
Latency Analysis of TCP

on an ATM Network

Alec Wolman, Geo� Voelker,

and Chandramohan A. Thekkath

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

Technical Report 93-03-03

Abstract

In this paper, we characterize the latency of TCP on an ATM network. Latency reduction

is a di�cult task, and careful analysis is the �rst step towards reduction. We investigate the

impact of both the network controller and the protocol implementation on latency. We �nd

that a low latency network controller has a signi�cant impact on the overall latency even for a

reliable transport protocol such as TCP, and that replacing the ULTRIX TCP implementation

with the BSD 4.4 alpha implementation improves the latency up to 20%. We also characterize

the impact on latency of some widely discussed improvements to TCP, such as header prediction

and combining the checksum calculation with data copying.



Latency Analysis of TCP on an ATM Network

Alec Wolman, Geo� Voelker, and Chandramohan A. Thekkath

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

Abstract

In this paper, we characterize the latency of TCP on an ATM network. Latency reduction

is a di�cult task, and careful analysis is the �rst step towards reduction. We investigate the

impact of both the network controller and the protocol implementation on latency. We �nd that

a low latency network controller has a signi�cant impact on the overall latency even for a reliable

transport protocol such as TCP, and that replacing the ULTRIX TCP implementation with the

BSD 4.4 alpha implementation improves the latency up to 20%. We also characterize the impact on

latency of some widely discussed improvements to TCP, such as header prediction and combining

the checksum calculation with data copying.

1 Introduction

In this paper, we investigate the latency characteristics of the TCP transport protocol on an ATM

network[4]. The characteristics of LAN technologies have changed a great deal in the last few years.

With faster network hardware, the disparity between software and hardware costs is even greater. This

increases the importance of e�cient protocol implementations and e�cient operating system interfaces.

The following factors in network communication make measuring TCP performance, especially latency,

interesting:

� The existence of a high quality TCP software implementation: the BSD 4.4 alpha TCP code.

� The availability of low latency network interfaces: e.g., the FORE TCA-100 ATM interface[4].

This work was supported in part by the National Science Foundation under Grants No. CCR-8907666, CDA-9123308,

and CCR-9200832, by the Washington Technology Center, Apple Computer, Boeing Computer Services, Digital Equip-

ment Corporation, and the Hewlett-Packard Corporation. Chandramohan A. Thekkath was also supported by an Intel

Foundation Graduate Fellowship.



� The wide use of applications and subsystems (like RPC) that can bene�t from reduced latency.

Prior studies have concentrated on the throughput characteristics of TCP on substantially di�erent

hardware or networks than the ones we describe here. We believe that studying the latency character-

istics of TCP on ATM networks is particularly interesting for two reasons. First, ATM is an emerging

communication standard that is likely to be widely deployed. Second, our study allows us to answer

the following questions: Can we provide evidence that TCP is a viable option for a transport layer for

RPC? How have the changes in technology a�ected the results of earlier studies (e.g., [2])? Is latency

dominated by the cost of operating system services, such as bu�er management? If so, can the use of

such services be reduced enough to make latency acceptable for applications that require low latency?

1.1 System Overview

Before we describe our experiments, we briey describe the software and hardware components that

we used.

All of our experiments were run on a pair of DECstation 5000/200 workstations, which use a MIPS

R3000 processor running at 25 MHz. Each DECstation was equipped with a FORE TCA-100 ATM

network interface on the TurboChannel I/O bus. The ATM network interface uses a memory mapped

receive FIFO that stores up to 292 53-byte ATM cells, and a similar transmit FIFO that stores up to

36 cells. The transmit engine starts reading from the transmit FIFO as soon as there is one complete

cell in the FIFO. The ATM interface does all segmentation and reassembly (SAR) processing in the

device driver, and there is no explicit hardware support for this processing.

We extracted the ULTRIX TCP code and integrated the BSD 4.4 alpha TCP code in its place.

We used the ULTRIX 4.2A kernel since it supports the DECstation 5000/200, and has a driver for the

FORE ATM adapter. The BSD 4.4 alpha version of TCP has improved header prediction, as well as

signi�cantly revised input and output processing.

1.2 Measurement Techniques

This paper concerns accurate measurement and analysis of many hardware and software components.

We describe below our measurement techniques so that our results may be interpreted more clearly.

Many of our experiments involved making round-trip measurements of user-level processes running

on an otherwise idle machine connected by a switchless private ATM network. These round-trip

measurements were generated by a user-level process that ran on one machine as a client, and on the

other machine as a server. The client connected to the server using TCP, then it started a timer. It

then repeatedly executed the following steps: it sent size bytes to the server, and then waited to receive

size bytes from the server. It then stopped the timer and recorded the value of the timer. For all the

round-trip measurements in this paper, we ran 40000 iterations for at least 3 repetitions. We then took

2



the average to get the �nal result. Unless stated otherwise, all tests were run using the ATM network

for communication.

Latency measurements typically involve estimates of small code paths that take on the order of

microseconds. To achieve this level of granularity, we used a real time clock that ticked at 40ns. This

clock is on a TurboChannel card, the AN-1 controller from DEC SRC[12]. The clock is initialized at

boot time, and user-level processes can access it by issuing a system call that maps the clock address

into the process's address space. Reading the clock is then just a matter of dereferencing a pointer.

Code inside the kernel can read the clock in a similar manner. We also added system calls to extract

timings from the kernel, so that we could measure events that started in user space and ended in the

kernel, or vice-versa. The use of this clock allows us to avoid instruction counting as a technique for

estimating the amount of time a small section of code takes to execute. Note that we did not employ

the AN-1 network in this study, only the clock on its controller.

1.3 Paper Outline

The rest of this paper is organized as follows. Section 2 summarizes our measurements of TCP latency

on the baseline system. Sections 3 and 4 study the e�ect of several modi�cations that we felt were

important based on the results in Section 2. Many of these modi�cations are not new and have been

suggested by others as well in the literature [2, 6], however, our focus here is on the e�ect of these

modi�cations on latency rather than throughput.

2 Measurement of the Baseline System

The baseline system that we are concerned with is the 4.4 BSD alpha release running on an ATM

network. Earlier work by Kay and Pasquale[5] on TCP/IP performance of the ULTRIX 4.2A system

on DECstations 5000/200s using an FDDI network had concluded that major latency improvements

in TCP processing times would be di�cult to achieve. We were therefore interested in determining the

extent of the latency improvements, if any, achieved by the 4.4 BSD TCP implementation.

To isolate system dependencies, we integrated the BSD implementation into a standard ULTRIX

4.2A kernel and measured the latency of the implementation on the ATM network. Our measurements

of the overall latency characteristics of the two TCP implementations are given in Table 1. Surprisingly,

the latency of the BSD implementation is 15-20% less than that of the ULTRIX 4.2A implementation.

The overall latency measurements provide a general impression of how these implementations of

TCP behave on the ATM network, but they fail to show: (1) how much of the latency is contributed by

the network adapter; (2) how expensive TCP protocol processing is; and (3) how much of the latency

is contributed by operating system mechanisms that are protocol-independent.

We �rst study the role of the network adapter on overall latency, and then address the next two

items.

3



Round Trip Times (�s)

Size (bytes) ULTRIX 4.2A BSD 4.4 TCP

4 1261 1021

20 1277 1039

80 1445 1289

200 1685 1520

500 2290 2140

1400 3434 2976

4000 6927 5891

8000 12695 10636

Table 1: Comparison of ULTRIX 4.2A TCP versus BSD 4.4 alpha TCP on the ATM network.

Round Trip Times (�s)

Size (bytes) ATM Ethernet

4 1021 1940

20 1039 2337

80 1289 2590

200 1520 2804

500 2140 4101

1400 2976 6554

4000 5891 13168

8000 10636 22141

Table 2: Comparison of ATM versus Ethernet latencies.

2.1 E�ect of Network Adapters on Latency

To demonstrate the e�ects of the network controller on latency, we compared the round-trip times

of the BSD 4.4 TCP implementation communicating over the ATM network with the same TCP

implementation communicating over Ethernet. The results are listed in Table 2. It is clear from the

small byte cases (e.g., a 900 �s di�erence in the 4 byte case) that controller design has a large e�ect on

overall latency. In the cases where a larger amount of data was being transferred, much of the e�ect

can be attributed to the bandwidth of Ethernet.

2.2 Detailed Measurements of Latency

To obtain detailed latency measurements we instrumented the transmit and receive sides separately.

We used the same benchmark program described above to exercise both sides. The results of our

measurements of both implementations for the transmit side are shown in Tables 3a and 3b, and the

results for the receive side are shown in Tables 4a and 4b.

In characterizing the latency of transmitting data using TCP, we divided the transmit operation

into four time spans. The �rst span, User, measures the time from the write system call to the

beginning of the TCP protocol implementation. This span of time includes the copying of data from

4



Latency (�s)

Layer Packet Size (bytes)

4 20 80 200 500 1400 4000 8000

User 45 45 48 67 121 99 174 400

checksum 13 16 24 43 92 223 620 1292

TCP mcopy 12 13 15 29 67 34 63 126

segment 66 65 65 67 73 122 235 461

Total 91 94 104 139 232 379 918 1879

IP 34 35 34 35 35 61 103 200

ATM 20 21 27 34 58 38 61 58

Total 190 195 213 275 446 577 1256 2537

Table 3a: Breakdown of ULTRIX 4.2A Transmit Side Latency

Latency (�s)

Layer Packet Size (bytes)

4 20 80 200 500 1400 4000 8000

User 45 45 48 67 121 99 174 400

checksum 10 12 23 42 90 209 576 1149

TCP mcopy 5 6 26 41 80 29 30 41

segment 62 65 63 65 71 63 65 72

Total 77 81 112 148 241 301 671 1262

IP 35 34 35 35 36 36 38 36

ATM 23 24 39 47 71 96 215 498

Total 180 184 234 297 469 532 1098 2196

Table 3b: Breakdown of 4.4 BSD Alpha Transmit Side Latency

user space into the socket mbufs in kernel space.

The second span, TCP, measures the time spent doing the TCP protocol output processing. It

consists of three components, checksum,mcopy, and segment. Checksum is the time spent calcu-

lating the TCP checksum over the data and header. Mcopy is the time spent copying data from the

socket mbufs into driver mbufs. Segment is the remaining TCP protocol processing time.

The third time span, IP, measures the time spent in IP output processing, and the last span, ATM,

measures the time spent in the ATM network driver. To obtain an accurate measurement of latency

for the last span, we only measure up to when the ATM adapter is signaled to send the last byte of

data. We do not include the time of any operations after that because these operations are e�ectively

overlapped with network transmission, which is separately accounted for.

The rows in Tables 4a and 4b have similar meanings. We use the User time span to refer to the

time from when the data leaves the TCP layer until the time the user process runs again (except for

the scheduling time, described below). TCP is the time spent doing the TCP input processing, and

5



Latency (�s)

Layer Packet Size (bytes)

4 20 80 200 500 1400 4000 8000

ATM 80 80 99 127 197 398 956 1782

IPQ 22 22 22 23 24 44 45 43

IP 40 40 74 74 74 51 52 54

checksum 10 12 23 40 83 211 575 1142

TCP segment 174 173 175 181 198 170 176 100

Total 184 185 198 221 281 381 751 1242

Wakeup 49 49 43 54 54 49 54 61

User 101 102 128 136 144 166 216 502

Total 476 478 564 635 774 1089 2074 3684

Table 4a: Breakdown of ULTRIX 4.2A Receive Side Latency

Latency (�s)

Layer Packet Size (bytes)

4 20 80 200 500 1400 4000 8000

ATM 46 46 70 99 164 363 920 1783

IPQ 22 22 22 22 23 45 46 50

IP 40 40 62 62 62 53 54 43

checksum 10 12 23 40 82 211 578 1172

TCP segment 135 135 138 141 158 142 143 59

Total 145 147 161 181 240 353 721 1231

Wakeup 46 47 47 50 49 51 58 67

User 64 65 89 81 102 124 199 468

Total 363 367 451 495 640 989 1998 3642

Table 4b: Breakdown of 4.4 BSD Alpha Receive Side Latency.

has a similar breakdown as on the transmit side. Note, however, that the TCP input processing does

not have a mcopy row because the extra copy operation is only used on the transmit side to support

retransmissions. IP is the time spent doing IP input processing, andATM is the time spent processing

and reassembling incoming ATM cells.

We also introduced two more time spans. The �rst, IPQ, measures the IP queue scheduling time,

i.e., the time from when the ATM driver places received data on the IP queue and signals a software

interrupt until the time the data is removed from the IP queue. The second, Wakeup, is the user

process scheduling time, i.e., the time from when the user process is placed on the run queue until the

time the it runs.

For receiving data, the time that contributes to the overall latency is more di�cult to measure.

The problem is that a certain amount of the cost of the receive processing is hidden by processing done

by the sender. For example, if the sending ATM adapter is sending a large number of cells, then the

receiving ATM adapter can be processing the �rst cells as the sending adapter sends the later cells.

6



We measure the portion of the receive processing that actually contributes to the overall latency

as the time of the arrival of the last group of ATM cells comprising the last TCP segment of a data

transfer to the time when the read system call returns to the user-level process. The di�erence between

the second and �rst times is the latency of receiving that data. We use the arrival of the last group

of ATM cells comprising the last TCP segment to initiate our timings because we know at that point

that the sending adapter has �nished sending all of the data for that transmission.

We analyzed the data in these tables. The following subsections present our major �ndings.

2.2.1 TCP Segments

Data transferred using TCP is done in �xed size chunks called TCP segments, and the protocol pro-

cessing time is noticeably dependent upon the number of segments required to transmit a given amount

of data. The BSD implementation of TCP uses a TCP segment size of 4KB with the ATM network

interface, whereas the ULTRIX implementation of TCP uses a TCP segment size of 1KB.

The time spent in TCP protocol processing has two components: one that depends only on the

number of segments, and another that grows with the size of the data being transferred within a given

segment. The latter component is composed of the checksum calculation and a data copy, and the

former is composed of protocol control block manipulation, header processing, timer management,

and acknowledgment processing. The segment component is roughly constant and independent of the

amount of data being transferred.

For example, for all our data transfer sizes except 8KB on the receive side, the data �ts into one

TCP segment in the BSD TCP implementation. However, once the size of the data being transferred

grows above 1KB, the ULTRIX implementation fragments the data into multiple TCP segments. The

use of multiple segments increases the protocol processing overhead and signi�cantly contributes to

poor performance of the ULTRIX implementation compared to the BSD implementation.

2.2.2 Mbuf Manipulation

For transfers of less than 1KB, one to eight mbufs are used in the BSD implementation. Beyond this

size, cluster mbufs are used. The measured time to allocate and free an mbuf (independent of type)

is just over 7 �s, making the mbuf manipulation a small cost relative to the overall cost of sending or

receiving data.

Compared to the round trip time, this is not a signi�cant portion of the round trip time, which is

in disagreement with [2].

Latency characteristics change in a number of ways as the data transfer size grows above 1K. For

example, on transmit the time spent copying data from the socket mbufs into mbufs destined for the

driver in the 500 byte transfer is greater than in the 1400, 4000 (ULTRIX and BSD), and 8000 byte

(BSD) transfers. We attribute this to mbuf manipulation overheads. However, these e�ects are artifacts

7



of a particular bu�er management implementation choice rather than inherent protocol behavior.

2.2.3 Checksum

The checksum does not scale linearly with the small transfer sizes because the checksum is done over

the data and the TCP/IP header (20 bytes for TCP header + 20 bytes for IP overlay + length of TCP

options). Also, as transfer sizes grow, the checksum calculation begins to dominate most other costs

in sending the data, indicating that the checksum is an attractive place for optimization.

2.2.4 Data Copies

The times in three rows of the tables (User, mcopy, and ATM) include the cost of a data copy: the

User time includes copying data between kernel space and user space; the mcopy rows in Tables 3a

and Tables 3b contain the time to copy the data for supporting retransmissions; and the ATM row

includes the time spent copy data between the host and the device.

Therefore, the data is copied at least twice on both sends and receives. The copy in mcopy only

occurs on sends, is made from the mbuf chain for retransmissions. When packets sizes are large and

cluster mbufs are used to hold the data, the mcopy simply increments a reference count. In these

cases, it does not need to touch all the data and is less expensive than the other copies. Eliminating

the checksum (discussed below) opens the possibility of alleviating these data copying costs, given a

network adapter that supports DMA. With a combined copy and checksum, Clark and Jacobson [2]

discuss a network adapter design that eliminates the need for a second copy.

2.2.5 Scheduling

The scheduling times for switching contexts are independent of data transfer size, both in scheduling

the software interrupt for IP queue processing and in scheduling the user process to return the received

data from the socket bu�ers. Nevertheless, these times are costly for small data transfers. Scheduling

costs are 14% (140 �s out of 1040 �s) of the 4 byte and 20 byte round-trip times using the BSD

implementation.

2.3 Measurement Summary

The detailed measurements have shown the contributions to latency of the various layers used in TCP

communicaton. For large packet sizes, the TCP segment size, data copies, and checksum calculation

signi�cantly a�ect the overall processing time. For small packet sizes, the scheduling time and the time

to do the TCP processing (other than the checksum and data copy on transmit) become signi�cant.

Overall, the mbuf allocation and deallocation time is not signi�cant.

For the TCP layer in particular, the protocol processing time can be split into the time to perform

the checksum, the time to do the copy during transmit, and the remainder. Although we do not

8



further address the issue of the data copy, we address the problem of reducing the remaining protocol

processing time using header prediction in the next section and the problem of optimizing the checksum

in a subsequent section.

3 Header Prediction

Header prediction has often been suggested as a performance bene�t for TCP[2]. There are two distinct

kinds of optimizations that are often called header prediction. The �rst, involving pre�lling parts of

the transport header, is a known optimization for lowering latency [11, 8], and is not discussed further

here. The second technique involves exploiting tra�c locality to predict the next incoming packet and

to avoid the protocol control block (PCB) lookup cost. Others have studied using tra�c locality to

improve throughput for bulk data transfer protocols [1, 13].

In the BSD implementation, the TCP input processing keeps a single entry cache of the most

recently used PCB. If the incoming packet is from the same connection as the previous packet, the call

to the PCB lookup routine is avoided. The BSD 4.4 TCP also precomputes what values it expects to

�nd in the next incoming packet header, and can then execute a faster processing path if the prediction

is correct.

A related issue is the organization of PCBs, so that lookup is e�cient in the case where there is

a miss in the PCB cache. The insertion algorithm for the linked list of PCBs places the most recent

creation at the head of the list. The lookup algorithm for the PCBs is just a linear search through

the linked list of PCBs. McKenney and Dove study alternative data structures for PCB lookup, and

analyze these data structures by the expected average search length[9]. However, they do not discuss

how long a search of any given length will take. While this facilitates comparisons, it is di�cult to study

the absolute e�ect of header prediction. We measured the cost of a search for a variety of lengths and

show the results in Table 5. The data in the table suggest that the cost per element on a DECstation

5000/200 is just less than 1.3�s . In addition, the typical number of active PCBs appears to be quite

modest. For example, our departmental mail server had less than 250 active PCBs, and all of the thirty

workstations we sampled had less that 50. Given the relatively small memory requirements (even for

1000 PCBs), it seems that a simple hash table implementation could eliminate the lookup problem

entirely.

In light of the above discussion, we decided to neglect the cost of the lookup and analyze the overall

bene�t of header prediction given that lookups are free. We built a kernel where both the PCB cache

and the precomputation of the next incoming packet header were disabled. By default, in our test

environment, there will only be a very small number of TCP connections, because our machines are

only running the standard ULTRIX daemons and our test program.

Table 6 shows the results of this experiment, comparing a kernel with header prediction disabled to

a kernel with it enabled. For all the cases less than 8000 bytes, we notice only a very small improvement

9



Search Length (N) PCB Lookup Times (�s)

20 26

50 64

100 127

200 254

500 633

1000 1280

Table 5: Time to search through N entries in the PCB list.

Round Trip Times (�s)

Size (bytes) Prediction No Prediction

4 1021 1110

20 1039 1127

80 1289 1324

200 1520 1560

500 2140 2186

1400 2976 2962

4000 5891 5950

8000 10636 11477

Table 6: E�ects of Header Prediction.

with header prediction, which is basically independent of data size. This small improvement is caused

by a hit in the PCB cache, since the header precomputation and check fails in these cases (explained

below). In the 8000 byte case, the larger di�erence comes from the hit in the PCB cache and from

half of the header precomputation and checks succeeding. The savings from the PCB cache hit are not

large because the number of PCBs is small and the TCP connection for our test program is likely to

be near the head of the PCB list, since recently created connections go at the head of the list. Even if

there were many connections, a hash table implementation of PCBs would yield similar results.

The precomputation and check of the next header fails in all cases except the 8000 byte tests, where

it succeeds half the time. In the 8000 byte case, this accounts for a small but noticeable di�erence. This

is because two packets are being sent in the 8000 byte case, so the precomputation and check succeeds

for the second packet. Upon closer inspection of the header prediction code, we discovered that the

BSD 4.4 TCP header prediction only works in the two common cases of unidirectional data transfer.

As the sender in a unidirectional transfer, header prediction succeeds when receiving an in-sequence

acknowledgment with no data. As the receiver in a unidirectional transfer, header prediction succeeds

when receiving an in-sequence data segment with no acknowledgment. Our test code creates the

common case for a round-trip RPC style of communication where one receives data with a piggybacked

acknowledgment, and this does not arise in a single sender, high throughput style of communication,

which is what this code has clearly been optimized for.

To summarize our results concerning header prediction, we found that the PCB cache accounted for

10



Checksum and Copy Measurements (�s)

Size (bytes) ULTRIX ULTRIX ULTRIX Integrated

Checksum Kernel bcopy Total Checksum and Copy

4 5 4 9 3

20 7 5 12 5

80 20 11 31 10

200 43 20 63 24

500 104 47 151 56

1400 283 124 407 153

4000 807 350 1157 430

8000 1605 698 2303 864

Table 7: Checksum and Copy Measurements.

a only a small improvement in latency, and that the current implementation of header precomputation

does not improve latency in a bidirectional RPC style of communication.

4 TCP Checksums

4.1 Optimizing the Checksum

An optimization suggested in [2] is to combine the checksum calculation with one of the data copies.

In ULTRIX, data is copied at least twice on both send and receive. One copy moves the data between

user and kernel space. The other copy moves the data between kernel and device memory.

The measurements in Table 7 were calculated by a user-level test program, not in the kernel.

However, the performance is indicative of the real, in-kernel implementation. The �rst thing to note

is that our combined algorithm is faster than the ULTRIX checksum routine alone, primarily due to

our use of loop unrolling, and word rather than halfword memory accesses. In the 8000 byte case, the

e�ective bandwidth limitation imposed by the combined copy/checksum loop is just above 9MB/s on

the DECstation 5000/200.

For comparison, on a Sun-3 (20MHz 68020) for 1KB of data, Van Jacobson reported 130 �s for

the checksum, and 140 �s for the memory to memory copy[2]. The combined cost was 200 �s. On the

DECstation 5000/200, using the standard ULTRIX kernel routines to do the checksum takes 207 �s,

and the copy takes 91 �s. The combined checksum and copy takes 111 �s. This relative performance

is not very surprising and is consistent with the observations by Ousterhout[10].

4.1.1 Kernel Implementation Issues

On the transmit side, we �rst investigated deferring the checksum calculation until the copy from kernel

to device memory. However, the design our ATM interface makes this impossible. Recall that it uses a

simple memory mapped transmit FIFO. As soon as a single cell has been copied into the FIFO memory,

11



the device begins to send it as later cells are still being copied to the device. Therefore, there is no

explicit action by the device driver to trigger the send. To compute the checksum, one must copy all

of the data, and then write the checksum into the header of the packet. Therefore, it is impossible to

combine the checksum and copy loops at the driver level given the FORE interface design.

Next, we investigated calculating the checksum during the copy from user to kernel space. The

only tricky part is that the socket layer of the kernel needs to know the underlying TCP segment size

for the particular connection in order to calculate the checksum for the correct amount of data.

On the receive side, it will be di�cult to postpone the checksum calculation until the kernel to

user space copy, because the protocol processing needs to know whether or not the incoming data is

corrupt. Therefore, we think that the device memory to kernel memory copy is the right place to

calculate the checksum in the receive path. The disadvantage of this is that the device driver for each

network interface needs to be modi�ed to support this.

We have a kernel implementation of the combined checksum and copy on the transmit side, and

the receive side implementation is in progress. It is clear from our analysis that as the size of the data

transfers increases, the checksum calculation becomes a large component of TCP processing overhead.

In the 8000 byte case, if the improvement is close to what we expect from our user-level measurements,

then replacing the checksum with a combined copy and checksum on both the send and receive cases

could improve the overall latency from greater than 10 ms to less than 5 ms.

4.2 Eliminating the Checksum

The previous section has demonstrated the reduction in latency arising from combining the checksum

calculation with a data copy. However, it is clear that latency can be further reduced by eliminating

the checksum calculation altogether for local area tra�c. It is already common practice to eliminate

the UDP checksum for NFS tra�c, although the mechanism does not distinguish between local tra�c

and tra�c through routers. Kay and Pasquale[5] describe a mechanism to implement this change in

the protocol in general. We therefore restrict ourselves to an analysis of the error characteristics of

eliminating the checksum, the remaining issue left unaddressed.

The original environment in which TCP was developed provided very little support for detecting

link-level errors in hardware, necessitating the use of the TCP checksum. However, current local area

networks such as Ethernet and ATM calculate a link-level CRC in hardware.

To examine the e�ectiveness of the CRC compared to the TCP checksum, we observed the error

characteristics of a typical Ethernet local area network. For 42 DECstations running Ultrix 4.2A on

the same subnet in our department, we counted the errors detected by the link layer and the TCP

layer on those machines. Both local area as well as wide area tra�c was measured. Table 8 lists the

average of these errors, where Packets is the number of packets received; Errors is the number of

error packets detected; and Error Rate is the rate of errors de�ned as bad packets/total packets.

12



Detected Errors

Layer Packets Errors Error Rate

TCP 483,147,997 162 3:4� 10

�7

Link 628,068,556 19986 320� 10

�7

Table 8: Errors on Ethernet from 42 machines on the same subnet in our department.

Although we do not know the number of TCP packets that both the CRC and checksum calculations

missed, the last column of Table 8 shows that on a typical Ethernet the TCP checksum only contributes

1% to the detected error. Eliminating the checksum would therefore decrease the current rate of error

detection by an negligible amount.

Since ATM networks are not yet in widespread use, we cannot perform the same experiment to

measure the e�ects of removing the checksum on ATM. However, the link error rate of �ber networks

is on the order of 10

�14

bit-errors/s (i.e., one bit error in 11 days if the network is run at a bandwidth

of 100 Mbits/s). Since the checksum only detects errors that the link-level CRC misses, the absolute

number of errors that will be missed if the checksum calculation is eliminated is extremely small and,

therefore, tolerable for many applications.

The error rates given in Table 8 are conservative in that they include errors generated from wide

area network tra�c and we argue for eliminating the TCP checksum calculation for local area network

tra�c only. Note also that the link-level errors are inherently local since a CRC is calculated on each

hop, and the errors we observe are those errors generated on the LAN during the last hop. To get a

feeling for what the checksum error detection rate is for LANs, we performed the following experiment.

For each of the 42 machines used above, we arti�cially generated LAN tra�c from those machines to

one machine singled out to only handle LAN tra�c. In a round-robin fashion we repeatedly sent 200

512-byte packets every 6 seconds from one of the 42 machines to the \local" machine during the busiest

part of two days (from 8 a.m. to 8 p.m.). After receiving 2.9 million local packets (1.5 Gbytes of data),

no errors were detected by the TCP checksum.

Table 9 shows the results of eliminating the checksum on round trip measurements. The packet sizes

are in bytes, and all times are in microseconds. The Checksum column shows the average round-trip

latency when the checksum is calculated; No Checksum shows the average round-trip latency when

the checksum is not calculated; and Ratio is the result of dividing No Checksum by Checksum.

On the 4 byte case where the checksum overhead is minimal, nothing is gained. But, the latency of

the 8000 byte case is reduced by 40%.

5 Conclusions

We characterized the latency costs of TCP communication on the FORE ATM network, and investi-

gated various methods for reducing those costs. A recent study [5] concludes that the costs are well

13



Average ATM Round Trip Time Without Checksum

Size (bytes) Checksum No Checksum Ratio

4 1021 1020 1.0

20 1039 1020 0.98

80 1289 1233 0.96

200 1520 1392 0.92

500 2140 1808 0.84

1400 2976 2083 0.70

4000 5891 3633 0.62

8000 10636 6233 0.59

Table 9: Comparison of round trip latencies over ATM with and without the TCP checksum calculation.

balanced among the di�erent layers, and that improving the overall latency will be di�cult since the

costs are evenly distributed. However, we observed that careful protocol implementation does make a

di�erence. Simply replacing the ULTRIX TCP implementation with the latest BSD version improved

the latency by as much as 20%. Others with experience designing high performance \lightweight" RPC

systems have noticed that controller design has a signi�cant impact on performance[14]. We discovered

that controller design has a large impact on latency even using a relatively \heavyweight" protocol

such as TCP. Operating system services such as memory allocation had less impact than we expected,

yet context switching had more of an impact at small packet sizes than expected. Header prediction

did not have a signi�cant impact on latency, and in the future we will investigate modifying the BSD

implementation to improve latency. We have found that computing the TCP checksum is a major

cost of the overall TCP processing. We observed that, in local area networks, the TCP checksum does

not contribute signi�cantly to the detection of errors. We have quanti�ed the potential bene�ts of (1)

eliminating the checksum, (2) combining the checksum and copy, and (3) eliminating one of the copies.

We have discussed the implementation issues and di�culties of these optimizations.

6 Acknowledgements

We would like to gratefully acknowledge Ed Lazowska for his encouragement and helpful comments on

this project and report.

References

[1] John B. Carter and Willy Zwaenopoel. \Optimistic Implementation of Bulk Data Transfer."

In Proceedings of the 1989 ACM SIGMETRICS Conference on Measurement and Modeling of

Computer Systems, May 1989.

14



[2] David D. Clark, Van Jacobson, John Romkey, and Howard Salwen. \An Analysis of TCP Pro-

cessing Overhead." IEEE Communications Magazine (June 1989), 23-39.

[3] Dan Dobberpuhl, R. Witek, et al. \A 200 MHz 64 bit Dual Issue CMOS Microprocessor." Inter-

national Solid-State Circuits Conference 1992, February 1992.

[4] FORE Systems. TCA-100 TURBOchannel ATM Computer Interface, User's Manual, 1992.

[5] Jonathan Kay and Joseph Pasquale. \A Performance Analysis of TCP/IP and UDP/IP Network-

ing Software for the DECstation 5000" Tech Report, CSL U.C. San Diego/Sequoia, December

1992.

[6] Jonathan Kay and Joseph Pasquale. \Measurement, Analysis, and Improvement of UDP/IP

Throughput for the DECstation 5000" Tech Report, CSL U.C. San Diego/Sequoia, January

1993.

[7] V. Jacobson, R. Braden, and D. Borman. \TCP Extensions for High Performance." RFC 1323,

LBL, USC/ISI, and Cray Research, May 1992.

[8] David B. Johnson and Willy Zwaenopoel. \The Peregrine High-Performance RPC System." To

appear in Software Practice and Experience.

[9] Paul E. McKenney and Ken F. Dove. \E�cient Demultiplexing of Incoming TCP Packets." In

Proceedings of SIGCOMM '92, Maryland, USA.

[10] John K. Ousterhout. \Why Aren't Operating Systems Getting Faster As Fast as Hardware?" In

Proceedings of the USENIX 1990 Summer Conference, June 1990, pp. 247-256.

[11] M.D. Schroeder and M. Burrows. \Performance of Firey RPC."ACM Transactions on Computer

Systems, 8(1):1-17, February 1990.

[12] M. Schroeder, A. Birrell, M. Burrows, H. Murray, R. Needham, T. Rodehe�er, E. Satterthwaite,

and C. Thacker. \Autonet: A High-Speed Self-Con�guring Local Area Network Using Point-

to-Point Links. IEEE Journal on Selected Areas in Communications, 9(8):1318-1335, October

1991.

[13] Cheng Song and Lawrence Landweber. \Optimizing Bulk Data Transfer Performance: A Packet

Train Approach." In Proceedings of SIGCOMM '88, September 1988.

[14] Chandramohan Thekkath and Henry Levy. \Limits to Low-Latency Communication on High-

Speed Networks." Technical Report 91-06-01, Department of Computer Science, University of

Washington, June 1991.

15


