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Abstract

Recently there has been considerable interest in the study of replica-control protocols which are based

on organizing several copies of an object into logical structures, such as rectangular grids. In addition to

high availability, another objective in exploiting such structures is to improve the degree of load sharing

in a system. In this paper, we extend the scope of grid structures to general grids, which allow holes in

various positions of a rectangular structure and are useful to consider because they often produce avail-

abilities that are higher than solid grids, where every position must be occupied by a node. We propose

an improvement to the existing grid protocol, prove its optimality, and also compare its performance with

the existing protocol in terms of availability. In addition, we also o�er new insights into the performance

of the grids, from both availability and load sharing points of view. Noting that the write availability of

square grids tends to 0 for a large number of nodes N, we conduct an asymptotic analysis, and derive the

conditions that must be imposed on the dimensions of the grid for the availability to increase asymptot-

ically with increasing N. Algorithms for designing grids to maximize availability independently, and also

in conjunction with a load sharing constraint are given.

Key words: Replicated Databases - Distributed systems - Quorums - Grid Protocol Availability -

Load sharing - Algorithms.

1 Introduction

Data is replicated in distributed systems to improve availability and performance. In most cases, the con-

sistency of the data must be maintained despite node and/or communication link failures. This can be

achieved by requiring that, in order to succeed, read and write operations obtain permission from certain

sets of replicas called read and write quorums. The read and write quorums are de�ned in such a way that

any two write quorums and any pair of read and write quorums have at least one node in common. Then, a

�
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read operation can always identify the most recent version of the data, and write con
icts are also prevented.

Quorums are also used in distributed systems for many other purposes such as mutual exclusion ([1, 11]),

commit protocols ([13]) and distributed consensus [9].

In addition to higher availability, a second advantage of replication is greater load sharing. If there is

only one copy of an object, and all operations go to the node where it is stored, the node may get overloaded

and the response may deteriorate. By maintaining multiple copies, the load can be distributed uniformly

across the various copies. In majority voting [14], the load sharing is not very good because half the copies

must be involved in a quorum. Hence, the maximum improvement in load sharing is limited to a factor of 2,

and does not change as the number of copies increases. On the other hand, the solutions described in this

paper have better load sharing properties.

A desirable property for an algorithm to have is to be fully distributed. This is because in such an

algorithm, each node plays an equal role, and the load distribution is uniform. More precisely, in a fully

distributed solution all write quorums are of equal size, all read quorums are of equal size, and every node is

a member of an equal number of read and write quorums. An important goal in designing such an algorithm

is to minimize the quorum size as a function of the number of replicas because the cost of performing an

operation depends upon quorum size. Provably the best (with regards to quorum size) fully distributed

solutions have a quorum size of 
(

p

N ), where N is the number of replicas of the data item. Although

this bound is achieved in Maekawa's [11], Grid [2, 3], and Hierarchical Grid (h-grid) [7] protocols, each of

these protocols has some drawback. Maekawa's protocol has the lowest constant among the three, but it

gives poor availability. On the other hand, the grid protocol performs better than Maekawa's protocol in

terms of availability, while the h-grid protocol has an identical quorum size to the grid protocol and also

gives asymptotically high write availability (which the grid protocol does not). However, the higher write

availability in the h-grid protocol is obtained at the expense of read availability. This means that one does

not dominate the other. Another protocol described in [12] which combines Maekawa's protocol and majority

voting in a novel manner has a quorum size of

p

N logN and also produces asymptotically high availability.

In the grid protocol [2, 3], N copies are logically organized into a rectangular m�n grid. A read quorum

is formed by assembling one copy from each column of the grid (also called a column-cover or c-cover); a

write quorum is formed by the union of a read quorum and all copies from any one column of the grid. Grid

protocols are promising because they are fully distributed, and, moreover, have the potential of satisfying
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both the load sharing and high availability requirements. In this paper, we describe a modi�ed grid protocol

and give new results and analysis that o�er fresh insights into the availability and load sharing behavior of

grids. We also extend the scope of our results and analysis to general grids, by which we refer to arrangements

where a large number of copies of an object are organized into a rectangular structure; however, some of the

positions in the rectangle are allowed to be empty (we call such positions \holes"). Such grids with holes

will be referred to as hollow as opposed to solid grids which have copies in all positions.

Consequently, this paper discusses several issues pertaining to both solid and hollow grids. First, we

modify the grid protocol described in [2, 3] slightly to improve its availability properties, and also derive the

expressions for read and write availability in the case of a general grid. This exercise is interesting because,

as we show in Section 4, often the availability resulting from organizing N copies into an m� n grid (where

mn = N ) can be improved by placing the N copies in an m

0

� n

0

grid (where m

0

n

0

> N ) and leaving some

grid positions empty (i.e., �lling them with holes). Of course, permitting holes in a grid diminishes the fully

distributed nature of the grid protocol because it means that some nodes play a larger role than others. We

resolve this issue by permitting at most one hole in any column of the grid and so the algorithm remains

\almost fully distributed". Therefore, for large N , the load is distributed among the nodes almost as evenly

as in a fully distributed solution, and yet there is more 
exibility in constructing the grid. In fact, for many

values of N (e.g., when N is prime), no sensible fully distributed solution exists anyway.

The second issue we address is that of availability. We examine it from both the theoretical and empirical

points of view. As shown in [7], the write availability for square grids goes asymptotically to 0; however, the

question we pose is: If rectangular, non-square grids are permitted, then, would the asymptotic availability

go to 1? What must the dimensions of the grid be for this to happen? We �nd that for this to happen, the

dimensions of the grid must be close to logN � N= logN , and this produces quorum sizes that are almost

linear in N , thereby defeating the main strength of grids. Interestingly enough, empirical calculations show

that this asymptotic behavior of grids comes into play only for very large values of N . It was found that

for N � 23000, grid dimensions,

p

N �

p

N and the probability p of a node being up 0.99, the availability

does increase towards 1, and begins to decline only for values of N larger than 23000. This means that, in

spite of the negative asymptotic result mentioned above, rectangular grids are still very promising both from

availability and load sharing points of view in most practical situations. We also studied the relationship

between availability and N for various values of p, the probability that a node is up.
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Another important issue addressed here is that of grid design subject to availability and load sharing

constraints. Given a desired degree of load sharing and a minimum availability threshold, what is the smallest

number of copies N required to satisfy these requirements? Moreover, how should these copies be arranged

in an m � n grid? An algorithm is proposed to enable a designer to solve this problem and meet the twin

objectives of load sharing and availability in an optimal manner.

This paper is organized as follows. Section 2 gives our notation and terminology. Section 3 describes a

general grid and derives expressions for computing read and write availability of such a grid. In this section,

a modi�ed grid protocol and a proof of its optimality are also given. In section 4, we compare the existing

and our modi�ed grid protocols in terms of availability. Section 5 gives an algorithm for constructing a grid

with the maximal availability given N copies of an object. Section 6 analyzes availability of general grids in

the asymptotic case (for large N ), both theoretically and empirically. Next, Section 7 turns to the issue of

designing a grid which satis�es both availability and load sharing constraints. Section 8 concludes the paper.

2 Terminology and notation

Throughout this paper, the terms \node" and \site" are used, often interchangeably, to refer to physical

network sites where the data is replicated. The term \position", on the other hand, refers to the placeholders

in logical grids that may or may not be occupied by physical nodes (Figure 1). A grid in which all positions

are occupied by physical nodes is called solid. Positions not occupied by nodes are called holes. A grid with

one or more holes is called a hollow grid.

Two grids are equivalent if their read and write quorum sizes and availabilities are the same. A column

of a grid is good if all its nodes are up; it is alive if at least one of its nodes is up. A column which is not

good is bad.

The following is standard notation in this paper. The system contains N nodes organized in an m � n

grid, where m is the number of rows and n, the number of columns. A grid may or may not contain all N

nodes. As an example, a solidm�n grid in which mn < N does not use N�mn nodes. A node is assumed to

be operational with probability p, and to have failed with probability q = 1�p. Read and write availabilities

are denoted by RA and WA, respectively, and represent the probabilities that the corresponding quorums

can be formed. Read and write quorum sizes are denoted by Q

R

and Q

W

. See Table 1 for a summary of the

terminology.
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Notation Description

N total number of nodes in the system

m number of rows

n number of columns

p probability that a given node is up

q 1� p

RA read availability

WA write availability

Q

R

size of read quorum

Q

W

size of write quorum

column is good all nodes in the column are up

column is bad all nodes in the column are down

column is alive at least one node in the column is up

relative read quorum size

Q

R

Number of nodes in the grid

relative write quorum size

Q

W

Number of nodes in the grid

Table 1: Summary of terminology used

Finally, as a measure of the degree of load sharing in the system, we de�ne a relative read (write) quorum

size to be the ratio of the read (write) quorum size to the total number of nodes used in the grid. The

intuition behind this measure is as follows. In a solid grid containing all N nodes, the relative quorum

size shows the fraction of nodes participating in a single operation and hence, if di�erent operations choose

quorums randomly, it gives the fraction of the total load carried by a single node. If not all N nodes are

included in the grid, the extra nodes never participate in any operation and should not be taken into account

in the measure of load sharing.

3 Computing read and write availability for general grids

In Section 3.1, we derive formulas for read and write availability for a general grid, i.e., one in which some

positions may not be occupied by nodes (Figure 1 is a 3�4 hollow grid with 7 nodes and 5 holes). In previous

works, only solid rectangular grids were considered [2, 3]. However, as we will illustrate in the section 4,

hollow grids may provide better availability than solid ones. The computations in Section 3.1 are carried for

the existing grid protocol. Then, Section 3.2 describes the modi�ed grid protocol, and recomputes the read

availability for that protocol. Finally, in Section 3.3, we prove that the modi�ed grid protocol is optimal in

the sense that it is non-dominated.

3.1 Availability in Existing Protocol
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Figure 1: A 3� 4 grid with 7 nodes.

Consider N nodes placed in an m � n grid where mn � N . If mn > N , then the grid contains mn � N

holes. Let n

1

columns contain m

1

nodes, n

2

columns contain m

2

nodes, :::, n

k

columns contain m

k

nodes,

and so on. The read and write availabilities of this grid are calculated as follows.

Prob(a column with m

i

nodes is alive) = 1� q

m

i

;

Prob(all columns in the grid are alive) =

(1� q

m

1

)

n

1

� (1� q

m

2

)

n

2

� : : : � (1� q

m

k

)

n

k

;

Prob(A column with m

i

nodes is bad and alive) =

1� Prob(a column with m

i

nodes is good) � prob(a column with m

i

nodes is dead) = 1� p

m

i

� q

m

i

;

Prob(all columns are bad and alive) =

(1� p

m

1

� q

m

1

)

n

1

� (1� p

m

2

� q

m

2

)

n

2

� : : : � (1� p

m

k

� q

m

k

)

n

k

;

Write availability WA = Prob(all columns are alive) � Prob(all columns are bad and alive) =

(1� q

m

1

)

n

1

� : : : � (1� q

m

k

)

n

k

�

(1� p

m

1

� q

m

1

)

n

1

� : : : � (1� p

m

k

� q

m

k

)

n

k

: (1)

Read availability RA = Prob(all columns are alive) =

(1� q

m

1

)

n

1

� (1 � q

m

2

)

n

2

� : : : � (1� q

m

k

)

n

k

: (2)

In the existing grid protocol, there are two tradeo�s: �rst, between read and write availabilities; and sec-

ond, between read quorum size (which is a measure of read performance) and write availability [2]. Write

availability is better in a grid where the number of rows is much smaller than the number of columns, which

means the grid should contain large number of short columns. However, in a grid with a large number of
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columns, the size of read quorums is also large (recall that a read quorum is formed by obtaining one node

from each column of the grid). Hence, read performance in such grids su�ers. Also, having too many short

columns makes it harder to collect one operational node from every column and hurts read availability. These

tradeo�s make designing a grid especially hard.

3.2 Availability in Modi�ed Protocol

We modi�ed the grid protocol of [2, 3] slightly by rede�ning a read quorum in the following manner. A read

quorum can be formed in one of two ways: as a set consisting of one node from each column of the grid or

a set of all nodes from any single column. It is straightforward to show that any read quorum de�ned this

way intersects with any write quorum and hence the quorum intersection rules are satis�ed. This protocol

will be referred to as the modi�ed grid protocol. (This modi�cation was also suggested independently by

Neilsen [10]. ) This seemingly minor improvement to the protocol is signi�cant because it increases the

read availability without changing the write availability. Notice that now a grid with many short columns

provides high write availability and, at the same time, good read availability and performance since a read

operation can assemble all nodes from any one of many short columns to form a quorum. To calculate the

read availability for the modi�ed grid, note that the probability that a column is bad and alive is 1�p

m

�q

m

,

where m is the number of nodes in the column. Then, the probability that a read quorum cannot be formed

is equal to the probability that all columns are bad minus the probability that all columns are bad and alive,

which is:

(1� p

m

1

)

n

1

� : : : � (1 � p

m

k

)

n

k

�

(1� p

m

1

� q

m

1

)

n

1

� : : : � (1� p

m

k

� q

m

k

)

n

k

Then, read availability RA is

1� ((1� p

m

1

)

n

1

� : : : � (1� p

m

k

)

n

k

�

(1� p

m

1

� q

m

1

)

n

1

� : : : � (1� p

m

k

� q

m

k

)

n

k

) (3)

Next, we show that the set of quorums de�ned by the modi�ed grid are optimal, i.e., they are not

dominated by any other set.

7



3.3 Optimality of Modi�ed Grid Protocol

The notion of non-dominance was �rst introduced in [5] to formalize the intuition behind optimal quorums.

Let R andW be sets of read and write quorums. A pair of sets (R;W ) (also called a coterie) is non-dominated

i� any set of nodes G that intersects with every write quorum from W is a superset of some read quorum

from R; and any set of nodes E that intersects with every read quorum is a superset of some write quorum.

These two conditions can be summarized mathematically as follows:

1. 8w 2W;G \ w 6= ; ) 9r 2 R;G � r

2. 8r 2 R;E \ r 6= ; ) 9w 2W;E � w

The notion of non-dominance characterizes the optimality of a coterie because if a coterie C is dominated

then there exists another coterie, D, which includes all quorums from C and some additional quorums.

Then, the protocol based on D would have better availability, and possibly performance properties, than the

protocol based on C.

Theorem 1. The coterie de�ned by the modi�ed grid protocol is non-dominated.

Proof. Consider a m � n grid with m rows (numbered 1 thru m) and n colomns (numbered 1 thru n).

First, we show that for any set G that is not a superset of any read quorum, there is a write quorum with

which G does not intersect. Indeed, if G is such a set, then there is a column j

0

such that all its nodes

(1; j

0

); : : : ; (m; j

0

) are not in G (i.e., the column j

0

is not represented in G), and for any j; 1 � j � n, there

is i

j

such that (i

j

; j) 62 G (i.e., G does not contain any full column). Then, consider a set S that includes all

nodes from the column j

0

, and nodes (i

1

; 1); : : : ; (i

n

; n). This set is a write quorum, since it contains a full

column and a node from each column. Yet G\S = ;. Thus, there is no such set of nodes that intersects with

every write quorum and is not a superset of some read quorum. So, the �rst condition for non-dominance is

satis�ed.

Now we show that for any set E that is not a superset of any write quorum, there is a read quorum

with which E does not interesect. If E is such a set, then either there is a column number j

0

such that

nodes (1; j

0

); : : : ; (m; j

0

) are not in E (i.e., the column j

0

is not represented in E), or for any j; 1 � j � n,

there is i

j

such that (i

j

; j) 62 E (i.e., E does not contain any full column). In the �rst case, the set of all

nodes from column j

0

is a read quorum that does not intersect with E; in the second case, the set of nodes

f(i

1

; 1); : : : ; (i

n

; n)g is such a read quorum. In both cases, there is a read quorum that does not intersect
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grid write old read new read old

dim unavail. unavail. unavail. new

2 x 2 5:23 � 10

�2

1:99 � 10

�2

3:70 � 10

�3

5

2 x 4 4:05 � 10

�2

3:94 � 10

�2

2:53 � 10

�4

155

2 x 6 5:86 � 10

�2

5:85 � 10

�2

1:30 � 10

�5

4489

4 x 2 1:18 � 10

�1

2:00 � 10

�4

6:88 � 10

�5

2

4 x 4 1:44 � 10

�2

4:00 � 10

�4

1:63 � 10

�5

24

4 x 6 2:25 � 10

�3

6:00 � 10

�4

2:88 � 10

�6

207

6 x 2 2:20 � 10

�1

2:00 � 10

�6

9:37 � 10

�7

2

6 x 4 4:82 � 10

�2

4:00 � 10

�6

4:11 � 10

�7

9

6 x 6 1:06 � 10

�2

6:00 � 10

�6

1:36 � 10

�7

44

Table 2: Unavailability of the existing and modi�ed grid protocols with p = 0.90

grid write old read new read old

dim unavail. unavail. unavail. new

2 x 2 1:40 � 10

�2

4:99 � 10

�3

4:81 � 10

�4

10

2 x 4 1:00 � 10

�2

9:96 � 10

�3

8:92 � 10

�6

1117

2 x 6 1:49 � 10

�2

1:49 � 10

�2

1:24 � 10

�7

120237

4 x 2 3:44 � 10

�2

1:25 � 10

�5

2:32 � 10

�6

5

4 x 4 1:21 � 10

�3

2:50 � 10

�5

1:60 � 10

�7

156

4 x 6 7:82 � 10

�5

3:75 � 10

�5

8:23 � 10

�9

4553

6 x 2 7:02 � 10

�2

3:12 � 10

�8

8:28 � 10

�9

3

6 x 4 4:92 � 10

�3

6:25 � 10

�8

1:16 � 10

�9

53

6 x 6 3:46 � 10

�4

9:38 � 10

�8

1:22 � 10

10

766

Table 3: Unavailability of the existing and modi�ed grid protocols with p = 0.95

with E. Thus, there is no such set of nodes that intersects with every read quorum and is not a superset of

some write quorum, and the second condition for non-dominance is met. 2

The described re�nement of grid protocol can also be extended easily to the h-grid and hierarchical

quorum consensus-2 (HQC2) [6, 7] protocols. The details are omitted here because the focus of the present

work is on grids exclusively.

4 The existing vs. modi�ed grid protocols

In this section, we give a comparison between the existing (old) grid protocol [2, 3] and our modi�ed (new)

protocol described above. For purposes of this comparison, we consider grids of the same dimensions that were

considered in [3], and recompute the read availability for di�erent values of p. Note that the write availability

remains the same in both protocols. The results are shown in Tables 2, 3 and 4, which correspond to p=0.9,

0.95 and 0.99, respectively. As in [3], for ease of understanding, all availabilities in the tables are expressed

as unavailabilities (de�ned as 1 - availability). Each table gives the grid dimensions, write unavailability
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grid write old read new read old

dim unavail. unavail. unavail. new

2 x 2 5:92 � 10

�4

2:00 � 10

�4

3:97 � 10

�6

50

2 x 4 4:00 � 10

�4

4:00 � 10

�4

3:13 � 10

�9

127835

2 x 6 6:00 � 10

�4

6:00 � 10

�4

1:85 � 10

�12

324404608

4 x 2 1:55 � 10

�3

2:00 � 10

�8

7:88 � 10

�10

25

4 x 4 2:45 � 10

�6

4:00 � 10

�8

2:45 � 10

�12

16344

4 x 6 6:37 � 10

�8

6:00 � 10

�8

5:66 � 10

�15

10596700

6 x 2 3:42 � 10

�3

2:00 � 10

�12

1:17 � 10

�13

17

6 x 4 1:17 � 10

�5

4:00 � 10

�12

7:77 � 10

�16

5146

6 x 6 4:02 � 10

�8

6:00 � 10

�12

0.00 |

Table 4: Unavailability of the existing and modi�ed grid protocols with p = 0.99

(same for old and new protocol), read unavailability of old protocol, read unavailability of new protocol,

and improvement ratio of read unavailability. The improvement ratio shown in the last column is computed

as

read unavailability in old protocol

read unavailability in new protocol

, and is an indicator of the improvement that results from using the new

protocol.

Several conclusions may be drawn from these results. First, in all cases the read unavailability of the new

protocol is several times lower than in the old protocol. In fact, in many cases the di�erence is of several

orders of magnitude. Secondly, the gap or relative di�erence between the two protocols as indicated by the

improvement ratio increases for larger values of p. Thirdly, for all values of p, the relative improvement

depends considerably on the grid dimensions, m and n. It is maximum when the number of rows (m) is

small and number of columns (n) is large. This makes intuitive sense because the new protocol makes it is

easy to form a read quorum from all nodes in any one column (since m is small, i.e. each column is short).

On the other hand, this is also the case where it is the hardest to form a read quorum in the old protocol

by a column-cover since the number of columns is large and each column is short.

Fourthly, another important point that should be noted is that the modi�ed protocol considerably lessens

the tradeo�s between read and write availabilities mentioned in section 3. This means that the same im-

provement in write availability now results from a much smaller sacri�ce in read availability. In the old

protocol, both read and write availability are very sensitive to actual grid dimensions m and n for a given

total number of nodes N . To see this, consider for example, the 4 � 6 and 6 � 4 grids in Table 3. In the

existing protocol, the write unavailability is two orders of magnitude lower for the 4� 6 grid, while the read

unavailability is three orders of magnitude lower for the 6 � 4 grid. On the other hand, for the modi�ed
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protocol, the two orders of magnitude decline in the write unavailability for the 4 � 6 grid causes the read

unavailability to increase (worsen) only by a factor of less than 5. Similar arguments apply to Tables 2 and

4 also. Hence, the new protocol, in addition to improving the read availability, also makes it less sensitive

to the actual grid dimensions.

Finally, given certain read and write availability requirements, it is possible to satisfy them with a grid

of much fewer nodes using the new protocol as compared to the old one. Consider the case where a grid

must be designed to the requirements that the read and write unavailabilities must not exceed 10

�4

and

10

�5

respectively, given p = 0:95. With the existing protocol, no solid grid with fewer than 35 nodes

can simultaneously satisfy both these requirements. On the other hand, the new protocol allows these

requirements to be met using only 24 nodes, say with a 4� 6 grid.

5 Finding grids with the highest availability

This section describes an algorithm that, given N nodes, �nds the almost fully distributed grid solution with

the highest availability. This problem is complicated for two reasons: �rstly, because, often, hollow grids have

a higher availability than solid grids; and, secondly, because sometimes a higher availability can be achieved

if some of the nodes are not used at all. To illustrate these points, consider availabilities of various grids

for N = 16 computed in Table 5. In this table, read, write and weighted availabilities have been computed.

The weighted availability is de�ned as F�RA + (1-F)�WA, where F is the fraction of read operations. Here

F is assumed to be 0.8. Table 5 shows that a solid 4 � 4 grid gives a lower write and weighted availability

than a 4 � 5 grid with four holes in the bottom row. Moreover, a solid 3 � 5 grid containing only 15 nodes

has higher values for both write and weighted availability than any solid grid containing 16 nodes. These

improvements become more signi�cant when viewed as decreases in unavailability, de�ned as 1� availability,

rather than increases in availability.

Algorithm OptimalWriteAvail for �nding the grid with the highest write availability, given N nodes,

is listed in Figure 2. Since the objective is to design an \almost fully distributed" protocol, our algorithm

considers only the grids containing at most one hole in any column. Moreover, since the read and write

availabilities are not a function of the exact location of the hole in a given column, it is assumed without

loss of generality that the hole is always at the bottom of a column. For N nodes, the algorithm considers

all rectangular grids such that: m � n and N � mn < N + n. It does not make sense to consider grids with
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Grid Read Write Weighted

Con�- Avail. Avail Avail

guration (80% reads)

1� 16 solid 1� 10

�16

0.185302 0.837060

2� 8 solid 0.9999994 0.922746 0.984548

4� 4 solid 0.999984 0.985629 0.997113

8� 2 solid 0.999999989 0.675632 0.935126

16 � 1 solid 1� 10

�16

0.185302 0.837060

3� 5 solid

(1 node not 0.999973 0.993575 0.998694

used)

4� 5 with

4 holes in the 0.999972 0.994079 0.998797

bottom row

Table 5: Availability of various grids for N = 16 and p = 0:9.

mn � N +n because such a grid must have at least n holes, i.e. the bottom row contains all holes, and so it

can be eliminated from consideration. It can also be shown that for any N;m; and n such that mn < N +n

and m > n, the m� n grid with all holes in the bottom row has lower availability than the n�m grid with

all holes in the bottom row. Hence, in a search for the best grid, one may only consider grids where m � n.

Let G

N

be the best (i.e. the highest availability) grid found among the grids containing exactly N nodes

and WA

N

be its write availability. (In an m� n grid containing N nodes, there are n� (mn�N ) columns

with m nodes and mn � N columns with m � 1 nodes. Then, the write availability of this grid can be

calculated using expression 1 of Section 3.) Then, the algorithm returns the grid G

opt

N

as the one with the

higher write availability among G

opt

N�1

and G

N

.

In considering N -node grids, the algorithm starts with m = 1 and n = N , and then decrements n by 1

on every iteration until n = b

p

Nc. Hence, the number of grids examined to �nd G

N

is O(N ). Since a grid

with N � 1 nodes may have a higher availability than one with N nodes, our algorithm must also examine

grids in which fewer than N nodes are used. Therefore, the total number of grids examined by the algorithm

is O(N

2

). As a side result, the algorithm also gives the maximum availability for all grids with the number

of nodes in the range [1; N ].

Figure 3 gives a plot of the write availability of the best grid and its relative quorum size, for various

values of N up to 1000. The write availability is shown along the Y-axis as (� log

10

(1 �WA)) and can be

interpreted as the number of 9's after the decimal place. The dimensions of the best grids and the write

quorum sizes are given in Table 6. Figure 3 shows that as N increases, the maximum availability also

12



OptimalWriteAvail(N): (best-avail, best-m, best-n);

IF (N = 1)

RETURN (p, 1, 1);

ENDIF

m = 1; n = N;

cur-best-m = m; cur-best-n = n;

cur-best-avail = avail(m, n, N);

WHILE (n >= m)

/* �nd next grid */

n = n - 1;

IF (m n < N)

m = m + 1;

ENDIF

IF (avail(m, n, N) >= cur-best-avail)

cur-best-avail = avail(m, n, N);

cur-best-m = m; cur-best-n = n;

ENDIF

ENDWHILE

(prev-best-avail, prev-best-m, prev-best-n) =

OptimalWriteAvail(N-1);

IF (prev-best-avail > cur-best-avail)

RETURN (prev-max-avail, prev-best-m, prev-best-n);

ELSE

RETURN (cur-best-avail, cur-best-m, cur-best-n);

ENDIF

Figure 2: The algorithm for �nding the grid with the highest write availability.

N 10 20 30 500 1000

Dim. 3� 3 4� 6 4� 7 11 � 49 13 � 80

Write

quorum 5 9 10 59 92

size

Rel.

write 55.6% 45% 35.7% 11.8% 9.2%

quorum

size

Table 6: Dimensions of grids with maximal write availability.
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Figure 3: Maximal write availability for a given number of nodes.

increases, while at the same time the relative quorum size falls. This means that by increasing N , one can

satisfy both a minimum availability requirement as well as a minimum load sharing requirement at the same

time. This should be contrasted with the majority voting algorithm where the relative quorum size remains

nearly 0.5 for all N .

Another point to be noted from Table 6 is that often the maximum write availability is achieved by not

using all N nodes. For instance, in the case of N = 30, the best grid is 4� 7 and so two nodes are not used.

Of course, this could a�ect the degree of load sharing in a slightly adverse way. However, as we show next,

the di�erence in availability can be very signi�cant.

It was found that, in general, imposing a requirement that all N nodes be used can have a considerable

negative impact on availability for some values of N , and no impact for other (sometimes neighboring) values

of N . For example, for all values of N in Figure 3, the loss of availability is 0. On the other hand, for N = 5,

the loss in write availability is large (when a 2 � 2 grid is compared with the best grid containing exactly

�ve nodes). The relationship between loss of availability and N is plotted in Figure 4. Since for large N ,

write availability is very close to 1, it is more useful to consider the di�erence in unavailability, de�ned as

1�availability, rather than di�erence in availability. Moreover, in view of the above comment about sudden

swings even for consecutive values of N , we decided to consider interval values of N , and for each interval,
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Figure 4: Increase of unavailability of almost fully distributed grids.

determine the maximum loss of availability. Figure 4 depicts the maximum increase of unavailability for the

range of N from 6 to 1000 (for N = 5 the di�erence in unavailability is 125%). It shows that except for very

small N , the increase in unavailability ranges from 0% to 17%. Hence, not only does a noticeable loss of

availability occur when one requires that grids use all nodes, but this e�ect does not diminish even for large

N .

Finally, we turn to consider weighted or combined availability. Assuming F is the fraction of read

operations, the combined availability is computed as: A = F � RA + (1 � F ) �WA, where RA and WA are

read and write availabilities. Note that, although to compute the maximum write availability, only grids

where m � n needed to be considered, imposing this condition does not always maximize read availability.

Hence, all m;n combinations must be examined. Table 7 shows the grids providing the best combined

availability for several values of N and F . It is interesting to note that the best grid con�guration that

maximizes combined availability is also the one which maximizes write availability alone, except for the

cases where F is almost 1, i.e., nearly all operations are reads. This supports our assertion that the modi�ed

grid protocol produces a favorable change in the tradeo� between read and write availability; i.e., it is now

possible to obtain a gain in write availability at the expense of a much smaller loss in read availability than

with the original grid protocol.

6 Asymptotic vs. initial behavior of grids

In this section we discuss the write availability of grids. It was shown in [7] that in square grids, write

availability goes to 0 when N goes to in�nity. Here, in Section 6.1, we study the asympotic write availability

for non-square grids. We show that asymptotically high WA is possible for non-square grids, and characterize
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N 10 20 30 500 1000

Dim. for 3� 3 4� 6 4� 7 11 � 49 13 � 80

F = :8

Dim. for 3� 3 4� 6 4� 7 11 � 49 13 � 80

F = :99

Dim. for 2� 5 4� 5 4� 7 11 � 49 13 � 80

F = :999

Table 7: Dimensions of grids with maximum combined availability and various read-write ratios.

precisely the grid dimensions under which this is achieved. While the theoretical guarantee of high WA for

non-square grids is very useful, the asymptotic result from Section 6.1 is somewhat pessimistic in terms of

quorum sizes, i.e., the quorum sizes become almost linear in N. Therefore, in Section 6.2, we also examine

empirically the initial behavior of WA for grids with smaller relative quorum sizes. This analysis shows that

while such grids have asymptotically low WA, for practical values of p, their WA initially grows towards 1,

and starts to decline only for extremely large values of N (N = 23000, when p = 0:99). Thus, these grids

can often be useful in practice despite their low asymptotic WA.

6.1 Asymptotic behavior

Consider a rectangular grid arrangement of N nodes into m rows and n columns where m = f(N ), n = g(N )

and mn � N (the last condition says that all N nodes are used in the grid). We are interested in �nding

f(N ) and g(N ) such that WA increases asymptotically towards 1 in the limit where N !1. Here we prove

that the asymptotic value of WA is 1 in a small range near n =

N

logN

.

Theorem 2. In a rectangular grid arrangement of N nodes (each assumed to be up with probability p and

down with probability q = 1� p) into m rows and n columns (mn � N ), there are constants c

1

= 2 log(1=p)

and c

2

= log(1=q), such that:

(1) the write availability WA of this grid asymptotically approaches 1 if c

1

N

logN

� n � c

2

N

logN

.

(2) the write availability WA asymptotically approaches 0 if n �

c

1

2

N

logN

or n � 2c

2

N

logN

1

.

Proof We �rst de�ne two events (see Section 2 for terminology) as follows: E1 � All columns are alive;

E2 � At least one column is good. Recall, from Section 3, that the write availability WA = Prob(E1^E2).

The theorem follows from the following claims. (The claims will be proved shortly.)

1

Note: c

1

and c

2

depend upon p. For p = 0:99; c

1

= 0:0288 and c

2

= 6:64.
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1. if n � c

2

N

logN

, then Prob(E1)! 1

2. if n � c

1

N

logN

, then Prob(E2)! 1

3. if n � 2c

2

N

logN

, then Prob(E1)! 0

4. if n �

c

1

2

N

logN

, then Prob(E2)! 0

Given these claims, the two parts of the theorem are proved separately below.

(Part 1)

We derive a lower bound on WA in the following manner.

WA = Prob(E1 ^E2) = Prob(E1)+ Prob(E2)�Prob(E1 [E2):

Since Prob(E1 [E2) � 1, we get WA � Prob(E1)+ Prob(E2) � 1.

If c

1

N

logN

� n � c

2

N

logN

then from Claims 1 and 2 we conclude that both Prob(E1) and Prob(E2) approach

1, which in turn implies that WA approaches 1.

(Part 2)

If n � 2c

2

N

logN

then from Claim 3 we have Prob(E1)! 0.

Similarly if n �

c

1

2

N

logN

then from Claim 4 we have Prob(E2)! 0.

Since WA � minimum(Prob(E1), Prob(E2)), either of these implies that WA approaches 0. 2

Now we shall prove the four claims made above.

Proof (of Claims 1-4) In the introduction of algorithm OptimalWriteAvail, it was explained that we

restrict our attention to general grids with at most one hole per column. To keep the exposition simple, we

will use the expressions for computing various probabilities for solid grids, i.e., ones with no holes. It can be

veri�ed that this does not a�ect the asymptotic analysis.

As shown in Section 3, Prob(E1) = (1 � q

N

n

)

n

and Prob(E2) = 1 � (1 � p

N

n

)

n

. Using the fact that

(1 � X)

Y

= (1 � X)

1

X

�XY

= [(1 � X)

1

X

]

XY

approaches (

1

e

)

XY

, we get that Prob(E1) ! (

1

e

)

nq

N=n

and

Prob(E2) ! 1 � (

1

e

)

np

N=n

. Below, we will prove claims 1 and 2. The proofs of claims 3 and 4 are exactly

similar, and are therefore omitted.
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(claim 1)

Suppose n � c

2

N

logN

. Substituting value of c

2

we get n �

N

logN

log(1=q). So (N=n) log(1=q) � logN .

nq

N

n

=

n

(1=q)

N

n

=

n

2

N

n

log(1=q)

�

n

2

logN

=

n

N

�

c

2

logN

! 0. Prob(E1)! (

1

e

)

nq

N

n

! 1:

(claim 2)

Now if n � c

1

N

logN

then substituting value of c

1

we get n �

2N

logN

log(1=p). So (N=n) log(1=p) �

logN

2

.

np

N

n

=

n

(1=p)

N

n

=

n

2

N

n

log(1=p)

�

n

2

logN

2

=

n

p

N

�

c

1

p

N

logN

!1. 1� Prob(E2)! (

1

e

)

np

N

n

! 0, which implies that

Prob(E2)! 1. 2

In summary, we have exactly characterized the conditions under which the write availability WA of a rect-

angular grid will asymptotically approach 1. The dimensions of the grid must be m = �(logN ) and

n = �(

N

logN

); the resulting write quorum size is �(

N

logN

), which is very close to being linear in N.

6.2 Initial behavior

The result stated above implies that for the write availability to asymptotically approach 1, the write quorum

size must be close to N= logN which is almost linear in N . This is undesirable because it produces large

quorum sizes and a low degree of load sharing. Therefore, we studied in more detail the empirical behavior

of write availability as a function of N for larger values of m than logN , say N

t

for 0 < t � 0:5. The

objective was to �nd out how WA actually varies as N increases. For instance, does it drop quickly to 0 as

N increases, or does it fall gradually, or is their some other behavior? Another purpose was to study the

impact of various values of t and p on this behavior.

Figures 5 and 6 plot the write availability against N for m�n grids such that m = bN

t

c and n = dN=me,

for several values of t and p. The write quorum size Q

W

= m+n� 1 = O(N

1�t

). Notice that when p = 0:9

and t = 0:33, Q

W

= O(N

0:67

), and WA continues to grow until N = 23000. In fact, for p = 0:99, even WA of

a square grid (t = 0:5, Q

W

= O(N

0:5

)) grows until N = 23000 nodes. These �gures show that for su�ciently

large p, the write availability of grids with small write quorum sizes grows with N , approaches 1, and begins

to fall only when N becomes very large (N > 23000). This means that, in spite of the negative theoretical

result from the previous subsection, rectangular grids are still very promising both from availability and load

sharing points of view in most practical situations.
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FindingGrid(rel-wr-quorum-size-cuto�, wr-avail-cuto�): (m, n)

/* Find a grid such that its relative write quorum size does

not exceed rel-wr-quorum-size-cuto�, its write availability

is not lower than wr-avail-cuto�, and N is as small as possible. */

N = 4; /* (No load sharing is possible for N < 4) */

DO-FOREVER

/* Start with the grid that has the smallest quorum size

for a given N */

m = b

p

Nc; n = d

p

Ne;

IF (mn < N)

m = m+1;

ENDIF

cur-wr-avail = wr-avail(m, n, N);

WHILE ( m > 1 AND cur-wr-avail < wr-avail-cuto�)

/* �nd next grid */

n = n+1;

WHILE (mn > N+n)

m = m-1;

ENDWHILE

cur-wr-avail = wr-avail(m, n, N);

ENDWHILE

IF (cur-wr-avail >= wr-avail-cuto� AND

rel-wr-quorum-size <= rel-wr-quorum-size-cuto�)

RETURN(m, n);

ELSE

N = N + 1;

ENDIF

ENDDO

END

Figure 7: The algorithm for �nding the grid with given degree of load sharing and availability.
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7 Availability and load sharing

In this section, we turn to the problem of satisfying both a load sharing objective and a data availability

objective simultaneously. The algorithm for solving this problem is given in Figure 7. The goal is to �nd

the smallest N and a corresponding m � n grid that satis�es both objectives. It begins with small N and

calculates write availability and relative quorum size of all grids containing all N nodes. As before, only

hollow grids with no more than one hole in any column are considered. For a given N , the algorithm examines

grids in increasing order of write quorum size and stops as soon as it �nds a grid satisfying both quorum

size and availability requirements. Since, as seen in Section 5.1, grids can provide asymptotically high write

availability and low relative quorum size at the same time, this algorithm will always terminate.

In Figure 8, the minimal relative write quorum size satisfying a cuto� write availability is plotted against

N for several cuto� values. Also shown for comparison purposes is the relative write quorum size of the grids

giving the best achievable write availability for a given N (the cuto� does not apply here).

Although the asymptotic theoretical result suggests that the relative write quorum size would drop at a

very slow, logarithmic rate, the actual decline is much steeper for values of N used in practice. However, in

view of the discussion in section 5.2, this result is not surprising. Another point is that the spread of relative
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quorum sizes provided by grids with di�erent availability requirements is rather narrow. For example, when

N = 500, and WA = 0:999, the relative write quorum size is 9.6%. On the other hand, for the same N , and

the maximum possible write availability (0.99999999 in this case) the relative write quorum size is 11.8%.

Clearly, in this example, choosing the maximum availability grid produces a large improvement in availability

at only a small loss in degree of load sharing. However, the other point to consider is the absolute value of

quorum sizes. For N = 500, the maximum availability grid has the dimensions 11�49 and a write quorum of

59 nodes, while the grid with 0.999 availability has the dimensions 16� 33 and a write quorum of 48 nodes.

Therefore, although the di�erence in the degree of load sharing between these two grids is small (only 2.2%),

the di�erence in absolute quorum size is more than 20% and this will translate into a large performance

impact. Moreover, Figure 8 shows that a write availability threshold of 0.999, and a load sharing threshold

of 11.8%, can be achieved by a grid with only 300 nodes. Therefore, it is not a good idea to always select a

grid with the highest availability for a given N , and, hence, the algorithm of this section is useful.

A very similar algorithm to the one shown here can be proposed to deal with the case where thresholds

for weighted availability and weighted relative quorum size are stated, assuming that the read-ratio F is

known. The only di�erence is that, as explained earlier, in this case all grids containing N nodes must

be considered (not just grids where m � n). For a given N , the algorithm would identify the grids with

availability greater than the threshold and choose the grid with the smallest quorum size among them. The

algorithm would stop if this grid satis�es the quorum size requirement. Otherwise, the number of nodes N

would be incremented and the process repeated.

8 Conclusion

In this paper, we �rst proposed a modi�ed grid protocol which dominates the existing grid protocol, and

studied various performance aspects of both solid and hollow grids. We showed that the modi�ed protocol is

optimal, and also compared its performance with the existing protocol in terms of availability. Algorithms for

maximizing availability in an unconstrained manner, and also for designing grids subject to both availability

and load sharing constraints were given. We have shown that general grids (which allow some empty positions

or holes) are useful to consider because often general grids produce a higher availability than solid grids where

all positions must correspond to nodes. We also studied the asymptotic behavior of grids and showed that for

the write availability to increase asymptotically, the dimensions of a N-node grid must be logN �N= logN .
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On the other hand, an empirical study showed that the asymptotic behavior is signi�cant only for very large

N . Therefore, for most practical values of N , the grid dimensions can be N

t

�N

1�t

, where t > 0:33. It was

found that the exact value of t depends upon p, the probability that any node in the grid is up.
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