

view_subtrees(Source,Image) :-

leaf(Source), leaf(Image).

view_subtrees(Source,Image) :-

left(Source,LS), right(Source,RS),

left(Image,LI), right(Image,RI),

view_tree(LS,LI), view_tree(RS,RI).

view_node(SourceNode,ImageNode) :- ...

As a �nal graphics example, illustrating the interaction between constraint hierarchies and logic

programming, consider the problem of laying out an illustration of a binary tree. Suppose that

the tree is represented by terms of the form node(Value,Left,Right,X,Y) and leaf(Value,X,Y).

Value is the value at each node. Left and Right are the children of the given interior node. Suppose

that X and Y are initially unbound; our task is to bind them to appropriate values for each node.

Suppose also that the tree must �t within a window. We will have a required minimum vertical

spacing between levels in the tree, and a minimum horizontal spacing between the parent and the left

and right children; and also somewhat larger preferred spacings. A recursive layout rule will set up

the appropriate constraints on the X and Y variables in each node: hard constraints that enforce the

minimum spacing restrictions and that force the entire image of the tree to lie within the window,

and soft constraints that try to lay out the nodes using the preferred spacing. The tree will be layed

out using the preferred spacing if possible; otherwise it will be squeezed down as needed to �t in

the window. (The most appropriate comparator for this application would be least-squares-better,

which would distribute the compression over all the spacings.) Of course, if the tree cannot be layed

out so that the required constraints are satis�ed, the goal would fail.

layout(node(Value,Left,Right,X,Y),Window left,Window right,

Window top,Window bottom) :-

/* require that the node lie within the window */

required Window left � X, required X � Window right,

required Window top � Y, required Y � Window bottom,

/* get the X and Y positions of the left and right children */

x(Left,LeftX), y(Left,LeftY),

x(Right,RightX), y(Right,RightY),

/* set up required constraints using the minimum spacing (5 units) */

required Y-LeftY � 5,

required Y-RightY � 5,

required X-LeftX � 5,

required RightX-X � 5,

/* set up default constraints using the preferred spacing (10 units) */

medium Y-LeftY = 10,

medium Y-RightY = 10,

medium X-LeftX = 10,

medium RightX-X = 10,

/* now recursively lay out the positions of the children */

layout(Left,Window left,Window right,Window top,Window bottom),

layout(Right,Window left,Window right,Window top,Window bottom).

11

layout(leaf(Value,X,Y),Window left,Window right,Window top,Window bottom) :-

/* require that the leaf node lie within the window */

required Window left � X, required X � Window right,

required Window top � Y, required Y � Window bottom.

/* access rules to get the X and Y parts of an interior node or a leaf */

x(node(Value,Left,Right,X,Y) , X).

y(node(Value,Left,Right,X,Y) , Y).

x(leaf(Value,X,Y) , X).

y(leaf(Value,X,Y) , Y).

4.2 Planning and Scheduling

Here is a sample HCLP(R) program that determines when a group of people can meet and which

will also �nd a meeting room for them.

free(alan,6,8).

free(bjorn,8,9).

free(john,11,12).

free(molly,10,12).

free(conference room,8,10).

room(conference room).

find times([Person|More],Start,End) :-

find time for one(Person,Start,End),

find times(More,Start,End).

find times([],Start,End).

find time for one(Person,Start,End) :-

free(Person,Start Free,End Free),

medium Start Free � Start,

medium End Free � End.

find room(Room,Start,End) :-

room(Room),

free(Room,Start Free,End Free),

strong Start Free � Start,

strong End Free � End.

The following query �nds a one hour meeting time for Alan, Bjorn, John, and Molly.

?- find_times([alan,bjorn,john,molly],S,E),

find_room(Room,S,E),

required E - S = 1.

The program processes the list of participants, accumulating constraints on the start and end

time for each. For each person, medium constraints are added that the person be free during the

meeting time. Also, we need a meeting room; the program looks for a meeting room, and adds a

strong constraint that the room be free during the proposed time. (We didn't make it a required

constraint, since perhaps we can persuade the other users of the room to move their meeting, or

there may be some other constraint on everyone's time that takes priority over the room being free,

12

such as a �re drill.) The program will succeed in �nding a meeting time regardless of how solutions

are chosen, as none of the con
icting constraints are at the required level.

If we are only considering each constraint individually, as with the local and regional comparators,

then the program will return as its answer all one-hour intervals between 8:00 and 10:00. (All of these

intervals satisfy the required constraint that the meeting last an hour, and the strong preference

that the conference room be free. Since we can't satisfy everyone's personal preferences regarding

the meeting time, in this case we don't try to distinguish further among the solutions.) For this

program, the regional comparators return the same answers as their local counterparts. However, if

we add a weaker constraint, for example one that weakly prefers meetings close to lunch time, the

regional answers may be further re�ned and some of these solutions may be rejected. (For the local

comparators, the set of solutions wouldn't be a�ected by this change.)

Weighted-sum-metric-better also selects all one-hour intervals between 8:00 and 10:00. However,

if we were to add another person to the list of attendants for the meeting, say someone who was

free from 9:00 to 10:00, then weighted-sum-metric-better would select the hour beginning at 9:00.

By minimizing the sum of the errors, this comparator attempts to \make the most people happy".

Weighted-sum-predicate-better yields an 8:00 meeting time as that is the time that satis�es the

most people (one, in this case) while still satisfying the stronger meeting time constraints.

Least-squares-metric-better chooses 8:45 as the desired meeting time. This comparator is similar

to weighted-sum-metric-better in that the total error is being considered in �nding a solution, but

because the errors are being squared, outlying constraints (such as Alan's early meeting preference)

tend to skew the results.

The answer using worst-case-metric-better is 8:30 as this is the time that produces the smallest

single error of any of the times from 8:00 to 10:00. In e�ect, no one person will be too put out by

the results using this comparator.

We can conceive of scenarios where each of these solutions is most desirable. Normally, we might

prefer to use a predicate comparator for scheduling meetings, so that we don't �nd ourselves meeting

at strange times that are no good for anyone. Yet in some situations, such as deciding what time of

year to meet, it is important to take exact error into account.

4.3 Document Formatting

In this example, we want to lay out a table on a page in the most visually satisfying manner. We

achieve this by allowing the white space between rows to be an elastic length. It must be greater than

zero (or else the rows would merge together), yet we strongly prefer that it be less than 10 (because

too much space between rows is visually unappealing). We do not want this latter constraint to be

required, however, since there are some applications that may need this much blank space between

lines of the table. We prefer that the table �t on a single page of length 30 (units). There is a weak

default constraint that the white space be 5, that is if it is possible without violating any of the

other constraints. Finally, there is another weak constraint specifying the default type size.

table(PageLength, TypeSize,NumRow,WhiteSpace):-

required (WhiteSpace + TypeSize) * NumRow = PageLength,

required WhiteSpace > 0,

strong WhiteSpace < 10,

medium PageLength � 30,

weak WhiteSpace = 5,

weak TypeSize = 11.

If we use a predicate comparator, then if the medium constraint cannot be satis�ed and the table

takes up more than one page, the weak constraint will be satis�ed, resulting in WhiteSpace = 5.

However, if we use a metric comparator, spacing between the rows will be as small as possible to

minimize the error in the PageLength constraint at the medium level.

13

We can avoid this behavior by demoting the medium constraint to a weak one so that the size

of the type, the white space between rows, and the number of pages all interact at the same level

in the hierarchy. Weighted-sum-better will characteristically choose the solution that minimizes the

error for the majority of the constraints, while worst-case-better �nds the middle ground.

As demonstrated by this example, it may not be apparent until some experimentation has taken

place what even constitutes a suitable solution. The user may need to experiment with using various

comparators (or even combining them for di�erent parts of the problem), and with di�erent strengths

on given constraints, to determine the desired solution.

4.4 Financial Examples

The CLP(R) rules for computing mortgage interest [30] provide a good illustration of the power of

the language, since they can be used in a variety of ways (to compute the monthly payment given

the other information, to �nd the symbolic relation between the principal and monthly payment,

and so forth).

mortgage(Principal,Months,Interest,Balance,MonthlyPayment) :-

Months > 0,

Months � 1,

Balance + MonthlyPayment = Principal * (1 + Interest).

mortgage(Principal,Months,Interest,Balance,MonthlyPayment) :-

Months > 1,

mortgage(Principal * (1 + Interest) - MonthlyPayment,

Months - 1, Interest, Balance, MonthlyPayment).

We can of course use the same rules in HCLP(R), and also add preferential constraints. For

example, the following goal uses the standard CLP(R) rule to �nd a symbolic constraint relating

the Principal and the MonthlyPayment for a conventional �xed-rate 30 year mortgage at 1% interest

per month, and then gives preferences regarding the maximum monthly payment and the minimum

amount borrowed. For the given goal, the two preferences can be satis�ed simultaneously:

?- mortgage(Principal,360,0.01,0,MonthlyPayment),

strong Principal � 100000, strong MonthlyPayment � 1500.

When the monthly payment falls between $1,500 and $1,028.61, then both of the strong con-

straints can be satis�ed. However if the query changes to

?- mortgage(Principal,360,0.01,0,MonthlyPayment),

strong Principal � 100000, strong MonthlyPayment � 1000.

then the strong constraints can not be satis�ed at the same time, i.e. given the constraints on the

interest rate and the life of the loan, a buyer could not purchase a house for $100,000 or more and

keep the monthly payment below $1,000. In this case, the single solution found by weighted-sum-

metric-better would yield a monthly payment of $1,028.61 for a loan of $100,000. (No other solution

has as small a combined error, since a given change in the principal results in a much smaller change

to the monthly payment.) Worst-case-metric-better and least-squares-metric-better give solutions

that are very close (within a dollar) to this one.

As a second �nancial example, consider the use of HCLP(R) for implementing an options trading

analysis system such as O.T.A.S. [31]. Option-based investment strategies can be tailored to �t the

pro�le of a speci�c investor and to take into account currently prevailing market conditions. Mathe-

matical models of market behavior de�ne the parameters that are used to express the characteristics

of those strategies. Typically these strategies are described by sets of constraints on selected param-

eters. It is possible that, given the current market conditions, there will be few or no solutions. To

14

avoid the situation where an exhaustive search fails, because we cannot satisfy all of the constraints,

we can weaken the strength of some of the constraints that were previously required. The more

important a constraint, the greater the strength it is given.

5 Inter-Hierarchy Comparison

In some applications, it is useful to compare not just solutions to a given constraint hierarchy, but

also solutions arising from several di�erent hierarchies. Let's return to a simple scheduling problem

similar to that given in Section 4.2, but uncomplicated by the choice of a meeting room. That is,

we only wish to select a meeting time for two people and we have a room that is available all day.

free(nate,8,12).

free(nate,18,21).

free(callie,17,21).

free(conference room,8,21).

room(conference room).

In this example, Nate is free at two separate times of the day|once before noon and once from

early evening on. An HCLP(R) program using the weighted-sum-metric-better comparator would

produce two answers for the query

?- find times([nate,callie],S,E),

find room(Room,S,E),

required E - S = 1.

The �rst answer, meeting for an hour sometime between noon and 5:00 p.m., stems from the

�rst rule selection for Nate. The second answer, meeting for an hour sometime between 6:00 p.m.

and 9:00 p.m., arises from the second rule choice for Nate. In e�ect, two hierarchies are constructed

here|one using the �rst and the other using the second free time for Nate. It seems evident to a

person trying to solve this problem that the second answer is really the \best" in that it completely

satis�es both people's preferences. One way to achieve this answer using the constraint hierarchy

theory is to allow a comparison between the solutions arising from the �rst hierarchy and those

arising from the second with respect to how well a solution satis�es its own hierarchy. (Clearly we

wouldn't want to compare say 1:00 p.m. and 6:00 p.m. using just one of the hierarchies. 1:00 p.m.

isn't even a solution to the second hierarchy!) In [81] the original constraint hierarchy theory was

extended to allow for just such inter-hierarchy comparisons. In what follows, the de�nitions from

Section 2 are similarly extended.

A solution to a set of constraint hierarchies � will consist of a set of valuations for all the free

variables in �. In all cases where � consists of a single hierarchy, the following de�nitions are

equivalent to those given in Section 2.

S

0

�

= f�

H

j H 2 � ^ 8c 2 H

0

e(c�

H

) = 0g

S

�

= f�

H

j �

H

2 S

0

�

^ 8�

J

2 S

0

�

:(G([E(J

1

�

J

); : : : ;E(J

n

�

J

)]) <

g

G([E(H

1

�

H

); : : : ;E(H

n

�

H

)]))

where n is the max of the number of levels in H and Jg

We �rst de�ne the set S

0

�

of valuations that satisfy all the required constraints in some hierarchy in

�. Each valuation � in S

0

�

is annotated by the hierarchy H that it satis�es. Using S

0

�

, we de�ne

the set S

�

as before, only now we are comparing across di�erent hierarchies. Thus we eliminate

potential valuations that are worse than some other from any hierarchy in �.

Extending the de�nition in this way gives rise to some nonmonotonic properties. These are

discussed in [81].

15

We should point out that inter-hierarchy comparison only makes sense with respect to the global

comparators where the errors at each level in the hierarchy are conglomerated, and it is therefore

reasonable to compare those errors arising from completely di�erent sets of constraints. For the local

and regional comparators, on the other hand, ordering vectors of errors from di�erent constraints

via the <

g

relation seems meaningless. For this reason, inter-hierarchy comparison is only de�ned

for global comparators.

There are many other examples of programs where inter-hierarchy comparison yields the most

intuitive answers. Aside from the restriction to global comparators discussed above, there are two

other reasons why an HCLP interpreter restricts its comparisons to single hierarchies. The �rst and

most important reason has to do with e�ciency. Consider the following program fragment:

f(X):- g(X), medium X < 0.

g(1).

g(X):- g(X - 1).

There is nothing in the de�nition of the global comparators that prevents the set of hierarchies �

from being in�nite. In practice, this can occur when rules are recursive, as demonstrated in the

program listed above. In general, an interpreter using inter-hierarchy comparison would have to

construct all the hierarchies arising from alternate rule choices, collect all the valuations that satisfy

the required constraints in those hierarchies, and then compare them to �nd the solution set. In cases

where the set of hierarchies is in�nite, such a procedure will not return unless judicious pruning of

the search tree allows in�nite branches not to be traversed. For programs such as the one described

above, in general there is no way to avoid an in�nite search for the best solution. (To avoid such a

search we would potentially need to solve the halting problem.) If, however, the medium constraint

in the �rst rule were altered to medium X > 0, then all valuations for X that satis�ed the predicate

g would also satisfy all the constraints in their respective hierarchies. We would want an e�cient

implementation to make use of such information so that answers could be produced one at a time.

The second justi�cation for preferring single hierarchy comparisons is for programs where we

want all possible answers to a query. Consider the following program that attempts to characterize

mealtimes.

free(callie,S,E):- strong S � 18.

mealtime(breakfast,S,E):- S � 6, E � 10, E - S = 0.5

mealtime(lunch,S,E):- S � 12, E � 13, E - S = 1.0

mealtime(dinner,S,E):- S � 17, E � 20, E - S = 1.5

eat(Person,S,E):-

mealtime(Meal,S,E),

free(Person,S,E).

The �rst rule states that Callie is free all day, but that she strongly prefers that anything

that is planned occur after 6:00 p.m. This may be reasonable for scheduling a get-together, but

if we use this in conjunction with planning mealtimes, inter-hierarchy comparison will have Callie

skipping breakfast and lunch. Instead, using the more standard intra-hierarchy comparisons, Callie's

preference would have no e�ect on the other mealtimes (using a predicate comparator), but it would

move the dinner hour to after 6:00 p.m.

6 A Model Theory for HCLP

In [67], the notion of preferred models is introduced as a way to represent the meaning of certain

nonmonotonic logics. Some subset of the models of a set of formulas can be selected as the \preferred"

16

models, thereby de�ning a particular nonmonotonic logic. A preference relation < is used to partially

order the models. M

1

< M

2

denotes that the interpretation M

1

is preferred over the interpretation

M

2

. A preferred model for a sentence A is an interpretation M such that M j= A and there is

no other interpretation M

0

such that M

0

j= A and M

0

< M . There are many possible methods of

ordering models, and various logics can be characterized by de�ning di�erent preference criteria.

There has been other work, speci�cally in the area of logic programming with negation, that

deals with the notion of a canonical model for a particular logic program. There have been various

methods used for de�ning what a canonical model should be (see [1, 27, 53]), but the intention

is always that the canonical model represent exactly those queries that have \yes" answers in the

program. A canonical model for a program P is de�ned in several of these approaches by selecting

some variant of P , P

0

, and using a minimal model for P

0

. While we might also wish to adopt the

concept of a canonical model to represent the meaning of an HCLP program, the idea of ordering

models via a preference relation �ts more closely with the notion of comparators than does the

variation of the canonical model approach.

In this section, we �rst give a very short review of CLP theory and then discuss some of the

aspects of HCLP that require us to use the notion of extended models. We then use these extended

models with a preference relation to de�ne the preferred models of HCLP programs. Finally we

show how this framework can be altered to give a formal semantics for HCLP programs with inter-

hierarchy comparison.

6.1 Review of CLP Model Theory

In [34] a model is de�ned for CLP programs. First, the base of a program is de�ned as:

P

base

= fp(x

1

; x

2

; : : : ; x

n

)� j

p is a predicate in �

D

and

� is a valuation for the variables x

1

; : : : ; x

n

g

Then a model of a program P is de�ned as a subset I of P

base

such that for every rule in P

A B

1

; B

2

; : : : ; B

m

; C

and for every valuation � that satis�es the constraints in C,

fB

1

�; B

2

�; : : : ; B

n

�g � I implies A� 2 I

6.2 An Extended Model

A model for an HCLP program must contend with the non-required constraints. This can be quite

complicated, as any reading of the program that doesn't in some way take error into account will not

capture the intended meaning of the constraint hierarchy. In fact, unlike CLP, we cannot determine

whether a particular valuation satis�es a non-required constraint unless it is viewed in the context

of the entire hierarchy. It is the disorderly property of constraint hierarchies [81] that gives rise to

this phenomenon. In essence, this property states that the solution to a constraint hierarchy, H,

may be completely disjoint with the solution to the hierarchy H [flcg where l is a label and c is

a constraint. This means that we cannot look at error in isolation|the meaning depends on how

rules are combined. To handle this, we de�ne an extended model for P which consists of tuples of

predicates and error sequences. If we consider the predicates in the extended model without the

error sequences, then we simply have a model for P minus all of the non-required constraints, i.e. a

CLP program. Intuitively we want to start out with a model for the underlying CLP program and

then use the comparators to de�ne a preference relation that utilizes the error sequences.

17

Proceeding as described above yields a model theory for HCLP with inter-hierarchy comparison.

In order to �rst give a model theory for intra-hierarchy, or single hierarchy comparison, we need to

complicate the notion of an extended model so that we can isolate all tuples in the extended model

arising from the same derivation. It is not su�cient to look at a valuation in isolation, as its being

in the solution set depends on how well it satis�es the hierarchy in comparison to other valuations

that also satisfy the required constraints and that arise from the same derivation. To clarify this

point, consider the following HCLP(R;LMB) (locally-metric-better) program. (The numbers on

the left are not part of the program; they will be used later to refer to particular rules.)

1 squid(X):- mollusc(X), weak X � 10.

2 mollusc(X):- required X = 11.

3 mollusc(X):- required X � 3.

The query ?- squid(X) has two answers, one that maps X to 11 and one that maps X to 3.

An extended model would include the tuples hmollusc(11); []i, hsquid(11); [[0]]i, and hsquid(2); [[8]]i,

among others. (Note that [] is the empty error sequence.) If we compare the tuples hsquid(11); [[0]]i

and hsquid(3); [[7]]i, then we would wrongly eliminate squid(3) from the solution set as [[0]]<[[7]].

On the other hand, if we look at the tuple hsquid(2); [[8]]i by itself, we will not recognize that

there is another valuation, namely that which maps X to 3, whose error is less than the error for

the valuation that maps X to 2. In order to avoid false comparisons, while also ensuring that the

right valuations are compared, the extended model is made up of a set of sets, rather than a single

set. Each set corresponds to a particular constraint hierarchy and each valuation in a set can be

compared with every other valuation in the same set. Numbering the rules and subscripting the

subsets of the extended model are record-keeping devices used to di�erentiate the di�erent subsets.

While this appears to diminish the declarative nature of the model theory, it is a necessary

extension. Intra-hierarchy comparison based as it is on a single derivation is in some sense inherently

operational. Yet we �nd it useful to present a model theory for several reasons. First, it is helpful to

be able to make comparisons with the more standard CLP model theory. It turns out that HCLP

programs without non-required constraints yield extended models whose similarity to the models

for the equivalent CLP programs are evident (which is as it should be!). Second, one of the main

motivations for using single hierarchy comparisons is e�ciency. The extended models for HCLP

programs with inter-hierarchy comparison are declarative in nature, and with the exception of the

error sequences are identical to models for the equivalent CLP programs. Third, the model theory

enables us to consider the comparators as preference relations. This is a quite useful view and it

allows us to see HCLP in relation to nonmonotonic logic. The constraint hierarchy in conjunction

with logic programming allows us to prune the set of preferred valuations.

Let a numbered program be a program such that every rule has a unique number.

Let the extended base of a program P be de�ned as

P

ext-base

= fhp(x

1

; : : : ; x

n

)�;Ri j

p is a predicate in �

D

and

� is a valuation on the variables x

1

; : : : ; x

n

and

R is an error sequenceg

Let the result of interleaving error sequences R

1

; R

2

; : : : ; R

m

, each of length n, be a new sequence

of length mn, denoted by R

1

� R

2

� � � � � R

m

. If R

1

= [r

11

; : : : ; r

1n

], R

2

= [r

21

; : : : ; r

2n

], : : : , and

R

m

= [r

m1

; : : : ; r

mn

], then

R

1

� R

2

� � � � � R

m

= [r

11

; r

21

; : : : r

m1

; : : : ; r

1n

; r

2n

; : : : r

mn

]

Let }(B) denote the power set of the set B. Let an extended model for a program P be a subset

I of }(P

ext-base

) such that for every rule in the numbered program P

(i) A B

1

; B

2

; : : : ; B

m

;H

18

and for every valuation � 2 S(H

0

)

hB

1

�;R

1

i 2 I

1

; hB

2

�;R

2

i 2 I

2

; : : : ; hB

m

�;R

m

i 2 I

m

for I

1

; I

2

; : : : ; I

m

2 I

implies

hA�;R

1

� R

2

� � � � � R

m

� [E(H

1

�);E(H

2

�); : : : ;E(H

n

�)]i 2 I

j

for i � j � m

Let the minimal extended model for a program P , denoted MM

P

, be an extended model for P

such that there is no other extended model M

0

P

for P such that M

0

P

� MM

P

.

For the program fragment given above, the extended minimal model consists of 4 subsets. The

singleton subset I

2

consists of the tuple hmollusc(11); []i. I

3

is in�nite and contains all tuples of the

form hmollusc(X); []i for X � 3. The singleton subset I

1;2

consists of the tuple hsquid(11); [[0]]i.

I

1;3

is also in�nite and contains all tuples of the form hsquid(X); [[10�X]]i for X � 3. For example,

hsquid(3; [[7]]i, hsquid(0); [[10]]i, and hsquid({1.3); [[11:3]]i are among the members of I

1;3

.

6.3 Comparators as Preference Relations

Intuitively, the minimal extended model contains the smallest set of subsets of tuples that satisfy the

required constraints, without taking the non-required constraints into consideration. It is through

applying the comparators that the intended meaning of the hierarchy is achieved, but using the

comparators to eliminate less desirable valuations means, in e�ect, that the subsets of tuples are

getting smaller, i.e. some valuations that satisfy the required constraints will no longer be in the

solution set. In other words we can no longer refer to this \better" solution set as an extended model,

according to the de�nition given above. Therefore, we will de�ne preference relations over subsets of

}(P

ext-base

) (extended interpretations), rather than over extended models. Let g be a comparator,

and let I and I

0

be extended interpretations for a program P . Let S and S

0

be members of I and

I

0

respectively such that S and S

0

have identical subscripts.

Then I

0

<

g

I if

1. S

0

� S, and

2. if 9hp(x

1

; : : : ; x

n

)�;R

�

i 2 S; 62 S

0

then 9hp(x

1

; : : : ; x

n

)�;R

�

i 2 S

0

and G(R

�

)<

g

G(R

�

)

6.4 Mapping the Extended Model to a Standard Model

Our goal is to de�ne a model for an HCLP program P using the comparator g. We still need to

de�ne a set that represents the answers to a query. First we de�ne the pruning operator that simply

removes the error sequences from an extended interpretation and collapses the subsets into a single

set. Let I be an extended interpretation. Then

prune(I) = fp(x

1

; : : : ; x

n

)� j 9S 2 I ^

hp(x

1

; : : : ; x

n

)�;R

�

i 2 Sg

Now we say that prune(M) is a preferred model for a program P using the comparator g if

1. MM

P

is an extended minimal model for P using g and M <

g

MM

P

, and

2. there is no other extended interpretation M

0

such that M

0

<

g

M

If a program contains no non-required constraints, then there is an equivalent CLP program

that can be produced by simply omitting the required label from each constraint. In this case the

extended minimal model I will consist of sets of tuples whose second elements are empty error

sequences. Therefore, none of these empty sequences will dominate any other sequence in the same

set and no ground atoms will be eliminated in the preferred model M. For programs with required

constraints only, M consists simply of all the �rst elements in the tuples in the sets in I.

19

6.5 A Model for Inter-Hierarchy Comparison

With only a small change, the extended model theory can be altered to give a semantics for inter-

hierarchy comparison. Rather than dividing the extended model I into sets, the extended model for

inter-hierarchy comparison consists of a single subset of P

ext-base

.

Let an extended model for a program P using inter-hierarchy comparison be a subset I of P

ext-base

such that for every rule A B

1

; B

2

; : : : ; B

m

;H in P , and for every valuation � 2 S(H

0

),

hB

1

�;R

1

i; hB

2

�;R

2

i; : : : ; hB

m

�;R

m

i 2 I

implies

hA�;R

1

� R

2

� � � � �R

m

� [E(H

1

�);E(H

2

�); : : : ;E(H

n

�)]i 2 I

where � is the interleave operator de�ned in Section 6.2.

A minimal extended model is de�ned as above.

The preference relation on extended interpretations is also a bit simpler than the one used for

single hierarchy comparison. Let g be a comparator, and let I and I

0

be extended interpretations

for a program P using inter-hierarchy comparison. Then I

0

<

g

I if

1. I

0

� I, and

2. if 9hp(x

1

; : : : ; x

n

)�;R

�

i 2 I; 62 I

0

then 9hp(x

1

; : : : ; x

n

)�;R

�

i 2 I

0

and G(R

�

)<

g

G(R

�

)

Finally, we need to rede�ne the prune operator for inter-hierarchy comparison.

prune(I) = fp(x

1

; : : : ; x

n

)� j

hp(x

1

; : : : ; x

n

)�;R

�

i 2 Ig

Then, as de�ned for intra-hierarchy comparison, prune(M) is a preferred model for a program

P with comparator g using inter-hierarchy comparison if

1. MM

P

is an extended minimal model for P using g and M <

g

MM

P

, and

2. there is no other extended interpretation M

0

such that M

0

<

g

M .

7 A Fixed-Point Semantics

To provide a �xed-point semantics for HCLP (without interhierarchy comparison), the T

P

function

is de�ned that maps sets of sets of tuples of the form hA�;Ri into sets of sets of tuples that can be

formed via the application of a single rule in the program P . A single set represents derivations that

can later be compared because they are constructed from the same constraint hierarchy.

More formally:

T

P

: }(}(P

ext-base

))! }(}(P

ext-base

))

20

For I � }(P

ext-base

)

T

P

(I) = fF j

A B

1

; B

2

; : : : ; B

m

;H is a rule in P , and

F = fhA�;Ri j

hB

1

�;R

1

i 2 I

1

;

hB

2

�;R

2

i 2 I

2

;

.

.

.

hB

m

�;R

m

i 2 I

m

;

for I

1

; I

2

; : : : ; I

m

2 I; and

� 2 S(H

0

); and

R = R

1

�R

2

� � � � �R

m

� [E(H

1

�);E(H

2

�); : : : ;E(H

n

�)]g

g

Let

T

P

" ! =

1

[

i=1

T

i

P

(;)

T

P

! =

1

\

i=1

T

i

P

(}(P

ext-base

))

While T

P

" ! is a �xed-point, the valuations contained in its sets still need to be compared. The

S

best

operator is essentially a �lter that eliminates those valuations whose combined error vectors

are larger than some other valuation in the same subset. S

best

computes the preferred solutions

of the set I.

Let

S

best

(I) = fA� j

9I

0

2 I and

9hA�;R

�

i 2 I

0

and

:9hA�;R

�

i 2 I

0

such that

G(R

�

)<

g

G(R

�

)g

If a program contains no non-required constraints, then T

P

" ! will consist of sets of tuples whose

second elements are empty error sequences. Therefore, none of these empty sequences will dominate

any other sequence in the same set and no ground atoms will be eliminated in S

best

(T

P

" !). For

programs with required constraints only, S

best

(T

P

" !) consists simply of all the �rst elements in

the tuples in the sets in I.

7.1 A Fixed-Point Semantics for Inter-Hierarchy Comparison

We can also alter the de�nition of S

best

only slightly to achieve a �xed-point characterization for

inter-hierarchy comparison, in much the same way as for the model theory. I now consists of a single

subset of }(P

ext-base

). Then we rede�ne the mapping function T

P

as

T

P

: }(P

ext-base

)! }(P

ext-base

)

21

For I � P

ext-base

T

P

(I) = ffhA�;Ri j

A B

1

; B

2

; : : : ; B

m

;H is a rule in P , and

hB

1

�;R

1

i 2 I;

hB

2

�;R

2

i 2 I;

.

.

.

hB

m

�;R

m

i 2 I;

� 2 S(H

0

); and

R = R

1

�R

2

� � � � �R

m

� [E(H

1

�);E(H

2

�); : : : ;E(H

n

�)]g

g

Similarly, we rede�ne S

best

as

S

best

(I) = fA� j

hA�;R

�

i 2 I and

:9hA�;R

�

i 2 I such that

G(R

�

)<

g

G(R

�

)g

In this de�nition, the mapping S

best

is not monotonic, as is also discussed in [81].

8 Relations between the Operational, Model-theoretic, and

Fixed-Point Semantics of HCLP

The following two propositions give an equivalence for the computed solutions of a correct HCLP

interpreter and both the preferred model of a program, and the preferred solutions of the �xed-point

of the T operator. Proofs are given in [80].

Proposition 3 v is a computed solution for a query Q and program P i� Qv is in the preferred

model for P

Proposition 4 v is a computed solution for a query Q and program P i� Qv 2 S

best

(T

P

" !)

Let P

�

denote the completion of the program P [9, 41]. The following proposition characterizes

the \no" answers to queries in a completed HCLP program.

Proposition 5 FF

P

�

= P

�

base

� S

best

(T

P

�

!)

9 Implementation

To test our ideas, and to allow us to experiment with HCLP programs, we �rst implemented a

simple interpreter for HCLP(R;LPB), i.e., for the domain of the real numbers, using the locally-

predicate-better comparator, in CLP(R). Subsequently, we implemented a second interpreter in

Common Lisp, again for the domain of the real numbers, but which supports several di�erent

metric comparators rather than the single LPB comparator.

22

9.1 A Simple Interpreter for HCLP(R;LPB)

Our �rst interpreter is written in CLP(R), allowing it to take advantage of the underlying CLP(R)

constraint solver and backtracking facility. It has two phases.

The �rst phase is a meta-interpreter, much like traditional Prolog meta-interpreters [72]. It

accepts a goal and either satis�es it immediately, or looks up the goal in the rule base, reduces it

to subgoals, and recursively solves the subgoals. Required constraints are passed on to the CLP(R)

solver immediately, while non-required constraints are simply pushed onto a stack. Non-required

constraints that are part of the body of some rule are of course only added to the stack if that rule

(minus the non-required constraints) succeeds. Upon completion of this phase, variable bindings

and required constraints are maintained within the environment, and the stack of non-required

constraints is passed as a constraint hierarchy to the second phase.

The second phase performs a recursive search for answers representing locally-predicate-better

solutions to the constraint hierarchy produced for the particular derivation found during the �rst

phase. The algorithm uses a recursive rule Solve. Each invocation of Solve represents a node in an

implicit search tree of possible non-required constraints to satisfy next. A number of data structures

are maintained by each invocation of Solve, including Answer (a list of unlabeled constraints that

represents the answer computed so far), and Untried (a list of labeled constraints that have not yet

been dealt with). Let s be the strongest strength of the constraints in Untried. For each constraint

c in Untried with strength s, Solve appends c to the current answer, re�nes Untried by removing

constraints that either have become unsatis�able by the assumption that c holds or that are implied

by the current answer, and then recursively calls itself with the remaining untried constraints. The

base case is reached when the hierarchy is empty.

Each leaf in the implicit search tree represents an answer to the goal. Upon request, the inter-

preter will backtrack to �nd alternate answers. These can arise in two ways. First, it is possible

that the constraint hierarchy produced by the current choices of rules has more than one answer.

Second, it is also possible that a goal can be satis�ed in more than one way at the rule level: by

using di�erent rules to solve a goal, a new constraint hierarchy may be obtained. All answers to

the current hierarchy are given before an attempt is made to resatisfy the goal. There is a unique

computation tree associated with every answer, but the answers themselves are not always unique.

(The pseudo-code for this algorithm can be found in [6].)

Here is a trivial example in HCLP(R;LPB) to illustrate the interpreter's behavior upon back-

tracking.

banana(X) :- artichoke(X), weak X>6.

artichoke(X) :- strong X=1.

artichoke(X) :- required X>0, required X<10, weak X<4.

The �rst answer to ?-banana(A) is produced by selecting the �rst of the artichoke clauses,

yielding the hierarchy strong A = 1, weak A > 6. There is a single answer to this hierarchy, namely

A = 1. Upon backtracking, the second artichoke clause is selected, resulting in the hierarchy

required A > 0, required A < 10, weak A < 4, weak A > 6. This hierarchy has two answers. The

�rst is 0 < A < 4. Upon backtracking the second and �nal answer 6 < A < 10 is then found.

As a result of being implemented on top of CLP(R), the interpreter is small (2 pages of code) and

clean. However, the second phase is not incremental|rather, it recomputes all the LPB answers for

each invocation, instead of incrementally updating its answers as constraints are added and deleted

due to backtracking, thus making it not particularly e�cient. A second de�ciency is that it doesn't

check for duplicate constraints when pushing non-required constraints onto the stack. However, since

it implements only the LPB comparator, rather than one of the global ones, the only consequence

is that a given answer could be produced more than once upon backtracking.

23

9.2 A DeltaStar-Based Interpreter for HCLP(R; ?)

This �rst implementation only supported the locally-predicate-better comparator. However, metric

comparators are important for such applications as interactive graphics, layout, and scheduling,

since if a soft constraint is unsatis�ed we may nevertheless wish to satisfy it as well as possible by

minimizing its error. Global comparators, which consider the aggregate error for the constraints at

a given level, are useful as well for such applications. There is also a fundamental e�ciency problem,

as noted above, since the interpreter used a batch algorithm to produce its answers rather than an

incremental one.

We therefore wrote a second HCLP interpreter, again for the domain of the real

numbers, but which supports the weighted-sum-metric-better, worst-case-metric-better, and

locally-metric-better comparators. The comparator to be used in a given program is

indicated by a declaration at the beginning of an HCLP program. This second in-

terpreter could thus be precisely but verbosely named HCLP(R,hWSMB,WCMB,LMBi).

(So far we have resisted the name HCLP(R,h#; j;&i).)

An unfortunate consequence of the desire to support metric comparators is that we could no

longer build so simply on top of CLP(R), since we now care not just whether or not a constraint

is satis�ed, but also about the error in satisfying it|information not conveniently available from

CLP(R). The second interpreter is thus implemented in Common Lisp, and has to do much more

of the work itself (such as keeping track of backtracking information).

The interpreter uses an incremental algorithm,DeltaStar [21, 22], to �nd solutions to constraint

hierarchies. DeltaStar is actually a family of algorithms, parameterized by an underlying \
at"

constraint solver (i.e., one that solves a collection of required constraints). The key procedure that

the
at solver must provide is filter:

filter(S : Solution, C : Set of Constraints) -> Solution

Given an existing solution S, filter returns the subset of S that minimizes the error in satisfying

the set of constraints C. (The implementation of this routine e�ectively de�nes the comparator.) In

addition, the
at solver should provide other entries for e�ciently determining if a new constraint

is compatible with a current solution (i.e., if the error in satisfying it is 0), and for quickly adding

a constraint to a current solution, given a guarantee that the constraint is compatible. A full

description of the algorithm (including a large number of optimizations) is given in [21].

DeltaStar manages the incremental addition and deletion of constraints at di�erent levels of the

hierarchy, given the pluggable
at solver. The remainder of the interpreter maintains the database

of clauses, backtracking information, and other details.

9.2.1 Using DeltaStar in HCLP(R; ?)

In our Common Lisp implementation of HCLP(R; ?), the
at solver is the Simplex algorithm,

with implementations of filter that support minimizing the weighted sum of a set of constraints,

minimizing the maximum error of a set of constraints, and minimizing the pareto-optimal point of

a set of constraints, thus implementing weighted-sum-metric-better, worst-case-metric-better, and

locally-metric-better respectively. The class of constraints that can be accommodated are linear

equalities and non-strict inequalities.

To support these comparators, DeltaStar transforms the constraint hierarchy into a series of

linear programming problems. In a standard linear programming problem [45], we wish to minimize

(or maximize) a linear expression in k real-valued variables x

1

; : : : ; x

k

, subject to the nonnegativity

constraints x

1

� 0; : : : ; x

k

� 0, and also to m additional linear equality or inequality constraints

on x

1

; : : : ; x

k

. The expression to be minimized or maximized is called the objective function. Ref-

erence [45] is a comprehensive discussion of linear programming theory and algorithms; all of the

transformation techniques mentioned in the following paragraphs are discussed in this volume. Our

implementation uses code for the Simplex algorithm taken from [52] and translated to Lisp.

24

In general, the variables in the constraint hierarchy are unrestricted in sign, while those in a

linear programming problem must be nonnegative. There is a standard technique for handling

unrestricted variables in linear programming problems. Each unrestricted variable x

j

is replaced by

the di�erence of two nonnegative variables x

+

j

and x

�

j

, so that x

j

= x

+

j

� x

�

j

. We then solve the

problem involving the x

+

j

and x

�

j

variables, and use this solution to �nd values for the original x

j

.

(This is not a particularly e�cient way of handling this situation, but we used it in this prototype

implementation, since we were not too concerned with e�ciency, and wanted to use the Simplex

code unaltered.)

We now consider the weighted-sum-metric-better comparator. Initially, we minimize the weighted

sum of the errors of the H

1

constraints, subject to the H

0

constraints. Even after the transformation

to handle the variables without sign restrictions, this still isn't quite a linear programming problem,

since the objective function is a weighted sum of absolute values. However, we adapt another

standard technique for converting a problem in which the objective function is the weighted sum of

absolute values into a linear programming problem. Let c be a constraint in H

1

. If c is an equality

constraint a

1

x

1

+ � � �+ a

k

x

k

= b, then the error in satisfying c is e =j a

1

x

1

+ � � �+ a

k

x

k

� b j. We

augment the linear programming program with two new variables e

+

and e

�

(both of which must

obey the usual non-negativity constraints), and add the constraint a

1

x

1

+ � � �+ a

k

x

k

� b = e

+

� e

�

.

If the property

e

+

= 0 if e � 0

e

�

= 0 if e � 0

is satis�ed, then clearly e = e

+

+ e

�

. Conveniently, this property is in fact satis�ed by the solution

produced by the Simplex algorithm. Hence, if the weight for constraint c is w, then its contribution

to the objective function (the weighted sum of the errors) is we

+

+ we

�

. If c is an inequality

a

1

x

1

+ � � �+a

k

x

k

� b, then its contribution to the objective function is simply we

+

. (In this case we

drop the we

�

term from the objective function. If the inequality is satis�ed, then e

+

will be 0, and

e

�

will be 0 or positive. If the inequality is not satis�ed, then e

+

will be positive and e

�

will be 0.)

Finally, if c is an inequality a

1

x

1

+ � � �+ a

k

x

k

� b, then its contribution to the objective function is

we

�

.

If this initial linear programming problem (minimizing the weighted sum of the errors of the H

1

constraints, subject to the H

0

constraints) has a unique solution, we are done. Otherwise, we add

to the linear programming problem a constraint that the weighted sum of the H

1

constraints attain

its minimum value (as computed in the previous step), and set up another problem, where the new

objective function minimizes the weighted sum of the errors of the H

2

constraints. We continue in

this manner for the remaining levels.

For the worst-case-metric-better comparator, we initially minimize the maximum of the weighted

errors of the H

1

constraints, subject to the H

0

constraints. As before, this isn't a linear programming

problem, but yet another standard technique is available for transforming it into one. See [45, page

18].

For locally-metric-better, we consider each constraint in level H

1

individually in relation to the

solution for H

0

. Calling Simplex with a particular H

1

constraint tells us the bounds of the solution

with respect to that constraint. When all of the constraints in H

1

have been processed, the various

solutions are combined to yield a solution for level H

1

. If all of the constraints at that level are

satis�ed, then this process continues using the constraints at level H

2

in relation to the current

solution. If some constraint at level H

1

is not satis�ed, then the current solution is the solution to

the entire hierarchy.

Filter routines for each of these comparators are de�ned separately from the logic programming

interpreter. A call to filter solves a single level in the hierarchy by minimizing the error of a set

of constraints (the current solution) with respect to some other set of constraints (the constraints at

some level in the constraint hierarchy). The calling routine in the interpreter uses filter to solve

the entire constraint hierarchy.

25

Regionally-metric-better is not currently available. However, it could be added to the imple-

mentation by changing the routine that calls filter. The �lter for locally-metric-better could be

used as is. Rather than stopping iteration through the hierarchy when some constraint cannot be

satis�ed, as is now done for locally-metric-better, the routine would continue to call �lter through

all levels of the hierarchy. If, in the future, we wanted to implement least-squares-better, we would

de�ne a �lter using some non-linear equation solver. The logic programming interpreter would not

need to be revised.

9.2.2 E�ciency Issues

This second interpreter is still a research prototype to test our ideas, rather than being production-

quality software. Among its limitations are its restriction to linear equalities and non-strict inequal-

ities, and its e�ciency. Regarding the classes of constraints that can be accommodated, clearly it

would be desirable to at least provide local propagation for non-linear constraints, �a la CLP(R).

Regarding e�ciency, implementing the interpreter in Common Lisp has made the implementation

easier, but slower than writing in a language such as C. In addition, DeltaStar uses only a nar-

row interface between the
at constraint solver and the rest of the algorithm. Many optimizations

would be possible here, following the excellent example of the CLP(R) interpreter [36], such as

handling simple constraints within the inference engine, providing di�erent solvers for equalities and

inequalities, and more e�ciently implementing an incremental version of the Simplex algorithm.

Nevertheless, the use of the DeltaStar algorithm has aided us in rapidly testing di�erent satis-

faction algorithms and comparators. For example, only one person-hour was needed to add the

weighted-sum-metric-better comparator once the DeltaStar framework was in place.

The time complexity of the HCLP interpreter is dominated by the cost of the
at constraint

solver. In the complexity discussion below, we factor out this cost, and represent it simply as p

(where p is a function of the number of variables and the number of constraints). The worst-case

time complexity of the
at constraint solver we use (the Simplex algorithm) is exponential in the

number of variables; however, this behavior is apparently exhibited only by arti�cially constructed

examples. On real problems Simplex performs remarkably well. There are linear programming

algorithms whose worst case time is polynomial. Whether such algorithms (Karmarkar's algorithm

in particular) are superior in practical use is still a matter of debate [38].

The cost of solving a particular HCLP(R; ?) query can be broken down into two parts. The �rst

is the cost of �nding some solution considering only the required constraints, i.e. the cost of solving

the corresponding CLP(R) program. (Actually, there is a fair amount of overhead in storing the non-

required constraints and storing solutions in the event of backtracking, but this is also dominated

by the cost of calling the
at solver to solve the required constraints.) The second is the cost of

solving the constraint hierarchy. While this is a fairly expensive procedure, it is only done once per

answer because there is no need to solve the hierarchy until we know that a particular derivation

will not fail. Furthermore, because the algorithm in the current interpreter is incremental, not all

of the solution is lost upon backtracking.

Many of the optimizations described above will improve the running time of the interpreter with

respect to the �rst type of cost, i.e. that of �nding a solution to the required constraints. Using a

more e�cient
at solver would improve both the cost of �nding the set S

0

and of solving the entire

hierarchy.

Consider a particular call to filter, filter(S,C), where S and C are sets of constraints. Let

v denote the number of variables in S and C. Let c denote the number of constraints in C. Let n

be the number of levels used in the HCLP(R; ?) program. Let p be the cost of running the linear

programming algorithm in the average case for v variables and c constraints. The cost of filter

(in the average case) for both weighted-sum-metric-better and worst-case-metric-better is 2vp. The

cost of filter for locally-metric-better is 2cvp. It is often the case that filter will not be called

n times. We already saw how this could be in the case of locally-metric-better, but it will also be

26

true if a particular derivation does not include constraints at level n, or in the case that a unique

solution is found before processing the constraints at level n. However, assuming that filter is

called n times, then the cost of solving the hierarchy is 2nvp for weighted-sum-metric-better and

worst-case-metric-better, and 2ncvp for locally-metric-better.

9.2.3 Interactive Graphics

The HCLP(R; ?) interpreter includes some evaluable predicates for performing input and graphical

output, so that we can use HCLP(R; ?) for interactive graphics applications. For example, there are

predicates for getting the mouse position and button state, and for drawing lines, circles, placing

text, and so forth. The interpreter makes the appropriate calls to Garnet routines to perform the

needed actions. (Garnet [47] is a user interface toolkit, written in Common Lisp and using X

windows.)

10 Related Work

As described in the introduction, HCLP builds on the CLP scheme [10, 34]. Since HCLP is also a

general scheme, it should be possible to implement HCLP languages for any of the domains, such

as booleans, �nite domains, or trees, supported by existing CLP languages (e.g., [11, 14, 35, 36, 61,

69, 77, 79]).

1

A number of CLP languages, for example CHIP [14, 77], include a minimize operator. If an a

priori lower bound B on the value of Var is known, then a call minimize(Var) could be replaced by a

soft constraint medium Var = B.

2

However, if an a priori bound is not known, then this simulation

would not work. Reference [5] describes how the constraint hierarchy theory can be extended to

include objective functions. We could similarly extend an HCLP language to include objective

functions explicitly, which would handle minimize directly (modulo the footnoted comment).

It is also useful to consider the relation between soft constraints and objective functions from the

other point of view: of expressing HCLP languages in a CLP language with a minimize operator.

The latter sort of language would be a very convenient one in which to write an HCLP interpreter.

The technique would be similar to that used in our �rst HCLP interpreter, which was written in

CLP(R) (Section 9.1). However, rather than just the locally-predicate-better comparator, we could

implement other comparators as well in such an interpreter. For example, to implement weighted-

sum-better, we would �rst reduce the goal, satisfying the hard constraints, and accumulating the

soft constraints. We would then minimize the value of an expression that was the weighted sum of

the errors of the constraints at the strongest non-required level (using the minimize operator), then

the weighted sum of the errors of the next level, and so forth.

The cc family of languages [58, 59] generalizes the CLP scheme to include such features as

concurrency, atomic tell, and blocking ask; up to this point we haven't dealt with these additional

issues in the HCLP framework.

Maher and Stuckey [42] give a de�nition of constraint hierarchies similar to the one in this

paper. In their de�nition, pre-solutions for hierarchies perform the same function as the set S

0

does

in our formulation. Then rather than using the E and G functions, Maher and Stuckey de�ne a

1

Regarding Echidna [69], we should note that some of its constraint solving techniques make use of a hierarchy, but

their meaning is quite di�erent than the one we use here. In the case of Echidna, a hierarchy refers to a taxonomy, or

a structuring of a discrete domain into subsets with similar properties. This allows the system to use a more e�cient

arc consistency algorithm.

2

Actually, the simulation is not quite precise. Consider the CHIP goals X�0, X�10, minimize(X), minimize(0-X)

and X�0, X�10, minimize(0-X), minimize(X). These would give X = 0 and X = 10 respectively. However, the cor-

responding HCLP goals required X�0, required X�10, medium X=0, medium X=10 and required X�0, required

X�10, medium X=10, medium X=0 would both yield the same answers: for example, the two answers X = 0 or X = 10

for locally-predicate-better, and the single answer X = 5 for worst-case-better and least-squares-better.

27

pre-measure that maps pre-solutions and sets of constraints to some scale. The resulting sequences

can then be compared via a lexicographic ordering.

Satoh [60] proposes a theory for constraint hierarchies using a meta-language to specify an

ordering on the interpretations that satisfy the required constraints. The theory is quite general,

and can accommodate all of the comparators described in Section 2. However, since it is de�ned

by second-order formulae, it is not in general computable. In subsequent work [62, 63], Satoh and

Aiba present an alternative theory that restricts the constraints to a single domain D, so that they

can be expressed in a �rst-order formula. This theory is similar to the one presented here, with

the following di�erences: �rst, only the locally-predicate-better comparator is supported; second,

the semantics of constraint hierarchies (as opposed to the semantics of HCLP) is described model

theoretically rather than set theoretically; and third, the class of constraints is generalized from

atomic constraints to disjunctions of conjunctions of atomic constraints, i.e., constraints of the form

(c

11

^ c

12

^ : : :^ c

1n

1

) _ (c

21

^ c

22

^ : : :^ c

2n

2

) _ : : :_ (c

m1

^ c

m2

^ : : :^ c

mn

m

)

Satoh and Aiba embed such constraints in the CLP language CAL [61], to yield an HCLP

language CHAL [62, 63]. CHAL includes two constraint solvers: an algebraic constraint solver

for multi-variate polynomial equations, which uses Buchberger's algorithm to calculate Gr�obner

bases; and a boolean constraint solver for propositional boolean equations, which uses an extension

of Buchberger's algorithm. Satoh and Aiba give examples illustrating each of these domains: a

meeting scheduling problem and a gear design problem respectively. In each case both required and

soft constraints are used. They also describe an algorithm for �nding the locally-predicate-better

solutions to a hierarchy, which improves on our algorithm discussed in Section 9.1 by avoiding

redundant calls to the solver. It �nds solutions essentially by computing maximally consistent

subsets of the soft constraints. However, this algorithm is a batch solver, in contrast to the Delta-

Star-based incremental algorithm (Section 9.2), and thus must re-compute its answers from scratch

after every change to the set of constraints due to an alternate rule choice. Finally, it should be

mentioned that the characterization in [62] states the de�nition of the set of solutions for a given

constraint hierarchy in model theoretic rather than set theoretic terms, but doesn't deal with the

interactions between rule choice and constraint hierarchies. We de�ne constraint hierarchies and

their solutions using sets, but describe the meaning of HCLP programs using both a model theory

and a proof theory.

Ohwada and Mizoguchi [50] discuss the use of logic programming for building graphical user

interfaces. Default constraints are instrumental in this application, since often only an incomplete

speci�cation of an object is given, yet complete information is needed to display a picture. Defaults

provide a mechanism whereby information can be assumed in order to specify an object fully, yet

it can be overridden, if necessary, as further information becomes known. Rather than a single

default level, a hierarchy of default constraints is used to avoid obtaining multiple, equally plausible

solutions (also known as the multiple extension problem). The hierarchy is implemented using the

negation-as-failure rule, i.e., if the negation of a constraint is not known to hold, then the constraint

can be assumed to be true. A problem with this approach is that it then becomes necessary to list

all possible con
icts when a rule is being written in order to avoid inconsistencies. In HCLP, the

need for consistency is assumed and there is no need to enumerate speci�cally those constraints that

might con
ict with the goal.

Outside of logic programming, other programming languages have supported constraints. Steele's

Ph.D. dissertation [71] is one of the �rst such e�orts; an important characteristic of his system

is the maintenance of dependency information to support dependency-directed backtracking and

to aid in generating explanations. Leler [39] describes Bertrand, a constraint language based on

augmented term rewriting. Kaleidoscope [18, 19, 23] combines constraints with object-oriented,

imperative programming. Kaleidoscope uses the same constraint hierarchy theory employed in HCLP

to reconcile the assignment operation of imperative programming with declarative constraints: in

Kaleidoscope, an assignment statement x x+5 is semantically a constraint relating states of x

28

at successive times: x

t+1

= x

t

+ 5. In addition, all variables have very weak equality constraints

between their successive states, so that in the absence of stronger constraints, a variable will retain

its value over time.

There has also been much applications-oriented work on using constraints, for domains such as

geometric layout [3, 29, 49, 74, 78], user interface toolkits [2, 46, 47, 48, 75], electrical circuit analysis

[70, 73], and even jazz composition [40]. Regarding constraint hierarchies, our original description

of constraint hierarchies is in reference [4]. DeltaBlue, an e�cient, incremental algorithm for �nding

a locally-predicate-better solution to a constraint hierarchy using local propagation is described in

[20] and further analyzed in [43], [25], and [57]. Constraint hierarchies as described in reference [4]

have subsequently been used in a number of systems, including ThingLab II [43, 44], TRIP and

TRIP II [37, 76], the Constraint Window System [16], and Multi-Garnet [56].

In addition to early conference publications [4, 7], constraint hierarchies are discussed in detail

in [5]. Most of the concepts in constraint hierarchies derive from concepts in sub�elds of operations

research such as linear programming [45], multiobjective linear programming [45], goal programming

[33], and generalized goal programming [32]. The domain of the constraints there is usually the real

numbers, or sometimes the integers (for integer programming problems). The notion of constraint

hierarchies is preceded by the approach to multiobjective problems of placing the objective func-

tions in a priority order. The concept of a locally-better solution is derived from the concept of a

vector minimum (or pareto optimal solution, or nondominated solution) to a multiobjective linear

programming problem. Similarly, the concepts of weighted-sum-better and worst-case-better solu-

tions are both derived from analogous concepts in multiobjective linear programming problems and

generalized goal programming. (See [5] for more discussion of the relation between constraint hier-

archies and work in operations research. However, the essential feature of HCLP is that we embed

constraints, both hard and soft, in a logic programming framework.)

There is a substantial body of related research in the arti�cial intelligence community. Fox [17]

discusses the problem of constraint-directed reasoning for job-shop scheduling, and allows the relax-

ation of constraints when con
icts occur, and context-sensitive selection and weighted interpretation

of constraints. Descotte and Latombe [13] make compromises by selective backtracking among in-

consistent constraints in a planner for manufacturing. Freuder [24] gives a general model for partial

constraint satisfaction problems (PCSPs) for variables ranging over �nite domains, extending the

standard CSP model. In Freuder's model, alternate CSPs are compared with the original problem

using a metric on the problem space (as opposed to a metric on the solution space, as in our work).

An optimal solution s to the original PCSP would be one in which the distance between the original

problem and the new problem (for which s is an exact solution) is minimal. In an earlier CSP exten-

sion, Shapiro and Haralick [66] de�ne the concepts of exact and inexact matching of two structural

descriptions of objects, and show that inexact matching is a special case of the inexact consistent

labeling problem.

In non-monotonic reasoning, there are several related problem areas with di�erent emphases. In

default reasoning one tries to reason in the absence of complete information, making assumptions

about things that are true or false in the absence of knowledge to the contrary. Reference [28]

is a collection of many of the classic papers in the area. Temporal reasoning [68] deals with the

di�culty of reaching conclusions about things that change over time and includes the well known

frame problem, among others. In knowledge representation, beliefs are sometimes retracted, while

the addition of new beliefs may often invalidate information that was previously held to be true. In

explanation-based reasoning, or hypothetical reasoning, multiple theories exist to explain an obser-

vation, and the accumulation of new facts helps to reduce the number of acceptable explanations,

or theories.

These areas are all related in a broad sense in that they involve reasoning in the presence of

change: either change through time, change in knowledge, or change in observation. (Reference

[12] explores the relation between temporal reasoning and belief update and shows that the latter

can be expressed in terms of the former.) In the case of default reasoning, new information may

29

involve eliminating false assumptions, just as adding new constraints to a constraint hierarchy may

override weaker constraints. Brewka [8] describes an approach to representing default information

with multiple levels of preference. In this framework, there are many levels of theories, some of

which are more preferred than others. A preferred subtheory is obtained by taking a maximally

consistent subset of the strongest level, and then adding as many formulas as possible from the next

strongest level, and so on, without introducing any inconsistencies.

The problems involved in revising knowledge systems are discussed in [26]. Formally, revision

means adding new information. Contraction of a knowledge system arises when information must

be retracted. Revision will often entail contraction as new information may invalidate old beliefs.

Rationality postulates are used to ensure that contraction and expansion of the knowledge set is

carried out in the best way possible. Intuitively, this means that the most minimal change is made

to the theory while still incorporating the new information. This is similar to our own use of

comparators and our requirements on the combining functions. (In fact, one of our motivations for

de�ning and using constraint hierarchies arose from our work in interactive graphics and our desire

that updates to the screen involve as little change as possible.) Revision can be viewed as adding

a constraint to the hierarchy: �rst it is necessary to \contract", i.e. remove all constraints from

the solution that are weaker than the one being added; then it is necessary to \expand", i.e. add

all weaker constraints that are consistent with the revised set. Epistemic entrenchment is used to

order the sentences in a knowledge set. Those sentences that are the most epistemically entrenched

are those which are the most important and should not be removed from the knowledge set before

other less entrenched ones. Again, this is similar to our use of levels in the hierarchy. One di�erence

is that the ordering based on epistemic entrenchment is a natural ordering arising from the theory

itself, while the ordering of the constraint hierarchy is imposed by the user.

Reiter [54] describes integrity constraints that are used to ensure certain properties about the

content of a knowledge base. They can be viewed as meta-constraints in that they refer to what

the knowledge base should contain, or \know", rather than to properties of the domain. Integrity

constraints have been used to prefer one explanation, or hypothesis, over another by considering

constraints that are false in the problem domain and false in each of two theories, but which are

true in the union of the two theories [65]. Thus the theories are mutually incompatible and there

exists some \crucial literal" that can be used to discriminate between them because it is supported

in one of the two theories, but not in the other. Reference [64] also discusses the use of crucial

literals in hypothetical reasoning. By identifying these crucial literals and querying the user as to

the truth of the literal, the number of explanations for a given set of observations can be minimized.

Because of the power of the theorem solver used in their approach, integrity constraints are merely

facts, corresponding to hard constraints in the constraint hierarchy formalism. Hypotheses can then

be interpreted as soft, or default constraints (there is only one level). Once the truth value of a

crucial literal is determined, then it becomes a fact and invalidates one (or more) of the hypotheses

(defaults).

Despite the similarities discussed above, these approaches di�er in their ultimate goal, or in-

tended purpose. Default and temporal reasoning attempt to discover what will be true in a given

situation, whereas hypothetical reasoning is concerned with explanations for observed phenomena.

Belief revision is concerned with maintaining consistent information in knowledge sets, or databases.

Our work in constraint hierarchies, and HCLP in particular, is focussed on computing answers to

domain speci�c problems, and the soft constraints are used to narrow the solution space. Poole

[51] characterizes certain types of reasoning based on who is allowed to choose the assumptions, or

hypotheses, and whether the goal is known. Most uses of HCLP are with an unknown goal, and

the assumptions are selected by the programmer (who labels the constraints), and the comparator

(which selects the \best" answer). Reference [81] discusses some aspects of the relationship between

constraint hierarchies and nonmonotonic logic in general.

30

11 Conclusions and Future Research

In this paper we have described an extension to the CLP(D) scheme that allows preferential as

well as required constraints to be expressed, including a theory of constraint hierarchies and a

semantics for HCLP. We've also described two interpreters, one for HCLP(R;LPB) and the other

for HCLP(R; ?). A number of example programs have been presented, which are characteristic of

several domains: interactive graphics, planning and scheduling, document formatting, and �nancial

analysis. In future research, we would like to increase the e�ciency of our HCLP(R; ?) interpreter, as

discussed in Section 9.2, and to explore further the use of the language on di�erent applications. In

addition, we plan to add support for partially ordered hierarchies and for inter-hierarchy comparisons.

In the current theory and implementations, the levels in the constraint hierarchy are totally

ordered. Partially ordered hierarchies would generalize this to allow a partial order to be speci�ed

instead. Thus, we could have a hierarchy with levels A, B, and C, in which levels A and B dominated

C, but where there was no speci�ed priority between A and B.

Inter-hierarchy comparison would allow solutions arising from di�erent rule choices to be com-

pared, and the best ones selected. Both of the �nancial examples in Section 4.4 provide illustrations

of the utility of inter-hierarchy comparison. In the mortgage example, we placed soft constraints on

the Principal and MonthlyPayment. We might wish instead to indicate a preference regarding the

term of the mortgage. As given, the number of recursive invocations of the mortgage rule depends on

the term of the mortgage. A preferential constraint on the number of months would be valid in any

case; however, if we wish the system to select among di�erent alternatives based on this constraint,

in this case we need to compare the constraint hierarchies arising from di�erent rule choices (i.e.,

di�erent numbers of months). Similarly, in the case of O.T.A.S. problems, we might wish the system

to search through the available positions (as speci�ed by di�erent rule choices), and compare them.

We have not yet supported inter-hierarchy comparison in either of our implementations, and will be

investigating algorithms and implementations that do so.

CLP has proven to be a fruitful generalization, in both theoretical and practical terms, of logic

programming. We hope that the integration of constraint hierarchies with constraint logic program-

ming will further increase the expressiveness and utility of these languages.

Acknowledgements

Bjorn Freeman-Benson has collaborated with us on constraint hierarchies and constraint satisfaction

algorithms throughout the project, and Amy Martindale and Michael Maher worked with us on the

original version of HCLP. Joxan Ja�ar and Pascal Van Hentenryck gave us valuable suggestions

and advice, particularly with the formal semantics aspects of HCLP. Catherine Lassez provided

the options trading example. The anonymous referees provided particularly useful and detailed

recommendations and suggestions for improving this paper. Michael Sannella made many useful

comments on drafts of this paper. Thanks to all for their help. This research was supported in part

by the National Science Foundation under Grant No. CCR-9107395.

References

[1] Krzysztof R. Apt, Howard R. Blair, and Adrian Walker. Towards a Theory of Declarative

Knowledge. In Jack Minker, editor, Foundations of Deductive Databases and Logic Program-

ming. Morgan Kaufmann Publishers, Inc., 1988.

[2] Paul Barth. An Object-Oriented Approach to Graphical Interfaces. ACM Transactions on

Graphics, 5(2):142{172, April 1986.

31

[3] Alan Borning. The Programming Language Aspects of ThingLab, A Constraint-Oriented Simu-

lation Laboratory. ACM Transactions on Programming Languages and Systems, 3(4):353{387,

October 1981.

[4] Alan Borning, Robert Duisberg, Bjorn Freeman-Benson, Axel Kramer, and Michael Woolf.

Constraint Hierarchies. In Proceedings of the 1987 ACM Conference on Object-Oriented Pro-

gramming Systems, Languages, and Applications, pages 48{60. ACM, October 1987.

[5] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint Hierarchies. Lisp and

Symbolic Computation, 5(3):223{270, September 1992.

[6] Alan Borning, Michael Maher, Amy Martindale, and Molly Wilson. Constraint Hierarchies and

Logic Programming. Technical Report 88-11-10, Computer Science Department, University of

Washington, November 1988.

[7] Alan Borning, Michael Maher, Amy Martindale, and Molly Wilson. Constraint Hierarchies and

Logic Programming. In Proceedings of the Sixth International Conference on Logic Program-

ming, pages 149{164, Lisbon, June 1989.

[8] Gerhard Brewka. Preferred Subtheories: An Extended Logical Framework for Default Reason-

ing. In Proceedings of the Eleventh International Joint Conference on Arti�cial Intelligence,

pages 1043{1048, August 1989.

[9] K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors, Logic and Databases,

pages 293{322. Plenum Press, New York, 1978.

[10] Jacques Cohen. Constraint Logic Programming Languages. Communications of the ACM,

33(7):52{68, July 1990.

[11] Alain Colmerauer. An Introduction to Prolog III. Communications of the ACM, pages 69{90,

July 1990.

[12] Alvaro del Val and Yoav Shoham. Deriving Properties of Belief Update from Theories of Action.

In Proceedings of the 10th Conference of the AAAI, pages 584{589, 1992.

[13] Yannick Descotte and Jean-Claude Latombe. Making Compromises among Antagonist Con-

straints in a Planner. Arti�cial Intelligence, 27(2):183{217, November 1985.

[14] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Bertheir. The

Constraint Logic Programming Language CHIP. In Proceedings Fifth Generation Computer

Systems-88, 1988.

[15] Raimund Ege, David Maier, and Alan Borning. The Filter Browser|De�ning Interfaces Graph-

ically. In Proceedings of the European Conference on Object-Oriented Programming, pages 155{

165, Paris, June 1987. Association Fran�caise pour la Cybern�etique

�

Economique et Technique.

[16] Danny Epstein and Wilf LaLonde. A Smalltalk Window System Based on Constraints. In

Proceedings of the 1988 ACM Conference on Object-Oriented Programming Systems, Languages

and Applications, pages 83{94, San Diego, September 1988. ACM.

[17] Mark S. Fox. Constraint-Directed Search: A Case Study of Job-Shop Scheduling. Morgan

Kaufmann, Los Altos, California, 1987.

[18] Bjorn Freeman-Benson and Alan Borning. Integrating Constraints with an Object-Oriented

Language. In Proceedings of the 1992 European Conference on Object-Oriented Programming,

pages 268{286, June 1992.

32

[19] Bjorn Freeman-Benson and Alan Borning. The Design and Implementation of Kaleidoscope'90,

A Constraint Imperative Programming Language. In Proceedings of the IEEE Computer Society

International Conference on Computer Languages, pages 174{180, April 1992.

[20] Bjorn Freeman-Benson, John Maloney, and Alan Borning. An Incremental Constraint Solver.

Communications of the ACM, 33(1):54{63, January 1990.

[21] Bjorn Freeman-Benson and Molly Wilson. DeltaStar, How I Wonder What You Are: A General

Algorithm for Incremental Satisfaction of Constraint Hierarchies. Technical Report 90-05-02,

Department of Computer Science and Engineering, University of Washington, May 1990.

[22] Bjorn Freeman-Benson, Molly Wilson, and Alan Borning. DeltaStar: A General Algorithm for

Incremental Satisfaction of Constraint Hierarchies. In Proceedings of the Eleventh Annual IEEE

Phoenix Conference on Computers and Communications, pages 561{568, Scottsdale, Arizona,

March 1992. IEEE.

[23] Bjorn N. Freeman-Benson. Constraint Imperative Programming. PhD thesis, University of

Washington, Department of Computer Science and Engineering, July 1991. Published as De-

partment of Computer Science and Engineering Technical Report 91-07-02.

[24] Eugene C. Freuder. Partial constraint satisfaction. Arti�cial Intelligence, 58(1{3):21{70, De-

cember 1992.

[25] Michel Gangnet and Burton Rosenberg. Constraint Programming and Graph Algorithms. In

Second International Symposium on Arti�cial Intelligence and Mathematics, January 1992.

[26] Peter G�ardenfors and David Makinson. Revisions of Knowledge Systems Using Epistemic En-

trenchment. In Proceedings of the Second Conference on Theoretical Aspects of Reasoning About

Knowledge, pages 83{96, March 1988.

[27] Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic Programming.

In Proceedings of the Fifth International Conference on Logic Programming, pages 1070{1080,

Seattle, August 1988.

[28] Matthew L. Ginsberg, editor. Readings in Nonmonotonic Reasoning. Morgan Kaufmann, Los

Altos, California, 1987.

[29] James A. Gosling. Algebraic Constraints. PhD thesis, Carnegie-Mellon University, May 1983.

Published as CMU Computer Science Department Technical Report CMU-CS-83-132.

[30] Nevin Heintze, Joxan Ja�ar, Spiro Michaylov, Peter Stuckey, and Roland Yap. The CLP(R)

Programmer's Manual Version 1.1. Technical report, IBM T.J. Watson Research Center, Novem-

ber 1991.

[31] T. Huynh and C. Lassez. A CLP(R) Options Trading Analysis System. In Proceedings of the

Fifth International Conference and Symposium of Logic Programming, pages 59{69, Seattle,

1988.

[32] James P. Ignizio. Generalized Goal Programming. Computers and Operations Research,

10(4):277{290, 1983.

[33] James P. Ignizio. Introduction to Linear Goal Programming. Sage Publications, Beverly Hills,

1985. Sage University Paper Series on Qualitative Applications in the Social Sciences, 07-056.

[34] Joxan Ja�ar and Jean-Louis Lassez. Constraint Logic Programming. In Proceedings of the

Fourteenth ACM Principles of Programming Languages Conference, Munich, January 1987.

33

[35] Joxan Ja�ar and Spiro Michaylov. Methodology and Implementation of a CLP System. In

Proceedings of the Fourth International Conference on Logic Programming, pages 196{218, Mel-

bourne, May 1987.

[36] Joxan Ja�ar, Spiro Michaylov, Peter Stuckey, and Roland Yap. The CLP(R) Language and

System. ACM Transactions on Programming Languages and Systems, 14(3):339{395, July 1992.

[37] Tomihisa Kamada and Satoru Kawai. A General Framework for Visualizing Abstract Objects

and Relations. ACM Transactions on Graphics, 10(1):1{39, January 1991.

[38] Howard Karlo�. Linear Programming. Birk�auser, 1991.

[39] William Leler. Constraint Programming Languages. Addison-Wesley, 1987.

[40] David Levitt. Machine Tongues X: Constraint Languages. Computer Music Journal, 8(1):9{21,

Spring 1984.

[41] John W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.

[42] Michael J. Maher and Peter J. Stuckey. Expanding Query Power in Constraint Logic Program-

ming. In Proceedings of the North American Conference on Logic Programming, Cleveland,

October 1989.

[43] John Maloney. Using Constraints for User Interface Construction. PhD thesis, Department

of Computer Science and Engineering, University of Washington, August 1991. Published as

Department of Computer Science and Engineering Technical Report 91-08-12.

[44] John Maloney, Alan Borning, and Bjorn Freeman-Benson. Constraint Technology for User-

Interface Construction in ThingLab II. In Proceedings of the 1989 ACM Conference on Object-

Oriented Programming Systems, Languages and Applications, pages 381{388, New Orleans,

October 1989. ACM.

[45] Katta G. Murty. Linear Programming. Wiley, 1983.

[46] Brad A. Myers. Creating Dynamic Interaction Techniques by Demonstration. In CHI+GI 1987

Conference Proceedings, pages 271{278, April 1987.

[47] Brad A. Myers, Dario Guise, Roger B. Dannenberg, Brad Vander Zanden, David Kosbie,

Philippe Marchal, and Ed Pervin. Comprehensive Support for Graphical, Highly-Interactive

User Interfaces: The Garnet User Interface Development Environment. IEEE Computer,

23(11):71{85, November 1990.

[48] Brad A. Myers, Dario Guise, Roger B. Dannenberg, Brad Vander Zanden, David Kosbie,

Philippe Marchal, Ed Pervin, Andrew Mickish, and John A. Kolojejchick. The Garnet Toolkit

Reference Manuals: Support for Highly-Interactive Graphical User Interfaces in Lisp. Technical

Report CMU-CS-90-117, Computer Science Dept, Carnegie Mellon University, March 1990.

[49] Greg Nelson. Juno, A Constraint-Based Graphics System. In SIGGRAPH '85 Conference

Proceedings, pages 235{243, San Francisco, July 1985. ACM.

[50] Hayato Ohwada and Fumio Mizoguchi. A Constraint Logic Programming Approach for Main-

taining Consistency in User-Interface Design. In Proceedings of the 1990 North American Con-

ference on Logic Programming, pages 139{153. MIT Press, October 1990.

[51] David Poole. Hypo-deductive Reasoning for Abduction, Default Reasoning, and Design. In

Proceedings of the AAAI Spring Symposium on Automated Abduction, 1990.

34

[52] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical

Recipes: The Art of Scienti�c Computing. Cambridge University Press, 1986.

[53] Teodor C. Przymusinski. On the Declarative Semantics of Deductive Databases and Logic

Programs. In Jack Minker, editor, Foundations of Deductive Databases and Logic Programming.

Morgan Kaufmann Publishers, Inc., 1988.

[54] Raymond Reiter. On Integrity Constraints. In Proceedings of the Second Conference on Theo-

retical Aspects of Reasoning About Knowledge, pages 97{112, March 1988.

[55] Michael Sannella. The SkyBlue Local Propagation Solver. Technical Report 92-07-02, Depart-

ment of Computer Science and Engineering, University of Washington, December 1992.

[56] Michael Sannella and Alan Borning. Multi-Garnet: Integrating Multi-Way Constraints with

Garnet. Technical Report 92-07-01, Department of Computer Science and Engineering, Uni-

versity of Washington, September 1992.

[57] Michael Sannella, John Maloney, Bjorn Freeman-Benson, and Alan Borning. Multi-way versus

One-way Constraints in User Interfaces: Experience with the DeltaBlue Algorithm. Software|

Practice and Experience, 23(5):529{566, May 1993.

[58] Vijay A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, Carnegie-

Mellon University, Computer Science Department, January 1989.

[59] Vijay A. Saraswat, Martin Rinard, and Prakash Panangaden. Semantic Foundations of Con-

current Constraint Programming. In Proceedings of the Eighteenth Annual Principles of Pro-

gramming Languages Symposium. ACM, 1991.

[60] Ken Satoh. Formalizing Soft Constraints by Interpretation Ordering. In Proceedings of the

European Conference on Arti�cial Intelligence, 1990.

[61] Ken Satoh and Akira Aiba. CAL: A Theoretical Background of Constraint Logic Program-

ming and its Applications (Revised). Technical Report TR-537, Institute for New Generation

Computer Technology, Tokyo, February 1990.

[62] Ken Satoh and Akira Aiba. Computing Soft Constraints by Hierarchical Constraint Logic

Programming. Technical Report TR-610, Institute for New Generation Computer Technology,

Tokyo, January 1991.

[63] Ken Satoh and Akira Aiba. The Hierarchical Constraint Logic Language CHAL. Technical

Report TR-592, Institute for New Generation Computer Technology, Tokyo, September 1991.

[64] Abdul Sattar and Randy Goebel. Using Crucial Literals to Select Better Theories. Computa-

tional Intelligence, 7:11{22, 1991.

[65] H. Seki and A. Takeuchi. An Algorithm for Finding a Query Which Discriminates Competing

Hypotheses. Technical Report 143, Institute for New Generation Computer Technology, 1985.

[66] Linda Shapiro and Robert Haralick. Structural Descriptions and Inexact Matching. IEEE

Transactions on Pattern Analysis and Machine Intelligence, PAMI-3(5):504{519, September

1981.

[67] Yoav Shoham. Reasoning About Change: Time and Causation from the Standpoint of Arti�cial

Intelligence. The MIT Press, 1988.

[68] Yoav Shoham and Andrew Baker. Nonmonotonic Temporal Reasoning, 1992. To appear in

Handbook of Arti�cial Intelligence and Logic Programming, D. Gabbay, Ed.

35

[69] Greg Sidebottoms and William S. Havens. Hierarchical Arc Consistency Applied to Numeric

Processing in Constraint Logic Programming. Technical Report 91-06, Centre for Systems

Science and School of Computing Science, Simon Fraser University, August 1991.

[70] Richard M. Stallman and Gerald J. Sussman. Forward Reasoning and Dependency-Directed

Backtracking in a System for Computer-Aided Circuit Analysis. Arti�cial Intelligence, 9:135{

196, 1977.

[71] Guy L. Steele. The De�nition and Implementation of a Computer Programming Language

Based on Constraints. PhD thesis, MIT, August 1980. Published as MIT-AI TR 595, August

1980.

[72] Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT Press, 1986.

[73] Gerald J. Sussman and Guy L. Steele Jr. CONSTRAINTS|A Language for Expressing Almost-

Hierarchical Descriptions. Arti�cial Intelligence, 14(1):1{39, August 1980.

[74] Ivan Sutherland. Sketchpad: AMan-Machine Graphical Communication System. In Proceedings

of the Spring Joint Computer Conference. IFIPS, 1963.

[75] Pedro Szekely and Brad Myers. A User-Interface Toolkit Based on Graphical Objects and

Constraints. In Proceedings of the 1988 ACM Conference on Object-Oriented Programming

Systems, Languages and Applications, pages 36{45, San Diego, September 1988. ACM.

[76] Shin Takahashi, Satoshi Matsuoka, and Akinori Yonezawa. A General Framework for Bi-

Directional Translation between Abstract and Pictorial Data. In Proceedings of the ACM

SIGGRAPH Symposium on User Interface Software and Technology, pages 165{174, Hilton

Head, South Carolina, November 1991.

[77] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, Cambridge,

MA, 1989.

[78] Christopher J. van Wyk. A High-level Language for Specifying Pictures. ACM Transactions

on Graphics, 1(2):163{182, April 1982.

[79] Cli�ord Walinsky. CLP(�*): Constraint Logic Programming with Regular Sets. In Proceedings

of the Sixth International Conference on Logic Programming, pages 181{196, Lisbon, June 1989.

[80] Molly Wilson. Hierarchical Constraint Logic Programming. PhD thesis, Department of Com-

puter Science and Engineering, University of Washington, April 1993. Published as Department

of Computer Science and Engineering Technical Report 93-05-01.

[81] Molly Wilson and Alan Borning. Extending Hierarchical Constraint Logic Programming: Non-

monotonicity and Inter-Hierarchy Comparison. In Proceedings of the North American Confer-

ence on Logic Programming, pages 3{19, Cleveland, October 1989.

36

