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Abstract

Traditionally, network software has been structured in a monolithic fashion with all protocol stacks
executing either within the kernel or in a single trusted user-level server. This organization is moti-
vated by performance and security concerns. However, considerations of code maintenance, ease of
debugging, customization, and the simultaneous existence of multiple protocols argue for separating the
implementations into more manageable user-level libraries of protocols. This paper describes the design
and implementation of transport protocols as user-level libraries.

We begin by motivating the need for protocol implementations as user-level libraries and placing
our approach in the context of previous work. We then describe our alternative to monolithic protocol
organization, which has been implemented on Mach workstations connected not only to traditional
Ethernet, but also to a more modern network, the DEC SRC AN1. Based on our experience, we discuss
the implications for host-network interface design and for overall system structure to support efficient
user-level implementations of network protocols.

1 Introduction

1.1 Motivation

Typically, network protocols have been implemented inside the kernel or in a trusted user-level server [11,
13]. Security and/or performance are the primary reasons that favor such an organization. We refer to this
organization as monolithic because all protocol stacks supported by the system are implemented within a
single address space.

The goal of this paper is to explore alternatives to a monolithic structure. There are several factors that
motivate protocol implementations that are not monolithic and are outside the kernel. The most obvious of
these are ease of prototyping, debugging, and maintenance. Two more interesting factors are:

1. The co-existence of multiple protocols that provide materially differing services, and the clear ad-
vantages of easy addition and extensibility by separating their implementations into self-contained
units.

2. The ability to exploit application-specific knowledge for improving the performance of a particular
communication protocol.

We expand on these two factors in greater detail below.
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Multiplicity of Protocols

Over the years, there has been a proliferation of protocols driven primarily by application needs.
For example, the need for an efficient transport for distributed systems was a factor in the development

of request/response protocols in lieu of existing byte-stream protocols such as TCP [2]. Experience with
specialized protocols shows that they achieve remarkably low latencies. However these protocols do not
always deliver the highest throughput [3]. In systems that need to support both throughput-intensive and
latency-critical applications, it is realistic to expect both types of protocols to co-exist.

We expect the trend towards multiple protocols to continue due to at least three factors.
Emerging communication modes such as graphics and video, and access patterns such as request-

response, bulk transfer, and real-time, will require transport services which may have differing characteris-
tics. Further, the needs of integration require that these transport services co-exist on one system.

Future uses of workstation clusters as message passing multicomputers will undoubtedly influence pro-
tocol design: efficient implementations of this and other programming paradigms will drive the development
of new transport protocols.

As newer networks with different speed and error characteristics are deployed, protocol requirements
will change. For example, higher speed, low error links may favor forward error correction and rate-based
flow control over more traditional protocols [7]. Once again, if different network links exist at a single site,
multiple protocols may need to co-exist.

Exploiting Application Knowledge

In addition to using special purpose protocols for different application areas, further performance advantages
may be gained by exploiting application-specific knowledge to fine tune a particular instance of a protocol.
Watson and Mamrak have observed that conflicts between application-level and transport-level abstractions
lead to performance compromises [29]. One solution to this is to “partially evaluate” a general purpose
protocol with respect to a particular application. In this approach, based on application requirements, a spe-
cialized variant of a standard protocol is used rather than the standard protocol itself. A different application
would use a slightly different variant of the same protocol. Language-based protocol implementations such
as Morpheus [1] as well as protocol compilers [9, 10] are two recent attempts at exploiting user specified
constraints to generate efficient implementations of communication protocols.

The general idea of using partial evaluation to gain better I/O performance in systems has been used
elsewhere as well [16]. In particular, the notion of specializing a transport protocol to the needs of a
particular application has been the motivation behind many recent system designs [12, 23, 27].

1.2 Alternative Protocol Structures

The discussion above argues for alternatives to monolithic protocol implementations since they are deficient
in at least two ways. First, having all protocol variants executing in a single address space (especially if it is
in-kernel) complicates code maintenance, debugging, and development. Second, monolithic solutions limit
the ability of a user (or a mechanized program) to perform application-specific optimizations.

In contrast, given the appropriate mechanisms in the kernel, it is feasible to support high performance
and secure implementations of relatively complex communication protocols as user-level libraries.

Figure 1 shows different alternatives for structuring communication protocols.
Surprisingly, traditional operating systems like UNIX and modern microkernels such as Mach 3.0 have

similar monolithic protocol organizations. For instance, the Mach 3.0 microkernel implements protocols
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Figure 1: Alternative Organizations of Protocols

outside the kernel within a trusted user-level server y. The code for all system-supported protocols runs in
the single, trusted, UX server’s address space. There are at least three variations to this basic organization
depending on the location of the network device management code, and the way in which the data is moved
between the device and the protocol server. In one variant of the system, the Mach/UX server maps network
devices into its address space, has direct access to them, and is functionally similar to a monolithic in-kernel
implementation. In the second variant, device management is located in the kernel. The in-kernel device
driver and the UX server communicate through a message based interface. The performance of this variant
is lower than the one with the mapped device [11]. Some of the performance lost due to the message based
interface can potentially be recovered by using a third variant that uses shared memory to pass data between
the device and the protocol code as described in [22].

One alternative to a monolithic implementation is to dedicate a separate user-level server for each
protocol stack, and separate server(s) for network device management. This arrangement has the potential
for performance problems since the critical send/receive path for an application could incur excessive
domain-switching overheads because of address space crossings between the user, the protocol server, and
the device manager. That is, given identical implementations of the protocol stack and support functions
like buffering, layering and synchronization, inter-domain crossings come at a price. Further, and perhaps
more importantly, this arrangement, like the monolithic version, does not permit easy exploitation of
application-level information.

Perhaps the best known example of this organization was done in the context of the Packet Filter [19].
This system implemented packet demultiplexing and device management within the kernel and supported
implementations of standard protocols such as TCP and VMTP outside the kernel. It did not rely on any

yThis is the UX server, not to be confused with the NetMsgServer.
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special-purpose hardware or on extensive operating system support. Several protocols including the PUP
suite and VMTP were implemented. A similar organization for implementing UDP is described in [14].

Another alternative, the one we develop in this paper, is to organize protocol functions as a user linkable
library. In the common case of sends and receives, the library talks to the device manager without involving
a dedicated protocol server as an intermediary. (Issues such as security need to be addressed in this approach
and are considered in greater detail in Section 3.)

An earlier example of this approach is found in the Topaz implementation of UDP on the DEC SRC
Firefly [26]. Here the UDP library exists in each user address space. However, this experiment has some
limitations. First, UDP is an unreliable datagram service, and is easier to implement (and thus a less
realistic test) than a protocol like TCP. Second, the design of Topaz trades off strict protection for increased
performance and ease of implementation of protocols.

A more recent example of encapsulating protocols in user-level libraries is the ongoing work at CMU
that implements application level protocols beneath a UNIX compatible interface [15]. This work shares
many features with ours, differing principally in the following: (1) the CMU implementation enforces less
control on outgoing packets, thus providing less protection than our implementation, and (2) unlike the
CMU implementation, ours does not provide the full semantics of the UNIX socket interface, meaning that
not all existing UNIX programs will work with our implementation. We believe it would be easy to combine
the two implementations into one that has neither of these deficiencies.

In general, there are several alternatives to distributing the implementation of a set of protocols among
a set of address spaces (e.g., the application, a trusted server, the kernel). Each resulting organization
leads to tradeoffs in performance, protection, ease of debugging, etc. This paper describes the design and
implementation of one such organization — where the protocol suite is located in a user level library — and
compares it with the in-kernel and single server alternatives. We explored this particular organization for
reasons mentioned in Section 1.1. Current research at the University of Arizona [20, 21] tries to address the
general question of protocol decomposition into multiple domains in the context of the x-kernel. Partioning
an x-kernel protocol graph among different address spaces allows performance and trust tradeoffs of various
protocol organizations to be easily explored.

1.3 Paper Goals and Organization

The primary goal of this paper is to explore high-performance implementations of relatively complex
protocols as user libraries. We believe that efficient protocol implementation is a matter of policy and
mechanism. That is, with the right mechanisms in the kernel and support from the host-network interface,
protocol implementation is a matter of policy that can be performed within user libraries. Given suitable
mechanisms, it is feasible for library implementations of protocols to be as efficient and secure as traditional
monolithic implementations.

We have tested our hypothesis by implementing a user-level library for TCP on workstation hosts
running the Mach kernel connected to Ethernet and to the DEC SRC AN1 network [24]. We chose
TCP for several reasons. First, it is a real protocol whose level of detail and functionality match that of
other communication protocols; choosing a simpler protocol like UDP would be less convincing in this
regard. Second, we could expeditiously reuse code from one of the many existing implementations of the
protocol. Since these implementations are mature and stable, performance comparisons with monolithic
implementations on similar hardware are straightforward and unlikely to be affected by artifacts of bad
or incorrect implementation. Finally, our experience with a connection-oriented protocol is likely to be
relevant in networks like ATM that appear to be biased towards connection-oriented approaches.
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The rest of the paper is organized as follows. Section 2 describes the necessary kernel and host-
network interface mechanisms that aid efficient user-level protocol implementations. Section 3 details the
structure, design and implementation of our system. Section 4 analyzes the performance of our TCP/IP
implementation. Section 5 offers conclusions based on our experience and suggests avenues for future work.

2 Mechanisms for User-Level Protocol Implementation

In this section, we discuss some of the fundamental system mechanisms that can help in efficient user-level
protocol implementation. The underpinnings of efficient communication protocols are one or more of:

1. Lightweight implementation of context switches and timer events.

2. Combining (or eliminating) multiple protocol layers.

3. Improved buffering between the network, the kernel, and the user, and elimination of unnecessary
copies.

The first two items — lightweight context switching, layering, and timer implementations — have
already been studied in earlier systems and are largely independent of whether the protocols are located in
the kernel or in user libraries. We therefore briefly summarize the impact of these factors in Section 2.1,
and then concentrate for the most part on the buffering and packet delivery mechanisms, where innovation
is needed.

2.1 Layering, Lightweight Threads, and Fast Timer Operations

Transport protocol implementations can benefit from being multithreaded if inter-thread switching and
synchronization costs are kept low. Older operating systems such as UNIX do not provide the same
level of support for multiple threads of control and synchronization in user space as they do inside the
kernel. Consequently, user-level implementations of protocols are more difficult and awkward to implement
than they need to be. With more modern operating systems, which support lightweight threads and
synchronization at user-level, protocol implementation at user-level enjoys the facilities that more traditional
implementations exploited within the kernel.

Issues of layering, lightweight context switching and timers have been extensively studied in the
literature. Examples include Clark’s Swift system [4], the x-kernel [12], and the work by Watson and
Mamrak [29]. It is well known that switching between processes that implement each layer of the protocol
is expensive, as is the data copying overhead. Proposed solutions to the problem are generally variations
of Clark’s multitask modules, where context switches are avoided in moving data between the various
transport layers. Additionally, there are many well understood mechanisms for fast context switches,
such as continuations [8] and others. Timer implementations also have a profound impact on transport
performance, because practically every message arrival and departure involves timer operations. Once
again, fast implementations of timer events are well known, e.g., using hierarchical timing wheels [28].

2.2 Efficient Buffering and Input Packet Demultiplexing

The buffer layer in a communication system manages data buffers between the user space, the kernel and
the host-network interface. The security requirements of the kernel transport protocols, and the support
provided by the host-network interface, all contribute to the complexity of the buffer layer.
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A key requirement for user-level protocols is that the buffer layer be able to deliver network packets to
the end user as efficiently as possible. This involves two aspects — (1) efficient demultiplexing of input
packets based on protocol headers, and (2) minimizing unnecessary data copies. Demultiplexing functions
can be located in two places: either in hardware in the host-network interface, or in software, in the kernel
or as a separate user-level demultiplexer. In any case, demultiplexing has to be done in a secure fashion to
prevent unauthorized packet reception. We describe below two approaches to support input packet delivery
that can benefit user-level protocol implementations.

Software Support for Packet Delivery

Typically, there are multiple headers appended to an incoming packet, for example, a link-level header,
followed by one or more higher-level protocol headers. Ideally, address demultiplexing should be done as
low in the protocol stack as possible, but should dispatch to the highest protocol layer [25]. This is usually
not done in hardware because the host-network interface is typically designed for link-level protocols and
has no knowledge of higher level protocols. As a specific example, a TCP/IP packet on an Ethernet link has
three headers. The link-level Ethernet header only identifies the station address and the packet type — in this
case, IP. This is not sufficient information to determine the final user of the data, which requires examining
the protocol control block maintained by the TCP module.

In the absence of hardware support for address demultiplexing, the only realistic choice is to implement
this in software inside the kernel. The alternative of using a dedicated user-level process to demultiplex
packets can be very expensive because multiple context switches are required to deliver network data to the
final destination. In the past, software implementations of address demultiplexing have offered flexibility at
the expense of performance and have ignored the issues of multiple data copies.

For example, the original UNIX implementation of the Packet Filter [19] features a stack-based language
where “filter programs” composed of stack operations and operators are interpreted by a kernel-resident
program at packet reception time. While the interpretation process offers flexibility, it is not likely to
scale with CPU speeds because it is memory intensive. Performance is more important than flexibility
because slow packet demultiplexing tends to confine user-level protocol implementations to debugging and
development rather than production use. The recent Berkeley Packet Filter implementation recognizes these
issues and provides higher performance suited for modern RISC processors [18].

In the absence of hardware support, effective input demultiplexing requires two mechanisms:

1. Support for direct execution of demultiplexing code within the kernel.

2. Support for protected packet buffer sharing between user space and the kernel.

Neither of these facilities is very difficult to implement. The logic required for address demultiplexing
is simple and can be incorporated into the kernel either via run time code synthesis or via compilation
when new protocols are added [17]. Based on our experience, the demultiplexing logic requires only a few
instructions. In addition, virtual memory operations can be exploited so that the user-level library and the
kernel can securely share a buffer area. Section 3 describes how these mechanisms are exploited in our
design to achieve good performance without compromising security.

Hardware Support for Demultiplexing

In general, older Ethernet host-network interfaces do not provide support for packet demultiplexing because
it is not possible to accurately determine the final destination of a packet based on link-level fields alone.
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Intelligent host-network interfaces that offload protocol processing from the host are capable of packet
demultiplexing, but their utility is limited to a single protocol at a time. Newer networks such as AN1 and
ATM have fields in their link-level headers that may be used to provide support for packet demultiplexing.

Host-network interfaces can be built to exploit these link-level fields to provide address demultiplexing in
a protocol-independent manner. As an example, the host-network interface that we use on the AN1 network
has hardware that delivers network packets to the final destination process. In the AN1 controller a single
field (called the buffer queue index, BQI) in the link-level packet header provides a level of indirection
into a table kept in the controller. The table contains a set of host memory address descriptors, which
specify the buffers to which data is transferred. Strict access control to the index is maintained through
memory protection. In a connection-based protocol such as TCP, the index value can be agreed upon by
communicating entities as part of connection setup. Connectionless protocols can also use this facility
by “discovering” the index value of their peer by examining the link-level headers of incoming messages.
Section 3.4 discusses this mechanism in the context of our implementation.

In considering mechanisms for packet delivery, two overall comments are in order. First, hardware
support for packet demultiplexing is applicable only as long as the link level supports it. In the cases where
a packet has to traverse one or more networks without a suitable link header field, demultiplexing has to be
done in software. Second, details of the packet demultiplexing and delivery scheme are shielded from the
application writer by the protocol library that is linked into the application. The application sees whatever
abstraction the protocol library chooses to provide. Thus, programmer convenience is not an issue with
either a software or hardware packet delivery scheme.

3 Design and Implementation of User-Level Protocols

3.1 Design Overview

This section describes our design at a high level. In our design, protocol functionality is provided to an
application by three interacting components — a protocol library that is linked into the application, a registry
server that runs as a privileged process, and a network I/O module that is co-located with the network device
driver. Figure 2 shows an overall view of our design and the interaction between the components.

The library contains the code that implements the communication protocol. For instance, typical
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protocol functions such as retransmission, flow control, checksumming, etc., are located in the library.
Given the timeout and retransmission mechanisms of reliable transport protocols, the library typically
would be multithreaded. Applications may link to more than one protocol library at a time. For example,
an application using TCP will typically link to the TCP, IP, and ARP libraries.

The registry server handles the details of allocating and deallocating communication end-points on
behalf of the applications. Before applications can communicate with each other, they have to be named in
a mutually secure and non-conflicting manner. The registry server is a trusted piece of software that runs as
a privileged process and performs many of the functions that are usually implemented within the kernel in
standard protocol implementations. There is a dedicated registry server for each protocol.

The third module implements network access by providing efficient and secure input packet delivery,
and outbound packet transmission. There is one network I/O module for each host-network interface on the
host. Depending on the support provided by the host-network interface, some of the functionality of this
module may be in hardware.

Given the library, the server, and the network I/O module, applications can communicate over the
network in a straightforward fashion. Applications call into the library using a suitable interface to the
transport protocol (e.g., the BSD socket or the AT&T TLI interface). The library contacts the registry
server to negotiate names for the communication entities. In connection-oriented protocols this might
require the server to complete a connection establishment protocol with a remote entity. Before returning
to the library, the registry server contacts the network I/O module on behalf of the application to set up
secure and efficient packet delivery and transmission channels. The server then returns to the application
library with unforgeable tickets or capabilities for these channels. Subsequent network communication is
handled completely by the user-level library and the network I/O module using the capabilities that the
server returned. Thus, the server is bypassed in the common path of data transmission and reception.

Our organization has some tangible benefits over the alternative approaches of a monolithic implemen-
tation, or having a dedicated server per protocol stack. Our approach has software engineering arguments
to recommend it over the monolithic approach. More importantly, our structure is likely to yield better
performance than a system that uses a single dedicated server per protocol stack for two reasons. First,
by eliminating the server from the common-case send and receive paths, we reduce the number of address
space transitions on the critical path. Second, we open the possibility of additional performance gains by
generating application-specific protocols.

Our approach is not without its disadvantages, however. Each application links to a communication
library that might be of substantial size. This could lead to code bloat which might stress the VM system.
This problem can be solved with shared libraries and therefore is not a serious concern. Further, protocol
implementations in user-level libraries result in tradeoffs in several areas like maintaining shared commu-
nication state between multiple address spaces, respecting pre-determined communication rate guarantees,
ensuring the integrity of the connection, and others. We discuss these in further detail in Section 3.5.

To test the viability of our design, we built and analyzed the performance of a complete and non-
trivial communication protocol. We chose TCP primarily because it is a realistic connection-oriented
protocol. We used Mach as the base operating system for our implementation. In Mach, a small kernel
provides fundamental operating system mechanisms such as process management, virtual memory, and IPC.
Traditional higher level operating system services are implemented by a user-level server. We chose Mach
because it provides user-level threads and synchronization, virtual memory operations to simplify buffer
management, and unforgeable capabilities in the form of Mach “port” abstractions, all of which are helpful
in user-level protocol implementations. Of particular benefit are Mach’s “ports”, which form the basis for
secure and trusted communication channels between the library, the server, and the network I/O module.
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We describe below the details of our implementation.

3.2 Protocol Library

When an application initiates a connection, the library contacts the registry server to allocate connection
end-points (in our case, TCP ports). After the registry server finishes the connection establishment with the
remote peer, the registry server returns a set of Mach ports to the library.

The Mach ports returned to the application contain a send capability. In addition, a virtual memory
region in the library is mapped shared with the particular I/O module for the network device that the
connection is using. This shared memory region is used to convey data between the protocol and the
network device. Application requests to write (or read) data over a connection are translated into protocol
actions that eventually cause packets to be sent (or received) over the network via the shared memory.

On transmissions, the library uses the send capability to identify itself to the network module. The
network I/O module associates with the capability a template that constrains the header fields of packets
sent using that capability. The network I/O module verifies this against the library packet before network
transmission. On receives, packet demultiplexing code within the network I/O module delivers packets to
the correct and authorized end points. Additional details of this mechanism are described in Section 3.4.

Once a connection is established, it can be passed by the application to other applications without
involving the registry server or the network I/O module. The port abstractions provided by the Mach kernel
are sufficient for this. A typical instance of this occurs in UNIX-based systems where the Internet daemon
(inetd) hands off connection end-points to specific servers such as the TELNET or FTP daemons.

The protocol library is the heart of the overall protocol implementation. It contains the code that
implements the various functions of the protocol dealing with data transmission and reception. The protocol
code is borrowed entirely from the UX server which in turn is based on a 4.3 BSD implementation. As
mentioned earlier, to use TCP, support from other protocol libraries such as IP and ARP are needed. Our
implementation of the IP and ARP libraries makes some simplifications. In particular, our IP library does
not implement the functions required for handling gateway traffic.

Though the bulk of the code in our library is identical to a BSD kernel implementation, the structure
of the library is slightly different. First, the protocol library is not driven by interrupts from the network
or traps from the user. Instead, network packet arrival notification is done via a lightweight semaphore
that a library thread is waiting on, and user applications invoke protocol functions through procedure calls.
Second, multiple threads of control and synchronization are provided by user-level C Thread primitives [5]
rather than kernel primitives. In addition, protocol control block lookups are eliminated by having separate
threads per connection that are upcalled. Finally, user data transfer between the application and the network
device exploits shared memory to avoid copy costs where possible. We describe the details of data transfer
in Section 3.3.

While it is usually the case that transport protocols are standardized, the application interface to the
protocol is not. This leads to multiple ad hoc mechanisms which are typically mandated by facilities of
the underlying operating system. For instance, the BSD socket interface and the AT&T TLI interface are
typically found in UNIX-based systems. Non-UNIX systems have their own interfaces as well. In our
implementations, we provide some but not all the functionality of the BSD socket layer. Though a BSD-
compliant socket interface was not a goal of our research, our functionality is close enough to run BSD
applications. For instance, users of the protocol library continue to create sockets with socket, call bind
to bind to sockets, and use connect, listen, and accept to establish connections over sockets. Data
transfer on connected sockets and regular files is done as usual with read and write calls. The library
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handles all the bookkeeping details. Our current implementation does not handle the notions of inheriting
connections via fork, or the semantics of select; this does not represent a limitation of our approach,
but rather a decision on where to focus our attention.

3.3 Network I/O Module

The network I/O module is located with the in-kernel network device driver. There is a separate module for
each network device. The primary function of the network I/O module is to provide efficient and protected
access to the network by the libraries.

All access to the network I/O module is through capabilities. Initially, only the privileged registry server
has access to the network module. At the end of connection establishment, the registry server and the
network I/O module collaborate in creating capabilities that are returned to the application. A region of
memory is created by the network I/O module and the registry server for holding network packets. This
memory is kept pinned for the duration of the connection and is shared with the application. Incoming
packets from the network are moved into the shared region and a notification is sent to the application library
via a lightweight semaphore. Our implementation attempts, where possible, to batch multiple network
packets per semaphore notification in order to amortize the cost of signaling.

The exact mechanism for transferring the data from the network to shared memory varies with the host-
network interface. The DECstation hosts connect to the Ethernet using the DEC PMADD-AA host-network
interface [6]. This interface does not have DMA capabilities to and from the host memory. Instead, there
are special packet buffers on board the controller that serve as a staging area for data. The host transfers data
between these buffers and host memory using programmed I/O. On receives, the entire packet, complete
with network headers, is made available to the protocol code.

In contrast, the AN1 host-network interface is capable of performing DMA to and from host memory.
Host software writes descriptors into on-board registers that describe buffers in host shared memory that
will hold incoming packets. The controller allows a set of host buffers to be aggregated into a ring that can
be named by an index called the buffer queue index (BQI). Incoming network packets contain a BQI field
that is used by the controller in determining which ring to use. The controller initiates DMA into the next
buffer in this ring and hands the buffer to the protocol library. When the library is done with the buffer it
hands it back to the network module which adds it to the BQI ring. As with the Ethernet controller, complete
packets, including network headers, are transferred to shared memory.

On outbound packet transmissions, the library makes a system call into the network module. The system
call arguments describe a packet in shared memory as well as supplying a send capability. The capability
identifies the template, including the BQI in the case of the AN1, against which the packet header is checked.

In our design, the network I/O module and the library are both involved in managing the shared buffer
memory. However, the end user application need not be aware of this memory management because the
protocol library handles all the details. For the library, bookkeeping of shared memory is a relatively modest
task compared to the buffer management that must be performed to handle segmentation, reassembly, and
retransmission.

3.4 Registry Server

The registry server runs as a trusted, privileged process managing the allocation and deallocation of com-
munication end-points. There are several reasons that a central, trusted agent is required to mediate the
allocation of these end-points. First, connection end-points act as names of the communicating entities
and are therefore unique across a machine for a particular protocol. Thus, having untrusted user libraries
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allocate these names is a security and administrative concern. Second, in many protocols (including TCP),
connection state needs to be maintained after a connection is shut down. A transient user linkable library is
clearly not appropriate for this.

In connection-oriented protocols like TCP, connection establishment and communication end-point
allocation are often intertwined. For example, the registry server for TCP executes the three-way handshake
as part of the connection establishment. Thus, our organization can be logically thought of as the protocol
library providing a set of functions to both the application and the registry server. Each executes a different
subset of the functionality provided in the library. The registry server, as part of allocating communication
end-points, also transfers necessary state about the communication. Under normal operation, connection
shutdown is done by the protocol library. However, when the application exits, the registry server inherits
the connections and ensures that the protocol specified delay period is maintained before the connection
is reused. Resources allocated to the application and registered with the network I/O module are now
reclaimed. To guard against an abnormal application termination, the protocol server issues a reset message
to the remote peer.

While it is the case that the privileged server performs certain necessary operations on behalf of the user
application, better performance may be achieved by avoiding the server on all network transmission and
reception. With this rationale, we explored organizations that were different from earlier user-level protocol
implementations that used a server as an intermediary.

Protection Issues

If one is willing to trust applications, a simple structure is possible: the network device module exports
read and write RPC interfaces that the application libraries invoke to transfer packets to and from the
network. One might argue that since networks are easily tappable, trusting applications in this manner
is not a cause for undue concern. However, this scheme provides markedly lower security than what
conventional operating systems provide and what users have come to expect. In contrast, our scheme
provides good security (no scheme can be completely secure without suitable encryption on the network)
without sacrificing performance.

There are two aspects to protection. First, only entities that are authorized to communicate with each
other should be able to communicate. Second, entities should not be able to impersonate others. Our
scheme achieves the first objective by ensuring that applications negotiate connection setup through the
trusted registry server. Without going through this process, libraries have no send (or receive) capability for
the network. Impersonation is prevented by associating a header template with a send capability. When the
network I/O module receives packets to be transmitted, it matches fields in the template against the packet
header. Similarly, unauthorized access to incoming packets is prevented because the registry server activates
the address demultiplexing mechanism as part of the connection establishment phase.

The checks required for header matching on outgoing packets are similar to those needed for address
demultiplexing on incoming network packets. Since our host-network controllers do not provide any
hardware support for this, the logic required for this needs to be synthesized (or compiled) into the network
I/O module. Usually, this code segment is quite short. Our scheme has the defect that it violates strict
layering — the lower level network layer manipulates higher level protocol layers. We regard this as an
acceptable cost for the benefit it provides.

In a typical local area environment, network eavesdropping and tapping are usually possible. Our
scheme, like other schemes that do not use some form of encryption, does not provide absolute guarantees
on unauthorized accesses or impersonation. However, our scheme can be augmented with encryption in the
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network I/O module if additional security is required.
In our current implementation, the header template is statically determined and installed at connection

establishment. Subsequently, rerouting of packets from a connection might require changes to the template
to be done on the fly. We have not implemented this functionality yet.

Packet Demultiplexing Issues

We described earlier the notion of the BQI that is provided by the host-network controller for demultiplexing
incoming data. To summarize, the AN1 link header contains an index into a table that describes the eventual
destination of the packet in a (higher-level) protocol independent way. BQI zero is the default used by the
controller and refers to protected memory within the kernel. To use the hardware packet demultiplexing
facility for user-level data transfer, non-zero BQIs have to be exchanged between the two parties. In our
case, the server performs this function as part of the TCP three-way handshake.

Before initiating connection the server requests the network I/O module for a BQI that the remote node
can use. It then inserts the BQI into an unused field in the AN1 link header which is extracted by the
remote server. The remote server, as part of setting the template with the network I/O module, specifies the
BQI to be used on outgoing packets. Subsequent packets have the BQI field set correctly in their link-level
header. Since the handshake is three-way, both sides have a chance to receive and send BQIs before starting
data exchanges. After BQIs have been exchanged at call setup time, all packets for that connection are
transferred to host buffers in the ring for that BQI.

As mentioned previously, in the case of the Ethernet, which has no BQI, demultiplexing is done in
software. The current implementation of our software does not demultiplex fragmented IP packets because
these packets do not contain identifying TCP information. In practice, this has not been a problem because
TCP implementations generally try to avoid the cost of IP fragmentation by using fragments that fit within
a network frame.

3.5 Tradeoffs in User-Level Protocol Implementations

Connection Impersonation

Implementing protocols at user-level could potentially compromise the security of connections. For example,
without kernel mediation, a malicious (or buggy) application could masquerade as another application by
sending network packets with suitable transport headers. Similarly, an application can potentially receive
network packets destined for another. However, as our design demonstrates, it is possible to guard against
these security breaches by using a small amount of code in the kernel on incoming and outgoing paths. In
essence, there is a kernel sanity check on each network transmission and reception. The overhead incurred
can be kept very modest by combining the checking code with the code for programming the network device.

Rate Control

Another potential danger with user-level protocol implementations is that a malicious application could jam
the network with data, or exceed pre-arranged rate limitations. While we have not implemented a safeguard
against this, we believe it is possible do so. In our current implementation, the kernel is able to efficiently
identify outbound network packets with specific connections to perform checks against impersonation.
These sanity checks can be conceivably augmented to enforce rate requirements as well.
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In summary, by providing an efficient way of performing checks on outgoing packets, our design
addresses many of the security concerns inherent in user-level protocol implementation. However, there are
some types of behavior that are difficult to control with user-level protocol implementations. For example,
there is no easy way to prevent the application from violating some aspect of the protocol it is supposed to
be obeying.

Shared Connections

Sharing a common communication channel between one or more untrusted applications is a service provided
by protocol implementations in most operating systems. The sharing semantics are typically not part of the
protocol specification but are specified by the operating system. As a specific example, by encapsulating
connections into sockets that can be shared across a fork system call, UNIX provides a convenient way
of sharing and inheriting connections between applications. With user-level protocol implementations,
ensuring the integrity of state shared by two applications becomes cumbersome because the state cannot
be maintained by the untrusted user library. As a specific example, in our case, considerable programming
effort would have been required to support the sharing semantics of sockets by migrating shared connection
state to a trusted agent.

4 Performance

This section compares the performance of our design with monolithic (in-kernel and single-server) im-
plementations. Our goal was to ensure that our design is competitive with kernel-level implementations
or the Mach single-server implementation, and therefore superior to a user-level implementation that uses
intermediary servers.

Our hardware environment consists of two DECstation 5000/200 (25 MHz R3000 CPUs) workstations
connected to a 10 Mb/sec Ethernet, as well as to a switchless, private segment of a 100 Mb/sec AN1 network.

In order to generate accurate measurements of elapsed time, we used a real-time clock that is part of
the AN1 controller. This clock ticks at the rate of 40 ns and can be read by user processes by mapping and
accessing a device memory location.

Impact of Mechanisms

First, we wanted to estimate the cost imposed by our mechanisms (shared memory, library-device signaling,
protection checking in the kernel, software template matching, etc.) on the overall throughput of data
transfer. To estimate this overhead, we ran a micro-benchmark that used two applications to exchange data
over the 10 Mb/sec Ethernet, without using any higher-level protocols. All the standard mechanisms that
we provide (including the library-kernel signaling) are exercised in this experiment. ( A complete protocol
implementation in our design will have lower throughput than our benchmark. This can be attributed to two
factors — inherent protocol implementation inefficiency, and the overheads introduced by using multiple
threads, context switching, synchronization, and timers.)

Table 1 gives the measured absolute throughputs using maximum-sized Ethernet packets. For compar-
ison, it also shows throughput as a percentage of the maximum achievable using the raw hardware with a
standalone program and no operating system. (Note that the standalone system measurement represents
link saturation when the Ethernet frame format and inter-packet gaps are accounted for.) Our measurements
show that our mechanisms introduce only very modest overhead in return for their considerable benefits.
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Throughput (Mb/s)
System User-to-User Standalone Percentage

DECstation 5000/200 8.5 9.6 89%

Table 1: Impact of Our Mechanisms on Throughput

Throughput (Mb/s)
System User Packet Size (bytes)

512 1024 2048 4096

Ethernet
Ultrix 4.2A 5.8 7.6 7.6 7.6
Mach 3.0/UX (mapped) 2.1 2.5 3.2 3.5
Our (Mach) Implementation 4.3 4.6 4.8 5.0
DEC SRC AN1
Ultrix 4.2A 4.8 10.2 11.9 11.9
Our (Mach) Implementation 6.7 8.1 9.4 11.9

Table 2: Throughput Measurements (in megabits/second)

Throughput

Next, we compare the performance of our library with two monolithic protocol implementations. The
systems we use for comparison are Ultrix 4.2A, and Mach (version MK74) with the UNIX server (version
UX36). We did not alter the Ultrix 4.2A kernel in any way except to add the AN1 driver. This driver does
not currently implement the non-zero BQI functions that we described earlier and uses only BQI zero to
transfer data from the network to protected kernel buffers. We did not alter either the stock Mach kernel
or the UX server significantly. The main changes we made were restricted to adding a driver for our AN1
network device and appropriate memory and signaling support for the buffer layer.

The hardware platforms for the three systems are identical — DECstation 5000/200s connected to
Ethernet and DEC SRC AN1. Our implementation of the protocol stack has not exploited any special
techniques for speeding up TCP such as integrating the checksum with a data copy. The implementations
we compare our design with also do not exploit any of these techniques. In fact, the protocol stack that is
executed is nearly identical in all three systems. All three systems use TCP windows of 16 Kbytes. Thus,
this is an “apples to apples” comparison: any performance difference is due to the structure and mechanisms
provided in the three systems.

The primary performance metric for a byte-stream protocol like TCP is throughput. Table 2 indicates
the relative performance of the implementations. Throughput was measured between user-level programs
running on otherwise idle workstations and unloaded networks. In each case the user-level programs were
running on identical systems. The user-level program itself is identical except for the libraries that it was
linked against. We report the performance for several different user-level packet sizes. User packet size has
an impact on the throughput in two ways. First, network efficiency improves with increased packet size up
to the maximum allowable on the link, and thus we see increasing throughput with packet size. Second, user
packet sizes beyond the link-imposed maximum will require multiple network packet transmissions for each
packet. This effect influences overall performance depending on the relative locations of the application, the
protocol implementation, and the device driver, and the relative costs of switching among these locations.
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Table 2 has two interesting aspects to it. First, the user-level library implementation outperforms the
monolithic Mach/UX implementation. Our implementation is 42% faster than the Mach/UX implementation
for the 4K packet case (and even faster for smaller packet sizes). The protocol stack and the base operating
system’s support for threads and synchronization are the same in the two systems, indicating that our
structure has clear performance advantages. For instance, crossing between the application and the protocol
code can be made cheaper, because the sanity checks involved in a trap can be simplified. Similarly, a kernel
crossing to access the network device can be made fast because it is a specialized entry point.

Another interesting point in Table 2 is the performance difference between the Ultrix-based version and
the two Mach-based versions. For example, Ultrix on Ethernet is 35–65% faster than our implementation.
However, on AN1, the difference is far less pronounced. We instrumented the Ultrix kernel and our
Mach-based implementation to better understand the differences between the two systems.

Our measurements indicate that, under load, there is considerable difference in the execution time of
the code that delivers packets from the network to the protocol layer in the two implementations. The
code path consists primarily of low-level, interrupt driven, device management code in both systems. Our
implementation also contains code to signal the user thread as well as special packet demultiplexing code
for the Ethernet that is not present in Ultrix.

To summarize our measurements, the times to deliver AN1 packets to the protocol code in Ultrix and in
our implementation are comparable. This is not very surprising because the device driver code is basically
the same in the two systems and there is no special packet filter code to be invoked for input packet
demultiplexing since it is done in hardware. The only difference between the device drivers is that our
implementation uses non-zero BQIs while Ultrix uses BQI zero. The user level signaling code does not add
significantly to the overall time because network packet batching is very effective. The TCP/IP protocol
code in Ultrix and our implementation are nearly identical and hence the overall performance is comparable
in the two systems.

In contrast, the time to deliver maximum-sized Ethernet packets to our user-level protocol code is
about 0.8 ms greater than in Ultrix. Under load, this time difference increases due to increased queueing
delays as packets arrive at the device and await service. In addition to the increased queueing delay, fewer
network packets are batched to the user per semaphore notification. However, we don’t view this as an
insurmountable problem with user-level library implementations of protocols. Some of this performance
can be won back by a better implementation of synchronization primitives, user level threads, and protocol
stacks. For instance, the implementation in [15] achieves a higher throughput than the Ultrix version.

The observed throughput on AN1 is lower than the maximum the network can support. The primary
reason for this is that we have configured the AN1 driver to use the default packet size of 1500 bytes instead
of larger packet sizes that the driver is capable of supporting. In effect, TCP/IP sees the same maximum
transmission unit (MTU) on AN1 as it does on Ethernet. We achieve better performance than Ultrix with
512-byte user packets because our implementation uses a buffer organization that eliminates byte copying.
Ultrix uses an identical mechanism, but it is invoked only when the user packet size is 1024 bytes or larger.

Unlike the mapped Ethernet device, standard Mach does not currently support a mapped AN1 driver.
Measuring native Mach/UX TCP performance using our unmapped, in-kernel AN1 driver is likely to be an
unfair indicator of Mach/UX performance. We therefore do not report Mach/UX performance on AN1.

Latency

We compared the latency characteristics of our implementation with the monolithic versions. The latency
is measured by doing a simple ping-pong test between two applications. The first application sends data
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Round-Trip Time (ms)
System User Packet Size (bytes)

1 512 1460

Ethernet
Ultrix 4.2A 1.6 3.5 6.2
Mach 3.0/UX (mapped) 7.8 10.8 16.0
Our (Mach) Implementation 2.8 5.2 9.9
DEC SRC AN1
Ultrix 4.2A 1.8 2.7 3.2
Our (Mach) Implementation 2.7 3.4 4.7

Table 3: Round Trip Latencies (in milliseconds)

System Connection Setup Time (ms)

Ultrix 4.2A
Ethernet 2.6
DEC SRC AN1 2.9
Mach 3.0/UX
Ethernet (mapped) 6.8
Our (Mach) Implementation
Ethernet 11.9
DEC SRC AN1 12.3

Table 4: Connection Setup Cost (in milliseconds)

to the second, which in turn, sends the same amount of data back. The average round-trip time for the
exchange with various data sizes is shown in Table 3. This does not include connection setup time, which
is separately accounted for below. As the table indicates, latencies on the Ethernet are significantly reduced
from the Mach/UX monolithic implementation and approach those of the Ultrix implementation. On the
AN1, the difference between Ultrix and our implementation is also fairly small.

Connection Setup Cost

In addition to throughput and latency measurements,another useful measure of performance is the connection
setup time. Connection setup time is important for applications that periodically open connections to peers
and send small amounts of data before closing the connection. In a kernel implementation of TCP, connection
setup time is primarily the time to complete the three-way handshake. However, in our design, the time
to set up a connection is likely to be greater because of the additional actions that the registry server must
perform. Anticipating this effect, our implementation overlaps much of this with packet transmission.

In measuring TCP connection setup time, we assumed that the passive peer was already listening for
connections when the active connection was initiated.

Table 4 indicates the connection setup time of the different systems. The speed of the network is not
a factor in the total time because the amount of data exchanged during connection setup is insignificant.
As the table indicates, our design introduces a noticeable cost for connection setup but it is a reasonable
overhead if it can be amortized over multiple subsequent data exchanges. The connection setup time is
slightly higher for the AN1 because the machinery involved to set up the BQI has to be exercised.
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Network Interface Demultiplexing Cost (�s)
Lance Ethernet (Software) 52
AN1 (Hardware BQI) 50

Table 5: Hardware/Software Demultiplexing Tradeoffs

The 11.9 ms overhead in our Ethernet implementation can be roughly broken down as follows.

1. The time to get to the remote peer and back is the bulk of the cost (4.6 ms). Network transmission time
is not a factor because it is on the order of 100 �s or so. Most of the overhead is local and includes
the server’s cost of accessing the network device. Unlike the protocol library, the registry server does
not access the network device using shared memory, but instead uses standard Mach IPCs.

2. There is a part of the outbound processing that cannot be overlapped with data transmission. This
includes allocating connection identifiers, executing the start of connection set up phase, etc., and
accounts for about 1.5 ms.

3. Nearly 3.4 ms are spent in setting up user channels to the network device when the connection set up
is being completed.

4. The time to go from the application to the server and back is about 900 �s, and is relatively modest.

5. Finally, it takes about 1.4 ms to transfer and set up TCP state to user level.

There are obvious ways of reducing the overhead that we did not pursue. For example, having a more
efficient path between the registry server and the device and using shared memory to transfer the protocol
state between the server and the protocol library is likely to reduce overhead. Nonetheless, it is unlikely
ever to be as low as the Ultrix implementation.

Packet Demultiplexing Tradeoffs

Finally, we quantify the cost/benefit tradeoff of hardware support for demultiplexing incoming packets.
Table 5 indicates the execution time for demultiplexing an incoming packet with and without hardware
support. For the Ethernet, programmed I/O is used to transfer the packet to host memory from the controller,
and input packet demultiplexing is done entirely in software. On the AN1, DMA is used to transfer the data
and the BQI acts as the demultiplexing field.

Table 5 represents only the cost of software/hardware packet demultiplexing; copy and DMA costs are
not included. The cost of device management code inherent to packet demultiplexing in the case of the
AN1 is included. As the table indicates, there is no significant difference in the timing. The AN1 host-
network interface has more complex machinery to handle multiplexing. Part of the cost of programming
this machinery and bookkeeping accounts for the observed times. As packet size increases, the tradeoff
between the two schemes becomes more complex depending on the details of the memory system (e.g., the
presence of snooping caches) and specifics of the protocols (e.g., can the checksum be done in hardware).
For example, if hardware checksum alone is sufficient, and the cache system supports efficient DMA by
I/O devices, we expect the BQI scheme to have a significant performance advantage over one that uses only
software.
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Summary

In summary, our performance data suggests that it is possible to structure protocols as libraries without sac-
rificing throughput relative to monolithic organizations. Given the right mechanisms in the base operating
system, user-level implementations can be competitive with monolithic implementations of identical proto-
cols. Further, techniques that exploit application-specific knowledge that are difficult to apply in dedicated
server and in-kernel organizations now become easier to apply. A relatively expensive connection setup is
needed, but in practice a single setup is amortized across many data transfer operations.

5 Conclusions and Future Work

We have described a new organization for structuring protocol implementations at user-level. The feature of
this organization that distinguishes it from earlier work is that it avoids a centralized server, achieving good
performance without compromising security. The motivation for choosing a user-level library implementa-
tion over an in-kernel implementation is that it is easier to maintain and debug, and can potentially exploit
application-specific knowledge for performance. Software maintenance and other software engineering
issues are likely to be increasing concerns in the future when diverse protocols are developed for special
purpose needs.

Based on our experience with implementing protocols on Mach, we believe that complex, connection-
oriented, reliable protocols can be implemented outside the kernel using the facilities provided by contem-
porary operating systems in addition to simple support for input demultiplexing. In-kernel techniques to
simplify layering overheads and context switching overheads continue to be applicable even at user-level.

Our organization is demonstrably beneficial for connection-oriented protocols. For connectionless
protocols, the answer is less clear. Typical request-response protocols do not require an initial connection
setup, yet require authorized connection identifiers to be used. However, these protocols are often used in
an overall context that has a connection setup (or address binding) phase, e.g., in an RPC system. In these
cases, after the address binding phase, the dedicated server can be bypassed, reducing overall latency which
is the important performance factor in such protocols.

A similar observation applies to hardware packet demultiplexing mechanisms as well. To fully exploit
the benefits of the BQI scheme, indexes have to be exchanged between the peers. This is easy if connection
setup (as in TCP) or binding (as in RPC) is performed prior to normal data transfer. In other cases, the
hardware packet demultiplexing mechanism is difficult to exploit because there is no separate connection
setup phase that can negotiate the BQIs.

There is much evidence to support the claim that application-specific knowledge can be exploited to
achieve highly efficient communication. For example, [1, 10] are some of the more recent systems that use
application-specific knowledge to generate communication protocols. By providing language-level support
for generating protocols, these systems go beyond providing a set of pre-defined options to fine tune a
protocol. In contrast to traditional organizations, the protocol structuring framework described in this paper
is well suited to support these more aggressive, compiler driven techniques.
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