
Building FIFO and Priority-Queuing

Spin Locks from Atomic Swap

Travis S. Craig

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195

travis@cs.washington.edu

Technical Report 93-02-02

February 1, 1993

Abstract

We present practical new algorithms for FIFO or priority-ordered spin locks on shared-

memory multiprocessors with an atomic swap instruction. Di�erent versions of these

queuing spin locks are designed for machines with coherent-cache and NUMA memory

models. We include extensions to provide nested lock acquisition, conditional locking,

timeout of lock requests, and preemption of waiters. These locks apply to both real-

time and non-real-time parallel systems and we include a comparison of the traits of

several lock schemes aimed at those environments. Our main technical contributions

are our techniques and algorithms that provide tight control over lock grant order, use

only the atomic swap instruction, use at most one (local only) spin for lock acquisition

and no spinning for lock release, and need only O(L+ P ) space on either a coherent-

cache or NUMA machine.

This research was supported in part by the National Science Foundation under grant number CCR-

9200858 and by a National Defense Science and Engineering Graduate Fellowship.

1



1 Introduction

To maintain the logical consistency of shared data structures is a common problem on shared-

memory multiprocessors. One standard technique for maintaining consistency is to protect

each structure or set of structures with a lock. A process that needs to access a structure

must request the lock for that structure. After acquiring the lock, that process is guaranteed

exclusive access to the structure until it releases the lock. Other processes that request the

lock in the meantimemust wait. When a process releases the lock, one of the waiters acquires

the lock and may proceed to use the structure while the others continue to wait.

Processes wait for locks either passively (\relinquishing" the CPU) or actively (\spinning").

To wait passively, a process registers its request for the lock and blocks in order to allow

other processes to use its processor while it waits. When the lock is released, one of the

registered waiters is chosen to acquire it. The chosen waiter is unblocked and runs when

scheduled. To wait actively, a process typically enters a tight loop in which it repeatedly

checks the status of the lock and/or attempts to acquire it. Once it acquires the lock, it

simply proceeds to access the protected structure.

Both Anderson [And90] and Mellor-Crummey and Scott [MCS91] provide extensive discus-

sions of the relative strengths and weaknesses of relinquishing and spinning. Together with

Graunke and Thakkar [GT90], they discuss numerous architectural and software considera-

tions and evaluate several spin lock schemes in the context of non-real-time parallel systems.

Molesky, etal [MSZ90] and Markatos and LeBlanc [ML91] discuss the considerations for real-

time systems. Each of these sources also introduces one or more schemes for queuing spin

locks, in which each waiting process spins on a separate location (a separate cache block

on coherent-cache machines) and ownership of the lock is explicitly passed from process to

process.

In non-real-time systems, where a major goal is to reduce average-case execution times, the

main potential bene�t of a queuing spin lock is that the waiting processes don't all spin on

one location. In fact, each process can spin on a location that is in some way local to its

processor, thereby reducing the load on the interconnect between processors and memory.

This trait is particularly important during a period of high contention, when there are

several waiters for one lock. In addition, a queuing spin lock might grant requests in FIFO

order, providing a sort of \fairness" to the processes and guaranteeing against starvation.

We provide a FIFO queuing spin lock for coherent-cache machines and one for non-uniform

memory access (NUMA) machines.

The ability to control the order of granting requests is the main appeal of queuing spin

locks in real-time systems, where a major goal is to reduce worst-case execution times. One

way to help bound execution times is to bound the waiting time for a lock by using a FIFO

granting order. In priority-scheduled real-time systems, however, a common goal is to reduce

priority inversion (where a lower-priority process is holding a resource that is needed by a

2



higher-priority process [SRL90]). Therefore, we are interested in mechanisms to grant locks

to waiting processes in priority order. We provide a priority-queuing spin lock for coherent-

cache machines and one for NUMA machines.

Beyond the factors already mentioned, we seek to broaden the practical applicability of our

locking schemes by extending them with the following features:

� Nesting | Allow a process to hold more than one lock at a time.

� Timeout | Allow a process that's waiting for a lock to rescind its request if it hasn't

been granted by some time limit.

� Conditional Request | Allow a process to request a lock on the condition that the lock

is available. If the lock is being held by another process, then the requester returns

immediately with an indication that it did not receive the lock.

� Preemption of Waiters | Ensure that a lock is not granted to a waiter that is not

running, but don't prevent the scheduler from preempting a process that is waiting for

a lock.

1.1 Previous Work on Queuing Spin Locks

The works cited earlier [And90, GT90, MCS91] use queue locks for general-purpose (non-

real-time) multiprocessor synchronization in coherent-cache and/or NUMA machines. Their

goal, therefore, is good average-case behavior.

Molesky, Shen, and Zlokapa [MSZ90] start from work by Burns [Bur78] and their own work

on characterizing round-robin buses to produce schemes that grant locks in round-robin

fashion, using test-and-set as their only atomic instruction. By doing so, they at least bound

priority inversion by bounding the waiting time for any given processor to get a lock. They

also cover some subtle hardware considerations for attaining predictability.

Markatos and LeBlanc [ML91] attack the same priority spin lock problem as we do, but for (1)

coherent-cache machines with test-and-set instructions and (2) coherent-cache and NUMA

machines with both swap and compare-and-swap instructions. They base their solutions

on their improved version of Burns [Bur78] and on Mellor-Crummey and Scott [MCS91],

respectively. In the course of their work, they develop a number of important concepts that

are basic to priority spin locks. We cite their work when we present or use their concepts.

Our work di�ers from theirs in that we solve the problem for coherent-cache and NUMA

machines with atomic swap instructions. We o�er a comparison of our schemes in Section 6.

Another di�erence between our work and theirs is in the extended features that we present

in Section 5.

3



1.2 Organization

The rest of this paper is organized as follows.

� Section 2 contains the de�nitions and architectural model that we use.

� Section 3 presents our basic FIFO and priority-queuing spin lock schemes for a machine

with coherent caches.

� Section 4 presents our basic schemes for a machine with non-uniform memory access

and no coherent caches.

� Section 5 describes extensions to our basic schemes to improve the priority queue and

to provide nesting, timeout on acquisition, conditional acquisition, and preemption of

waiters.

� Section 6 discusses the state of our work and compares our results with other queuing

spin lock schemes.

� Section 7 summarizes our technical contributions to date and lists work remaining to

be done.

2 De�nitions and Model

When we speak of a process in this paper, we mean a schedulable entity. Our process could

be a thread in many systems.

We often refer to gaining or holding a lock. The lock, in this case, is the mechanism by which

we guarantee mutually exclusive access to a resource or critical section. The critical section

comprises the part of the process that uses the protected resource. We use the concepts of

holding a lock or resource and occupying a critical section interchangeably.

The data structures we use generally include three record types, Locks, Processes, and Re-

quests. There is one Lock record for each lock that can be requested. With queue locks, the

Lock record might or might not actually contain an indication of whether the resource is

locked; our Lock records contain only pointers. There is one Process record per process. To

request a lock, a process places a Request record (and sometimes its own Process record) on

the queue of requests for the lock. In all of the schemes, a lock being released is explicitly

granted to �ll one of the requests on the list. The remaining requests are still pending.

The results reported here assume a loosely de�ned shared-memory multiprocessor architec-

ture. The machine is byte-addressed, with 32-bit virtual addresses and a 32-bit word size.

4



We use one type of read-modify-write instruction, an atomic swap (fetch-and-store) of 32-bit

values between a register and a location in memory. During a swap to a shared location, no

other access to the same location interleaves with the parts of the swap.

Processor

Cache

Processor

Cache

Processor

Cache

MemoryMemory

Processor Memory Processor Memory Processor Memory

(b)  NUMA Machine

(a)  Coherent Cache Machine

Interconnect

Interconnect

Memory

Figure 1: Memory Models

We use two simple memory models. Our generic coherent-cache machine is shown in Figure

1(a). Each processor is connected through its own cache to a shared interconnect and then to

the shared memory. Any private physical memory that a processor might have (not shown)

is used only for non-shared locations. The access time is uniform for a processor that reads

any shared location that's not in its cache. The caches maintain coherence of the shared

memory. In our model, a process that repeatedly reads a location without any intervening

writes to the same cache block by other processes only uses the interconnect once, on the

�rst read, to get the location into its cache. A process that repeatedly writes and reads a

location without any intervening reads or writes of the same cache block by other processes

only uses the interconnect once, on the �rst write, to invalidate the block in all other caches.

The location we are swapping is not generally already in our cache, so the atomic swap

generally involves two uses of the interconnect, one to read the block and one to invalidate

it.

Our generic NUMA machine is shown in Figure 1(b). Each processor is connected to a

5



local memory and to a shared interconnect that connects it to other processors. Any cache

that a processor might have (not shown) is used only for non-shared locations. The shared

memory of the machine is spread across the local memories of the processors. The times for

a processor to read or write shared locations is highly non-uniform. The read or write of

a shared location in a processor's local memory (local access) is \much faster" than that of

a location in another processor's shared memory (remote access). In addition, the remote

access uses the interconnect while the local access does not. Again, our swaps are generally

to remote memory, so we assume that an atomic swap makes twice the use of the interconnect

that a simple read or write does. Due to the non-uniformity of memory access, it's important

to force certain data structures to be allocated in a processor's local memory. We assume that

processes and data structures do not migrate between processors on the NUMA machine.

3 Queuing Spin Locks on Machines with Coherent

Caches

Starting with Graunke and Thakkar's FIFO-queuing spin lock [GT90], we must solve two

problems to adapt it to a priority queue. First, a process that has just granted the lock

to an arbitrary waiter must be able to know when its Request record is available for it to

request the lock again. We cannot depend on the FIFO nature of the queue as Graunke and

Thakkar do. Second, the lock holder must be able to �nd the highest-priority waiter.

Solving the �rst problem leads to our version of the FIFO lock, described in Section 3.1 and

Appendix A. The di�culty is that a process cannot know when the Request it has granted

is no longer being watched by another process and can be reused. A process does know,

however, that the Request it has watched is available as soon as it's granted.

We describe our FIFO lock before proceeding to the problem of �nding the highest-priority

waiter.

3.1 FIFO Queue with Coherent Cache

We explain our FIFO lock for machines with coherent caches (coherent-FIFO lock) in this

section by showing pseudo-code of the type de�nitions and initialization code and a diagram

of the data structure operation. The whole pseudo-code is shown in Appendix A.

For the coherent-FIFO lock, the record de�nitions and the routines to initialize the struc-

ture are shown in Figure 2. Figure 3(a) labels our graphic representations for the Process,

Request, and Lock records of this lock.

The routine new block aligned allocates a Request record and assigns its address to a pointer

6



type Lock = record

tail : ^Request // Request to be watched by next

end record // requester

type Process = record

watch : ^Request // Request that grants lock to me

myreq : ^Request // Request that I grant when thru

end record

type Request = record

state : (PENDING, GRANTED)

end record

procedure init_Lock (var L : Lock)

new_block_aligned (L.tail) // allocate a Request for the Lock

L.tail^.state := GRANTED // mark the Request as GRANTED (lock

// is free)

end procedure

procedure init_Process (var P : Process)

new_block_aligned (P.myreq) // allocate a Request for the Process

end procedure

Figure 2: Record De�nitions and Initialization Code for Coherent-FIFO Lock

variable, just as new does in Pascal, but new block aligned guarantees that the Request starts

on a new cache-block boundary and occupies one or more whole blocks. We thus prevent

Requests from sharing cache blocks. That, in turn, prevents two processes from spinning on

the same cache block.

The routine request lock is called to acquire a lock. In that routine, a process (say P) marks

a Request as PENDING and provides it to the lock for P's successor to spin on (watch) in

exchange for the Request left there by P's predecessor. P then spins on the predecessor's

request record until it's granted, at which time P holds the lock and can proceed to use the

protected resource.

Figure 3(b) shows a system after initialization with one lock and three processes, where P

1

has already set its Request to PENDING and is about to enqueue the Request. Figure 3(c)

shows the situation just after P

1

's Request is enqueued and P

1

holds the lock. The request

by P

1

is followed in order by those of P

2

and P

3

, respectively. All three requests are shown

in the queue in Figure 4(a). At that point, P

1

still holds the lock and P

2

and P

3

are spinning

in their caches, adding no load to the interconnect.

The routine grant lock is called to release a lock. In that routine, the lock holder simply grants

7



0R

G

L

R1

P

R 3

X

R2

X

L

0R

G

R1

P

P1

R2

X

R 3

X

R

state

Request

P

myreq watch

Process

P1 P2 P3

X X X

P3P2

XX

(c)

(b)

(a) L

tail

Lock

G = GRANTED

P = PENDING

X = Don’t care

Figure 3: Coherent-FIFO Lock Structure in Operation

the Request (myreq) that it put on the queue in the �rst place, allowing the next requester

to obtain the lock. Then the releaser alters its own Process record to take ownership of the

Request that was granted to it by its predecessor.

Figure 4(b) shows the structure after P

1

has passed the lock to P

2

and taken ownership of

R

0

. Finally, Figure 4(c) shows the structure after P

2

and P

3

have both released the lock and

it is unlocked.

A key idea in our algorithms, then, is to exchange ownership of Request records each time a

process is granted the lock. When a lock is initialized, it is allocated a Request record that

is marked as GRANTED. When a process is initialized, it is allocated a Request record,

too. A side e�ect of this change is to remove the requirement for a Request record per lock

per process in the Graunke and Thakkar scheme (O(L � P ) Requests in a system with L

locks and P processes). Our scheme uses just one Request per lock or process in the system

(O(L + P ) Requests). Besides saving space, it seems easier to manage our structures in a

system where the number of locks and/or processes might not be known beforehand.

8



L

0R

G

R1

P

P1

R 3

P

R2

P

P2P3

L

R2

X

P3

X

R1

X

P2

X

L

R 3

P

R2

P

P2P3

0R

P1

X

X

R 3

G

(a)

R1 0R

P1

G X

X

(b)

(c)

Figure 4: Coherent-FIFO Lock Structure in Operation (cont'd.)

3.2 Priority Queue with Coherent Cache

Note, in Figure 4(a), that our queue of waiters di�ers from a conventional linked data

structure in that it cannot be passively traversed. While conventional queues contain only

passive (data) elements and may be traversed by a single active process, our queue consists

of alternating passive and active elements. The only way that activity can proceed along the

queue is by the sequential granting of requests by the processes in the queue.

To make a priority queue lock for a coherent-cache machine (coherent-priority lock), we add

pointers that allow the lock holder to traverse the list of waiters from the oldest request to

the newest one on the list. The new pointers include a head pointer from the Lock record

9



to the oldest Request and a pointer from a Request to the Process that is watching it. We

also add a back pointer from a Request to the Process that owns it (placed it on the queue),

to simplify writing the algorithm. Thus, a Process and the Request that it owns are doubly

linked to each other.

The pseudo-code for our coherent-priority lock is shown in Appendix B and its operation

is diagrammed in Figure 5. For this and later algorithms, we leave out the initialization

code. The graphical representation is labeled in Figure 5(a) and a newly initialized lock and

process are shown in Figure 5(b).

When a process enqueues its request (Figure 5(c)), it receives a pointer to the Request that

it should watch, just as in the FIFO case. It then stores a backpointer to its own Process

record in the watcher �eld of the Request. The list structure is stable (pointers not being

written by other than the lock holder) from the head Request down to the Request owned by

the newest process that has set its backpointer. Figure 5(d) shows a lock with four processes

on its queue. Process P

1

holds the lock and the list is stable all the way from R

0

to R

3

,

where P

4

has yet to set the watcher pointer.

The stable portion is the part of the list on which the lock holder can operate safely. The

stable portion always includes the current lock holder. Thus, the lock holder can remove

itself and its new Request (the one it watched) from the list, which is its �rst step in releasing

the lock. In Figure 5(e), P

1

has removed itself and its new Request from the list.

The next step is to �nd the highest-priority waiter, which is done simply by traversing the

stable portion of the list. As noted by Markatos and LeBlanc [ML91], we must �rst choose

the highest-priority waiter and then grant it the lock. There is no atomic action to do both.

Therefore, it's possible that, after the lock holder has traversed the stable portion of the list

and chosen the highest priority waiter, but before it has granted the lock, more processes

might �nish enqueuing themselves. In that case, they are considered the next time the lock

is released. By starting at the head of the list, we give the newcomers the best chance to

�nish enqueuing themselves before we reach them. Note, however, that any processes with

requests after P

4

's, even if fully enqueued, will not be seen at least until P

4

has �nished

enqueuing itself.

Finally, the lock holder simply grants the request of the highest-priority waiter in the same

manner as it would grant the request of the oldest waiter in the FIFO queue. In the situation

pictured in Figure 5(e), P

1

would choose P

3

as the highest-priority waiter and pass it the

lock by setting the state of R

2

to GRANTED.

Figure 5(f) shows one more type of operation on the data structure. As shown there, P

3

is

preparing to release the lock and has removed itself and its new Request record from the

list. Their pointers are shown as dashed arcs to distinguish them from the arcs that form

the remainder of the list. Also shown is that P

4

has �nally �nished enqueuing itself and will

be considered in P

3

's search for the highest-priority waiter.

10



tail

Lock

state

Request

G = GRANTED

myproc head
(a)

watcher
P = PENDING

X = Don’t care

/ = nil

myreq watch

Process

pri

(b)

R1

P1
5

X

(f)

(e)

(d)

R1

P1

P

5

R0

G

R2

P2
3

PPP

R4
/ /

L P4
9

R3
/

P3
7

R1

P1

P

5

R0

G

R2

P2
3

PPP

R4
/ /

X

X

R3
/

P4
9

L P3
7

R1

P

R2

P2
3

PP

R4
/ /

R3

P3
7

X

G

X

L P4
9

R0

G

L

R P L

(c)

L

R1

P1
5

P

R0

GX

Figure 5: Coherent-Priority Lock Structure in Operation

11



4 Extending Our Scheme to a NUMA Machine

The problem in a NUMA machine is not merely to have di�erent processors watch di�erent

locations. Without a cache coherence mechanism, each processor must spin on a location in

its local shared memory. With our scheme of exchanging ownership of Requests, however,

the physical location of the Request record that a process watches is unrelated to which

processor is doing the watching. To adapt our scheme to the NUMA environment, then,

we set up a pointer from the Request record back to the Process that's watching it. The

waiter can then check the Request once and, if not GRANTED, spin on a location in its

own (locally allocated) Process record. The granter, in turn, must mark the Request as

GRANTED and then check for a pointer to a waiting Process. If it �nds a pointer, it follows

the pointer and sets the state of the waiting process to GRANTED.

To prevent a possible race between the waiter and the granter, we use a protocol of swaps

in which either the GRANTED indication is passed to the waiter or the Process pointer is

passed to the granter. To implement this scheme, we require Process pointers to be even

numbers, so we can use the low-order bit of the Process pointer as the state of the Request.

That way, the watcher and state �elds of the Request record are combined in one 32-bit

word and can be swapped as a unit. If the waiter performs its swap before the granter,

then the waiter receives a state of PENDING and the granter receives the Process pointer.

Otherwise, the waiter receives a state of GRANTED and the granter receives a nil pointer.

The two possibilities are illustrated in Figure 6.

4.1 FIFO Queue on a NUMA Machine

The pseudo-code for our NUMA-FIFO lock is shown in Appendix C. The only other feature

that requires explanation is the initial swap of the nil pointer into the watcher �eld and the

PENDING status into the state �eld of the Request. Having very imprecisely de�ned the

shared memory system for this machine, we use this swap to signify that we must guarantee

that the nil pointer and the PENDING status are safely stored in the Request record before

the pointer to that Request is placed in the Lock record in the next swap.

4.2 Priority Queue on a NUMA Machine

The pseudo-code for our NUMA-priority lock is shown in Appendix D. It simply combines

the features of the coherent-priority lock and the NUMA-FIFO lock.

12



Initial Condition

(dummy, state)

Waiter Granter

(watcher, dummy)
Request

(watcher, state)

P

P            nil

            nilPointer to Waiter G

Granter

(watcher, dummy)

PPointer to Waiter

(dummy, state)

Waiter

P            nil

Waiter Swaps First

Request

(watcher, state)

PPointer to Waiter

Granter

(watcher, dummy)

            nil G

(dummy, state)

Waiter

P

(dummy, state)

Waiter

            nil

Pointer to Waiter

G

Granter Swaps First

Request

(watcher, state)

            nil

Request

(watcher, state)

PPointer to Waiter

G

Granter

(watcher, dummy)

P            nil

Granter

(watcher, dummy)

P            nil

(dummy, state)

Waiter

P            nil

Request

(watcher, state)

            nil G

Figure 6: Operation of the Swap-Based Lock-Granting Protocol

13



5 Other Features

5.1 Speed of Selecting a Grantee

Markatos and LeBlanc [ML91] assume in their model that process priorities are dynamic,

as they are in some real-time scheduling schemes (eg. earliest deadline �rst (EDF), least

slack time). If priorities can change at any time, then it's necessary for each lock holder to

consider all waiters when choosing a successor. In that case, it takes O(n) time to grant the

lock (where n is the number of waiters).

With static priorities (eg. rate monotonic scheduling), we can improve on that time com-

plexity by maintaining an auxiliary data structure of waiters. For instance, a heap provides

an average O(log n) time to grant a lock. The idea here is that each lock holder starts with

the L.head pointer and traverses the list of waiters, inserts them into the heap, and changes

L.head to keep track of where it left o� in the list. It then removes the highest-priority

waiter from the heap and grants the lock to it.

Our scheme would also work with quasi-static priorities, where the relative priorities of

existing tasks (a task is a particular execution of a process) are static. EDF is an example.

In that case, the priorities of the waiters already in the heap are not changing relative to

each other and new waiters can be added to the correct position in the heap.

We recognize that the added complication, time, and space of using the heap would not pay

o� unless the number of waiters were quite high, but use of the heap can be switched on and

o� adaptively, for any given lock, by the releasing routine.

5.2 Nested Locks

With the other schemes that use O(L+P ) space [MCS91, ML91], a lock-holding process that

needs to acquire another (nested) lock must provide an additional Request record. Therefore,

with nesting they require O(L+P �D) space, where D is the depth of the nesting. We can,

however, adapt our scheme to allow nested lock acquisitions without requiring any additional

Request records.

For clarity, the algorithms in this paper have the lock holder take ownership of its new

Request as part of the lock releasing procedure. To provide nested requests, though, a

process must take ownership of its new Request as soon as the lock is granted to it (in the

request lock routine) and keep track of which locks to release or requests to grant next as

it releases locks. (It releases locks in the reverse of the order that it acquired them.) Our

routines to facilitate nested acquisition of FIFO locks (not presented here) form a linked

stack of Requests to grant. Thus, the myreq �eld of the Process record still points to the

14



next Request to grant, but that Request is the top of the linked stack. Each Request contains

a pointer to the next Request on the stack.

For a priority lock, we need a stack of Locks, not Requests, but we could use a very similar

scheme. We would keep a linked stack of locks to release, with a \top" pointer in the Process

record. Again, we would move the Request ownership transition code from grant lock to

request lock. We could also dispense with the Lock argument that is passed to grant lock.

5.3 Timeout

While not directly applicable to some real-time preemptive priority scheduling models, a

timeout feature is of interest in the general context of locks. By a timeout feature, we mean

that the lock request routine either obtains the lock before a time limit or returns a status

indicating a failure to do so.

With a non-queuing spin lock, a waiter can simply include a time check in its spin loop and,

after the timeout, stop spinning on the lock and return the \failed" status. With our queue

lock scheme, however, we have the additional problems of keeping the request from being

granted and removing the timed-out Request from the queue.

For a waiter to rescind its request for a queue lock, then, we must allow the waiter to somehow

manipulate the queue. If the waiter simply stops spinning, its Request will eventually be

granted without any process watching it. No process will ever watch that Request, so all

other requests for the lock will hang up. We must ensure that the lock holder is assured of

having granted the lock to a process that will use it.

Remember that the only safe operations on our queue structures are the enqueue operation

performed by any process or processes, and the dequeue operation performed only by the

lock holder. A waiter may, however, safely write to the Request that it's watching.

When timing out, the waiter (say P

1

) must leave behind both an indication that it no longer

desires the lock and a pointer to the next request. In setting up those indications, P

1

is

racing with a potential granter. If the lock is granted to P

1

just before it marks its request

as timed out, then P

1

is holding the lock and must either return a \success" status or pass

the lock to the next waiter and return a \failed" status. Either policy is supported by our

scheme.

Even a test-and-set would enable us to provide a simple timeout feature. With a test-and-

set, the waiter would �rst set a pointer from the Request it's watching to the next one in

line and then race for the Request by testing and setting the GRANTED 
ag. The granter

would also test and set the 
ag. If the waiter �nds the 
ag was already set, then it has lost

the race and has received the lock. If the granter �nds the 
ag was already set, then it must

follow the pointer to �nd the next request to grant.

15



With the swap instruction available to us, we can combine the Request state with the pointer

and use the swap to arbitrate the winner of the race, as we did with the watcher pointer in

the NUMA machine. In fact, for the NUMA case, we can potentially combine the state with

a pointer to either a Process or the next Request, by keeping the bottom two bits as zero

in any legitimate pointer. The bottom bit is then the state of the Request and the second

bit is an indication of whether the pointer in the remaining 30 bits points to a Process or

to a Request. The keys to using the swap this way are that we happen to be able to pack

enough information into 32 bits and that there are only two processes involved.

A major problem with this timeout scheme is that the process that's leaving the queue

cannot take its Request record with it immediately, because the potential granter must use

the information in the Request �rst. Thus, we must allow the granter to mark the Request

as released (as by setting the pointer to nil) after it uses it.

When a process attempts to acquire a lock, then, it must �rst check whether its Request

has been released and, if not, either spin until it is released or be able to supply a di�erent

Request record to the lock. If the process is attempting to acquire the same lock as before,

it can swap a \pending" indication back into the Request record in a attempt to resume its

previous position in the queue. If it succeeds, �ne. Otherwise, it knows that the Request

will be released very soon, if not already, and it can spin until the release and then reuse the

Request.

With the possibility of a process needing to supply extra Request records, we lose our

guarantee of O(L + P ) space and cannot bound the space requirement below O(L � P )

for locks that use this timeout scheme. Note, however, that the Request will be reached

eventually in a FIFO queue and it will be reached on the next release or two in a priority

queue that is completely scanned on each release.

5.4 Conditional Lock

A problem noted by Graunke and Thakkar [GT90] is that of allowing a conditional request

for a lock, one that acquires the lock if it's immediately available and fails otherwise. We

observe that a conditional request is very much like one with a zero timeout. After �nding

that the request it's watching has not been granted, the requester immediately executes the

timeout action. Graunke has also developed a method to provide a conditional lock and

remove the failed request from the queue [Gra92].

5.5 Preemption

As discussed by Markatos and LeBlanc [ML91], another lock-related issue is that of preemp-

tion. Clearly, if the holder of a lock is descheduled, use of the critical section stops until the

16



holder is scheduled again. With non-queuing locks, preempting a waiter doesn't block the

use of the critical section, because the lock is not actively granted; it is actively acquired.

Once preempted, the waiter is no longer waiting and is not at risk to acquire the lock.

With queuing locks, however, preemption of a process does not prevent that process from

being granted the lock, which would turn it into a preempted lock holder. As noted in

[ML91], however, we might want to allow schedulers to preempt waiters. To do so, we need

a way for the scheduler to determine that a process is spinning for a lock and to deactivate

the lock's request for the duration of the preemption. Our discussion of timeout suggests a

way to rescind a request. Notice that preemption is similar to a timeout in that the goal is

to cause a request not to be granted.

The scheduler must detect that a process it is preempting is waiting for a lock (and which

lock) and do the timeout action for it. When rescheduling the process onto a CPU, it can

attempt to reactivate the request. (If it hasn't been removed, the reactivation attempt

succeeds.) If reactivation fails, the scheduler can queue a new request. Alternatively, it can

start the process back at the beginning of the lock request routine.

While it seems that a test-and-set works �ne to timeout a request, it might not allow reac-

tivation of a request. Swap, however, allows the requester to swap PENDING back for the

TIMEDOUT state and know whether it gets back TIMEDOUT or GRANTED.

In any case, we must still work out the details of detecting that a process is waiting for a lock

and backing it out of that condition. Recent work with non-queuing locks [BRE92] o�ers

some promising techniques.

6 Discussion

6.1 Testing

We have implemented nesting versions of all four of our algorithms and performed the min-

imal functional testing that we could do in a non-multiprogrammed environment (simple

mutual exclusion, lock acquisition and lock release). For the FIFO locks, we also tested

nested lock acquisition and release. For the NUMA locks, we tested an older version of the

protocol that handles the race between a waiter setting a pointer to itself and the lock holder

granting its request. That protocol didn't involve a swap, but would not be reliable under

some reasonable assumptions about read/write ordering in a NUMA machine.

We have also implemented a nesting version of our coherent-FIFO lock on the Proteus

multiprocessor simulator [BD91]. One bene�t of working on the simulator is that we can

monitor the functional performance of the lock scheme. Our prototype includes a detector

17



for violations of mutual exclusion that has been triggered only when we purposely altered the

lock acquisition routine to test the detector. We have also observed that locks are granted

only in FIFO order.

So far, we have simulated between 1 and 18 processes (each on its own processor) contending

for a single lock. We are still working on generating quantitative output from the simulation,

but we've made two observations that provide some optimism. First, the cache hit rate is

much less sensitive to contention with our queuing lock than it is with a simple test-and-set

lock. Second, we get a very high hit rate when we have only one process repeatedly entering

and leaving the critical section.

6.2 Characterizing Spin Lock Schemes

[MCS91] nicely identi�es four general traits by which to characterize and compare spin lock

algorithms. We generalize these traits and add a �fth one of our own (atomic instruction

set) to create the following list of traits and our comments on them. The �rst two traits are

environmental, involving architectural realities that might not be controllable by the system

designer. The importance of the third trait depends on the application at hand. The last

two are performance-oriented results of the type of lock used.

� Target machine memory system (coherent-cache or NUMA). A scheme should be op-

timized for the type of memory system on which it must run, but we've found that

designing an algorithm for a NUMA machine was more challenging than doing one for

a coherent-cache machine. With a coherent-cache machine, there is one extra active

element, the coherence mechanism, to ensure that the state of a Request is moved

to a location that's local to the processor that's reading it. On the NUMA machine,

we had to develop our swapping protocol (a special-purpose software-level coherence

mechanism) to allow the releasing and requesting processes to cooperate in making

the state of a request available locally for any spinning. In fact, any of the schemes

that we've seen for NUMA machines should work reasonably well on coherent-cache

machines, but not vice versa.

� Target machine atomic instruction set (compare-and-swap (C&S), swap, or test-and-

set). Each of the locking schemes that we've mentioned or described requires a speci�c

type of atomic instruction(s). Often only one (or none) of these three instructions is

implemented on a particular machine. We haven't done a serious survey of available

architectures, but we believe that the most generally applicable lock would use just

test-and-set. Given a machine with an atomic swap instruction (eg. multiprocessors

that use the swap available in the Intel 80x86 [Int90] or Motorola 88x00 [Mot91]), we

also believe that our algorithms o�er better characteristics than would a queuing spin

lock that used the swap as a test-and-set. The algorithms that use compare-and-swap

18



o�er some potential performance advantages over ours in NUMA machines, but they

also require a swap instruction. Neither swap nor compare-and-swap may be trivially

emulated by the other. The actual performance di�erence would depend on the relative

expense of the swap and compare-and-swap instructions on a given machine. Finally,

we have not yet looked seriously at our work in the context of other fetch-and-op

instructions, load-linked/store-conditional [KH92], or transactional memory [HM92].

� Order in which the lock is granted to waiters (random, FIFO, or priority). For gen-

eral parallel programming, FIFO order might be marginally better than random order,

because it's fair and prevents starvation. We haven't yet determined the speci�c ap-

plicability of priority-ordering to priority-scheduled real-time systems, but we believe

that it o�ers potential improvements in schedulability. Note also that being able to

grant a lock in priority order automatically allows us to grant it in nearly FIFO order,

by assigning time stamps to requests (depending on the availability, synchronization,

and precision of a real-time clock). A scheme that provides FIFO order, however, does

not generally provide priority order.

� Load imposed on the interconnect (remote spinning vs. no remote spinning). Much of

our e�ort has been dedicated to minimizing this load. Our key goal here, which we

(and most others) have accomplished, is to eliminate any spinning on remote locations.

Next, we would like to minimize the number of atomic instructions executed over the

interconnect. Finally, remote reads and writes should be minimized.

� Space required per lock (L �P , L+P �D, or L+P ). The simplest spin lock typically

requires just a byte per lock. All of the queuing spin lock schemes require more than

that and our goal is generally to minimize the space required. Ours is the only scheme

to provide the lowest asymptotic space (O(L + P )) with nesting. The exact space

taken, however, depends on the sizes of the individual records. The key advantage

of our scheme is that we can statically allocate one Request record per process when

creating the process and not worry about how many to allocate for each process.

Table 1 presents a number of queuing spin lock schemes in terms of these characteristics. For

coherent-cache machines, it includes the locks of Graunke and Thakkar [GT90], Markatos and

LeBlanc [ML91], and ours. For NUMA machines, it includes the locks of Mellor-Crummey

and Scott (with and without compare-and-swap) [MCS91], Markatos and LeBlanc, and ours.

7 Summary and Future Work

Our main technical contributions are our techniques and algorithms that provide tight control

over lock grant order, use only the atomic swap instruction, use at most one (local only) spin

for lock acquisition and no spinning for lock release, and need only O(L+P ) space on either

19



[ML91] Our [MCS91] [MCS91] [ML91] Our

Category Trait [GT90] Coherent Coherent (C&S) (Swap only) NUMA NUMA

Memory Coh. Cache X X X * * * *

Model NUMA X X X X

Atomic C&S X X

Instruction Swap X X X X X X

Set Test&Set X

Grant FIFO X * linear X X usually * X

Order Priority X X X X

Interconnect Remote spin rarely

Load No remote spin X X X X X usually X

L � P X X

Space L+ P �D w/nest w/nest w/nest

L+ P X w/o nest w/o nest w/o nest X

Table 1: Queuing Spin Lock Schemes Compared by Five Traits

In the table, an \X" indicates a primary trait of a scheme, while an \*" indicates a trait that is covered

somewhat by default. The \linear" waiting in the case of Markatos and LeBlanc's coherent-cache lock is due

to its derivation from Burns's lock [Bur78]. Linear waiting is not �rst-come-�rst-served but says that when a

process (say P) is waiting, no other process will get the lock more than once before P gets the lock.

a coherent-cache or NUMA machine. An additional contribution is our outline of techniques

to extend the basic algorithms.

The details of even the basic algorithms that are presented here have remained in a state of


ux, so we expect to make at least some minor changes to them, particularly when applying

them to speci�c machines, to optimize their performance.

We also need to:

� Complete our investigation of the extensions, producing working models of each idea

for testing.

� Prove the correctness of the �nal algorithms.

� Implement our remaining algorithms on the simulator to experiment with their func-

tionality and performance.

� Implement the other published algorithms on the simulator, for comparison.

� Test our algorithms and the others on actual multiprocessors, to calibrate the simulator

and to obtain more data on performance.

� Complete some analysis we've begun to compare the interconnect loads of the algo-

rithms using our architectural models and extend it to speci�c machines.

� Conduct a more complete survey of available architectures, to judge the speci�c appli-

cability of our algorithms.

20



� Consider how our techniques �t into the context of other types of atomic instructions

and how they relate to lock-free synchronization technology.

If our algorithms perform well, then we plan to use our techniques in several additional lines

of research in the general and real-time systems area:

� Quantify the contribution of our algorithms to improving the schedulability results for

priority-scheduled real-time systems.

� Investigate whether our locks are useful tools to use in non-priority-scheduled real-time

systems.

� Develop abstract data types to better encapsulate our data and control structures.

� Work on supporting higher-level general and real-time synchronization primitives with

our low-level ones.

References

[And90] Thomas E. Anderson. The Performance of Spin Lock Alternatives for Shared-

Memory Multiprocessors. IEEE Transactions on Parallel and Distributed Systems,

1(1):6{16, January 1990.

[BD91] Eric A. Brewer and Chrysthanos N. Dellarocas. PROTEUS User Documentation,

Version 0.2. MIT, Cambridge, Massachusetts, 1991.

[BRE92] Brian N. Bershad, David D. Redell, and John R. Ellis. Fast Mutual Exclusion for

Uniprocessors. In Proceedings of the Fifth International Conference on Architec-

tural Support for Programming Languages and Operating Systems, pages 223{233,

October 1992.

[Bur78] J. E. Burns. Mutual Exclusion with Linear Waiting using Binary Shared Variables.

SIGACT News, 10(2), Summer 1978.

[Gra92] Gary Graunke. Personal communication, December 1992.

[GT90] Gary Graunke and Shreekant Thakkar. Synchronization Algorithms for Shared-

Memory Multiprocessors. IEEE Computer, 23(6):60{69, June 1990.

[HM92] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Architectural Sup-

port for Lock-Free Data Structures. Technical Report CRL 92/07, Digital Equip-

ment Corporation, Cambridge Research Lab, December 1992.

21



[Int90] Intel Corporation, Santa Clara, California. Microprocessors, 1990.

[KH92] Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice-Hall, Englewood

Cli�s, NJ, 1992.

[MCS91] John M. Mellor-Crummey and Michael L. Scott. Algorithms for Scalable Synchro-

nization on Shared-Memory Multiprocessors. ACM Transactions on Computer

Systems, 9(1):21{65, February 1991.

[ML91] Evangelos P. Markatos and Thomas J. LeBlanc. Multiprocessor Synchronization

Primitives with Priorities. Technical report, University of Rochester, Rochester,

NY, 1991.

[Mot91] Motorola, Inc., Phoenix, Arizona. MC88110: Second Generation RISC Micropro-

cessor User's Manual, 1991.

[MSZ90] Lory D. Molesky, Chia Shen, and Goran Zlokapa. Predictable Synchronization

Mechanisms for Real-Time Systems. Real-Time Systems, 2(3):163{180, September

1990.

[SRL90] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority Inheritance Pro-

tocols: An Approach to Real-Time Synchronization. IEEE Transactions on Com-

puters, 39(9):1175{1185, September 1990.

22



A Coherent-Cache FIFO Queue Lock Algorithm

type Lock = record

tail : ^Request // Request to be watched by next

end record // requester

type Process = record

watch : ^Request // Request that grants lock to me

myreq : ^Request // Request that I grant when thru

end record

type Request = record

state : (PENDING, GRANTED)

end record

procedure request_lock (var L : Lock, var P : Process)

P.myreq^.state := PENDING // tell successor to wait

P.watch := fetch&store (L.tail, P.myreq) // enqueue my request

loop until (P.watch^.state = GRANTED) // wait until predecessor

// finishes

end procedure

procedure grant_lock (var P : Process)

P.myreq^.state := GRANTED // pass lock to successor

P.myreq := P.watch // take ownership of the Request that I

// watched (to use it for my next request)

end procedure

procedure init_Lock (var L : Lock)

new_block_aligned (L.tail) // allocate a Request for the Lock

L.tail^.state := GRANTED // mark the Request as GRANTED (lock

// is free)

end procedure

procedure init_Process (var P : Process)

new_block_aligned (P.myreq) // allocate a Request for the Process

end procedure

atomic function fetch&store (var X : Word, newvalue : Word) : Word

fetch&store := X // the two operations on X in this function occur

X := newvalue // without any intervening reads or writes of X

end function

23



B Coherent-Cache Priority Queue Lock Algorithm

type Lock = record

tail : ^Request // most recently enqueued Request

head : ^Request // least recently enqueued Request

end record

type Process = record

pri : Priority

watch : ^Request

myreq : ^Request

end record

type Request = record

state : (PENDING, GRANTED)

watcher : ^Process // extra pointers to allow

myproc : ^Process // list traversal

end record

procedure request_lock (var L : Lock, var P : Process)

P.myreq^.state := PENDING

P.myreq^.watcher := NIL

P.watch := fetch&store (L.tail, P.myreq)

P.watch^.watcher := addr(P) // point the request I'm watching

// back to me

loop until (P.watch^.state = GRANTED)

end procedure

procedure grant_lock (var L : Lock, var P : Process)

var

highpri : Priority

highreq : ^Request

currproc : ^Process

// remove my Process and the Request I watched from the list

P.myreq^.myproc := P.watch^.myproc

if (P.myreq^.myproc <> NIL) then

P.myreq^.myproc^.myreq := P.myreq

else

L.head := P.myreq

end if

// search the list for the highest-priority waiter

highpri := LOWEST'PRIORITY - 1

highreq := L.head

currproc := L.head^.watcher

while (currproc <> NIL) do

if (currproc^.pri > highpri) then

24



highpri := currproc^.pri

highreq := currproc^.watch

end if

currproc := currproc^.myreq^.watcher

end while

// pass the lock to the highest-priority waiter

highreq^.state := GRANTED

// take ownership of the Request that I watched

P.myreq := P.watch

P.myreq^.myproc := addr(P)

end procedure

25



C NUMA Machine FIFO Queue Lock Algorithm

type Lock = record

tail : ^Request

end record

type Process = record

localstate : (PENDING, GRANTED)

watch : ^Request

myreq : ^Request

end record

// Note: The notation in the following declaration indicates

// that the Request record has one word in it. The

// high-order 31 bits of the word are the high-order

// 31 bits of watcher, which is a pointer to a Process.

// The low bit of the word is the state field, which can

// hold one of two values, PENDING or GRANTED. The low-

// order bit of watcher is implicitly always 0, so we must

// ensure that all Process pointers are even numbers. We

// combine the pointer and the state of the Request this

// way so that we can swap them as a unit.

type Request = record

(watcher : ^Process, state : (PENDING, GRANTED))

end record

procedure request_lock (var L : Lock, var P : Process)

var

(dummy : ^Process, state : (PENDING, GRANTED))

fetch&store ((P.myreq^.watcher, P.myreq^.state), (NIL, PENDING))

P.localstate := PENDING

P.watch := fetch&store (L.tail, P.myreq)

(dummy, state) := fetch&store ((P.watch^.watcher, P.watch^.state),

(addr(P), PENDING))

if (state = PENDING) then

loop until (P.localstate = GRANTED)

end if

end procedure

procedure grant_lock (var P : Process)

var

(watcher : ^Request, dummy : (PENDING, GRANTED))

(watcher, dummy) := fetch&store (P.myreq^.watcher, P.myreq^.state),

(NIL, GRANTED))

if (watcher <> NIL) then

watcher^.localstate := GRANTED

end if

26



P.myreq := P.watch

end procedure

27



D NUMA Machine Priority Queue Lock Algorithm

type Lock = record

tail : ^Request

head : ^Request

end record

type Process = record

localstate : (PENDING, GRANTED)

pri : Priority

watch : ^Request

myreq : ^Request

end record

type Request = record

myproc : ^Process

(watcher : ^Process, state : (PENDING, GRANTED))

end record

procedure request_lock (var L : Lock, var P : Process)

var

(dummy : ^Process, state : (PENDING, GRANTED))

fetch&store ((P.myreq^.watcher, P.myreq^.state), (NIL, PENDING))

P.localstate := PENDING

P.watch := fetch&store (L.tail, P.myreq)

(dummy, state) := fetch&store ((P.watch^.watcher, P.watch^.state),

(addr(P), PENDING))

if (state = PENDING) then

loop until (P.localstate = GRANTED)

end if

end procedure

procedure grant_lock (var L : Lock, var P : Process)

var

highpri : Priority

highreq : ^Request

currproc : ^Process

(watcher : ^Request, dummy : (PENDING, GRANTED))

P.myreq^.myproc := P.watch^.myproc

if (P.myreq^.myproc <> NIL) then

P.myreq^.myproc^.myreq := P.myreq

else

L.head := P.myreq

end if

highpri := LOWEST'PRIORITY - 1

highreq := L.head

currproc := L.head^.watcher

28



while (currproc <> NIL) do // while currproc is a pointer

if (currproc^.pri > highpri) then

highpri := currproc^.pri

highreq := currproc^.watch

end if

currproc := currproc^.myreq^.watcher

end while

(watcher, dummy) := fetch&store ((highreq^.watcher, highreq^.state),

(NIL, GRANTED))

if (watcher <> NIL) then

watcher^.localstate := GRANTED

end if

P.myreq := P.watch

P.myreq^.myproc := addr(P)

end procedure

29


