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Abstract

We prove time-space tradeo�s for traversing undirected graphs, using a variety of

structured models that are all variants of Cook and Racko�'s \Jumping Automata

for Graphs". Our strongest tradeo� is a quadratic lower bound on the product of

time and space for graph traversal. For example, achieving linear time requires linear

space, implying that depth-�rst search is optimal. Since our bound in fact applies

to nondeterministic algorithms for nonconnectivity, it also implies that closure under

complementation of nondeterministic space-bounded complexity classes is achieved only

at the expense of increased time. To demonstrate that these structured models are

realistic, we also investigate their power. In addition to admitting well known algorithms

such as depth-�rst search and random walk, we show that one simple variant of this

model is nearly as powerful as a Turing machine. Speci�cally, for general undirected

graph problems, it can simulate a Turing machine with only a constant factor increase

in space and a polynomial factor increase in time.
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1. The Complexity of Graph Traversal

Graph traversal is a fundamental problem in computing, since it is the natural abstraction of

many search processes. In computational complexity theory, graph traversal (or more precisely,

st-connectivity) is a fundamental problem for an additional reason: understanding the complexity

of directed versus undirected graph traversal seems to be the key to understanding the relationships

among deterministic, probabilistic, and nondeterministic space-bounded algorithms. For instance,

although directed graphs can be traversed nondeterministically in polynomial time and logarithmic

space simultaneously, it is not widely believed that they can be traversed deterministically in

polynomial time and small space simultaneously. (See Tompa [35] for a lower bound, and Barnes et

al. [5] for an upper bound.) In contrast, undirected graphs can be traversed in polynomial time and

logarithmic space probabilistically by using a random walk (Aleliunas et al. [2], Borodin et al. [13]);

this implies similar resource bounds on (nonuniform) deterministic algorithms (Aleliunas et al. [2]).

More recent work presents uniform deterministic polynomial time algorithms for the undirected

case using sublinear space (Barnes and Ruzzo [6]), and even O(log

2

n) space (Nisan [30]), as well

as a deterministic algorithm using O(log

1:5

n) space, but more than polynomial time (Nisan et

al. [31]).

In this paper we concentrate on the undirected case. The simultaneous time and space require-

ments of the best known algorithms for undirected graph traversal are as follows. Depth-�rst or

breadth-�rst search can traverse any n vertex, m edge undirected graph in O(m + n) time, but

requires 
(n) space. Alternatively, a random walk can traverse an undirected graph using only

O(logn) space, but requires �(mn) expected time [2]. In fact, Broder et al. [16] have shown that

there is a spectrum of compromises between time and space for this problem: any graph can be

traversed in space S and expected time T , where ST = O(m

2

log

5

n). This raises the intriguing

prospect of proving that logarithmic space and linear time are not simultaneously achievable or,

more generally, proving a time-space tradeo� that closely matches these upper bounds.

Although it would be desirable to show a tradeo� for a general model of computation such as a

random access machine, obtaining such a tradeo� is beyond the reach of current techniques. Thus

it is natural to consider a \structured" model (Borodin [12]), that is, one whose basic move is based

on the adjacencies of the graph, as opposed to one whose basic move is based on the bits in the

graph's encoding. An appropriate structured model for proving such a tradeo� is some variant of

the JAG (\jumping automaton for graphs") of Cook and Racko� [19]. Such an automaton has a set

of states, and a limited supply of pebbles that it can move from vertex to adjacent vertex (\walk")

or directly to a vertex containing another pebble (\jump"). The purpose of its pebbles is to mark

certain vertices temporarily, so that they are recognizable when some other pebble reaches them.

The pebbles represent vertex names that a structured algorithm might record in its workspace.

Walking represents replacing a vertex name by some adjacent vertex found in the input. Jumping

represents copying a previously recorded vertex name.

Rabin (see [19]), Savitch [33], Blum and Sakoda [9], Blum and Kozen [8], Hemmerling [21] and

others have considered similar models; see Hemmerling's monograph for an extensive bibliography

(going back over a century) emphasizing results for \labyrinths" | graphs embedded in two- or

three-dimensional Euclidean space.

The JAG is a structured model, but not a weak one. In particular, it is general enough to
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encompass in a natural way most known algorithms for graph traversal. For instance, a JAG can

execute a depth-�rst or breadth-�rst search, provided it has one pebble for each vertex, by leaving

a pebble on each visited vertex in order to avoid revisiting it, and keeping the stack or queue of

pebble names in its state. Furthermore, as Savitch shows [33], a JAG with the additional power to

move a pebble from vertex i to vertex i+ 1 can simulate an arbitrary Turing machine on directed

graphs. Even without this extra feature, we will show in Section 3 that JAGs are as powerful as

Turing machines for the purposes of solving undirected graph problems (our main focus).

Cook and Racko� de�ne the time T used by a JAG to be the number of pebble moves, and the

space to be S = P log

2

n + log

2

Q, where P is the number of pebbles and Q the number of states

of the automaton. (Keeping track of the location of each pebble requires log

2

n bits of memory,

and keeping track of the state requires log

2

Q.) It is well known that st-connectivity for directed

graphs can be solved by a deterministic Turing machine in O(log

2

n) space, by applying Savitch's

Theorem [32] to the obvious O(logn) space nondeterministic algorithm for the problem. Cook and

Racko� show that the same O(log

2

n) space upper bound holds for deterministic JAGs by direct

construction of an O(logn) pebble, n

O(1)

state deterministic JAG for directed st-connectivity. More

interestingly, they also prove a lower bound of 
(log

2

n= log logn) on the space required by JAGs

solving this problem, nearly matching the upper bound. Standard techniques ([1, 2]) extend this

result to randomized JAGs whose time bound is at most exponential in their space bound. Berman

and Simon [7] extend this space lower bound to probabilistic JAGs with even larger time bounds,

namely exponential in log

O(1)

n.

In this paper we use variants of the JAG to study the tradeo� between time and space for

the problem of undirected graph traversal. The JAG variants we consider are in some ways more

restricted than the model introduced by Cook and Racko�, but in other ways are sometimes more

powerful. For example, the variant studied in Section 4 is more restricted in its jumping ability,

but is considerably more powerful in another dimension, namely, it is nondeterministic.

Several authors have considered traversal of undirected regular graphs by a JAG with an un-

limited number of states but only the minimum number (one) of pebbles, a model better known as

a universal traversal sequence (Aleliunas et al. [2], Alon et al. [3], Bar-Noy et al. [4], Bridgland [15],

Istrail [25], Karlo� et al. [28]). A result of Borodin, Ruzzo, and Tompa [14] shows that such an

automaton requires 
(m

2

) time (on regular graphs with 3n=2 � m � n

2

=6 � n). Thus, for the

particularly weak version of logarithmic space corresponding to the case P = 1, a quadratic lower

bound on time is known.

The known algorithms and the lower bounds for universal traversal sequences suggest that

the true time-space product for undirected graph traversal is approximately quadratic, perhaps

�(mn). The main results of this paper are lower bounds for variants of the JAG that provide

progress toward proving this conjecture and, in fact, establish such a lower bound for one variant.

These results are outlined below.

The upper bound of ST = O(m

2

log

5

n) by Broder et al. [16] is established on a model that is

actually a restricted variant of the JAG. In their algorithm, the JAG initially drops P � 1 pebbles

on random vertices, after which they are never moved. It then uses its last pebble to explore the

graph (probabilistically), with the others as �xed landmarks. In Section 4, using essentially the

same variant of the JAG, we prove lower bounds of PT = 
(n

2

) for d-regular graphs (d � 3),

and PT = 
(mn) for nonregular graphs, independent of the value of Q, even for nondeterministic
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JAGs. For sparse graphs this nearly matches the upper bound. The main di�erence between the

upper and lower bounds is that they are for complementary problems. The upper bound is by a

one-sided error probabilistic algorithm for undirected st-connectivity. The lower bound applies to

nondeterministic, and hence one-sided error probabilistic, algorithms for st-nonconnectivity. This

result does not imply that the algorithm of Broder et al. is optimal, but does imply, for example,

that it cannot be made both errorless (i.e., zero-sided error) and substantially faster (on this JAG

model). It also implies optimality of depth- and breadth-�rst search, in the following sense. While

it is not surprising that linear time is necessary for deciding connectivity (e.g., see Theorem 3), our

quadratic lower bound shows the stronger result that achieving linear time requires linear space.

This result also bears on the complexity of undirected st-connectivity, versus that of its com-

plement, st-nonconnectivity. For deterministic, or errorless probabilistic algorithms, of course,

the two problems are of equal complexity. For nondeterministic or one-sided error probabilistic

algorithms, however, the complexities may di�er. In particular, if a problem L is solvable nonde-

terministically in O(logn) space, then the complement of L is, too, by the result of Immerman and

Szelepcs�enyi [24, 34]. However, their algorithms are rather slow. For example, a logarithmic space

nondeterministic RAM can solve st-connectivity in time O(n), but to solve the complementary

st-nonconnectivity problem by the Immerman or Szelepcs�enyi algorithms requires time 
(n

4

). Is

nonconnectivity intrinsically more di�cult? One of our results shows that this is indeed the case, at

least on one class of structured models we consider. Namely, although both problems are solvable by

a logarithmic space, polynomial time nondeterministic JAG, st-nonconnectivity is provably harder.

Speci�cally, st-connectivity is solvable in O(n) time by a logarithmic space nondeterministic JAG

with only one pebble, a constant number of states, and no jumping. In contrast, we show that

st-nonconnectivity requires more time, even on a somewhat richer model. Namely, time 
(mn)

(
(n

2

) for regular graphs) is required to solve st-nonconnectivity by a nondeterministic JAG with

one movable pebble and any �xed number of unmovable pebbles, even using exponentially many

states and jumping.

The result above is the desired quadratic lower bound, on a model that is natural but more

restricted than we would like. In particular, it would be nice to extend the result to a model in

which all pebbles are movable. In fact, our proof does extend to give a nonlinear lower bound when

some motion of the pebbles is allowed, but the bound degenerates when the pebbles are allowed to

move with complete freedom. Such models are surprisingly powerful; see Section 3. Nevertheless,

in Section 5 we prove a lower bound on a model with freely moving pebbles, but without the ability

to jump one pebble to another. (This nonjumping model is closer to the one studied by Blum and

Sakoda [9], Blum and Kozen [8] and Hemmerling [21]. We will distinguish this nonjumping variant

by referring to it as a WAG | \walking automaton for graphs".) More speci�cally, using a very

di�erent and more complex argument, we prove lower bounds on time that are nonlinear in m for

a wide range of values of P . In particular, for any deterministic WAGM solving st-connectivity in

logarithmic space, there is a family of regular graphs on which M requires time m

1+
(1)

. Near the

other extreme, if M uses a number of pebbles that is sublinear in m, there is a family of regular

graphs on whichM requires time superlinear inm. Although these give the desired quadratic lower

bound only at the extreme of linear time, they each at least establish that logarithmic space and

linear time are not simultaneously achievable on the nonjumping model when m = !(n). (They

do not settle the question of simultaneous achievability of logarithmic space and linear time when

m = O(n) since the families of regular graphs mentioned above have degree d = !(1) and hence
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m = !(n); see Sections 5 and 7.)

The results described above have the strength that they hold independent of the magnitude of

Q, the number of states. Presumably the bounds can be strengthened by also accounting for Q. It

is tempting to tackle �rst the case in which Q is constant; indeed, Cook and Racko� [19] investigate

JAGs on undirected graphs in this case, showing for example that PQ = O(1) is impossible. For a

nonjumping variant of JAGs, in Section 6 we prove the stronger bound PQ = 
(n) for 2-regular

graphs, no matter how much time the automaton is allowed. Thus, for logarithmic space, lower

bounds on time are only interesting when the number of states grows at least linearly with the

size of the graph. As one simple consequence, this makes the lower bounds harder to prove, as

one cannot simply make the graph so large compared to Q that the automaton is guaranteed to

loop forever among some states. As a byproduct, we show that a universal traversal sequence for

2-regular graphs cannot consist solely of the repetition of a short sequence.

Sections 3, 4, 5 and 6 are largely self-contained, and may be read in any order.

2. Graph-Traversing Automata

The problem we will be considering is \undirected st-connectivity": given an undirected graph G

and two distinguished vertices s and t, determine if there is a path from s to t.

Consider the set of all n-vertex, edge-labeled, undirected graphs G = (V;E) with maximum

degree d. For this de�nition, edges are labeled as follows. For every edge fu; vg 2 E there are two

labels �

u;v

; �

v;u

2 f0; 1; : : : ; d � 1g with the property that, for every pair of distinct edges fu; vg

and fu; wg, �

u;v

6= �

u;w

. It will sometimes be convenient to treat an undirected edge as a pair of

directed half edges, each labeled by a single label. For example, the half edge directed from u to v

is labeled �

u;v

.

This de�nition requires that the outgoing labels from each vertex u be distinct. That is, for

all u and all neighbors v 6= v

0

of u we require �

u;v

6= �

u;v

0
. We will also consider more restricted

labelings. We de�ne a graph to be bijectively labeled if, in addition, the incoming labels are distinct,

i.e., �

v;u

6= �

v

0

;u

. A special case of bijective labelings are the symmetric labelings, where all edges

have the same label in each direction, i.e., �

u;v

= �

v;u

for all u; v. (Universal traversal sequences for

regular graphs with bijective and symmetric labelings have been considered previously by Hoory

and Wigderson [23] and Istrail [26], respectively, although under di�erent names. Both papers used

the term \consistent" for these two di�erent classes of restricted labelings.)

Not all graphs have symmetric labelings, and while every graph does have a bijective labeling,

such labelings are not known to be computable in logarithmic space. Nevertheless, Lemma 1 below

shows that, when considering upper bounds for st-connectivity, there is no loss of generality in

restricting attention to symmetrically (and hence, bijectively) labeled graphs. Of course, lower

bounds are at least as strong if they also hold when restricted to such graphs.

The reduction mentioned in Lemma 1 is not intended to be implemented on a JAG, but rather

on a general model of computation such as a Turing machine.

Lemma 1: There is a simple (e.g., logarithmic space), connectivity-preserving reduction from

general labeled graphs to symmetrically labeled graphs. Moreover, the symmetrically labeled graph
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has maximum degree at most 3.

Proof: Let r

u;v

be the rank of �

u;v

in f�

u;v

0
j v

0

is adjacent to ug. For example, if the graph

is regular, r

u;v

is simply �

u;v

. Replace each vertex of degree d by a d-cycle, if d is even, and by a

(d+ 1)-cycle, if d is odd. (For the purposes of this proof, a 2-cycle is simply an edge.) Label these

cycles symmetrically using 0 and 1. Replace edge fu; vg by an edge from the r

u;v

-th vertex of u's

cycle to the r

v;u

-th vertex of v's cycle, symmetrically labeled 2. 2

It is not di�cult to extend the proof to make the graph in Lemma 1 both symmetrically labeled

and 3-regular.

Following Cook and Racko� [19], a JAG is an automaton with Q states and P distinguishable

pebbles, where both P and Q may depend on n and d. For the st-connectivity problem, two vertices

s and t of its input graph are distinguished. The P pebbles are initially placed on s. Each move

of the JAG depends on the current state, which pebbles coincide on vertices, which pebbles are

on t, and the edge labels emanating from the pebbled vertices. Based on this information, the

automaton changes state, and selects some pebble p and either some i 2 f0; 1; : : : ; d� 1g or some

j 2 f1; 2; : : : ; Pg. In the former case, i must be an edge label emanating from the vertex currently

pebbled by p, and p is moved to the other endpoint of the edge with label i; in the latter case, p

\jumps" to the vertex occupied by pebble j. (The decision to make t \visible" to the JAG but

s \invisible" was made simply to render 1-pebble JAGs on regular graphs equivalent to universal

traversal sequences.) A deterministic JAG that determines st-connectivity is required to enter

an accepting state if and only if there is a path from s to t. Nondeterministic and probabilistic

generalizations of JAGs are de�ned in the usual way. Note that JAGs are nonuniform models.

There are a number of interesting variants of JAGs. For instance, in Section 4 we will consider

a strengthened form of jumping, called \strong jumping," where the automaton's move may also

be to select some v 2 f1; : : : ; ng and jump pebble p to vertex v. On the other hand, in Sections

5 and 6 we will disallow jumping by studying WAGs. We will also distinguish among three types

of pebbles: \active", \passive", and \unmovable". The automaton as described in the previous

paragraph has active pebbles, in the sense that any pebble can move; this is the model used in

Section 5. A weaker notion is that of the passive pebble, which cannot move unless accompanied by

an active pebble. In this case, we allow one active pebble accompanied by any number of passive

pebbles to walk or jump each move. Of particular interest is the case of one active pebble and P �1

passive pebbles, in which case it is natural to think of the automaton itself as the active pebble

moving about the graph, picking up and dropping pebbles. This is the model used in Section 6.

Closely related to the passive pebble is the unmovable pebble, which, once placed on the graph,

cannot be moved at all. This is the model discussed in Section 4. We will mainly consider unmovable

pebbles as a special case of passive pebbles. That is, the automaton starts with a supply of pebbles

that are carried and dropped at will (but never picked up). In Section 4.2, however, we will also

consider a less uniform placement method where some of the pebbles are placed on the graph before

the JAG begins its computation. Detailed de�nitions of this version are deferred to Section 4.2.

We have de�ned JAGs running on arbitrary graphs, but our lower bounds generally apply even

to JAGs that are only required to operate correctly on regular graphs. The restriction to regular

graphs, in addition to strengthening the results, provides comparability to the known results about

universal traversal sequences. A technicality that must be considered in the case of regular graphs
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is that they do not exist for all choices of degree d and number of vertices n, as is seen from the

following proposition.

Proposition 2: d-regular, n vertex graphs exist if and only if dn is even and d � n � 1.

(See [14, Proposition 1], for example, for a proof.) To allow use of 
-notation in expressing our

lower bounds, however, the \time" used by a JAG must be de�ned for all su�ciently large n. To

this end, we consider the time used by a JAG on d-regular, n-vertex graphs where dn is odd to be

the same as its running time on d-regular, (n + 1)-vertex graphs. We adopt a similar convention

for d-regular symmetrically labeled graphs, which exist if and only if, in addition to the restrictions

above, either d = 0 or n is even.

It is not di�cult to show that st-nonconnectivity requires time 
(m) on any of the JAG variants

described above, independent of the number of pebbles and states. This result is not surprising,

but we will sketch it because of its generality, and also because the proof introduces some ideas we

will use subsequently.

Theorem 3: Let n be a multiple of 4, d < n=2, and m = dn=2. Any JAG, even a nondetermin-

istic one with strong jumping, solving st-nonconnectivity for all symmetrically labeled, d-regular,

n-vertex, m-edge graphs requires time 
(m) in the worst case.

Proof: With the given constraints on n and d, there is a d-regular, n-vertex, symmetrically

labeled graph having its vertices and edges evenly divided between two connected components,

one containing s, the other containing t (see [11, Exercise 6.2.1]). Fix a minimal length accepting

computation of M on this disconnected graph. Suppose for some a 2 f0; 1; : : : ; d� 1g that pebbles

in this computation walk across fewer than bm=(2d)c edges labeled a. Then there must be at least

one edge labeled a in each component that is not crossed during this computation. These two edges

can be cut and rejoined so that the resulting graph is an st-connected graph also accepted by this

computation. Hence, M requires at least m=2 steps. 2

See Theorem 15 for a matching upper bound, which is in fact achieved by a deterministic WAG,

even on general graphs.

3. JAGs Have Turing Machine Power

In this section we will show that, although JAGs are structured computational models, they are as

\powerful" as Turing machines for the purposes of solving problems about undirected graphs. That

is, we will show that any undirected graph problem solvable by a Turing machine is also solvable

by a JAG in roughly the same space and time. This holds even on relatively weak variants such as

WAGs with one passive and one active pebble. Thus, su�ciently strong lower bounds on JAGs or

WAGs will have direct implications for Turing machine complexity.

Since the input conventions for JAGs and Turing machines are quite di�erent, we must specify

the correspondence between the two models carefully. For technical reasons, we will focus initially

on problems about connected, regular graphs with no distinguished vertices. More general problems,

including st-connectivity, will be discussed later. Let G be the set of all edge-labeled, connected,
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regular graphs, where edges are labeled as described in Section 2. A graph problem is simply a

subset H � G. For example, H might be the set of (connected, regular, edge-labeled) bipartite

graphs, or the set of Hamiltonian graphs. To say that a graph problem H is solvable by a JAG M

has the obvious meaning | M , when started with all its pebbles on an arbitrary vertex of G 2 G,

accepts if and only if G 2 H.

Turing machines, of course, work not on graphs, but rather on encodings of graphs. Thus, to

say that H is solvable by a Turing machine M means that M accepts a \reasonable" encoding of

a graph G 2 G if and only if G 2 H. To be precise, an encoding is reasonable if and only if it is

interreducible with the \adjacency matrix" representation by a deterministic Turing machine using

O(logn) space. In the adjacency matrix representation, an n-vertex d-regular graph is represented

by a string l of n

2

symbols from the alphabet f?; 0; 1; : : : ; d� 1g. Let l(i; j) denote the (n � i+ j)

th

symbol of l; 0 � i; j � n � 1. Then l(i; j) = l(j; i) = ? if and only if vertices i and j are not

adjacent, and otherwise l(i; j) is the label on the half edge from vertex i to vertex j. Note that

reasonable encodings of graphs (at least implicitly) specify a numbering of the vertices, a feature

not present in G. Thus, there may be many di�erent encodings of each graph, corresponding to

di�erent vertex numberings. M , of course, must accept all or none of these equivalent encodings.

Consider the following \edge list encoding", which will be used throughout this section. The

vertex names are distinct, but not necessarily consecutive. An edge is encoded as a triple (i; j; a),

where i and j are vertex names and a is the label on the half edge from i to j. The edge list

encoding consists of a sequence of such triples, in any order, and possibly with repetitions. It is

straightforward to show that this is a reasonable encoding.

The main technical result of this section is that a simple JAG can construct an edge list encoding

of its input graph in polynomial time and logarithmic space. This is embodied in Lemma 5 below.

One key idea in the proof of Lemma 5 is that a WAG can use a universal traversal sequence

(Aleliunas et al. [2]) to explore its input. Recall that a universal traversal sequence is guaranteed

to visit all vertices of a graph. The following simple extension is more useful for our purposes.

A sequence V 2 f0; 1; : : : ; d � 1g

�

is said to be a half edge universal traversal sequence for

d-regular, n-vertex graphs if it has the property that a walk according to V from any start vertex

of any d-regular, n-vertex graph G will cross every edge of G at least once in each direction. An

analogous de�nition can be made for nonregular n-vertex graphs of maximum degree d. In this

case we de�ne the \walk according to V " so that, at a vertex u of less than maximum degree, the

next letter of V selects among u's neighbors evenly. To be precise, when at a vertex u of degree

d(u) = d, with the next letter of V being � 2 f0; 1; : : : ; d� 1g

�

, the walk proceeds to the neighbor

v of u having �

u;v

= �, just as in the d-regular case. When d(u) < d, the walk remains at u

if � � bd=d(u)cd(u), and otherwise proceeds to the vertex v having �

u;v

= �

i

, where �

i

is the

i

th

smallest label on a half edge leaving u, and i = � mod d(u). (A simpler de�nition of \walk

according to V " for nonregular labeled graphs would be to remain at u unless � = �

u;v

for some v.

Under this convention, the bound below would be increased by a factor of O(n).)

Lemma 4: Half edge universal traversal sequences of polynomial length exist for n vertex

graphs. In particular, length O(dn

3

logn) = O(mn

2

logn) su�ces for d-regular graphs, and length

O(m

2

n logn) su�ces for all m-edge graphs.

Proof: (Sketch.) The vertex (half edge) cover time of a graph G, C

V

(G) (C

E

(G)), is the
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maximum, over all vertices u, of the expected number of steps required for a random walk starting

at u to reach all vertices (cross all half edges, respectively) of G. The vertex (half edge) hitting

time of G, H

V

(G) (H

E

(G)), is the maximum, over all pairs u; x, of the expected number of steps

required for a random walk starting at vertex u to reach vertex x (respectively, to cross half edge

x). Clearly hitting time is never greater than cover time, either for vertices or edges. Let F be a

family of edge-labeled graphs, and de�ne C

V

(F) to be the maximum cover time of any graph in

F , and similarly for H

V

(F). A basic result of Aleliunas et al. [2] is that any family F of d-regular

graphs has a (vertex) universal traversal sequence of length O(C

V

(F) log(n

2

jFj)). Alon et al. [3]

and Chandra et al. [17] observe that C

V

(F) can be replaced by H

V

(F) in this expression.

These results extend easily to universal traversal sequences for nonregular graphs of maximum

degree d (as de�ned above) by observing that cover- and hitting times are at most doubled when

the random walk is modi�ed so as to remain at a vertex u of degree d(u) with probability (d �

bd=d(u)cd(u))=d � 1=2. Furthermore, for both regular and nonregular graphs, the technique yields

an analogous expression bounding the length of half edge universal traversal sequences, using H

E

in place of H

V

. Zuckerman [37] observes that H

E

(G) � H

V

(G)+2m for all graphs G. Aleliunas et

al. [2] show that H

V

(G) � 2m�, where � is the diameter of G. It is well known (cf. Lemma 13)

that the diameter of d-regular graphs is O(n=d). The Lemma follows, since there are at most n

dn

labeled d-regular n-vertex graphs, and at most n

4m

labeled nonregular m-edge, n-vertex graphs. 2

We remark that Lemma 4 implies the same bounds for lengths of vertex universal traversal se-

quences, asymptotically matching the best known upper bounds for both regular (Aleliunas et

al. [2], Kahn et al. [27]) and nonregular graphs.

The main technical result of this section is the following lemma. For the purposes of this lemma,

it is convenient to think of the JAG as a \transducer," i.e., as a machine equipped with a one-way,

write-only output tape on which it writes the string encoding the graph given to it as input.

Lemma 5: A deterministic WAG with two pebbles, one of them passive, can construct an edge

list encoding of its (connected, regular) input graph in time n

O(1)

and space O(logn).

Proof: The idea of the proof is for the WAG to use a universal traversal sequence to system-

atically explore its input G, generating an encoding of the edges it explores as it goes. The key

point is to be able to devise a numbering for the vertices, and to determine a vertex's number when

needed.

Call the WAG E, and let s be the vertex on which the pebbles of E start. Suppose G is d-

regular, with n vertices. Let V be a half edge universal traversal sequence for d-regular, n-vertex

graphs. (Cf. Lemma 4.)

Call E's passive pebble p. Initially, E leaves p on s, then determines the shortest pre�x U of

V

2

such that jU j � jV j, and a walk from s according to U ends at s. U has the property that a

walk from s according to U returns to s after crossing each edge at least once in each direction.

Recall that s is not specially marked in our model. The construction of U allows us to retain s as

a landmark without permanently marking it with a pebble.

The vertex number #w that E assigns to an arbitrary vertex w 2 G is the length of the shortest

pre�x U

w

of U such that the walk from s according to U

w

ends at w. For instance, #s = 0.
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For 1 � i � jU j + 1, let v

i

be the vertex reached from s by walking according to the length

i � 1 pre�x of U . Let a

i

be the i

th

symbol of U . Then, for 1 � i � jU j, the half edge crossed

during the i

th

step of the walk according to U from s will be the half edge fv

i

; v

i+1

g, which has

label �

v

i

;v

i+1

= a

i

. During the i

th

phase of the algorithm, 1 � i � jU j, E will determine and write

onto its output tape the triple (#v

i

;#v

i+1

; a

i

) de�ning this labeled half edge.

Suppose at the start of the i

th

phase that both E and p are on v

i

, and that E has stored in

its state the values i and #v

i

. (Initially, this holds with E and p on s = v

1

, i = 1, and #v

1

= 0.)

During the i

th

phase, E operates as follows.

1. Carry p across the half edge labeled a

i

from v

i

, then drop p on the vertex reached (v

i+1

, by

de�nition).

2. Walk from v

i+1

according to the last jU j � i symbols of U , thus returning to s.

3. Walk from s according to U until p is encountered. The length of this walk is #v

i+1

.

4. Output the triple (#v

i

;#v

i+1

; a

i

) de�ning this labeled half edge.

Note that, at the completion of this process, E is in the con�guration desired for the start of phase

i+ 1.

The running time of E is O(jU j

2

) = n

O(1)

, and E has n

O(1)

states. 2

On bijectively labeled graphs, it su�ces to have only one movable pebble.

Lemma 6: A deterministic WAG with one movable pebble, and one arbitrarily placed unmov-

able pebble can construct a binary string encoding its (connected, regular) bijectively labeled input

graph in time n

O(1)

and space O(logn).

Proof: The proof is similar to that of Lemma 5. Let U be a half edge universal traversal

sequence, and for a vertex w, de�ne #w to be the length of the shortest pre�x of U that walks from

w to the �xed pebble. Since the graph is bijectively labeled, these vertex numbers will be unique.

(This idea is used by Hoory and Wigderson [23].) For 1 � i � jU j+ 1, let v

i

be the vertex reached

from the �xed pebble by walking according to the length i� 1 pre�x of U . Suppose again that the

values i and #v

i

are stored in the state, the movable pebble is on v

i

, and a

i

is the i

th

symbol of U .

Then, for the neighbor v

i+1

of v

i

reached via label a

i

, #v

i+1

can be determined by walking from

v

i+1

to the �xed pebble according to U . After writing (#v

i

;#v

i+1

; a

i

), the movable pebble can be

returned to v

i+1

by walking from the �xed pebble according to the length i pre�x of U . Again, the

running time of this algorithm is O(jU j

2

) = n

O(1)

. 2

Theorem 7 below is the main result of this section. It establishes the equivalence between WAGs

and \general machines", which include nonuniform Turing machines as a special case. A general

machine consists of an input x

1

x

2

� � �x

n

and a set of states. The state set may depend on the

length n of the input and, in particular, the number of states may be a function of n. Included in

each state is the input index, which speci�es the index of the next input character to be read. In

one move, based on its current state q, input index i, and the input symbol x

i

, the machine enters

a new state q

0

with a new input index i

0

, as dictated by a transition function that may also depend

10



on n. This transition may be deterministic, nondeterministic, or probabilistic, depending on the

type of the general machine. Acceptance is de�ned as it is for the corresponding types of Turing

machines. Time is de�ned as the number of moves, and space as log

2

Q, where Q is the number of

states.

General machines are almost identical to the \recognition machines" de�ned by Cobham [18],

except that recognition machines require the input to be accessed sequentially, whereas general

machines allow completely random access to the input. It is also easy to see that Turing machines

are a special case, by including the worktape contents and head positions as part of the state of

the general machine.

Theorem 7: Let H be an undirected graph problem as de�ned above, and let S(n) = 
(logn).

H is solvable using space O(S(n)) and time n

O(1)

� T (n) by a deterministic (nondeterministic,

probabilistic) general machine if and only if it is solvable in space O(S(n)) and time n

O(1)

�T (n) by

a deterministic (nondeterministic, probabilistic, respectively) JAG. Moreover, the JAG simulating

a general machine requires no jumping and only two pebbles, one of them passive. On bijectively

labeled graphs, the WAG requires only one movable and one unmovable pebble.

Proof: Let M be a general machine accepting H in space S(n) and time T (n). By Lemma 5

or 6 above, there is a two pebble deterministic WAG E that can construct a binary string encoding

its input graph G. Because of logarithmic space reducibility among reasonable encodings, assume

without loss of generality thatM operates on the same encoding output by E. We build a WAGW

accepting H by simulating both M and E. Speci�cally, W maintainsM 's state as part of its state.

If M 's input index is i, W simulates E until it generates its i

th

output bit, and then simulates

one step of M (deterministically, nondeterministically, or probabilistically, as appropriate). W

continues in this manner until M halts. W 's state set must be large enough to encode a state of

M and a state of E. This requires 2

O(S(n))

states, or O(S(n)) space. Note that it is not necessary

to store the string constructed by E; its bits are reconstructed as needed. The simulation by W of

each ofM 's steps requires rerunning the entire computation of E, soW 's time bound is n

O(1)

�T (n).

In the other direction, let J be a JAG that accepts H using P (n) pebbles Q(n) states, and T (n)

time. J is simulated by a general machineM , whose state encodes J 's state plus the vertex names on

which pebbles currently reside. This requires Q(n) � n

P (n)

states, or space P (n) log

2

n + log

2

Q(n),

which is, by de�nition, J 's space bound. M can then simulate a move of J , using its input to

determine the vertex name to which a given pebble walks by following a given edge label, which

increases the time and number of states by only a polynomial factor. 2

Note that a general machine can solve any graph problem in linear space and time (nonuni-

formly), hence by Theorem 7, a WAG can do so in linear space and polynomial time. Theorems 12

and 15 in Section 4.3 give faster WAG algorithms at this space extreme.

Corollary 8: A JAG solving an undirected graph problem in space 
(logn) can be simulated

by a WAG, at the expense of a constant factor loss in space and a polynomial factor loss in time.

Corollary 9: A JAG or WAG solving an undirected graph problem using P pebbles and space


(logn) can be simulated by one with only two pebbles, at the expense of a polynomial factor loss
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in time and a constant factor loss in space (more precisely, a factor of n

P+O(1)

in the number of

states).

The polynomial factor loss in time implicit in Corollaries 8 and 9 is O(U

2

(n)), where U(n) is

the length of a half edge universal traversal sequence (Lemma 4). This factor can be improved to

O(U(n)) by directly using the proof techniques from Lemmas 5 and 6.

As another illustration of Theorem 7, consider the problem of deciding bipartiteness of a con-

nected graph. It is easy to see that a nondeterministic two pebble WAG can recognize nonbipartite

graphs (guess and verify an odd cycle), but not so easy to see a direct way to recognize bipartite

graphs. In fact this is also possible, by the following corollary to Theorem 7 and Immerman and

Szelepcs�enyi's Theorem [24, 34].

Corollary 10: LetH be an undirected graph problem, and let S(n) = 
(logn). If H is solvable

using space O(S(n)) by a nondeterministic JAG or WAG J , then so is its complement G �H.

Proof: Simulate J by a nondeterministic, S(n) space-bounded general machine M . By a

straightforward adaptation of Immerman and Szelepcs�enyi's Theorem [24, 34], there is a nondeter-

ministic, S(n) space-bounded general machine M

0

that accepts the complement G � H. Simulate

M

0

by a nondeterministic, S(n) space-bounded WAG. 2

We know no substantially simpler method for recognizing bipartite graphs. Implementation of

the Immerman/Szelepcs�enyi method on a JAG seems to require construction of a vertex numbering,

which is the key idea in Lemmas 5 and 6.

Algorithmic problems about graphs often have input parameters other than the graph itself. For

example, consider the shortest path problem: given a connected undirected graphG, two designated

vertices s and t in G, and an integer k, is there a path from s to t of length at most k? The results

above are easily extended to encompass such problems by incorporating integers such as k into

the WAG's initial state, and marking \designated" vertices or edges with pebbles, or making them

\visible" to the WAG as we did for st-connectivity. Thus, for example, the shortest path problem

is solvable in (deterministic) logarithmic space by a WAG if and only it is so solvable by a general

machine. This problem is of particular interest since it is a problem about undirected graphs that is

known to be complete for nondeterministic logarithmic space. Hence, it is plausible that complexity

results for WAGs will solve a long-standing open problem in Turing machine complexity.

Finally, we mention that the restriction to regular graphs in the above results is only a techni-

cality. Lemmas 5 and 6 are modi�ed easily to accommodate nonregular graphs, since by Lemma 4

there are universal traversal sequences of polynomial length for such graphs. The restriction to

connected graphs is only slightly more problematic. Obviously a WAG with only one active pebble

cannot explore more of its input graph than the connected component initially holding that peb-

ble. With strong jumping, or with an active pebble in each connected component, or some other

mechanism for accessing all components, the results could be extended easily to nonconnected

graphs.

12



4. Unmovable Pebbles

A plausible paradigm for an st-connectivity algorithm is to choose and mark a small number of

\landmark" vertices in the graph, based perhaps on local properties like proximity to low or high

degree vertices or certain small subgraphs, then to explore the graph with these landmarks �xed.

This paradigm motivates our study of JAGs with unmovable pebbles.

Depth- and breadth-�rst search are examples of algorithms where vertices are permanently

marked. The undirected st-connectivity algorithm of Broder et al. [16] is a more complex example

of this paradigm. In outline it operates as follows. First, s and t are marked by pebbles. Then P�3

other pebbles are placed on the graph at random. More precisely, each pebble is placed on a vertex

chosen at random with probability proportional to the degree of the vertex, independent of all other

pebbles. These P �1 pebbles are not subsequently moved. The one remaining pebble then executes

a small number of short random walks from each of the P�1 �xed pebbles. At the end of each walk,

the movable pebble jumps to one of the �xed pebbles. Connectivity information is inferred from

the pebbles encountered during these short walks. For example, if the algorithm has learned that

pebbles 1 and 2 are in the same connected component, and similarly for pebbles 3 and 4, and during

a walk from pebble 1 the algorithm reaches pebble 4, then it can infer that all four pebbles are in

the same component. Broder et al. show that, in time O(m

2

log

5

n=S) = O(m

2

log

4

n=P ), if s and t

are in the same connected component, the algorithm will discover this with high probability. Note

that this algorithm can be executed on a model that is essentially a probabilistic JAG, except that

the unmovable pebbles are \preplaced" probabilistically without walking to their locations. On a

regular graph, Broder et al.'s algorithm could be implemented by a probabilistic JAG with strong

jumping. On nonregular graphs, the model would have to be extended to allow the dependence of

pebble preplacement on vertex degree. In Section 4.2 we will discuss and prove a lower bound for

such a model that allows preplacement of pebbles. Section 4.1 �rst gives the lower bound for the

simpler basic model, i.e., without preplacement. Section 4.3 shows that this lower bound is tight

for the model we consider.

Note that these lower bounds apply to models that are su�ciently rich to admit depth- and

breadth-�rst search, and the algorithm of Broder et al. Thus, as corollaries we establish three

facts claimed in the introduction | that depth-�rst search is space-optimal among linear time

algorithms, that Broder et al.'s algorithm cannot be made both errorless and substantially faster,

and that closure under complementation is intrinsically slow (all with respect to this class of models,

of course).

4.1. A Lower Bound for Unmovable Pebbles

In this section, we prove an 
(n

2

=P ) lower bound on the time for a nondeterministic P -pebble

JAG to solve st-nonconnectivity. We �rst prove a basic lower bound for regular graphs of degree

d = 3. Several generalizations are sketched later.

Theorem 11: Let M be any nondeterministic JAG with strong jumping that has 1 active

pebble and P � 1 unmovable pebbles. If M determines st-nonconnectivity for all 3-regular sym-

metrically labeled graphs, then M requires time 
(n

2

=P ).

13



Proof: The proof generalizes the main lower bound technique introduced by Borodin et al. [14].

Assume without loss of generality that n is a multiple of 4. (If not, set aside 6 vertices in a 3-

regular connected component containing neither s nor t.) We de�ne a family of n vertex graphs,

each formed by joining two copies of an n=2 vertex graph H by \switching" some combination of

edge pairs. We will show thatM must frequently walk from one pebble to another via some distant

switchable edge.

Many graphs H would work for our purposes; for de�niteness, we use the n=2 vertex \squirrel

cage": two n=4 vertex cycles, with each vertex on one cycle joined by an edge, called a \rung," to

the corresponding vertex on the other cycle. Fix any numbering of the vertices and any symmetric

labeling of the edges of H . Take as the set of \switchable" edges any r = n=4 � 1 of the rungs.

As in Borodin et al. [14], for each x 2 f0; 1g

r

the graph G

x

is formed from two copies H

0

and

H

1

of H by \switching" the edges corresponding to the 1's in x. That is, if fu

0

; v

0

g is the i

th

switchable edge in H

0

and fu

1

; v

1

g is the corresponding edge in H

1

, then G

x

has the pair of

edges fu

b

; v

b�x

i

g; b 2 f0; 1g, with labeling �

u

b

;v

b�x

i

= �

u;v

= �

v;u

= �

v

b�x

i

;u

b

, where � denotes

the exclusive or operation. Choose s to be any vertex in H

0

and t any vertex in H

1

. Let

G = fG

x

j x 2 f0; 1g

r

g. Notice that the only graph in G with no path from s to t is G

0

r

, and that

all graphs in G are symmetrically labeled.

The key property of the family G of graphs is that a walk on G

x

is identical to such a walk

on G

0

r

, except that the walk switches from one copy of H to the other when a switched edge is

crossed. After any sequence of edge crossings starting from a vertex v, M 's active pebble will be

in the same copy of H as v exactly when the net parity with respect to x of all edge crossings is

even, where the parity with respect to x of an individual edge e is de�ned to be x

i

if e is the i

th

switchable edge, for any 1 � i � r, and 0 for all unswitchable edges.

Intuitively, M gains information about connectivity only by walking to a pebble; nothing is

learned (directly) about the existence or nonexistence of a path from u to v by jumping from u to

v. We exploit this fact, together with the fact that pebbles on average are far apart, to argue that

M must execute many walking steps.

Note that s and t are not connected in G

0

r

, hence M must have at least one accepting compu-

tation on G

0

r

. Fix one such computation  of minimal length. Assume that two extra unmovable

pebbles are placed on the distinguished vertices s and t. Now in G

0

r

\mark" both copies of each

vertex that received an unmovable pebble during the computation . Break  into sequences of

walk moves that (1) begin with a walk move from a vertex that either is marked or was the target

of a jump in the immediately preceding step, and (2) end with the next walk move into a vertex

that either is marked, is the source of a jump move in the immediately following step, or is the last

move of . Discard any such sequence that does not end at a marked vertex. Suppose there are

w sequences remaining. Each of these sequences naturally corresponds to a connected sequence of

edges in G

0

r

. Notice that if, for some x, one of the w sequences is of odd parity with respect to

x, then the computations of M on G

0

r

and on G

x

may diverge at the end of this sequence, since a

pebble encountered on one may not be encountered on the other. This cannot occur if all sequences

have even parity with respect to x:

Claim: For every x 2 f0; 1g

r

, if each of these w edge sequences is of even parity with respect

to x, then  is also an accepting computation for G

x

.
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To see this, we show by an induction on i, that after making the moves dictated by  up to the

end of the i

th

sequence (including the discarded sequences), the con�gurations ofM on G

0

r

and on

G

x

are identical, with the exception that the movable pebble will be on opposite copies of a vertex

if the net parity with respect to x of the i

th

sequence is odd. (This can happen only if this is a

discarded sequence.) Basically, this is true since all the \interesting" events in the computation

, i.e., dropping or encountering pebbles, occur at marked vertices, and we've taken care that all

walks between these interesting points are of even parity in G

x

just as they were in G

0

r

. The base

case (i = 0) is vacuous. For the induction step, �rst note that the con�gurations at the start of

the i

th

sequence are the same on both graphs, since if they di�ered at the end of the (i� 1)

st

, then

all intervening steps were jumps. All steps within the i

th

sequence are walk steps into unmarked

vertices, hence no pebbles are encountered during those steps in either G

0

r

or G

x

. Since both

graphs are 3-regular, all unpebbled vertices \look alike", so the i

th

sequence of walk moves of  in

G

0

r

is also a legal sequence of moves in G

x

, and carries the movable pebble to the same place in

both graphs, up to the parity of the sequence with respect to x. This completes the proof of the

claim.

As noted earlier, G

x

is connected for all x 6= 0

r

, hence must not be accepted by M . Thus it

must be that there is no x 6= 0

r

for which the w sequences all have even parity. Equivalently, it

must be that the corresponding homogeneous system of w linear equations in r unknowns over

GF (2) has no nonzero solution.

Let S be the set of r switchable edges. For each e 2 S, let dist(e) be the distance from e to the

closest marked vertex, where the distance from an edge to a vertex is de�ned to be the length of a

shortest path containing both. Let m be the maximum integer such that some switchable edge e

has dist(e) = m. For any nonnegative integer d, let S

d

= fe 2 S j dist(e) � dg, and let r

d

be the

number of switchable edges e with dist(e) = d, so that r

d

= jS

d

j � jS

d+1

j.

Now it must be the case that, for all d � m, at least jS

d

j of the w walks each have length at

least d. If this were not the case, then the edges in S

d

would appear collectively on fewer than jS

d

j

walks or, equivalently, the variables corresponding to these edges would occur in fewer than jS

d

j of

the homogeneous equations. Set the variables corresponding to the other r� jS

d

j switchable edges

to 0, and these jS

d

j to some nonzero solution, which must exist in a homogeneous system with

fewer equations than unknowns (Herstein [22, Corollary to Theorem 4.3.3]). Since such a nonzero

solution cannot occur, we have a contradiction.

Thus, at least r

m

of the w walks each have length at least m, an additional r

m�1

each have

length at least m� 1, etc. In other words, M makes at least

m

X

d=1

d � r

d

=

X

e2S

dist(e)

moves. This last sum is minimized when the O(P ) marks are equidistantly distributed around the

cycle, in which case the sum is 
(rn=P ) = 
(n

2

=P ). 2

Using Hall's Theorem [20], one can in fact prove somewhat more about the w walks: each

switchable edge in S can be assigned a unique walk that contains it.

Next, we will sketch several promised generalizations to the theorem. First, to extend the result

to d-regular graphs, d � 3, we generalize the squirrel cage graph H . Note that K

d�1

, the d � 1
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vertex complete graph, is d� 2 regular. Form the new d-regular, n=2 vertex graph H from (d� 1)

cycles of length n=(2(d�1)) by joining corresponding groups of (d�1) vertices as K

d�1

. (An extra

gadget is needed if 2(d� 1) does not divide n.) The rest of the argument is essentially as before,

except that there are more switchable edges (all but a spanning tree of H , hence �(dn) of them),

but on average they are closer to marked vertices (
(n=(dP )) average distance). The result is still

an 
(n

2

=P ) lower bound, independent of d. To provide some intuition of why the bound does

not increase with d, note that any connected d-regular graph has diameter O(n=d), a corollary of

Lemma 13 below.

A better bound is possible for nonregular graphs. For n vertex graphs of maximum degree d,

one can prove an 
(dn

2

=P ) lower bound, provided n=(4d) � 2P . Again, the key point is to choose

H appropriately. In this case it su�ces to take H to be an n=4 vertex cycle, attached at evenly

spaced intervals to n=(4d) copies of K

d

. Most of the �(dn) edges are switchable, and their average

distance from any placement of P pebbles is 
(n=P ). In Section 4.3 we prove matching upper

bounds for both the regular and nonregular cases, demonstrating that this disparity in bounds is

inherent in the problem.

The remaining generalization promised above is to the case where the automaton can move the

\unmovable" pebbles a limited number of times. (A detail about the algorithm of Broder et al.

that we oversimpli�ed above is that it rerandomizes the placement of the P � 3 landmark pebbles

O(logn) times.) Suppose M is a P -pebble JAG of this more general form. Suppose pebbles are

placed on at most P

0

vertices during M 's computation. Then a straightforward adaptation of the

proof of Theorem 11 shows that M requires time 
(n

2

=P

0

). Note that, as long as the number of

pebble placements is sublinear, the time must be superlinear. However, any graph in the family

G built from squirrel cage graphs as above can be traversed in linear time by a deterministic

automaton with 2 pebbles, one of them passive, even without jumping, provided the passive pebble

can be moved freely. Thus, stronger proof techniques are necessary for freely moving pebbles. This

is the subject of Section 5.

4.2. Preplacement of Unmovable Pebbles

As we have noted earlier, the JAG is a powerful yet restricted model. It is conceivable that there

is certain useful information about graphs that is intuitively \easy to compute," yet hard for JAGs

to compute. That is, there might be certain information about an input graph G that (1) could be

collected easily by a more exible computational device such as a logarithmic space RAM, that (2)

would greatly facilitate a JAG's determination of the st-nonconnectivity of G, yet (3) is di�cult or

impossible for a JAG to collect. If this were the case, it might \explain" (and trivialize) the strong

lower bound given in the previous section.

The algorithm of Broder et al. again furnishes a motivating example. Recall that their initial

(random) pebble placement is dependent on vertex degree. On nonregular graphs, a JAG cannot

duplicate this behavior without visiting all vertices, a slow or even impossible process for, say, a

probabilistic JAG without strong jumping. Yet this is an easy process for a RAM, and a crucial

one for the e�ciency of their algorithm. (Note that the rest of their algorithm can be performed

e�ciently by a JAG.) Generalizing this slightly, it might be useful to know how many neighbors

each vertex has at distance two. Although this information is easily computed by a RAM, as far

as we know it is not easily computable by a JAG with one movable pebble and a limited number

16



of unmovable pebbles, even a nondeterministic one with strong jumping.

Does our lower bound rest on this or similar de�ciencies of the JAG model? In this section we

give evidence that it does not. We generalize the model to allow precomputation on the input and

preplacement of (unmovable) pebbles, and show that a similar lower bound holds. Of course, such

precomputation must be restricted so as to preclude solving st-connectivity itself. Therefore, the

unmovable pebbles are placed based on complete knowledge of the local, but not global, structure

of the graph as described below.

Let N

�

(G) denote a list G

1

; G

2

; : : :G

n

of edge labeled graphs, each with a distinguished vertex,

such that G

i

is isomorphic to the radius � neighborhood of vertex i in G, and the isomorphism

maps G

i

's distinguished vertex to vertex i. For instance for a triangle free graph, and ignoring edge

labels, N

1

(G) is equivalent to an ordered list of the degrees of G's vertices. Then an automaton

with P

0

unmovable pebbles placed by �-precomputation is a pair (f;M), where M is one of the JAG

variants as described above, and f is an arbitrary function mapping N

�

(G) to U 2 f1; 2; : : : ; ng

P

0

.

Given G, the P

0

unmovable pebbles are placed on the sequence of vertices f(N

�

(G)), and then M

is run on the resulting pebbled graph. The de�nition can be further generalized to allow f to select

M 's initial state. Additionally, it can be generalized in a straightforward way to probabilistic or

nondeterministic precomputation by letting f be a relation, and selecting a value from its range

probabilistically or nondeterministically. For instance, the algorithm of Broder et al. can be

executed by a probabilistic JAG with probabilistic 1-precomputation.

The proof of Theorem 11 immediately extends to show an 
(n

2

=P ) lower bound on nondeter-

ministic JAGs with nondeterministic 1-precomputation. The only changes needed in the proof are

to note that the initial pebble placement and state f(N

1

(G

0

r

)) are considered to be part of the �xed

accepting computation , and to note that all graphs in G are 3-regular, symmetrically labeled,

and triangle-free, hence N

1

(G

0

r

) = N

1

(G

x

) for all x 2 f0; 1g

r

, and so this initial con�guration is

also legal in G

x

.

As a concrete example of the potential utility of precomputation, we note that the squirrel cage

family G de�ned above can be traversed quickly, provided the unmovable pebbles can be placed

based on vertex neighborhoods of radius two, generalizing Broder et al.'s use of vertex degree.

Speci�cally, in G

x

, a vertex v will have 4, 5, or 6 distinct neighbors at distance two depending

on whether the \rung" of the squirrel cage incident to v is of the same parity as both, one, or

neither, respectively, of the two nearest nonincident rungs. Thus, 2-precomputation alone su�ces

to distinguish the disconnected graph G

0

r

(every vertex has 4 neighbors at distance two) from all

the connected members of G (some vertex has more than 4 neighbors). Furthermore, by placing

one unmovable pebble on any vertex with more than 4 neighbors at distance two, a WAG with no

additional pebbles can traverse the entire graph in linear time.

However, we can show that radius two, or indeed any constant radius, does not help in general.

That is, we can further generalize the proof of Theorem 11 to use families of graphs in which

switched edges do not alter the local structure within any �xed radius �. This is done by choosing

a d-regular bipartite graph R whose girth is at least 2�+2 and whose size jRj is d

O(�)

(Bollob�as [10,

Chapter 3]), and then constructing the half-size graph H by connecting c = bn=(2jRj)c copies of R

in a cycle. One way to do this is to choose a �xed edge fu; vg in R, remove this edge from each copy

of R, then insert an edge from u in the i

th

copy of R to v in copy (i+1) mod c; 0 � i < c. Note that,

for every cycle in G

x

, there is a corresponding cycle in G

0

r

that is no longer, so all graphs in G have
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girth at least 2�+2. Furthermore, note by Hall's Theorem [20] that R can be symmetrically labeled

since it is regular and bipartite, hence so can G

0

r

. The key new idea in the proof is that the list

N

�

(G) of radius � neighborhoods of any symmetrically labeled, d-regular, girth 2�+2 graph G will

simply consist of n identical symmetrically labeled, degree d, complete trees of height �. Thus, �-

precomputation cannot distinguish between G

0

r

and G

x

. The remainder of the proof is essentially

unchanged. Thus, nondeterministic JAGs with nondeterministic �-precomputation require time

n

2

=(d

O(�)

P ) to solve st-nonconnectivity for d-regular graphs.

We remark in closing this section that �-precomputation seems to be orthogonal to pebble

placement by the JAG itself. For instance, as noted above, deterministic 2-precomputation may

be helpful even to a nondeterministic JAG with strong jumping on as simple a family as the

basic squirrel cage family. On the other hand, there are cases where even a weak model such

as a deterministic WAG can place pebbles more e�ectively than can be done by deterministic

precomputation. Speci�cally, we again consider the simple 3-regular squirrel cage family, but

enlarged to include all n! permutations of vertex labels for each G

x

; x 2 f0; 1g

r

. Suppose all

unmovable pebbles are placed by deterministic 1-precomputation. Then an 
(n

2

) lower bound

applies for P � n � 
(n), since all pebbled vertices might be concentrated on one part of the

squirrel cage pair. On the other hand, a deterministic WAG (knowing the edge labeling) can easily

walk one of the cycles, dropping its P �1 unmovable pebbles at evenly spaced positions around the

cycle. It is then a simple matter to test the switchable edges one after the other from the nearest

pebble, hence solving st-connectivity in time O(n

2

=P ).

4.3. An Upper Bound for Unmovable Pebbles

A natural question to ask is whether the lower bounds given in Section 4.1 can be improved. Recall

that Theorem 11 shows time 
(mn=P ) (
(n

2

=P ) for regular graphs) is required by JAGs with

unmovable pebbles and strong jumping, even with an unbounded number of states. We will close

this section by showing that this bound cannot be improved: on the model to which the lower

bounds apply, exploiting an unbounded number of states we give matching upper bounds on time

for a given number of pebbles, even without jumping. More strongly, we show that any graph

problem, as de�ned in Section 3, can be solved within the same bounds.

Theorem 12: Let G be the set of all bijectively labeled graphs (all bijectively labeled regular

graphs). For any P � 2, the following sets can be recognized by a nondeterministic WAG with 1

movable pebble, P�1 unmovable pebbles, an unbounded number of states, and timeO((mn=P )+m)

(O((n

2

=P ) +m) in the case of regular graphs):

1. the set of st-nonconnected graphs in G, or

2. any set H of connected graphs in G.

The main import of this result is to show the limits of the proof technique used in Theorem 11.

For example, we do not believe that st-nonconnectivity can be solved by a nondeterministic JAG

in time O(mn) and space O(logn) simultaneously. The fastest known logarithmic space nondeter-

ministic JAG for st-nonconnectivity is much slower than this. Indeed, no better method is known

than to use a universal traversal sequence, i.e., a deterministic one pebble WAG, which may require
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time 
(m

2

n logn) for nonregular graphs (Lemma 4). However, Theorem 12 shows that to obtain

a lower bound greater than that of Theorem 11 we must somehow exploit a bound on the number

of states, as well as the number of pebbles. To date, the only lower bounds involving number of

states are the relatively weak ones of Cook and Racko� [19] and of our Section 6. (It might also be

possible to exploit nonbijective labelings but, in light of Lemma 1 and the remarks following the

proof of the theorem, this issue is a technicality of the model that is not of fundamental importance

to the computational complexity of st-connectivity.)

The following facts are needed in the proof of Theorem 12.

Lemma 13: Let G be a connected d-regular graph, u and v be any two vertices in G,

and dist(u; v) = l be the length of a shortest path between them. Then there are at least

(d+ 1) b(l+ 2)=3c vertices in G within distance l of u.

Proof: Let �(x) = f y j dist(x; y) � 1 g. Fix a shortest path u = u

0

; u

1

; : : : ; u

l

= v from u to v.

Then �(u

0

);�(u

3

); : : : ;�(u

3b(l�1)=3c

) are pairwise disjoint, for otherwise there would be a shorter

path from u to v. Furthermore, these sets are all of size (d+ 1), and all are within distance l of u.

2

Corollary 14: Let G be a connected d-regular graph, and s a vertex in G. For any positive

integer P � n=d, there exists a set S with s 2 S and jSj � P such that every vertex of G is within

distance l = 2 d1 + 3n=((d+ 1)P )e = O(n=(dP )) of some member of S.

Proof: Construct S = fs

0

; s

1

; : : :g, where s

0

= s and, for i � 1, s

i

is chosen to be any vertex

at distance greater than l from fs

0

; : : : ; s

i�1

g. The neighborhoods of radius l=2 around the s

i

's are

pairwise disjoint. Furthermore, by Lemma 13, each of these neighborhoods will be of size at least

(d+ 1) b(l=2 + 2)=3c � n=P . Hence at most P members of S can be chosen before no vertices of G

remain at distance greater than l. 2

The analogous results for nonregular graphs are that at least (l+1) vertices are within distance

l of u, hence P vertices can be chosen so that every vertex is within distance 2n=P of a chosen

vertex. The proofs are similar, but easier.

Finally, we prove the theorem.

Proof (of Theorem 12): The approach is to nondeterministically guess the graph, then verify the

guess. First we prove part 1: we describe a nondeterministic WAG M accepting st-nonconnected

graphs.

Let G be the input graph. It su�ces to verify that the connected component C of G containing

s does not contain t. Let l = 2n=(P � 1), or l = 2 d1 + 3n=((d+ 1)(P � 1))e in the case of regular

graphs. By Corollary 14, for any n-vertex graph G and designated vertex s, there is a set of P � 1

vertices including s such that every vertex of C is within distance l of a member of this set. Leave

one unmovable pebble on s (the initial location of the movable pebble), and place the other P � 2

unmovable pebbles on arbitrary, distinct vertices selected nondeterministically during a walk  of

length at most 2(n� 1) from s back to s. (This walk is long enough to traverse a spanning tree of

C, hence any vertex may be pebbled.)

19



M proceeds by guessing and recording in its state an n

0

< n vertex, connected, bijectively

labeled graph B with P � 1 distinct vertices marked by numbered pebbles. M then veri�es that

there is a surjective homomorphism � from B to C. That is, � is a surjection preserving pebble

placement, vertex degree, adjacency, and edge labeling. Thus, for all vertices u in B, (1) there is a

pebble p on �(u) in C if pebble p is on u in B, (2) degree(u) = degree(�(u)), and (3) for all edges

fu; vg in B, if �

u;v

= a then �

�(u);�(v)

= a. (It might seem more natural to guess an isomorphic

graph B, and it would not be di�cult to modify M to do this, but a homomorphism su�ces and

is easier to verify.) To complete the algorithm, M visits �(v) in C for all v 2 B, accepting if and

only if none is the specially marked vertex t. (Recall that M can sense when it has a pebble on t.)

We now show how to construct and verify the homomorphism �. A key property of a bijectively

labeled graph, used earlier in Lemma 6, is that for any sequence � of edge labels, and any vertices

u; u

0

and v, if walks following � from both u and u

0

end at v, then u = u

0

. Otherwise, the graph is

nonbijectively labeled at the vertex where the two paths last converge. This property is central to

constructing and verifying the homomorphism. In particular, recall that a JAG has no access to

vertex numbers of the input graph. Instead, we will identify vertices by paths to or from pebbles.

M now runs a breadth-�rst search of B, with the queue initially containing all the pebbled

vertices. The result is a spanning forest of B with B's pebbles as the roots. Reject if any tree

has height greater than l. Otherwise, for all vertices u in B, let �(u) be the number of the pebble

marking the root of the tree containing u, let �(u) be the sequence of edge labels on the unique

path of tree edges from �(u) to u, and let �

�1

(u) be the sequence of labels in the reverse direction,

i.e., from u to �(u). For all vertices u in B, de�ne �(u) to be the vertex reached in C by walking

from the vertex marked by pebble �(u) according to the sequence �(u).

M now performs the following test.

For all edges fu; vg in B, say with labels �

u;v

= a and �

v;u

= b, M veri�es that in C the

walk �(u)a�

�1

(v) ends at �(v) when started from �(u), and that �(v)b�

�1

(u) returns to �(u)

from �(v). During this process, at the �rst visit to �(u) for each u in B, M also veri�es that

degree(u) = degree(�(u)) (with the same set of labels).

We now show that � is a surjective homomorphism if and only if this test succeeds. First,

suppose � is a surjective homomorphism. For any vertices x and y in B, if a walk from x according

to � ends at y, then a walk from �(x) in C according to � must end at �(y). This is shown

easily by induction on the length of �, using the fact that �

u;v

= �

�(u);�(v)

for all edges fu; vg. By

construction, for any edge fu; vg in B, the walk in B from �(u) according to �(u)�

u;v

�

�1

(v) must

end at �(v). Furthermore, by construction, if vertex w in B holds a pebble, then �(w) holds the

same pebble in C. Consequently, each of M 's \walk" tests will succeed. By the assumption that �

is a homomorphism, each of M 's degree tests will also succeed, and so � passes the test.

Conversely, suppose the test succeeds. We argue that that � is a surjective homomorphism.

Note that by construction a walk from �(v) according to �(v) ends at �(v), for all v. We claim

�rst that the reverse also holds: a walk from �(v) according to �

�1

(v) ends at �(v), for all v. If v

has a pebble, this is trivial. Otherwise v is the child of some u in the spanning forest of B. Then

�(v) = �(u) and �(v) = �(u)a for some a. Since the test succeeds, �(u)a�

�1

(v) goes from �(v) to

�(v). But the �rst part �(u)a goes from �(v) to �(v), so the last part �

�1

(v) must go from �(v) to

�(v), establishing the claim. Note that as a consequence, if a walk in C from a vertex w according

to �

�1

(v) ends at �(v), then w = �(v), since C is bijectively labeled.
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The following properties of � are now easily established.

1. For all pebbled vertices u in B, �(u) holds the same pebble. This holds by construction.

2. For all u 2 B; degree(u) = degree(�(u)). This holds sinceM explicitly tests for this condition,

and by assumption the test succeeds.

3. For all adjacent vertices u; v 2 B, �(u) and �(v) are adjacent, with �

�(u);�(v)

= �

u;v

(and

�

�(v);�(u)

= �

v;u

). This holds since �(u)�

u;v

�

�1

(v) walks from �(u) to �(v), by construction

the vertex reached by �(u) is �(u), and by the remark above the vertex from which �

�1

(v)

reaches �(v) is �(v).

4. � is surjective. If this did not hold, there would be a vertex in C not in the range of � that

is adjacent to a vertex �(u) that is in the range of �. However, this is impossible, since by

property 2, degree(u) = degree(�(u)), and by property 3, �(u) has degree(u) neighbors that

are in the range of �.

Thus, � is a surjective homomorphism, as claimed.

If M accepts, then there is an accepting computation in which B is isomorphic to C, hence

has at most m edges. In this computation, the algorithm makes O(m) walks, each of length O(l),

hence the total running time is O(ml), as desired. Note that M can move between the pebbles in

C by walking , the tour used initially to drop the pebbles, which adds only O(n) to the time.

The proof of part 2 of the theorem is similar. The main di�erence is that the graph B guessed

by M will have n vertices, rather than n

0

< n. M then veri�es that this graph is isomorphic to the

input graph G, accepting (nonuniformly) if and only if it is in H. Note that the homomorphism

test given above su�ces to verify that B is isomorphic to G, since they have the same number of

vertices. 2

As in Section 3, these results can be generalized to graph problems with other input parameters,

and/or to other problems about unconnected graphs, given an appropriate mechanism for accessing

all connected components.

The restriction of Theorem 12 to bijectively labeled graphs can be relaxed at the expense of

adding one passive pebble, as follows. The constructions of �(u); �

�1

(u); �(u), and �(u) are as

before. With a nonbijectively labeled graph it remains true that a walk from �(u) according to

�

�1

(u) will end at �(u), but it is no longer true that �(u) is the only vertex with this property.

To verify that the active pebble is on vertex �(u), we instead leave the passive pebble there, then

verify that �

�1

(u) walks to �(u), from which �(u) returns to the passive pebble. The remainder of

the algorithm is unchanged.

As a �nal observation, the following theorem shows that, at the extreme where P = n, the

WAG of Theorem 12 can be made deterministic.

Theorem 15: The set of st-nonconnected graphs, and arbitrary sets of connected graphs (non-

regular, under general labelings) can be recognized in time O(m) by a deterministic WAG with one

active pebble and n unmovable pebbles.
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Proof: Rather than guessing the input graph, as in Theorem 12, the WAG simply does a

systematic traversal of it, akin to a depth-�rst search, placing a pebble on each vertex. With

jumping, or with symmetric edge labels, depth-�rst search itself would be easy to implement, but

lacking both it seems di�cult to quickly return after crossing a \back edge" whose reverse label is

unknown. We avoid this problem with the following algorithm, which is also akin to an algorithm

for �nding Euler tours.

M places a distinctly labeled pebble on each vertex it visits, thus e�ectively numbering the

vertices. M records in its state the source, destination, and label of each half edge it crosses. It will

eventually cross each half edge, so at termination it will have in its state a complete description

of the graph. Connectivity or other properties of the graph can then be determined directly

(nonuniformly).

M starts at s, initializing a stack in its state to contain s. At a general step, when at a vertex

u with u on top of the stack, if there is a previously uncrossed half edge leaving u, say (u; v), then

M crosses this edge, pushing v onto the stack. (M pebbles v if it does not already hold a pebble.)

If there are no previously uncrossed half edges leaving u, then M backtracks by popping u from

the stack, and returning to v, where v is the new top of stack. By assumption M has previously

crossed the (u; v) half edge, and so knows its label. In either case, the process is repeated at v. M

terminates when the stack is emptied.

It is easy to see that every visited vertex is pushed onto the stack, and none is removed from the

stack until all its outgoing half edges have been traversed. Thus, M will visit all vertices reachable

from s. M 's running time will be exactly 4m, since exactly two moves can be charged to each half

edge (u; v) | one for the �rst move by M across that half edge, when v is pushed (on top of u),

and the second for the move across (v; u) when that instance of v (there may be several instances)

is popped from the stack. 2

As noted above, with jumping it would be easy to directly implement depth-�rst search in O(m)

time using O(n) pebbles, and space O(n logn) in total. The algorithm presented in the proof of

Theorem 15 uses more space, namely �(m logn), since it constructs a representation of the entire

graph. It is not known whether the result can be strengthened to match the bounds attained by

depth-�rst search while retaining the weaker model assumed in Theorem 15.

5. Lower Bounds for Active Pebbles

In this section we prove time lower bounds for automata with P active pebbles, but no jumping.

The proof generalizes an unpublished construction of Szemer�edi (communicated to us by Sipser),

that proved an 
(n logn) lower bound on the length of universal traversal sequences for 3-regular

graphs.

Theorem 16: Let P and d be �xed functions of n with dn even, P � 1, d � 6, and d

2

+ Pd =

o(n). Let m = dn=2, � = 1=(3 ln(6e)), and

d

0

= (2P=e)

3P=(3P+2)

n

1=(3P+2)

:

22



Let M be any deterministic WAG with P active pebbles that determines st-connectivity for all

d-regular n-vertex graphs. Then M requires time:

(1) 


�

m(logn)

d=P

log(d=P )

�

; if P � � ln(n=d

2

) and 6P � d � d

0

;

(2) 


�

mP

�

n

d

2

�

1

3P

�

; if P � � ln(n=d

2

) and d

0

< d; and

(3) 


�

mmin

�

d; log

n

(d

2

+Pd)

��

; otherwise.

Before proving the Theorem, we will make a few observations about it. Perhaps the most

noteworthy is that these bounds are nonlinear whenever either d = !(1) or d � 6P , and are better

than the simple lower bound given in Theorem 3 except for small constant values of d.

It is obvious that the regions (i.e., the sets of (P; d) pairs) where the three cases apply are

pairwise disjoint. It is also true that all three regions are nonempty for all su�ciently large n,

although we will not justify this statement.

Although they have very di�erent forms, the three bounds meet \smoothly," except along the

line segment d = 6P; 1 � P � � ln(n=d

2

). Speci�cally, we will show that where any pair of the

three bounds meet along the curve P = � ln(n=d

2

); d � 6P , both are �(m log(n=d

2

)), and where

bounds (1) and (2) meet along the curve d = d

0

; 1 � P � � ln(n=d

2

); both are �(md

0

).

All three bounds are increasing functions of d (recall m = dn=2). In view of the weak 
(m)

lower bound given in Theorem 3, the ratio of the lower bounds to m is also an interesting quantity.

Note that the ratio of bound (1) to m is an increasing function of d, while that of bound (2) is

decreasing. Since they are equal (within constant factors) at d = d

0

, the two could be combined

into the single expression 
(mmin((logn)(d=P )= log(d=P ); P (n=d

2

)

1=(3P )

)); as was done in bound

(3).

It seems likely that the decrease in bound (2) is an artifact of the proof technique rather

than an intrinsic reduction in the complexity of the problem, since intuitively higher degree would

seem to make the search more di�cult. On the other hand, higher degree reduces the graph's

maximum possible diameter, which perhaps helps. It is known that the length of universal traversal

sequences is not monotonic in d, although it may be monotonic up to some large threshold, perhaps

d = bn=2c�1. (See Borodin et al. [14] for a discussion.) Similarly, the complexity of st-connectivity

is not monotone in d, since regular graphs of degree d > bn=2c � 1 are necessarily connected, but

it is plausibly monotone for d up to cn, for some constant 0 < c < 1=2.

Two special cases of the Theorem are of particular interest. Namely, the following two corollaries

show that logarithmic space implies timem

1+
(1)

, and that sublinear space implies superlinear time.

Corollary 17: Let M be a deterministic WAG with P active pebbles that determines st-

connectivity for all regular n-vertex graphs. If P = O(1), then there is a family of regular graphs

on which M requires time 
(m

1+1=(3P+3)

).

Proof: Consider the family of regular graphs with degree d = d

0

= �(n

1=(3P+2)

). Theorem 16

applies, speci�cally case (1). This gives a time lower bound of 
(md) = 
(m

1+1=(3P+3)

). 2
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For P = 1 the 
(m

7=6

) bound given above is not as strong as the 
(m

2

) bound given by Borodin

et al. [14], nor as strong as the 
(n

2

) bound given in Theorem 11, but is included for comparative

purposes. Also, the 
(m

2

) lower bound for universal traversal sequences holds for degree up to

n=3� 2, so the decrease in the ratio of bound (2) to m noted above certainly is an artifact of our

proof when P = 1.

Corollary 18: Let M be a deterministic WAG with P active pebbles that determines st-

connectivity for all regular n-vertex graphs. If P = o(n), then there is a family of regular graphs

on which M requires time 
(m log(n=P )) = !(m).

Proof: Suppose P � n

1=3

. Consider the family of regular graphs with degree d =

p

n=P = !(1).

Then d

2

+ Pd � 2

p

Pn = o(n), so Theorem 16 applies, speci�cally case (3). This gives a lower

bound of 
(m logd) = 
(m log(n=P )) on time. When P < n

1=3

, a similar analysis su�ces, choosing

d = logn. 2

Note that by Theorem 15, Corollary 18 is tight: time O(m) is possible with O(n) pebbles. Note

also that, when P = �(n), the time is still 
(m log(n=P )), by Theorem 3.

Various constants in the Theorem can be improved by slight modi�cation to the construction

and/or its analysis, but in the interest of clarity we will not present these re�nements.

Proof (of Theorem 16): The idea underlying the proof is to build a graph with many copies

of some �xed gadgets, each with many \entry points." Since M does not have enough pebbles to

mark all the gadgets it has explored, it must spend time re-exploring each gadget from di�erent

entry points, or it risks the possibility that one of them might never be fully explored. The crux

of the argument is to choose the right gadgets, and to interconnect them so that we can be sure

this happens. We use an \adversary" argument to show this. We begin by giving an overview of

the argument, followed by more detailed descriptions of the gadgets and adversary strategy, and

�nally the analysis.

Overview. Imagine the adversary \growing" the graph as follows. At a general point in the

construction, the graph consists of some gadgets that are fully speci�ed except for the interconnec-

tions among their \entry point" vertices. The adversary simulates M on this partial graph until

M attempts to move some pebble p out of an entry point using a label for which no edge is yet

de�ned. Our main freedom in the construction is the choice of the gadget at the other endpoint

of this interconnecting edge f . The adversary will pick it so that M will spend a nonnegligible

number of steps � \exploring" the gadget reached through f . The adversary can achieve this for

most of the 
(m) interconnecting edges, yielding an 
(m�) lower bound on time. The parameter

� will vary depending on n; P; and d, giving the three lower bounds quoted in the statement of the

theorem.

The interconnecting edge f is chosen as follows. Note that no single labeled gadget  will su�ce

to keep p \busy" for � steps. For example,M 's very next move of p, say by label a, might be an exit

from . On the other hand, if the adversary can learn that M 's next move of p will be on label a,

it can choose some gadget in which label a moves from an entry point into the gadget, rather than

exiting from it. Similarly, if it can learn the next � moves by p (and/or other pebbles following p

across f), the adversary can choose a gadget in which this whole sequence of moves avoids exiting

from the gadget. A key point is that M can sense only very limited facts about the gadget that p
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enters when it crosses f . Suppose p has just crossed f , arriving at a vertex v. M can sense (i) the

degree of v, (ii) whether v is the target vertex t, and (iii) whether there are other pebbles on v.

Thus, in general M has several possible next moves for p, based on which of these conditions hold.

The adversary avoids having to consider these alternative futures by assuming respectively (1) that

the graph is d-regular, (2) that M does not reach t (within 
(m�) steps), and (3) that f connects

to a gadget that contains no other pebbles when p enters it, and that remains free of other pebbles

(except perhaps ones that follow p across f) for � moves. Given these assumptions, the adversary

will be able to deterministically simulate the next several moves by M so that it can decide which

labeled gadget can host those moves without allowing a pebble to exit. Of course, the adversary

must also ensure that assumptions (1) { (3) are ultimately justi�ed. Building a d-regular graph

requires some care, but is not too di�cult. Assumption (2) will follow easily if each connecting

edge accounts for � moves. Assumption (3) is slightly trickier; we will return to it below.

We view the overall adversary strategy as a two-phase process. A local phase determines the

internal (\local") structure required of a gadget hosting the next several moves of p so that no

pebble will exit this gadget until at least � moves have been charged to it, starting after p's entry.

The basic idea is to use a \lazy, greedy" de�nition | lazy in that the adversary will not de�ne a

labeled half edge in the gadget until just before M needs to move a pebble across it, and greedy in

that when such a half edge is de�ned, it will be de�ned to stay within the gadget. Of course, this

cannot continue inde�nitely, but will be possible for at least the �rst � moves within the gadget.

Thus, pebble motion across half edges exiting the gadget is deferred for at least this long.

The adversary's simulation of M is now \rolled back" to the point at which p crossed f . The

global phase of the adversary's strategy is to choose a gadget already present in the graph and to

connect f to it. Recall that our goal is to reuse each gadget many times, so that the total time spent

in it asymptotically exceeds its number of edges. (Occasionally, when all entry points of suitable

gadgets have been used, a new copy of the needed gadget will be added. This process terminates

when the number of vertices in the graph approaches n.) The gadget chosen for f must match the

gadget determined by the local phase, must have an unused entry point to which to connect f , and

(before f was connected to it) must have remained free of pebbles from the time when p crossed f

until � moves were charged to it. The \pebble-free" condition ensures assumption (3) above. Such

a condition is necessary since, if it were violated,M might encounter \unexpected" pebbles in the

chosen gadget, i.e., pebbles not encountered during the simulation in the local phase. This could

cause M to deviate from the sequence of moves predicted by the local phase, and so possibly allow

p or one of the pebbles that followed it across f to exit from the gadget in fewer that � moves.

A point we slighted above is that the \� steps" under discussion are not necessarily consecutive,

and are not necessarily all made by p or by pebbles that followed p across f . For example, p's moves

after crossing f might be interleaved with moves by some other pebble p

0

after crossing another

unde�ned edge f

0

and/or many previously de�ned connecting edges. In general, the adversary keeps

track of these many interleaved activities by charging pebble moves to connecting edges, with the

\local phase" for an unde�ned connecting edge f being the interval between its charge reaching 1

(at the �rst crossing of f by some pebble) and its charge reaching � .

The �nal issue to address is that we want to avoid adding a new copy of a gadget until all entry

points of most existing copies have been used. Speci�cally, we will have at most a �xed number

(P (� + 2) + d, to be precise) of \open" copies of each gadget at any time. As noted above, many

steps may occur between the �rst and �

th

steps charged to f . During this interval, other pebbles
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might touch all open copies of the gadget needed for f , leaving no pebble-free open gadget to which

to connect f . Our solution to this problem is found in the adversary's method of charging pebble

moves to edges. Moves in f 's gadget are always charged to f . In addition, certain moves touching

other gadgets are charged to f also. With this scheme, we can bound both the number of moves

that occur in f 's gadget, and the number of other gadgets that are touched by pebbles during f 's

local phase. Thus, no gadget is expected to absorb too many moves, and there will be at least one

suitable pebble-free open copy of the needed gadget when f accumulates charge � .

The construction will \waste" (i.e., not fully utilize the connecting edges of) up to P (� +2)+d

copies of each gadget. The main constraint that limits � is that it must be small enough that this

waste is small, i.e., P (� + 2) + d times the number of distinct types of labeled gadgets times the

number of connecting edges per gadget is small compared to the total number of connecting edges.

We will now present the construction in more detail. We actually de�ne a sequence of graphs

G

i;j

; 0 � i � �; 0 � j, representing successive phases of the construction. Like � , the parameter �

varies slightly depending on n; p; and d, but will be �(m) in each case. (The maximum value of j

is unimportant, but turns out to be about P� .) Each graph consists of:

� A set of gadgets, each with the same size S and number L of entry vertices, and a fully

de�ned internal structure and labeling. Each vertex that is not an entry vertex has degree

d. There is a �xed d

0

� 1 such that each entry vertex has d

0

edges to neighbors in the same

gadget, and up to d� d

0

connecting edges joining it to the entry vertices of other gadgets or

proto-gadgets (see below). We will show that d� d

0

� d=2, and that L=S > 1=3, ensuring at

termination that the number of connecting edges is �(m).

� A set of labeled committed connecting edges joining entry vertices of gadgets. G

i;j

will have

exactly i committed connecting edges.

� A set of up to P partially labeled uncommitted connecting edges, each joining an entry vertex

u of some gadget to an entry vertex v of a proto-gadget (see below). The uncommitted half

edge from u to v is labeled, but the half edge from v to u is unlabeled.

� A set of up to P partially de�ned proto-gadgets. Like a gadget, a proto-gadget has S vertices,

including L entry vertices, but unlike the gadgets, the internal structure of a proto-gadget

is in general only partially de�ned | its vertices may have degree less than d, and its half

edges may not be labeled. In particular, only one entry vertex v of each proto-gadget will be

incident to a connecting edge, say the uncommitted connecting edge fu; vg, and, as indicated

above, the half edge from v to u will be unlabeled. The proto-gadgets are the tools used in

the local phases of the adversary's strategy.

In outline, the adversary's strategy is as follows. The initial graphG

0;0

consists of one arbitrarily

chosen gadget. The start vertex s is an arbitrary vertex in this gadget. For any G

i;j

, the initial

con�guration of M on G

i;j

consists of M in its start state and all P pebbles on G

i;j

's copy of

s. Associate with each connecting edge of the graph G

i;j

an integer charge, initially zero. The

adversary will charge each pebble motion to at most one connecting edge, according to a rule to

be given later. It will simulate M starting from M 's initial con�guration on G

i;j

until one of the

following two things happens. (It simulatesM as if all vertices in G

i;j

were of degree d, even though

some are of smaller degree.)
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� Suppose M attempts to move a pebble from a vertex u across a half edge labeled a, where no

such labeled half edge exists. If u is an entry vertex in some gadget, add a new uncommitted

half edge from u labeled a to the entry point v of a new proto-gadget. More precisely, we

de�ne G

i;j+1

to be G

i;j

plus that half edge and proto-gadget. If u is in some proto-gadget,

choose some other vertex v in the same proto-gadget (according to a rule to be given later)

and add a half edge from u to v labeled a. More precisely, we de�ne G

i;j+1

to be G

i;j

plus

that half edge (plus a few others, as we will see). The choice of v is not arbitrary; one point

we must establish is that there will always be a suitable vertex v when needed. The thrust of

this step in the adversary strategy is to keep pebbles \trapped" in proto-gadgets for as long

as possible. This portion of the adversary's strategy is the \local" strategy introduced above,

so-called because of its focus on the structure within a gadget.

� Suppose an uncommitted edge f in G

i;j

accumulates a charge of � . In this case, we will convert

f into a committed edge. More precisely, we will form G

i+1;0

from G

i;j

by choosing an existing

gadget \similar" to f 's proto-gadget, and committing f to enter the chosen gadget. (This is

described more fully below.) Again, f cannot be committed arbitrarily; a second point that

we must establish is that an appropriate gadget (usually) exists when needed, and that M 's

behaviors on G

i;j

and G

i+1;0

are similar. The thrust of this step is that the size of G

i+1;0

is growing slowly with i, since we are (usually) able to reuse existing gadgets, but the time

M spends in G

i+1;0

is rising rapidly with i, since a lower bound on the total running time

of M is � times the number of committed edges (i, which is ultimately � = �(m)). This

portion of the adversary's strategy is the \global" strategy, so-called because of its focus on

the interconnections among gadgets.

The adversary continues the simulation on G

i;j+1

or G

i+1;0

as appropriate, and repeats this process

until G

�;0

is constructed.

Gadgets. Before describing the adversary strategy in more detail, we will describe the gadgets

and proto-gadgets. The gadgets are called \funnels." An example is shown in Figure 1(a). The

entry vertices are those on the \rim" of the funnel. Intuitively, the adversary will try to \trap"

pebbles in a funnel for a while by assigning edge labels so that the moves taken by pebbles in the

gadget in the near future (i.e., the next � moves in the gadget) either stay on the same layer or

drop to the next deeper layer. The \cone" portion of the funnel (near the top of Figure 1(a)) allows

many entry vertices to share vertices in the narrower portion near the bottom of Figure 1(a). An

example of a two layer funnel is shown in Figure 1(b).

Four interrelated parameters k; q; g, and r, which in turn depend on n; P; and d, characterize

the gadgets. All four are positive integers. Each gadget has k + 1 layers, numbered 0 through k.

Layer l; 0 � l � k, has

n

l

= (d+ 1) �max(1; 2

dlog

2

ke�l

)

vertices, designated v

l

i

; 0 � i � n

l

� 1. The entry vertices are those on layer 0. Hence, the number

of entry vertices is

L = (d+ 1) � 2

dlog

2

ke

;

and the total number of vertices per gadget is

S = (d+ 1)(2

dlog

2

ke+1

� 1 + k � dlog

2

ke):
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(a) (b)

d = 10; k = 4; q = 2; r = 1 d = 8; k = 1; q = 2; r = 1

For clarity, only half of the forward edges

are shown.

Figure 1: Examples of the funnel gadgets.

Note that

L

S

=

(d+ 1) � 2

dlog

2

ke

(d+ 1)(2

dlog

2

ke+1

� 1 + k � dlog

2

ke)

>

2

dlog

2

ke

2

dlog

2

ke+1

+ k

�

1

3

; (1)

as promised, and that

S � (1 + 1=d) d (2 � 2

dlog

2

ke

+ k) � (7=6) d (5k) < 6dk: (2)

The parameter q is an even integer, 2 � q. The d edge labels f0; 1; : : : ; d� 1g are partitioned

into g = bd=qc \full" blocks, each of size q, plus perhaps one \partial" block of size d mod q in case

q does not evenly divide d. The same �xed partition is used for all gadgets and is arbitrary, except

that for each a 2 f0; 1; : : : ; d� 1g, we place both a and its mate in the same block, where the mate

of label a is d � 1 � a. Note that if d is odd, then (d � 1)=2 is its own mate, and will be in the

partial block.

28



layer 0 1 � � � dlog

2

ke dlog

2

ke + 1 � � � k � 1 k

f

l

r r � � � r r � � � r 0

b

l

g � r 2r � � � 2r r � � � r r

cross 0 g � 3r � � � g � 3r g � 2r � � � g � 2r g � r

Table 1: Number of edge blocks of each type per layer.

The remaining gadget parameter r is an integer satisfying 1 � r � g=3. Note that the existence

of such an r implies that g � 3, and hence

q � d=3: (3)

Intuitively, r denotes an upper bound on the number of pebbles that we attempt to trap in a given

gadget.

The edges within a gadget always connect vertices on the same or adjacent layers. A half edge

is called a \forward" half edge if it goes from layer l to layer l + 1, \backward" if it goes to layer

l � 1, and \cross" if it goes to layer l. For each layer l and each block B of labels, there is a

t 2 fforward; backward; crossg such that all half edges with labels in B leaving vertices on layer

l will be of type t. Thus it is natural to refer to the labels and the blocks of labels at a layer

as forward, backward, or cross, as well as the half edges. For i 2 N, a 2 f0; 1; : : : ; d � 1g, and

0 � l � k, de�ne

�(i; a; l) =

8

>

<

>

:

(i+ a+ 1) mod n

l

if a < (d� 1)=2

(i+ n

l

=2) mod n

l

if a = (d� 1)=2

(i� (d� 1� a)� 1) mod n

l

if a > (d� 1)=2:

If a 2 f0; 1; : : : ; d � 1g is a forward label at layer l, then for 0 � i � n

l

� 1, a will label the half

edge from vertex v

l

i

to vertex v

l+1

�(i;a;l+1)

. Similarly, if a is a cross label it will go to v

l

�(i;a;l)

. Notice

that a cross edge labeled a will be labeled by a's mate in the reverse direction. No parallel edges

arise since n

l

� d + 1. As an example, if all edges are cross edges (a case that does not arise in

our constructions) and if n

l

= d+ 1, then layer l would be a (d+ 1)-clique. As another example,

whenever label 0 is a cross label at layer l, the half edges labeled 0 will form a Hamiltonian cycle

through the layer l vertices, and those edges will be labeled d� 1 (0's mate) in the other direction.

Note that the backward labels are not constrained by �.

The set of gadgets is de�ned as follows. For 0 � l � k let

b

l

=

(

g � r if l = 0

r(n

l�1

=n

l

) otherwise,

f

l

=

(

0 if l = k

r otherwise.

See Table 1. If q does not evenly divide d, then the labels in the partial block will be cross labels

at each layer 0 � l � k. For each layer 0 � l � k, choose f

l

of the remaining g blocks as forward
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labels, and b

l

as backward labels (connecting edge labels, if l = 0). All blocks not selected above

will be cross labels. Note that the rules in the previous paragraph de�ne the forward and cross half

edges, given their labels, but not the backward half edges. The chosen backward labels are assigned

to these half edges in an arbitrary but �xed way. Note that there are just enough backward labels

| each of the n

l�1

vertices on level 0 � l� 1 < k has exactly qr forward labels, with destinations

evenly distributed over the n

l

vertices on layer l, so each vertex on layer l is incident to exactly

qr(n

l�1

=nl) = q � b

l

edges from layer l� 1.

For layer 0, the b

0

blocks selected above will label connecting edges. Thus, each entry vertex

will be adjacent to exactly d

0

= rq + (d mod q) other vertices in the same gadget, and to d � d

0

connecting edges. Note, since r � g=3 and q � d=3 (from Inequality (3)), that

d� d

0

= gq � rq � (2=3)gq = (2=3) bd=qc q � (2=3)((3=4)(d=q))q = d=2; (4)

as claimed earlier. Also note that at most 3r blocks are chosen as forward and backward at each

layer, and that this is always possible since g � 3r.

The number of distinct gadget types created by this process is

�

g

r

�

k

�

g � r

2r

�

dlog

2

ke

�

g � r

r

�

k�dlog

2

ke�1

�

g

r

�

1

�

�

g

r

�

2k�dlog

2

ke

�

g

2r

�

dlog

2

ke

�

�

eg

r

�

r(2k�dlog

2

ke)

�

eg

2r

�

2rdlog

2

ke

�

�

eg

r

�

r(2k+dlog

2

ke)

: (5)

Figure 1(b) fully shows a gadget with d = 8; k = 1; q = 2; g = 4; and r = 1, with forward

edges labeled 0 and 7 from layer 0, and backward edges labeled 3 and 4 from layer 1. Figure 1(a)

shows a gadget with d = 10; k = 4; q = 2; g = 5; and r = 1, with forward edges labeled 0 from

layers 0 through 3. In the interest of clarity, the forward edges labeled 9 (0's mate) are not shown

in the �gure.

Proto-Gadgets and Local Strategy. The proto-gadgets are built incrementally by the

adversary. Initially, each consists of S vertices, denoted as in the gadgets, together with the cross

edges de�ned by the partial block of labels (if any) at each level. As discussed previously, the

adversary proceeds by simulating M from its initial con�guration on G

i;j

. Suppose during the

t

th

step of this simulation that M attempts to move some pebble p along the half edge labeled a

from some vertex u but no such half edge exists. As sketched earlier, if u is an entry vertex of

some gadget, we create a new proto-gadget into which p will move. If u is a vertex v

l

i

in some

proto-gadget �, the adversary decides whether to make the block of labels containing a all forward

half edges or all cross half edges (see below). The graph G

i;j+1

is then de�ned to be the same

as G

i;j

, except that at layer l in �, a's block of half edges are added. The adversary restarts the

simulation of M , starting from M 's initial con�guration on G

i;j+1

. It should be clear that during

the �rst t� 1 steps of the simulation, M will behave on G

i;j+1

exactly as it did on G

i;j

, since G

i;j
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is a subgraph of G

i;j+1

. The t

th

step, of course, was impossible in G

i;j

, but is possible in G

i;j+1

.

Note that p can exit from � only at an entry vertex, but is no nearer to one in G

i;j+1

after the

t

th

step than before. Thus we can view M as running on a dynamically growing graph, one being

built by the adversary so as to trap pebbles in proto-gadgets for some number of moves. We will

adopt this view when no confusion will arise, and let G

i;�

denote the last G

i;j

built before G

i+1;0

.

Let z be the number of free blocks at level l, i.e., blocks whose half edges have not yet been

de�ned. The adversary chooses a's block to label cross edges provided z > b

l

+ f

l

, and forward

edges provided b

l

< z � b

l

+ f

l

. If z � b

l

, the adversary fails (but see Claim 1 below).

Let

� =

(

(k � dlog

2

ke) bg=3c if P � r

r if P > r:

Note that (k � dlog

2

ke) bg=3c � r since k � 1 and g=3 � r, so in either case we have

(k � dlog

2

ke) bg=3c � �: (6)

We prove three claims about the proto-gadgets. We will see later that the global strategy

preventsM from making more than � moves in any proto-gadget, so Claim 1 below shows that the

adversary will never fail.

Claim 1: The adversary will never fail, provided M makes at most � moves in any proto-

gadget.

Proof: First, clearly at most min(P; �) pebbles can enter a proto-gadget in � steps, and for the

particular de�nition of � chosen above, min(P; �) � r. Now, suppose the claim is false. Suppose

the adversary �rst fails during an attempted move at level l in some proto-gadget �. Then at least

g � b

l

moves were previously made by pebbles at layer l. As noted, at most r pebbles can enter �

in � moves. It cannot be the case that l < k, since for all such layers g � b

l

� r = f

l

, so during

the last r of the g � b

l

moves, all r pebbles moved past layer l, leaving none to cause failure there.

Thus, the failure occurred in layer k. For a pebble to reach layer k, it must be that the maximum

number of cross edges, plus at least one forward edge, have been previously de�ned at each layer

less than k. Thus, the number of moves completed in this proto-gadget prior to failure is at least

(g � b

k

) +

k�1

X

l=0

(g � b

l

� f

l

+ 1)

= (g � r) + dlog

2

ke (g � 3r + 1) + (k � dlog

2

ke � 1)(g� 2r+ 1)

� (k � dlog

2

ke)(g � 2r + 1)

> (k � dlog

2

ke) bg=3c

� �:

The second inequality uses the assertion that r � g=3, and the third uses Inequality (6). 2

Claim 2: Each proto-gadget is a subgraph of some gadget.
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Proof: The adversary chooses at most f

l

forward blocks and at most g� (f

l

+ b

l

) cross blocks

at each layer. Thus there are enough unchosen blocks to select a total of exactly f

l

forward and b

l

backward blocks, which precisely de�nes a gadget. 2

Claim 3: All entry points of a proto-gadget are equivalent, in the sense that if M makes at

most � moves in a proto-gadget entered through vertex v

0

h

, then the resulting con�guration will be

exactly the same as if it had entered through vertex v

0

0

, except that positions of all pebbles in it

on layer l will be shifted by h mod n

l

for 0 � l � k.

Proof: Intuitively, this reects the rotational symmetry of the funnel. To make this precise,

we claim that for any h 2 N and any proto-gadget �, the mapping �

h

(v

l

i

) = v

l

i

0

, where i

0

=

(i+h) mod n

l

, is an automorphism on �, i.e., a surjection on the vertices of � preserving labeled half-

edges. Consider a forward edge labeled a at level l in �, say (v

l

i

; v

l+1

j

), where j = �(i; a; l+1). Note

that for each �xed a and l, there is a constant c (depending on a and l but independent of i) such

that �(i; a; l+ 1) = (i+ c) mod n

l+1

. Now �

h

(v

l

i

) = v

l

i

0

; �

h

(v

l+1

j

) = v

l+1

j

0

, with i

0

= (i+ h) mod n

l

,

and j

0

= (j + h) mod n

l+1

, so since n

l+1

divides n

l

we have

�(i

0

; a; l+ 1) = (i

0

+ c) mod n

l+1

= (((i+ h) mod n

l

) + c) mod n

l+1

= (i+ h+ c) mod n

l+1

= (((i+ c) mod n

l+1

) + h) mod n

l+1

= (j + h) mod n

l+1

= j

0

:

A similar argument applies to cross edges. 2

The analog of Claim 3 also holds for gadgets, provided the � moves use only forward and/or cross

edges. The same may not be true if backward edge labels are used.

Global Strategy.We have now described the gadgets and proto-gadgets, and the adversary's

strategy for building them. We turn to the remaining part of its strategy | charging and commit-

ting edges. Recall that the adversary associates a charge with each connecting edge, in which it

counts moves in G

i;�

. In addition, it associates with each connecting edge a second integer, called

a birthdate, recording the time at which a pebble �rst crosses the edge.

The construction of G

i+1;0

from G

i;�

proceeds as follows. The adversary begins with M in its

initial con�guration in the current graph G

i;�

. The adversary simulates successive moves of M

on G

i;�

until some uncommitted connecting edge accumulates charge � , where edge charges are

determined by the following rules. During a move, suppose M moves pebble p along:

� an edge internal to a gadget or proto-gadget. Let f be the connecting edge most recently

crossed by p. If f has charge less than � , then charge the move to f ; otherwise there is no

charge.
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� a connecting edge f (committed or not). Charge the move to the oldest (i.e., least birthdate)

connecting edge having charge less than � . If this is the �rst step in which a pebble has

crossed edge f in either direction, de�ne the birthdate of f to be the current time.

As sketched in the overview, the second charging rule ensures that when an uncommitted connecting

edge f , even one whose associated pebbles have moved infrequently, accumulates charge � , only a

few of the gadgets of the appropriate type can have been touched by pebbles since the birth of f .

When some uncommitted connecting edge f = fu; vg with label �

u;v

= a accumulates charge

� we stop the simulation, and construct from G

i;�

a new graph G

i+1;0

de�ned as follows. Let �

v

be the proto-gadget entered through f , with v in �

v

. Note that by the charging rules above, each

move in �

v

has been charged to f , so there have been at most � such moves. Thus by Claim 1 the

adversary did not fail while building �

v

. By Claim 2, the proto-gadget �

v

is a subgraph of some

gadget 

v

. We say an entry vertex of a gadget is open if it has degree less than d. If possible,

choose an entry vertex x of a gadget in G

i;�

such that

� x is open,

� x's gadget is of the same type as 

v

,

� x and u are not adjacent, and

� x's gadget has remained pebble free since the birthdate of the uncommitted edge f .

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

(7)

G

i+1;0

is identical to G

i;�

, except that the proto-gadget �

v

is removed, and the uncommitted edge

f = fu; vg is replaced by the committed edge fu; xg with labels �

u;x

= a and �

x;u

= b, where b is

any label not already present on an outgoing half edge at x. If there is no such x, or if using the

only such x would result in G

i+1;0

having neither uncommitted edges nor open entry vertices, we

instead add one additional gadget of type 

v

, choose as x any of the new gadget's entry vertices,

then proceed as described above. The latter contingency avoids premature termination of the

construction. The requirement that x and u be nonadjacent avoids construction of parallel edges.

The behavior ofM on G

i+1;0

is similar to its behavior on G

i;�

. Suppose in G

i;�

the uncommitted

edge f was �rst crossed during the simulation of the b

th

move of M (i.e., has birthdate b), and

accumulates charge � during move b

0

. When M is simulated on G

i+1;0

, it will behave exactly as on

G

i;j

for the �rst b � 1 moves, since the portion of G

i+1;0

visited during that period is exactly the

same as the portion visited in G

i;�

. In particular, the charges and birthdates attached to edges will

be the same. (Thus, one can view the adversary as rolling back the simulation to step b, committing

f , and resuming.) Between steps b and b

0

those pebbles that crossed edge f in G

i;�

will be in x's

gadget 

x

in G

i+1;0

instead of in the proto-gadget �

v

entered through f as they were in G

i;�

, but

since 

x

contains �

v

as a subgraph, their motions in G

i+1;0

will exactly reect their motions in G

i;�

.

Note that by Claim 3, this is true regardless of which entry vertex x of 

x

was chosen. It is crucial

that the chosen gadget 

x

was pebble free between steps b and b

0

, so there is no possibility that

these pebbles will meet pebbles in 

x

in G

i+1;0

that they did not meet in �

v

in G

i;�

. Again, the

charges and birthdates attached to edges will be the same in G

i+1;0

as in G

i;�

through step b

0

. In

particular, each of the i + 1 committed edges in G

i+1;0

will have a charge of � , and hence M will

run for at least (i+ 1)� steps on G

i+1;0

.

Final Construction. After G

i+1;0

is built, we restart the simulation from the beginning on

G

i+1;0

to build G

i+2;0

, etc. Continue this process until G

�;0

is constructed. Finally, from G

�;0

we
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build a pair of similar graphs G and G

0

, one connected and the other not, on which M will have

identical behavior. In particular, if M runs for fewer than � � � steps, then M cannot be correct on

both. The connected graph G is built by

� committing all uncommitted edges, as described above,

� joining the remaining open entry vertices with some number, �, of extra vertices so as to

make G have n vertices and be d-regular, and

� designating one of these extra vertices as t.

One way to accomplish the second step is the following. First, pick any two nonadjacent open

vertices, and connect them. Repeat this as often as possible. Let u be the number of \missing"

half edges, i.e., the total over all open vertices of d minus their degrees, and let i be the number

of remaining open vertices. Since the pairing process could not be applied to reduce i further, it

must be the case that the i open entry vertices form a clique. Recalling that each entry vertex is

incident to at most d� d

0

connecting edges, the number u of missing half edges can be at most

i((d� d

0

)� (i� 1)) � i(d� i) � d

2

=4;

since d

0

� 1, and since i(d � i) is maximized when i = d=2. Thus u � d

2

=4. Furthermore, u

will necessarily be even, since each entry vertex starts with d � d

0

missing half edges; since from

Equation (4) d � d

0

is a multiple of q, hence even; and since each committed edge replaces a pair

of missing half edges. Notice that this implies that d(n � �) is even, since the gadgets together

contain n �� vertices and d(n��)� u half edges, which naturally occur in pairs. Complete the

construction by adding a �-vertex, d-regular graph that contains a u=2-matching, removing the

edges of this matching, and connecting each of the u missing half edges to a distinct endpoint of

the matching. Such a regular graph exists by Proposition 2, since dn, d(n��), and hence d� are

even; since, as shown below, d < � and u � d

2

=4 < �; and since the proof of Proposition 2 given

in Borodin et al. [14] constructs a regular graph that is Hamiltonian and hence has a u=2-matching.

(That construction is similar to the construction of cross edges in one layer of our gadgets, where

the 0-labels form a Hamiltonian cycle.)

The nonconnected graph G

0

is built similarly, except that d+1 of the � extra vertices, including

t, are connected in a clique, and hence disconnected from the rest of the graph.

By an argument similar to one above, M 's behavior on both G and G

0

is essentially the same

as on G

�;0

. In particular, the edge charges will be the same, so it will run for at least � � � steps

without reaching any of the � extra vertices, including t. One point to be shown in the analysis

below is that � � d+ 1 + max(d+ 1; d

2

=4) = d

2

=4 + d + 1, i.e., large enough to allow completion

of the construction of G and G

0

as described above. Since d �

p

n� 2 (in fact, d

2

+ Pd = o(n)), it

su�ces that � � n=4.

Analysis. All that remains to show our 
(m�) lower bound is to give values for the various

parameters so as to satisfy the constraints listed above (and to maximize �). For convenience, we

summarize the relevant parameters and constraints here.

C1. Number of committed connecting edges: � = 
(m).
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C2. Number of vertices added in the �nal step of the construction: � � n=4.

C3. Number of layers per gadget: k � 1.

C4. Size of full blocks in the label partition: q � 2, even.

C5. Number of full label blocks: g = bd=qc.

C6. Upper bound on the number of pebbles entering a proto-gadget: 1 � r � g=3.

C7. Time per committed edge: � ; if P � r then � = (k � dlog

2

ke) bg=3c else � = r .

To satisfy constraint C1, choose

� = bdLn=(8S)c : (8)

Since we have seen in Inequality (1) that L=S = 
(1), we have � = 
(m) as claimed above.

We now turn to constraint C2. We say a gadget is closed if each of its L entry vertices is

connected to the maximum number d � d

0

of committed half edges; otherwise the gadget is open.

G

�;0

has exactly � committed edges, or 2� committed half edges. From Inequality (4), each closed

gadget contributes (d�d

0

)L � dL=2 committed half edges, so by Equation (8) there can be no more

than 2�=(dL=2) � n=(2S) closed gadgets in G

�;0

, each of size S, and so closed gadgets contribute

no more than n=2 vertices to G. Thus, to ensure constraint C2, i.e., that � is at least n=4, it

su�ces to ensure that the following additional constraint holds:

C8. Number of vertices in open gadgets: must be at most n=4.

When building G

i+1;0

from G

i;�

, the adversary replaces a proto-gadget � by a copy of a �xed

gadget . There might be many copies of the gadget  with which � can be replaced. A key claim

in establishing constraint C8 is that there are never more than P (� + 2) + d open copies of such a

gadget.

Claim 4: When G

i+1;0

is de�ned, if there are P (�+2)+d open copies of the gadget 

v

, then at

least one of them will have an entry vertex x satisfying the conditions (7), so a new (open) gadget

will not be introduced into G

i+1;0

.

Proof: We show an upper bound on the number of open gadgets that are disquali�ed from

containing x. It is easy to see that at most d � d

0

� d � 1 entry vertices are adjacent to u in

G

i;�

. A more subtle problem is to bound the number of gadgets that can be touched by pebbles

between the birth of �'s uncommitted connecting edge f , and the time at which f has accumulated

charge � . At most P gadgets contain pebbles at the time of f 's birth. At most P � 1 edges older

than f can have charge less than � , because, by Claim 1, for each such edge f

0

there is at least

one pebble that does not leave its gadget or proto-gadget until f

0

has accumulated charge � . Each

gadget touched by some pebble after the birth of f necessitates the crossing of some connecting

edge. Thus after at most (P � 1)� such crossings, f will be the oldest uncommitted edge, and after

at most � more crossings, f will have charge � . Thus, at most P (� + 1) gadgets can be touched by

pebbles during the relevant interval. Finally, at all times at most P open gadgets are incident to

uncommitted half edges, hence at most P lack open entry vertices. Thus, the number of vertices x

not disquali�ed is at least P (� +2)+d� (d� 1)�P (�+1)�P = 1, which establishes the claim. 2
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Inequality (5) bounds the number of distinct gadget types, Claim 4 bounds the number of open

copies of each, and Inequality (2) bounds the size of each copy. Thus, the total number of vertices

in open gadgets is at most

�

eg

r

�

r(2k+dlog

2

ke)

(P (� + 2) + d) 6dk: (9)

We divide the remainder of the analysis into two cases. The second applies when P is small.

The �rst applies to either small or large P , but gives a weaker bound than the second for small P .

Case 1: Let � = 3�=2 = 1=(2 ln(6e)), let

� = 72

�

d

2

+ Pd ln

n

d

2

+ Pd

�

;

and suppose n, P , and d are such that d

2

+ Pd � n=e and � � n=e

6=�

, both of which are true for

all su�ciently large n, since d

2

+ Pd = o(n). Then we claim that the following parameter values

satisfy constraints C3{C8.

k = 1

q = 2

�

d� 5

� ln(n=�)

�

g = bd=qc

r = bg=3c

� = r

Note that constraints C3 and C5 are immediately satis�ed, as is constraint C7 since k = 1. It is

also immediate that q is even, and is positive, since d � 6, � > 0, and n=� > 1, hence constraint C4

is satis�ed.

For constraint C6, it is immediate that r � g=3. To show r � 1 it su�ces to show q � d=3:

q = 2

�

d� 5

� ln(n=�)

�

� 2

�

d� 5

6

�

= 2

�

d

6

�

�

d

3

:

To satisfy constraint C8 above, we �rst note (making frequent use of the inequalities x=2 � bxc

and dxe � 2x, valid for all x � 1) that

g=r = g= bg=3c � g=(g=6) = 6;

r = bg=3c � g=3 = bd=qc =3 � d=(3q)

=

d

6

l

d�5

� ln(n=�)

m

�

1

6

d

d� 5

� ln(n=�) � � ln(n=�);

r + 2 � 3r;

d

2

+ Pd � d

2

+ Pd ln

n

d

2

+ Pd

< �, and

� = 1=(2 ln(6e)) < 1:
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Returning to constraint C8, we must show that Expression (9) is at most n=4:

�

eg

r

�

r(2k+dlog

2

ke)

(P (� + 2) + d) 6dk

= 6

�

eg

r

�

2r

(d

2

+ Pd(r + 2))

� 18(6e)

2r

(d

2

+ Pdr)

� 18(6e)

2� ln(n=�)

(d

2

+ �Pd ln(n=�))

= 18(n=�)(d

2

+ �Pd ln(n=�))

=

18n(d

2

+ �Pd ln(n=�)

72

�

d

2

+ Pd ln

n

d

2

+Pd

�

< n=4;

as desired.

To complete the analysis of case 1, we show that � is large enough to imply the bound in the

statement of the theorem:

� = r = bg=3c � g=6 = bd=qc =6 � d=(12q)

=

d

24

l

d�5

� ln(n=�)

m

:

The latter quantity equals d=24, if d � � ln(n=�) + 5. If d > � ln(n=�) + 5, then:

d

24

l

d�5

� ln(n=�)

m

�

d

48

�

d�5

� ln(n=�)

�

=

1

48

d

d� 5

� ln(n=�)

�

� ln(n=�)

48

=

�

48

ln

n

72

�

d

2

+ Pd ln

n

d

2

+Pd

�

�

�

48

ln

n

72 (d

2

+ Pd) ln

n

d

2

+Pd

= 


�

ln

n

d

2

+ Pd

�

:

The penultimate inequality holds since by assumption ln(n=(d

2

+ Pd)) � 1. The �nal lower bound

follows since ln(x=(72 lnx)) = 
(lnx). Thus, � = 
(min(d; ln(n=(d

2

+ Pd)))) as claimed in the

statement of the theorem.
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Case 2: Recall � = 1=(3 ln(6e)), and suppose 6P � d �

p

n=6

9

and 1 � P � � ln(n=d

2

). (Note

that d �

p

n=6

9

must be true for all su�ciently large n, since d

2

+Pd = o(n).) Then we claim that

the following parameter values satisfy constraints C3{C8.

q̂ =

ed

P

 

d

2

n

!

1=(3P )

q = 2 dq̂=2e

g = bd=qc

r = P

k =

$

ln(n=d

2

)

3P ln(ed=(qP ))

%

� = (k � dlog

2

ke) bg=3c = �(gk)

Note that constraint C5 is immediately satis�ed, as is constraint C7 since r � P . Since q̂ is positive,

it is also immediate that q is even and is positive, hence constraint C4 is satis�ed.

Note for future use that

(n=d

2

)

1=(3P )

� (n=d

2

)

1=(3� ln(n=d

2

))

= e

1=(3�)

= 6e: (10)

For constraint C3, note that q � q̂. Thus,

k =

$

ln((n=d

2

)

1=(3P )

)

ln(ed=(qP ))

%

�

$

ln((n=d

2

)

1=(3P )

)

ln(ed=(q̂P ))

%

=

$

ln((n=d

2

)

1=(3P )

)

ln((n=d

2

)

1=(3P )

)

%

= 1:

Thus, k � 1. Using a similar analysis, we note for future use that k = 1 whenever q > 2. This

holds since q > 2 implies q̂=2 > 1, which implies q � 2q̂. Thus,

k =

$

ln((n=d

2

)

1=(3P )

)

ln(ed=(qP ))

%

�

$

ln((n=d

2

)

1=(3P )

)

ln(ed=(2q̂P ))

%

=

$

ln((n=d

2

)

1=(3P )

)

ln((n=d

2

)

1=(3P )

=2)

%

= 1: (11)

The last equality follows from the fact that 1 < (lnx)=(ln(x=2)) < 2 whenever x > 4, and from

Inequality (10).

For constraint C6, it is immediate that r = P � 1. To show r � g=3 it su�ces to show 3qP � d.

If q = 2, this holds since by assumption 6P � d. If q > 2, then q̂=2 > 1, so

3qP = 6 dq̂=2eP � 6q̂P = 6(ed=P )(d

2

=n)

1=(3P )

P � 6ed=(6e) = d: (12)

The last inequality follows from Inequality (10).

For constraint C8, we �rst note for integer k � 1 that

2k + dlog

2

ke � 8k=3:

(The bound is tight at k = 3.) Also,

� + 2 = (k � dlog

2

ke) bg=3c+ 2 � gk;
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since g � 3. Using Expression (9), we bound the number of vertices in open gadgets as follows.

�

eg

r

�

r(2k+dlog

2

ke)

(P (� + 2) + d) 6dk

� 6

�

eg

P

�

8Pk=3

dk(Pgk+ d)

� 6

�

ed

qP

�

(8=3)P

j

ln(n=d

2

)

3P ln(ed=(qP ))

k

dk(Pdk=q + d)

� 6

�

n

d

2

�

8=9

d

2

(Pk

2

=q + k)

� 6n

8=9

d

2=9

(Pk

2

=q + k)

We break the rest of the derivation of constraint C8 into two subcases based on d. Note that, since

3qP � d from Inequality (12),

k =

$

ln(n=d

2

)

3P ln(ed=(qP ))

%

�

lnn

3P ln(3e)

� lnn:

When d < n

1=4

, since k and P are both O(logn), we have

6n

8=9

d

2=9

(Pk

2

=q + k) = O(n

8=9

(n

1=4

)

2=9

log

3

n) = O(n

17=18

log

3

n) = o(n):

When d � n

1=4

, we will show that q > 2P and k = 1, so we have

6n

8=9

d

2=9

(Pk

2

=q + k) � 6n

8=9

(n

1=2

=6

9

)

2=9

(1=2 + 1) = n=4:

We show that q > 2P as follows.

q

P

�

q̂

P

=

ed

P

2

 

d

2

n

!

1=(3P )

�

n

1=4

P

2

 

n

2=4

n

!

1=3

=

n

1=12

P

2

= !(1):

(Recall P = O(logn).) Since q > 2P and P � 1, we have q > 2, so k = 1 by Equation (11).

To complete the analysis of Case 2, we show that � = (k � dlog

2

ke) bg=3c is large enough to

imply the bound in the statement of the theorem. Again we split the analysis into two subcases

based on d. We have q > 2 if and only if q̂ > 2, which holds exactly when

d > d

0

= (2P=e)

3P=(3P+2)

n

1=(3P+2)

:

In this case we have k = 1 by Equation (11), and

� = bg=3c � g=6 � d=(12q) � d=(24q̂) =

d

24

�

ed

P

�

d

2

n

�

1=(3P )

�

=

P

24e

�

n

d

2

�

1=(3P )

(13)

= 


 

P

�

n

d

2

�

1=(3P )

!

;

39



as claimed. We remark that, by Equation (10), when P is maximal, Expression (13) is P=4 =

�(log(n=d

2

)), so the transition to the bound given in Case 1 is \smooth."

In the second subcase we have d � d

0

. First, note that

d

0

= (2P=e)

3P=(3P+2)

n

1=(3P+2)

� Pn

1=(3P+2)

� Pn

1=5

= o(n

1=4

): (14)

Second, since d � d

0

, we have q = 2 and k � 1. Also, note that (k � dlog

2

ke)=k � 1=3; (attaining

the minimum at k = 3) and that g � 3. Hence � = 
(gk), and

gk =

�

d

q

�

$

ln(n=d

2

)

3P ln(ed=(qP ))

%

�

d ln(n=d

2

)

24P ln(ed=(2P ))

=

d ln(n=o(n

1=2

))

24P ln(ed=(2P ))

= 


�

d=P

ln(d=P )

lnn

�

;

as claimed. We remark that when P is maximal and d � 6P , the estimate in Inequality (14) can

be re�ned, allowing one to show d = �(P ) = �(logn). Thus, � again matches the bound in Case

1 (up to constant factors).

Finally, when d = d

0

we have q̂ exactly equal to 2; similarly, when d = d

0

the expression of

which k is the oor is precisely 1. Furthermore, both expressions vary slowly with d, so both are

�(1) when d is near d

0

. Thus, again � = (k� dlog

2

ke) bbd=qc =3)c is \smooth" as d crosses d

0

, the

threshold between the lower bounds quoted in (1) and (2) in the statement of the Theorem, and in

fact both lower bounds are �(md

0

) for d near d

0

.

This completes the proof. 2

It is interesting to note why the proof would fail if M were allowed to jump pebbles. In the

local phase, the adversary was able to pick an existing gadget in which p must invest � steps. In

the presence of jumping, this fails, since p can always jump out of the new gadget. As a particular

foil to the proof above, imagine an automaton that stations one pebble p on an entry vertex of

some gadget, and successively moves a second pebble q to each neighbor, jumping q back to p to

�nd the next neighbor. In time �(d), this has touched all �(d) connecting edges incident to that

entry vertex, which was impossible in the construction above.

The results given in this section are a �rst step towards understanding the power of JAGs with

active pebbles. The results focus on graph families with nonbijective labeling and are strongest

when degree is larger than the number of pebbles, and is growing. Especially in light of Lemma 1,

it would be desirable to extend the results to the interesting case of symmetrically labeled graphs

of �xed degree, say d = 3, with a number of pebbles greater than the degree.

40



6. Lower Bounds for the Cycle

6.1. A Lower Bound on the Number of States

In this section we show that deterministic nonjumping automata with a constant number Q of

states, one active pebble, and a constant number P of passive pebbles are too weak for studying

lower bounds on time. In fact, unless PQ = 
(n) such automata cannot even traverse all n-vertex

cycles, no matter how much time they are allowed.

Lemma 19: Let � 2 f0; 1g

�

. Consider the chain C

�

of length 2j�j with left endpoint L, right

endpoint R, and midpoint M , and edge labels so that � is the labeling from L to M and also

from R to M . Then starting at any vertex v on C

�

that is an even distance from L and traversing

according to � terminates at M .

Proof: Consider three pebbles traversing simultaneously according to �, beginning at L, v,

and R, respectively. A straightforward induction shows that the pebble that began at v is always

an even distance from the other two and between them. Since the ones that started at L and R

both end at M , so does the third. 2

Theorem 20: Any WAG W that traverses every labeled n-cycle using Q states, one active

pebble, and P passive pebbles satis�es (P + 4)Q � n.

Proof: Assume to the contrary that (P +4)Q < n. Consider the action of W 's active pebble if

it never encounters a passive pebble it previously dropped: it traverses according to the sequence

t = �

0

�

1

� � ��

P

2 f0; 1g

�

, where �

i

is its traversal after dropping i but before dropping i + 1

pebbles. If each j�

i

j � Q, then jtj � (P + 1)Q < n � 1, so that W does not traverse any cycle

having t as the pre�x of the clockwise labeling beginning at the start vertex. Thus let i be the least

integer such that j�

i

j > Q. Then W repeats some state during this interval, and �

i

= ���� � � � is

in�nite, with j�j+ j�j � Q.

Let � = �� and t

0

= �

0

�

1

� � ��

i�1

�. Consider the cycle in which t

0

is the clockwise labeling

from the start vertex to a vertex L, followed by an embedding of the chain C

�

of Lemma 19

from L clockwise to R. Notice that jt

0

j + jC

�

j � (P + 4)Q < n, so that this labeling can be

embedded on a cycle of length n. Now a traversal according to t

0

� causes the active pebble to

move unidirectionally to the midpoint M of C

�

, so that no pebble dropped is reencountered. By

Lemma 19, each further traversal according to � returns to M , so that the pebbles previously

dropped cannot be reencountered, and R is never reached. 2

In contrast, it is easy to see that there is a nonjumping automaton that traverses every labeled

n-cycle using a constant number of states and only 2 active pebbles, and in addition requires

only O(n) time. The idea is to maintain the invariant that the leading and trailing pebbles are

on adjacent vertices, and the automaton knows the label from the trailing pebble to the leading

pebble. Now after moving the leading pebble along label 0 it is a simple matter to advance both

pebbles one vertex while maintaining the invariant. A similar construction works with only one

passive pebble, if the automaton can jump.
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Cook and Racko� [19, Theorem 4.14] present a family of 3-regular graphs that cannot be tra-

versed using a constant number of states and pebbles, even if jumping is allowed and the edge labels

are disclosed. The price paid to capture this strengthened model is a bound that is quantitatively

weaker than that of Theorem 20. For instance, they do not rule out the combination Q = O(1)

and P = O(log logn).

6.2. The Form of Universal Traversal Sequences

As another byproduct of Lemma 19, there is an interesting corollary concerning universal traversal

sequences for the cycle. It is not clear a priori that a sequence such as (00010)

n

2

could not be

universal for all cycles. The following corollary of Lemma 19 shows that this is impossible.

Corollary 21: For any � 2 f0; 1g

+

and any integers n and k, if j�j < n=2 then �

k

is not a

universal traversal sequence for all labeled n-cycles.

Proof: Since j�j < n=2, the chain C

�

of Lemma 19 can be embedded in a cycle of length n.

Consider a traversal according to � starting at M . If j�j, the distance from M to L, is even then,

according to Lemma 19, the traversal ends at M . If j�j is odd then the traversal ends at a vertex

an even distance from L, so that a second traversal according to � returns to M . In either case a

traversal according to �� starting at M returns to M after visiting at most j�j + 1 < n distinct

vertices. Therefore �

k

starting at M never visits more vertices. 2

Using similar techniques, Theorem 22 proves that the previous result in fact holds for any even

length � such that � is not a universal traversal sequence for all labeled (n=2)-cycles. For instance,

it holds for any � whose length is even and O(n

1:29

) (Tompa [36]).

Theorem 22: For any � 2 f0; 1g

�

of even length, any even integer n, and any integer k, if � is

not a universal traversal sequence for all labeled (n=2)-cycles, then �

k

is not a universal traversal

sequence for all labeled n-cycles.

Proof: Since � is not a universal traversal sequence for all labeled (n=2)-cycles, there is a

labeled chain C of n=2�1 vertices with a vertex S such that starting at S and traversing according

to � never leaves C and ends at some vertex T . Construct a cycle of length n as follows (see

Figure 2): take a copy of C in which T is clockwise from S, followed by a new vertex M , followed

by a copy C

0

of C in which the copy T

0

of T is counterclockwise from the copy S

0

of S, followed by

a new vertex X .

Now start at any vertex s on the arc between S and S

0

containingM , where s is an even distance

from S, and traverse according to �. This must terminate at a vertex t on the arc between T and

T

0

containing M , where t is also an even distance from S, without ever reaching X . The reason

t is between T and T

0

is that the walk from s to t is trapped between the walks from S to T and

from S

0

to T

0

. The reason t is an even distance from S is because s is, and because j�j is even.

Therefore, starting at S and traversing according to �

k

will never reach X , for any k. 2
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Figure 2: A Cycle Constructed from a Chain and its Reversal

7. Open Problems

The obvious important problem is to strengthen and generalize these lower bounds. The ultimate

goal might be to prove that ST = 
(mn) for JAGs, or even for general models of computation. At

this point, however, it is an open problem to prove T = !(n logn), even for nonjumping automata

with only two pebbles, one of which is passive, on constant degree graphs, or to prove T = !(n)

for nonjumping automata with O(1) active pebbles on degree 3 graphs.

It would be interesting to strengthen the result of Section 5 to bijectively labeled graphs, or

to strengthen the bounds for automata having more pebbles than the graph's degree. Cook and

Racko� [19, Theorem 4.13] show how to convert lower bounds on high degree graphs into lower

bounds on degree 3 graphs, but unfortunately their conversion seems to rely on the ability to jump.
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