
Pointers versus Arithmetic

in PRAMs

Patrick W. Dymond Faith E. Fich

Naomi Nishimura

Prabhakar Ragde Walter L. Ruzzo

Technical Report 93-03-06

March, 1993

A preliminary version of this paper will appear in Proceedings of the 8

th

Annual IEEE Structure in Complexity Theory Conference, San Diego, CA,

May 1993.

Also available as:

� University of Waterloo Department of Computer Science Technical Re-

port CS-93-21,

� York University Department of Computer Science Technical Report

CS-93-01,

and via anonymous FTP from cs.washington.edu (128.95.1.4), �le

tr/1993/03/UW-CSE-93-03-06.PS.Z.

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195

Pointers versus Arithmetic in PRAMs

�

Patrick W. Dymond

York University

Toronto, Ontario, Canada

dymond@cs.yorku.ca

Faith E. Fich

University of Toronto

Toronto, Ontario, Canada

�ch@cs.toronto.edu

Naomi Nishimura

University of Waterloo

Waterloo, Ontario, Canada

nishi@maytag.waterloo.edu

Prabhakar Ragde

University of Waterloo

Waterloo, Ontario, Canada

plragde@maytag.waterloo.edu

Walter L. Ruzzo

University of Washington

Seattle, Washington, USA

ruzzo@cs.washington.edu

May 11, 1993

Abstract

Manipulation of pointers in shared data structures is an important communication

mechanism used in many parallel algorithms. Indeed, many fundamental algorithms do

essentially nothing else. A Parallel Pointer Machine, (or PPM) is a parallel model having

pointers as its principal data type. PPMs have been characterized as PRAMs obeying

two restrictions | �rst, restricted arithmetic capabilities, and second, the CROW mem-

ory access restriction (Concurrent Read, Owner Write, a commonly occurring special case

of CREW). We present results concerning the relative power of PPMs (and other arith-

metically restricted PRAMs) versus CROW PRAMs having ordinary arithmetic capabil-

ities. First, we prove lower bounds separating PPMs from CROW PRAMs. For example,

any step-by-step simulation of an n-processor CROW PRAM by a PPM requires time

(log logn) per step. Second, we show that this lower bound is tight | we give such a

step-by-step simulation using O(log logn) time per step. As a corollary, we obtain sharply

improved PPM algorithms for a variety of problems, including deterministic context-free

language recognition.

�

Research supported by NSERC, the Information Technology Research Centre of Ontario, NSF Grant CCR-

9002891 and NSF/DARPA Grant CCR-8907960. A portion of this work was performed while the �rst and last

authors were visiting the University of Toronto, whose hospitality is gratefully acknowledged.

1

1 Introduction

Many sequential algorithms spend the bulk of their time doing pointer manipulation, as

opposed to, say, arithmetic operations. Like their sequential counterparts, many PRAM

algorithms spend a considerable proportion of their time manipulating pointers in global

memory. Indeed, since interprocessor communication is so fundamental to most parallel

algorithms, pointer manipulation in PRAMs may be even more pervasive than in RAMs.

Despite the widespread use of pointer-based parallel data structures and algorithms, there

has been little formal study of the power of this fundamental computing paradigm. Our paper

addresses this issue.

The PRAM model in its various forms has achieved wide acceptance for use in expressing

parallel algorithms. Nevertheless, the model is often criticized for being too powerful to cor-

respond to realistic computer architectures. At this point the right (i.e., most useful) parallel

model for bridging the gap between algorithms and architectures is still not settled [24]. This

motivates further study of restrictions on the PRAM model, and the power of its arithmetic

and addressing instructions.

Memory restrictions (e.g., CRCW versus CREW) have already been widely studied. One

somewhat less well-known restriction is the CROW PRAM model, which further restricts

CREW memory access by permitting only the owner of a global memory location to write

there. Another class of restrictions focuses attention on pointer and addressing capabilities

of the model, removing arithmetic.

We present two main results concerning the relative power of Parallel Pointer Machines

(PPMs) or, equivalently, arithmetically restricted PRAMs, versus PRAMs having ordinary

arithmetic capabilities. First, we prove lower bounds separating PPMs from CROW PRAMs.

In particular, any step-by-step simulation of a CROW PRAM by a PPM requires time

(log logn) per step. Second, (to our surprise) this lower bound is tight. We give such a

step-by-step simulation using O(log logn) time per step. The lower bound holds even for

strong, nonuniform PPMs, while the upper bound proof yields a simple uniform PPM al-

gorithm. As a corollary, any problem solvable by a CROW PRAM in time O(logn) is also

solvable by a PPM in time O(logn log logn) with a polynomial number of processors. Deter-

ministic context-free language recognition is an example of such a problem. These problems

were not previously known to be solvable by PPMs in less than O(log

2

n) time. Other results

give tight upper and lower bounds on variants of the models, and prove a separation between

CROW and CREW versions with otherwise identical features.

An additional reason for interest in our results lies in the novelty of the proof techniques.

Many lower bounds for PRAMs are proved for \abstract" PRAMs, where there is no limit

placed on the computation performed by a single PRAM instruction | any function q :

N�N! N can be computed in one step. Since computation is \free" in this model, a lower

bound of this form is a lower bound on the communication requirement of the problem, not

its computational requirement. Such lower bounds certainly have the virtue of generality,

but they are limited, a priori, by the fact that any function can be computed by an abstract

PRAM in log

2

n steps. Understanding the interplay between computation and communication

2

is essential for obtaining better lower bounds. In this paper we take a modest step towards this

di�cult goal by proving a separation between PRAMs with restricted arithmetic capabilities,

and ones with more normal arithmetic operations.

Below we outline prior work and our results in more detail.

CROW PRAMs: Dymond and Ruzzo [8] observe that most known Concurrent

Read, Exclusive Write (CREW) PRAM algorithms guarantee write-exclusion by the sim-

ple stratagem of assigning an owner to each global memory cell and requiring that the owner

of a memory cell be the only processor allowed to write into the cell. Furthermore, they char-

acterize the power of such Concurrent Read, Owner Write, or CROW, PRAMs, showing that

languages recognizable by CROW PRAMs in time O(logn) are precisely the languages that

are logspace reducible to deterministic context-free languages (LOGDCFL). (This language

class is known to lie somewhere between the better known classes DSPACE(logn) and AC

1

.)

It is important to note that these results apply to CROW PRAMs having a simple instruction

set, basically including only indirect addressing, conditional branching, and addition. (To be

precise, it is exactly the instruction set of the CREW PRAM of Fortune and Wyllie [14].)

For de�niteness, the term \CROW PRAM" below will refer to this model unless otherwise

quali�ed.

It is interesting to note that similar but not identical notions of \ownership" have proven

useful in practice in certain cache coherence protocols [1], and have appeared in earlier lower

bound work [4, 13].

Pointer Machines: Pointer-based data structures are ubiquitous in sequential algo-

rithms. One reason to study pointer-based computation is that useful lower bounds may be

more easily obtained in such a structured model. For examples, see [23, 17, 2]. The Storage

Modi�cation Machine (SMM) or Pointer Machine is a formal model that captures the notion

of sequential computation by pointer manipulation. Deep insight into the power of such ma-

chines is provided by Sch�onhage's demonstration of the equivalence of SMMs and unit-cost

successor RAMs, i.e., ordinary unit cost RAMs stripped of all arithmetic capabilities except

for the successor, or +1 operation [22].

The notion of parallel computation by pointer manipulation is formally captured by the

PPM

1

, studied by Dymond and Cook [3, 7, 5]. In brief, the model consists of a collection of

�nite state units, each with a �xed number of pointers to other units. Each unit can read the

state of, and/or copy the pointers of, the units to which it points. Also, in each step, a unit

may create and initialize a new unit. (See [7] or [5] for a more complete de�nition.)

Lam and Ruzzo [19] proved the equivalence of PPMs and a restricted version of the CROW

PRAM, namely one stripped of arithmetic capabilities except for the successor (+1) and

double (�2) operations. Time and hardware resources of the two models, simultaneously,

are the same to within a constant factor (for time bounds at least logn). For de�niteness, we

refer to this restricted CROW PRAM as an rCROW. This characterization is central to our

results, since it allows us to cast PPMs and CROW PRAMs in a common framework. Adding

1

In the earlier papers, the PPM is called an HMM, or Hardware Modi�cation Machine, by analogy to

Sch�onhage's SMM. The PPM considered subsequently by Goodrich and Kosaraju [15] is a more complex

model having both pointers and integer arithmetic.

3

AC

0

(NC

1

� DSPACE(logn) �

8

<

:

PPM(logn)

rCROW(logn)

9

=

;

�

8

<

:

LOGDCFL

CROW(logn)

9

=

;

�

8

<

:

AC

1

CRCW(logn)

9

=

;

Figure 1: Relationships among some parallel complexity classes

certain other simple unary functions such as those used in Section 4 to the set of arithmetic

operations does not change the characterization.

Parallel Pointer Machines versus PRAMs: How powerful are Parallel Pointer Ma-

chines? A variety of parallel algorithms have been adapted to PPMs. As one important

example, the \pointer doubling" technique of Fortune and Wyllie [14] has been used to show

that DSPACE(logn) can be simulated by a PPM in time O(logn) [7, 5]. To relate pointer

machines to PRAMs, it is not hard to see that a PRAM can perform a step-by-step simu-

lation of a PPM, by maintaining the PPM's pointer structure in global memory. Of course,

the characterization results cited above make the relationship between PPMs and PRAMs

more concrete. Namely, for the simulation of a PPM by a PRAM, the PRAM can be made

to obey the owner write constraint, and to use only successor and double, rather than

general addition. Furthermore, for PRAMs satisfying these two restrictions (i.e., rCROWs),

a converse simulation by PPMs is possible.

The known relationships among the various complexity classes described above are sum-

marized in Figure 1.

The open problem that motivated the present paper was the question of whether the

simulation of rCROWs by Parallel Pointer Machines could be extended to the more general

CROW PRAM model considered in [8]. Speci�cally, could a PPM simulate addition? On

the one hand, \adding" two unrelated pointers seems di�cult. On the other hand, by [8]

it would su�ce if one could do DCFL recognition on a PPM, and the DCFL recognition

algorithm given in [8] is basically a generalization of the pointer doubling algorithm. Thus,

it doesn't seem out of the question that one could show equality between PPMs and CROW

PRAMs. However, our lower bounds show that this is impossible for time bounds below

log logn, and also render it much less likely for larger time bounds | in particular, we show

that it is impossible to obtain a linear time step-by-step simulation of general CROW PRAMs

by several reasonably strong variants of the rCROW.

Arithmetically Restricted PRAMs: The essential weakness of the rCROW doesn't

seem to lie in particular properties of successor and double, but rather in the generic

property that they are unary functions. Hence, for our lower bounds we generalize the

rCROW model to allow computation of an arbitrary �nite set of unary functions (of un-

bounded codomain). We also allow computation of arbitrary k-ary functions, provided their

codomains are of size at most n. In particular, the latter subsumes arbitrary Boolean predi-

cates. In addition, we allow the processors' local and global memory to be arbitrarily preini-

tialized. Finally, our model is nonuniform. To distinguish this model from the others we

consider, we refer to it as an Arithmetically Restricted PRAM. CROW, CREW and CRCW

4

variants of it will be discussed. Thus, the rCROW (and hence the PPM) is a very simple

special case of an Arithmetically Restricted CROW PRAM with conditional branch.

Our Lower Bounds: We consider a simple problem, the pairing problem, de�ned below.

It is a key component of the DCFL recognition algorithm, and is easily solved in constant

time by one processor on a CROW PRAM with addition. However, we show it is not solvable

in constant time by variants of the Arithmetically Restricted PRAM, including those with

preinitialized memory. Thus there can be no linear time step-by-step simulation of a general

CROW PRAM, even when arbitrary precomputed tables are provided \for free." Speci�cally,

we show the following three lower bounds.

� Without branch instructions, but with all the other facilities discussed above, an Arith-

metically Restricted CREW PRAM requires time
(logn) to solve the pairing problem,

even with an unlimited number of processors.

� With branch instructions as well as the other facilities discussed above, an Arithmeti-

cally Restricted PRIORITY PRAM with p processors requires time
(log(n

2

=p)) to

solve the pairing problem. In particular,
(n

2

) processors are necessary to solve it in

constant time. Thus, even a strong form of concurrent write can't cheaply compensate

for restricted arithmetic capabilities.

� With branch instructions as well as the other facilities discussed above, an Arithmeti-

cally Restricted CROW PRAM requires time
(log logn) to solve the pairing problem,

even with an unlimited number of processors.

Our Upper Bounds: On the positive side, although we have given strong evidence

that PPMs are not as strong as general CROW PRAMs, we can also show that PPMs are

unexpectedly powerful. We show, using our upper bound for the pairing function, that they

can do step-by-step simulations of general CROW PRAMs at a cost of O(log logn) PPM steps

per simulated step, while using only polynomially many processors. This implies our lower

bound is tight for step-by-step simulations. Note that this upper bound holds for (uniform)

PPMs, not just for (nonuniform) Arithmetically Restricted CROW PRAMs.

The Pairing Problem: The pairing problem is to compute any injective function

� : f1; : : : ; ng � f1; : : : ; ng ! N:

The natural pairing function �(x; y) = (x� 1)n+ y with codomain f1; : : : ; n

2

g is an example,

as is the function that concatenates the dlog

2

ne-bit binary representations of x and y. (The

latter is the function used by our upper bound algorithm.) The pairing problem was motivated

by the DCFL recognition algorithm of [8], a key component of which was accessing a two

dimensional array. It is easy to see that a pairing function can be computed by one processor in

constant time, given a simple precomputed table of multiples of n and an addition instruction.

Conversely, if an Arithmetically Restricted CROW PRAM could solve the pairing problem,

then it could simulate addition, by using the pairing function to access a precomputed table

A such that A[�(x; y)] = x+y. Thus the pairing problem is \universal" for simulating binary

operations by unary ones.

5

Outline: The rest of this paper is organized as follows. Section 2 de�nes the Arithmeti-

cally Restricted PRAM more fully. Sections 3 and 4 sketch our lower and upper bounds,

respectively.

2 The Arithmetically Restricted PRAM

We consider PRAMs with an in�nite shared global memory (M [1];M [2]; : : :) and p processors

P

1

; : : : ; P

p

that each have an in�nite private local memory (L[1]; L[2]; : : :). Each (global and

local) memory cell can hold one nonnegative integer of arbitrary size. Each processor also

has an accumulator that initially contains the processor's number. For convenience, we call

the accumulator L[0]. The inputs de�ning the problem instance being solved are initially

located in the �rst appropriately many global memory cells. Unless otherwise indicated, all

other local and global memory cells are assumed to be initialized to 0. When the computation

terminates, the outputs for the problem are the values contained in the �rst appropriately

many global memory cells.

Let F be a �xed, but arbitrary, �nite set of unary functions and let C � N be an arbi-

trary set of constants. Let Q

k

be an arbitrary set of k-ary functions q : N

k

! f1; : : : ; ng.

The essential feature of these functions is that their ranges are not too large; the speci�c

choice of f1; : : : ; ng for the codomain is unimportant, as function values can be renamed by

subsequently applying a unary function. At each step of the computation, each processor

can perform one of the operations listed in Table 1. A program is a �nite sequence of such

instructions.

Throughout this paper, we assume that processors are allowed to simultaneously read

from the same global memory cell. If two or more processors are allowed to simultaneously

write to the same global memory cell, then the PRAM is concurrent-read, concurrent-write

(CRCW); otherwise it is concurrent-read, exclusive-write (CREW). When concurrent writes

are allowed, a method for resolving write con
icts must be speci�ed. A PRIORITY PRAM

resolves con
icts in favor of the lowest numbered processor attempting to simultaneously

write into a cell. It is at least as powerful as most other CRCW PRAMs. A ROBUST PRAM

resolves write con
icts in a completely arbitrary way | i.e., no assumption may be made

about the �nal value in a cell at which a write con
ict occurred. It is weaker than most other

CRCW PRAMs. For more details, see [12], [9], [16], [11].

A concurrent-read, owner-write (CROW) PRAM [8] is a CREW PRAM in which each

global memory cell is owned by a single processor; only the owner of a global memory cell

may write to it. Note that processors may own many di�erent global memory cells.

In addition to the various concurrent write mechanisms, we also will consider certain

extensions to the basic model. The �rst extension is preinitialized memory. In a PRAM with

preinitialized memory, except for each processor's accumulator and those global memory

cells that contain the input values, programs may specify initial values for local and global

memory cells. These values can be arbitrary, but cannot depend on the input values. This is

an interesting extension to consider since the pairing problem may be a frequently executed

6

read L[0] M [L[0]] indirect read from global memory

lreadi L[0] L[i] direct read from local memory

write M [L[1]] L[0] indirect write into global memory

lwritei L[i] L[0] direct write into local memory

load-c L[0] c assign a prede�ned constant c 2 C

f L[0] f(L[0]) apply a unary function f 2 F

q L[0] q(L[0]; : : : ; L[k� 1]) evaluate a k-ary function q 2 Q

k

Table 1: Arithmetically restricted PRAM: Basic instructions

branch if L[0] > 0 then goto : : : conditional branch

conditional-f if L[1] > 0 then L[0] f(L[0]) conditional function application (L[1] 2 f0; 1g)

k-concatenate L[0] L[0] � 2

k

+ L[1] k-bit concatenation (L[1] < 2

k

)

lread L[0] L[L[0]] indirect read from local memory

lwrite L[L[1]] L[0] indirect write to local memory

Table 2: Arithmetically restricted PRAM: Extensions

subroutine in a larger computation whose total cost dominates the cost of precomputing tables

used by the pairing subroutine.

Additional extensions arise by allowing one or more of the operations listed in Table 2,

and described below.

The branch instruction changes
ow of control. If this operation is allowed, a processor's

program can be viewed as a computation tree with at most 2

t

nodes at distance t from the

root. Conditional function application provides a much more restricted form of branching.

Here L[1] must contain either 0 or 1 and, in the latter case, the unary function f 2 F is

applied to the value in L[0].

The k-concatenate instruction requires that the second argument L[1] contain a number

that is at most k bits in length. In this case, the concatenation is performed with the second

argument treated as a k-bit number by adding leading zeros, if necessary.

The last extension considered is indirect addressing of local memory. When the address

argument L[0] of lread or L[1] of lwrite is restricted to be a positive integer no larger than

k, we say that the indirect addressing of local memory is k-limited. In this case, one of the

local memory cells L[1]; : : : ; L[k] of the processor will be accessed.

3 Lower Bounds

In this section we prove lower bounds on the pairing problem, de�ned in Section 1. Initially,

M [1] and M [2] each contain a value in the range f1; : : : ; ng. Call these values x and y,

7

respectively. At the end of the computation, the value in M [1] must be an injective function

of x and y. All three of our lower bounds are tight, as will be shown in Section 4.

The lower bound proof technique was partly inspired by results of Dymond concerning

sequential RAMs [6], but the PRAM case is substantially more di�cult. Throughout this

section, let V (0; j; x; y; t) denote the value in global cell M [j] and let V (i; j; x; y; t) denote the

value in cell L[j] of processor P

i

at the end of step t when x and y are the inputs to the

pairing problem. Here x; y 2 f1; : : : ; ng, t 2 N, i 2 f1; : : : ; pg, j 2 N and j 6= 0 if i = 0. (For

simplicity, the latter condition is usually omitted from statements below.)

Without instructions that change the
ow of control (branch and conditional-f), the

instruction that a processor performs at each step does not depend on the values of the inputs.

We exploit this in the next theorem.

Theorem 1 An Arithmetically Restricted CREW PRAM requires
(logn) steps to solve

the pairing problem, even with preinitialized memory.

Proof: A global memory cell, local memory cell, or accumulator is oblivious at time t

if it contains the same value at the end of step t for all x; y 2 f1; : : : ; ng. Otherwise it is

a�ected at time t. The set of values appearing in a�ected cells during the �rst t steps of the

computation is

A

t

= fV (i; j; x; y; t

0

) j i 2 f0; 1; : : : ; pg; j 2 N; x; y 2 f1; : : : ; ng; t

0

2 f0; : : : ; tg; and

V (i; j; x; y; t

0

) 6= V (i; j; x

0

; y

0

; t

0

) for some x

0

; y

0

2 f1; : : : ; ngg:

Let a

t

denote the size of this set.

Initially, A

0

= f1; : : : ; ng, hence a

t

= n.

Next we wish to show a

t+1

� (jF j+ 3)a

t

.

Clearly A

t

� A

t+1

. Consider the instructions executed by the processors at step t+ 1.

If a prede�ned constant is loaded into a processor's accumulator, then the accumulator is

oblivious at time t + 1. Similarly, if the processor applies a unary function f 2 F and the

accumulator is oblivious at time t, then it is also oblivious at time t + 1. Now suppose that

the accumulator is a�ected at time t, so, for any input, at time t, it contains a value in A

t

at time t. Then, at time t+ 1, it contains a value in ff(a) j a 2 A

t

g if the processor applied

the unary function f 2 F . Furthermore, if a processor applies a function whose codomain is

a subset of f1; : : : ; ng, then the value in the accumulator at time t + 1 is in A

0

.

A direct write to or read from local memory does not add any new values toA

t+1

, although

it may increase the number of a�ected memory cells.

When an indirect read from global memory is performed by processor P

i

, its accumulator,

L[0], contains, at time t, the address from which to read and, at time t + 1, the value read.

If the accumulator is oblivious at time t, then it is a�ected at time t + 1 if and only if the

cell read, M [L[0]], is a�ected at time t and, if so, the value read is in A

t

. However, if the

accumulator is a�ected at time t, then, for any input, the address of the cell from which to

read is in A

t

and, hence, the value read is in fV (0; a; x; y; t) j a 2 A

t

; x; y 2 f1; : : : ; ngg.

8

When an indirect write to global memory is performed by processor P

i

, its accumulator,

L[0], contains the value to be written and its local memory cell L[1] contains the address to

which to write. If L[1] is oblivious at time t, then M [L[1]] is a�ected at time t+1 if and only

if L[0] is a�ected at time t and, if so, the value written is in A

t

. Now suppose that L[1] is

a�ected at time t. Then the set of locations to which P

i

writes during step t+1 is a subset of

A

t

. Note that there can be at most a

t

such processors; otherwise, by the pigeonhole principle,

a write con
ict will occur. If L[0] is oblivious at time t, then P

i

writes the same value during

step t+ 1 for all values of x and y, whereas, if L[0] is a�ected at time t, the value written is

in A

t

. Let B

t

be the set of indices i 2 f1; : : : pg of processors P

i

such that P

i

writes to global

memory during step t + 1, its accumulator L[0] is oblivious at time t, and its local memory

cell L[1] is a�ected at time t. Then, at time t+1, the set of values in a�ected global memory

cells is a subset of

A

t

[fV (0; a; x; y; t) j a 2 A

t

; x; y 2 f1; : : : ; ngg

[fV (i; 0; x; y; t) j i 2 B

t

; x; y 2 f1; : : : ; ngg:

Furthermore, the last of these three sets has cardinality at most a

t

.

Note that ifM [a] is a�ected at time t, then V (0; a; x; y; t) 2 A

t

for all x; y 2 f1; : : : ; ng and

if M [a] is oblivious at time t, then V (0; a; x; y; t) has the same value for all x; y 2 f1; : : : ; ng.

Thus

fV (0; a; x; y; t) j a 2 A

t

; x; y 2 f1; : : : ; ngg �

A

t

[fV (0; a; x; y; t) j a 2 A

t

; x; y 2 f1; : : : ; ng and M [a] is oblivious at time t g:

The latter set has cardinality at most a

t

. It follows that

A

t+1

� A

t

[ff(a) j a 2 A

t

; f 2 Fg

[fV (0; a; x; y; t) j a 2 A

t

; x; y 2 f1; : : : ; ng and M [a] is oblivious at time t g

[fV (i; 0; x; y; t) j i 2 B

t

; x; y 2 f1; : : : ; ng g;

so a

t+1

� (jF j+ 3)a

t

.

It is easy to verify by induction that a

t

� n(jF j + 3)

t

, for all t � 0. The cell containing

the answer at the end of the computation has a di�erent answer for each of the n

2

di�erent

pairs of inputs and thus the number of di�erent values appearing in a�ected memory cells

during the computation must be at least n

2

. Hence, the number of steps in the computation

must be in
(logn). 2

Theorem 2 An Arithmetically Restricted PRIORITY PRAM with p processors requires

(log(n

2

=p)) steps to solve the pairing problem, even with preinitialized memory and the

ability to branch.

9

Proof: If 1 � p � n, then 2 logn � log(n

2

=p) � logn. Thus it su�ces to prove the result

when p � n.

Let V

t

be the set of values that appear in the processors' accumulators during the �rst t

steps of the computation, i.e.,

V

t

= fV (i; 0; x; y; t

0

) j i 2 f1; : : : ; pg; x; y 2 f1; : : : ; ng; t

0

2 f0; : : : ; tg g:

Let v

t

denote the cardinality of this set. Recall that V (i; 0; x; y; 0) = i, so v

0

= p and

f1; : : : ; ng � V

0

.

Next we argue that v

t+1

� v

t

(1 + jF j+ 1) + p2

t

.

The values in a processor's accumulator can change only as a result of the evaluation of a

function, a read, or the assignment of a prede�ned constant.

There are at most v

t

di�erent values that can appear in the accumulators during the �rst

t steps and at most jF j di�erent values can result from each by applying the functions in F .

After a processor evaluates a function with codomain f1; : : : ; ng, its accumulator contains a

value in V

0

� V

t

.

When a processor performs a write to local or global memory, the value in its accumulator

is written. Hence, at the end of step t, the value in each memory cell is either its initial value or

a value in V

t

. Except forM [1] andM [2], whose initial values are contained in f1; : : : ; ng � V

0

,

each memory cell has the same initial value for all inputs. Thus at most one new value is

obtained from each local or global memory cell that can be read during step t+1. Furthermore,

since the global memory locations from which processors read are speci�ed by the contents of

their accumulators, there are at most v

t

di�erent global memory cells that can be read during

step t+ 1.

As a result of branches, each of the p processors can be in one of at most 2

t

states. In

each such state, it might read the initial value of a (directly addressed) local memory cell or

use a new prede�ned constant c 2 C (but not both).

Thus v

t+1

� v

t

(1 + jF j+ 1) + p2

t

. It is easy to verify by induction that v

t

� 2p(jF j+ 2)

t

for all t � 0. Since the PRAM must give a di�erent answer for each of the n

2

di�erent pairs of

inputs, and a value cannot be written to global memory unless it appears in an accumulator,

it follows that n

2

di�erent values must appear in the accumulators during the course of the

computation. Hence, the number of steps in the computation must be in
(log(n

2

=p)). 2

In fact, this proof works for any CRCW PRAM in which the result of a write con
ict

leaves the cell unchanged or causes one of the values being written there to appear. The

MAXIMUM PRAM [9] is an example of such a model. Clearly, the lower bound does not

apply to a PRAM in which the value that appears as the result of a write con
ict is the sum

of the values written.

Theorem 3 An Arithmetically Restricted CROW PRAM requires
(log logn) steps to

solve the pairing problem, even with preinitialized memory and the ability to branch.

Proof: We say that a processor P

i

could know a value at time t if the value is an input or

the value appears in the processor's accumulator L[0] during the �rst t steps of computation,

10

for some choices of the inputs. Then for any subset of processors fP

i

j i 2 Sg, the set of

values that processors in S could know at time t is

K(S; t) = fV (i; 0; x; y; t

0

) j i 2 S; x; y 2 f1; : : : ; ng; t

0

2 f0; : : : ; tgg [f1; : : : ; ng:

Let k(s; t) denote the maximum cardinality of this set, taken over all s-processor subsets S.

Initially, each processor's accumulator contains its number; thus

K(S; 0)� f1; : : : ; ng [S

so k(s; 0) � n+ s.

Consider the instructions executed at step t+1 by the processors in some set S. Writes to

local or global memory do not change the values a processor could know. Evaluating functions

with codomain f1; : : : ; ng produces values that have already been accounted for. As a result

of branches, each of the processors in S can be in one of at most 2

t

states. In each such state,

it might read the initial value of a local memory cell or use a new prede�ned constant c 2 C

(but not both). Note that any value in a processor's local memory cell after step t is either

the initial value of that cell or was in its accumulator at some earlier time and, hence, could

be known by the processor. Thus assignment of prede�ned constants and direct reads of local

memory account for at most s2

t

new values that processors in S could know at time t+ 1.

There are at most k(jSj; t) di�erent values that could be known by processors in S at time

t and hence that could be in those processors' accumulators. At most jF j di�erent values can

result from each by applying the functions in F , for a total of jF j � k(jSj; t) new values.

Furthermore, there are at most k(jSj; t) di�erent global memory cells that can be read

during step t + 1 by processors in S. Any value in a global memory cell is either the initial

value of that cell or a value that was written there by the processor that owns the cell. Except

for M [1] and M [2], whose initial values are contained in f1; : : : ; ng, each memory cell has a

single initial value. The only values that could have been written to these global memory

cells during the �rst t steps are the at most k(k(jSj; t); t) di�erent values that could have been

known at time t by the set of at most k(jSj; t) processors that own these cells. Therefore,

altogether, these global memory cells could contain at most k(jSj; t) + k(k(jSj; t); t) di�erent

values at the end of step t.

Thus k(s; t+ 1) � k(s; t) + s2

t

+ jF j � k(s; t) + k(s; t) + k(k(s; t); t) for t > 0. It is easy to

verify by induction that k(s; t) � (n + s)(3 + jF j)

3

t

. In particular, k(1; t) 2 n2

2

O(t)

. At the

end of the computation, the value in the output cell is either the value of the input x or a

value written by the processor P that owns this cell and, hence, a value that P could know.

Since there must be at least n

2

di�erent values that P could know, the number of steps in

the computation must be in
(log logn). 2

4 Upper Bounds

In this section we present upper bounds for the pairing problem using Arithmetically Re-

stricted PRAMs with di�erent instruction sets. With the exception of Theorem 14, they are

mainly important in showing that the lower bounds proved in the previous section are tight.

11

L[0] M [2] Get y.

do dlogne times

M [1] double(M [1]) Concatenate each of 0 and 1 to x.

M [2] successor(M [1])

L[1] successor(mod

2

(L[0])) Use the least signi�cant bit of y to

M [1] M [L[1]] choose between these two alternatives.

L[0] div

2

(L[0]) Delete the least signi�cant bit of y.

Figure 2: Pairing on an Arithmetically Restricted PRAM with one processor

In the interest of simplicity, the code fragments presented in this section are not given

in full detail. In particular, we often omit motion of constants and data to or from the

accumulator, especially via direct addressing.

Obviously, using dlogne-concatenate, a single processor can solve the pairing problem

in constant time by concatenating x and y.

M [1] dlogne-concatenate(M [1];M [2]):

If dlogne-concatenate is not available, it can be replaced by 1-concatenate using the

following (slower) sequence of code. The idea is that the bits of the second argument are

pulled o� one at a time and concatenated to the end of the �rst argument. The resulting

program solves the pairing problem in O(logn) time using one processor.

do dlogne times

L[2] mod

2

(L[1])

L[1] div

2

(L[1])

L[0] 1-concatenate(L[0]; L[2])

(Here mod

k

and div

k

are the unary functions that return the remainder and quotient, re-

spectively, when their arguments are divided by k. Note, for use later, that this reverses the

bits of the second argument.)

More interestingly, none of the extended features of the Arithmetically Restricted PRAM

are necessary to achieve this result | indirect addressing into global memory can be used

instead of 1-concatenate, as shown in the next theorem.

Theorem 4 Using only a small �nite set of unary functions and without preinitialized

memory, one processor can solve the pairing problem in O(logn) time.

Proof: See Figure 2. 2

One implication of this result is that the
(logn) lower bound in Theorem 1 is the best

possible, as is the
(log(n

2

=p)) lower bound in Theorem 2 for p = O(n). For p = �(n

2

), the

lower bound in Theorem 2 is also tight, as shown in Theorem 5.

12

Theorem 5 An Arithmetically Restricted ROBUST PRAM with n

2

processors can solve

the pairing problem in constant time.

Proof: The idea is to view each processor number in f1; : : : ; n

2

g as a distinct ordered pair

hi; ji 2 f1; : : : ; ng � f1; : : : ; ng. Processors compare the two parts of their processor numbers

with x and y using the ternary predicate q(x; y; hi; ji) which equals 1 if and only if x = i

and y = j. There is a unique processor P

r

for which q(x; y; r) = 1. This processor writes its

number, as the answer, to M [1]. All other processors write their numbers to M [2], a location

whose contents we do not care about. In short, each processor P

r

executes the following.

M [2� q(x; y; r)] r

2

The same result holds on an Arithmetically Restricted ROBUST PRAM having only a

binary Boolean operation such as and in place of the ternary predicate q used above, although

the details are more complex.

Using branching, or even conditional function application, an Arithmetically Restricted

CREW PRAM can avoid the concurrent write used in the algorithm presented in the proof

above.

Theorem 6 An Arithmetically Restricted CREW PRAM with n

2

processors can solve the

pairing problem in constant time using conditional function application.

Proof: The code used in the previous proof is replaced by the following, which causes

every processor P

r

for which q(x; y; r) 6= 1 to write to a distinct location, namely r+1, in the

last step. As before, the desired processor writes its number into M [1].

L[0] 1� q(x; y; r)

if L[0] > 0 then L[0] r

L[0] successor(L[0])

M [L[0]] r

2

By Theorem 3, the result of Theorem 6 cannot be strengthened from CREW to CROW.

Thus, CREW and CROW PRAMs with this instruction set are provably di�erent in power.

Using the following result, the previous upper bound also holds when either 2-limited

indirect addressing of local memory or 1-concatenate is available instead of conditional

function application.

Theorem 7 1-concatenate, conditional function application, and 2-limited indirect ad-

dressing of local memory are equivalent instructions, to within constant factors.

Proof: The 1-concatenate instruction can easily be simulated in constant time using

conditional function application, as shown in Figure 3.

Conditional function application can be simulated in constant time using 2-limited indirect

addressing of local memory, as demonstrated in Figure 4. The idea is to apply the function

unconditionally and then choose between the original and resulting values.

13

L[0] double(L[0]) Shift L[0] one bit

if L[1] = 1 then L[0] successor(L[0]) Conditionally change low order bit from 0 to 1

Figure 3: Simulating 1-concatenate

L[3] successor(L[1]) L[3] has value 1 or 2

L[1] L[0]

L[2] f(L[0])

L[0] L[L[3]] Choose between L[1] and L[2]

Figure 4: Simulating conditional function application

L[3] M [2i] Temporarily save the values

L[4] M [2i+ 1] in the global memory cells.

M [2i] L[1] Move the necessary values from

M [2i+ 1] L[2] local to global memory.

L[0] 1-concatenate(i; L[0]) Concatenate the �rst argument to the end of

the processor number, i.

L[0] M [L[0]] Determine the answer using (indirect) read

from global memory.

M [2i] L[3] Restore the global memory cells.

M [2i+ 1] L[4]

Figure 5: Simulating limited indirect addressing

Furthermore, 1-concatenate can simulate 2-limited indirect addressing of local memory.

The idea is for processor P

i

to temporarily use the global memory cells M [2i] and M [2i+ 1]

in place of its local memory cells L[1] and L[2]. See Figure 5.

2

Finally, we note that none of the three lower bounds holds when other restrictions on

the model mentioned in Section 2 are relaxed. Clearly, allowing a binary function with a

quadratic (or even superlinear) range would cause problems. The restriction that the set

of unary operations F has constant size is also necessary to obtain our lower bounds. It is

not even su�cient that each processor only use one di�erent unary operation. For example,

suppose processor P

i

, i 2 f1; : : : ; ng, is given the unary function f

i

that adds n(i � 1) to its

argument. Then the following Arithmetically Restricted CROW PRAM program solves the

pairing problem in constant time using only n processors.

14

P

1

P

i

; i 6= 1

Step 1 L[0] M [2] M [i] f

i

(M [1])

Step 2 M [1] M [L[0]]

Note that, after the �rst step, M [i] = x+n(i�1) for all i 2 f1; : : : ; ng. Similarly, if unlimited

indirect addressing of local memory is allowed together with preinitialized local memory, an

Arithmetically Restricted CROW PRAM can solve the pairing problem in constant time using

only n processors, by giving processor P

i

a preinitialized table of the unary function f

i

.

We now turn to our upper bound for the pairing problem on CROW PRAMs.

The key idea for solving the pairing problem in O(log logn) time comes from solving a

di�erent problem: forming an integer from its bits. Speci�cally, the k-join problem is to

concatenate k bits into an integer in the range f0; : : : ; 2

k

� 1g.

Lemma 8 An Arithmetically Restricted CROW PRAM with 2

k+1

�1 processors can solve

the k-join problem in O(logk) time.

Proof: We �rst solve a related problem, that of concatenating a high-order 1-bit together

with the k input bits, producing an integer in the range f2

k

; : : : ; 2

k+1

� 1g. The idea is to

view the �rst 2

k+1

� 1 global memory cells as an implicit balanced binary decision tree such

that, for d = 0; : : : ; k � 1, all of the nodes at depth d are labeled with the (d + 1)st input

variable, and the leaf nodes contain the function values for this related problem. In constant

time, each processor P

i

; 1 � i � 2

k

� 1, creates a pointer from the i

th

internal node to either

its left child or its right child, depending on whether the input variable labeling the i

th

node

is 0 or 1. If the i

th

node is at depth d, this is done as follows.

M [i] 1-concatenate(i;M [d+ 1])

It turns out that the function value to be stored in the leaf at address i is i itself. Thus, each

processor P

i

; 2

k

� i � 2

k+1

� 1 can initialize its leaf as follows.

M [i] i

Pointer jumping can then be used to determine the answer in 1 + dlog

2

ke steps. Speci�cally,

each processor P

i

corresponding to an internal node performs the operation

M [i] M [M [i]]

1+dlog

2

ke times. Finally, to solve the k-join problem, processor 1 applies the mod

2

k

function

to remove the unwanted high-order bit from the answer constructed above:

M [1] mod

2

k

(M [1])

(Recall that we are assuming a nonuniform model, so the available unary functions, e.g.

mod

2

k

, are allowed to depend on k. We will consider uniform versions below.)

Note that the only processor to write into M [i] is P

i

, i.e., the algorithm obeys the owner

write restriction with P

i

owning M [i]. 2

Using standard techniques [18], the number of processors can be improved to 2

k

=k

O(1)

, while

only increasing the time by a constant factor. The idea is to apply the foregoing algorithm to

15

For all P

i

; l � i � l2

k+1

� 1

if equal

k

(d(i)) = 0 Initialize tree:

then M [i] 1-concatenate(i;M [b(i)]) Internal node;

else M [i] i Leaf.

do 1 + dlog

2

ke times Pointer jumping

M [i] M [M [i]]

if d(i) = 0 then M [t(i)] mod

2

k

(M [i]) Extract and move answer.

Figure 6: The k-join algorithm

only the high order k � O(logk) bits, then sequentially concatenate the remaining O(logk)

bits.

Any function with domain f0; 1g

k

can be expressed as the composition of a unary function

and k-join. Thus we have the following result.

Corollary 9 Any function with domain f0; 1g

k

can be computed by an Arithmetically

Restricted CROW PRAM with 2

k+1

� 1 processors in O(logk) time.

This result is within a constant factor of optimal, since even on a CREW PRAM with

an unlimited number of processors and an arbitrarily powerful instruction set, computing the

OR of n Boolean values requires
(logn) steps [4].

It is also possible to solve multiple instances of the k-join problem in parallel, although

determining which cell a processor should access is somewhat more complicated.

Lemma 10 Any l independent instances of the k-join problem can be solved by an l2

k+1

�

1 processor Arithmetically Restricted CROW PRAM in time O(logk).

Proof: Root l binary trees at locations M [l]; : : : ;M [2l � 1], again viewing M [2i] and

M [2i+1] as the children of M [i]. Thus, for d = 0; : : : ; k, the l2

d

nodes of depth d are located

at cellsM [l2

d

]; : : : ;M [l2

d+1

�1]. In other words, locationM [i], for l � i � l2

k+1

�1, contains

a node at depth d(i) = blog

2

(i=l)c in the tree numbered t(i) = bi=2

d(i)

c+1� l. To determine

where it should point, processor P

i

, l � i � l2

k

� 1, has to read the input bit numbered

b(i) = k(t(i) � 1) + 1 + d(i). Note that for l � i � l2

k+1

� 1, we have 0 � d(i) � k,

1 � t(i) � l, and for l � i � l2

k

� 1, we have 1 � b(i) � kl. The unary functions equal

k

,

which has value 1 when its argument is k and 0 otherwise, and mod

2

k

, which computes the

remainder when its argument is divided by 2

k

, are also used in the program, which is executed

by all processors P

i

with l � i � l2

k+1

� 1. See Figure 6. Again, note that the algorithm

obeys the owner write restriction since the only processor to write into M [i] is P

i

. 2

The k-split problem is the inverse of k-join, i.e., to break an integer in the range 0 to

2

k

� 1 into a sequence of k bits.

16

M [i] encode

K

(M [i]) P

i

; 1 � i � l

for j 1; : : : ; log

2

K do P

i

; 1 � i � l � 2

j

if mod

2

(i) = 1

then M [i] left(M [b(i� 1)=2c+ 1])

else M [i] right(M [b(i� 1)=2c+ 1])

M [i] mod

2

(M [i]) P

i

; 1 � i � lK

Figure 7: The k-split algorithm

Lemma 11 An Arithmetically Restricted CROW PRAM with O(lk) processors can solve

l instances of the k-split problem simultaneously, in time O(logk).

Proof: We use a number of unary functions, including encode

K

, left, and right.

encode

K

adds 2

K

to its argument, where K = 2

dlog

2

ke

. This leading 1 is necessary to keep

track of the number of leading 0's in the original argument, when viewed as a K-bit string.

left returns the left half of its argument (when viewed as a bit string) and right returns the

right half of its argument prepended by a 1. Speci�cally, if jz

1

j = jz

2

j, then left(1z

1

z

2

) = 1z

1

and right(1z

1

z

2

) = 1z

2

.

The method for solving one instance of k-split is simple. First we apply encode

K

to

the input. Then in each step j = 1; : : : ; log

2

K, we have 2

j

processors use left or right

to replace the �rst 2

j�1

global memory words by 2

j

words of half the length. Finally, we

apply mod

2

to remove the leading 1 from each word. The method easily generalizes so that

l integers in the range 0 to 2

k

� 1 can be broken into l sequences of k bits, in O(logk) steps,

using lK processors. See Figure 7.

Note that if k is not a power of 2, there will be extraneous zeros between the bit strings,

namely the K � k leftmost bits within each block of K. These are easy to remove if desired:

the i

th

bit of the �nal answer, 1 � i � lk, is the j

th

bit computed by the procedure above,

where

j =

�

i� 1

k

�

�K + mod

k

(i� 1) +K � k + 1:

Thus, the extraneous zeros can be removed by having processor P

i

; 1 � i � lk; execute

M [i] M [j].

Again, note that the algorithm obeys the owner write restriction since the only processor

to write into M [i] is P

i

. 2

Combining Lemmas 10 and 11 gives us a fast way to solve n instances of the pairing

problem simultaneously in O(log logn) time on an Arithmetically Restricted CROW PRAM.

Lemma 12 An Arithmetically Restricted CROW PRAM with n

3

processors can solve n

instances of the pairing problem simultaneously in O(log logn) time.

17

Proof: Let k = dlog

2

ne. First, subtract 1 from each input so that it is an integer in the

range 0; : : : ; 2

k

� 1. Then perform 2n simultaneous instances of k-split. Finally, perform n

simultaneous instances of 2k-join. 2

It may seem counterintuitive that the best way to concatenate two bit strings is by �rst

breaking each into a sequence of bits, particularly since concatenation can be performed by a

decision tree of depth two. The di�culty is that each internal node of this decision tree has

fanout n (corresponding to the n di�erent potential values x and y). Selecting the appropriate

edge out of each internal node is as hard as our original problem. When there are only two

(or any constant number of) choices at each node, the selection is easy to perform.

Recall that in contrast to the nonuniform Arithmetically Restricted CROW PRAM con-

sidered throughout most of the foregoing, the rCROW is a uniform model with a speci�c,

limited instruction set, mainly having the successor and double instructions. It is natural

to ask whether the CROW k-split, k-join, and pairing algorithms developed in Lemmas

8, 10, 11, and 12 can be made uniform, or even more strongly, can be made to run on an

rCROW. The answer is a quali�ed \yes" | both are possible, with the quali�cation that

uniformity comes at the expense of some precomputation, as we explain below.

First, note that several aspects of the algorithms above are already uniform. Namely, all

processors execute the same program, no preinitialized memory is required, and many of the

unary functions available to each processor, speci�cally the set

F

1

= fmod

2

; div

2

; left; right; predecessorg;

are simple, and independent of the input. However, other aspects are nonuniform. In partic-

ular, the functions in the set

F

2

= fmod

2

k

; equal

k

; d; t; b; encode

K

g

all depend on the parameters l; k; or n de�ning the problem being solved. An additional

mild source of nonuniformity is that each algorithm begins execution with a number of active

processors that is a function of the input size, e.g., n

3

in Lemma 12.

To construct uniform versions of the algorithms, we replace the set of unary operations

F = F

1

[F

2

above by indirect addressing into suitable (uniformly) precomputed tables stored

in global memory. Note that the algorithms in Lemmas 8, 10, 11, and 12 use no multivariate

functions or predicates, so indirect addressing su�ces to simulate all operations (except, of

course, successor and double, which are necessary for constructing the tables). In the

course of constructing these tables, we will coincidentally activate the correct number of

processors. (The rCROW, as de�ned in [19], as well as the PPM, as de�ned in [3, 7, 5], are

forking models. That is, there is only one initially active processor; others are activated by

fork instructions. At most 2

t

processors can be active within the �rst t steps.)

Thus, the algorithms described in Lemmas 8, 10, 11, and 12 can be (repeatedly) executed

by an rCROW in the time bounds quoted above, after once paying the cost of precomputing

the tables, and activating the appropriate number of processors. We sketch below how this

can be done. Some of the techniques are borrowed from [19], and, incidentally, illustrate a

few of the ideas used there to simulate rCROWs by Parallel Pointer Machines.

18

Lemma 13 For �xed integers n; k; l; c; e, and h, where k; e = O(logn), l = 2

e

, c > 0, and

h = c dlog

2

ne, an rCROW can compute tables of the values of the unary functions in F (the

set of function used to solve the pairing problem) for all arguments i; 0 � i � 2

h

� 1, in time

O(logn) using 2

h

� 1 processors,.

Proof: (Sketch.) It is convenient to assume that both processor indices and global

memory addresses start at zero, rather than one as used everywhere else in this paper. For

some �xed integer b > 0, processor P

i

; 0 � i � 2

h

� 1 will own a block of 2

b

words in global

memory, beginning at address i2

b

, and will store into the block the values of f(i) for the

various unary functions f 2 F , plus a few others. It is convenient to view the blocks as

forming a balanced binary tree, with 2i and 2i + 1 being the children of i. (Note, however,

that i = 0 has only a right child, or is its own left child, depending on one's viewpoint.)

Initially, only processor P

0

is active. Each active processor i < 2

h�1

will fork 2 others, 2i and

2i+ 1, passing them its own index, and a
ag indicating which child they are. (Again, i = 0

is an exception.) The newly forked processors j store their parent's index as div

2

(j), and the

ag as mod

2

(j).

The various unary functions are now easy to compute. For example, the depth of any

node in the tree is easily computed as the successor of its parent's depth, where 0 has depth

0. Since l = 2

e

, the function d(i) is simply the depth of i's e

th

ancestor in the tree. It

is easily found by following the parent pointers up e levels, then copying the depth value

stored there into i's d �eld. predecessor(i) is i's left sibling if i is a right child; otherwise

it is i's parent's predecessor's right child. That is, predecessor(i) is double(div

2

(i)) if

mod

2

(i) = 1; otherwise it is successor(double(predecessor(div

2

(i)))).

Next, observe that the mod

2

bits along the upward path from i to the root comprise a

list of i's bits, least signi�cant �rst. Using this observation, a wide variety of functions can

be e�ciently precomputed. A useful example is the function reverse(i). reverse(i) is the

reversal of the bit string encode'd by i, or more precisely (to preserve low order zeros, and

strip o� the high order bit added by encode) the
oor of one half of the reversal of 2i+ 1.

E.g., reverse(111010

2

) = 101011

2

. This can be constructed by using the procedure in the

example immediately preceding Theorem 4, or in terms of the tree, by walking one pointer up

the tree from i to node 1 while walking another down from 1 according to the mod

2

bits seen

along the upward path. reverse(mod

2

k

(i)) can be found by carrying out a similar process

for k steps; mod

2

k

(i) is found by reversing this. left(i) for a node i at depth 2d+ 1, which

encodes a bit string of length 2d, is i's ancestor at depth d+ 1. This node can be found by

walking two pointers up from i, with the �rst making two steps for each step made by the

second; the second will reach left(i) when the �rst reaches 1. right(i) is now easily found

as right(i) = reverse(left(reverse(i))).

Another example is equal

k

. Recall that rCROWs can compare to zero, but lack a general

compare instruction. Given k in a known location in global memory, each processor i walks

two pointers in parallel towards the root, one from i and the other from k, comparing the bit

sequences comprising the two integers. The unique processor �nding them all equal will set

its equal

k

�eld to one; all others store zero.

19

The remaining functions can be computed similarly. All of these operations can be com-

pleted in time proportional to the height h of the tree, which is O(logn) for our application

to pairing. 2

Thus, Lemmas 8, 10, 11, and 12 apply to rCROWs, provided O(logn) time for precom-

putation is allowed. In particular, we obtain the following result.

Theorem 14 A CROW PRAM with n processors running in time O(logn) can be sim-

ulated by an rCROW with polynomially many processors in time O(logn log logn).

Proof: (Sketch.) Precompute tables of the unary functions needed by the pairing algo-

rithm as sketched above in Lemma 13. Also, precompute tables for addition (and/or other

binary operations on O(logn) bit quantities used by the simulated CROW PRAM). This

all takes O(logn) time. Finally, do a step-by-step simulation of the CROW PRAM, using

Lemma 12 and the precomputed addition table to simulate addition steps. 2

It follows from this that deterministic context-free language recognition and many other

problems solvable in O(logn) time on CREW PRAMs are solvable in time O(logn log logn)

by PPMs.

Two important features of the simulation presented in Theorem 14 are that it is uni-

form and that it uses only polynomially many more processors. It is possible to obtain

faster rCROW algorithms, computing any function to within a constant factor as fast as

on a nonuniform CREW PRAM, by exploiting both nonuniformity and substantially more

processors. This relies on the following characterization. Let f be any n-ary function

f : D

1

� � � � � D

n

! N, where D

1

; : : : ; D

n

� N are �nite sets. Then the logarithm of f 's

decision tree complexity characterizes to within a constant factor the time for a (nonuniform)

CREW PRAM with an arbitrarily powerful instruction set to compute f [21, 10].

With normal arithmetic capabilities, a nonuniform CROW PRAM can evaluate any deci-

sion tree of height h and size s in dlog

2

he+O(1) steps using s processors, by pointer jumping

(Ragde, personal communication; see also [21, 10]). Preinitialized memory is used to specify

the decision tree, naming the input variable to be tested at each internal node, the out-edges

from each, and the function value at each leaf. Addition is used to index into the list of out-

edges at each internal node in constant time. As in the proof of Lemma 8, even an rCROW

(with preinitialized memory) can evaluate a Boolean decision tree using the same resources:

since the out-degree of each internal node is two, successor can replace general addition for

indexing into the list of out-edges. More generally, if the domain D

i

of every input variable

x

i

has cardinality at most 2

k

, then dlog

2

he+O(logk) steps su�ce, even on an rCROW. The

idea is to use table lookup to replace each input variable x

i

by its rank in D

i

in O(1) steps,

to use k-split to convert these values to sequences of Booleans in O(logk) steps, then to

evaluate the associated Boolean decision tree of height at most hk in dlog

2

hke+O(1) steps.

Note that the additive log k term above is best possible, since the pairing problem with

domain f1; : : : ; ng � f1; : : : ; ng can be solved by a decision tree of height two, but requires

time
(log logn) on an Arithmetically Restricted CROW PRAM by Theorem 3. We also

remark that applying this result to convert a CREW PRAM algorithm running in time T

20

into a CROW or rCROW algorithm, in addition to introducing nonuniformity, may require

a number of processors that is double-exponential in T .

References

[1] J. Archibald and J.-L. Baer. Cache coherence protocols: Evaluation using a multiprocessor

simulation model. ACM Transactions on Computer Systems, 4(4):273{298, 1986.

[2] A. M. Ben-Amram and Z. Galil. On pointers versus addresses. Journal of the ACM, 39(3):617{648,

July 1992.

[3] S. A. Cook. Towards a complexity theory of synchronous parallel computation. L'Enseignement

Math�ematique, XXVII(1{2):99{124, Jan.-June 1981. Also in [20, pages 75{100].

[4] S. A. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds for parallel random access

machines without simultaneous writes. SIAM Journal on Computing, 15(1):87{97, Feb. 1986.

[5] S. A. Cook and P. W. Dymond. Parallel pointer machines, 1991. Submitted.

[6] P. W. Dymond. Indirect addressing and the time relationships of some models of sequential

computation. Int. J. of Computers and Math. with Applications, 5:195{209, 1979.

[7] P. W. Dymond and S. A. Cook. Hardware complexity and parallel computation. In 21st Annual

Symposium on Foundations of Computer Science, pages 360{372, Syracuse, NY, Oct. 1980. IEEE.

[8] P. W. Dymond and W. L. Ruzzo. Parallel random access machines with owned global memory and

deterministic context-free language recognition. In L. Kott, editor, Automata, Languages, and

Programming: 13th International Colloquium, volume 226 of Lecture Notes in Computer Science,

pages 95{104, Rennes, France, July 1986. Springer-Verlag.

[9] D. Eppstein and Z. Galil. Parallel Algorithmic Techniques for Combinatorial Computation, pages

233{283. Annual Reviews in Computer Science. Annual Reviews, Inc., 1988.

[10] F. E. Fich. The complexity of computation on the parallel random access machine. In J. H. Reif,

editor, Synthesis of Parallel Algorithms. Morgan Kaufman, San Mateo, CA, 1993. To appear.

[11] F. E. Fich, R. Impagliazzo, B. Kapron, V. King, and M. Kuty lowski. Limits on the power of

parallel random access machines with weak forms of write con
ict resolution. In 10th Annual

Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science.

Springer-Verlag, 1993.

[12] F. E. Fich, P. Ragde, and A. Wigderson. Relations between concurrent-write models of parallel

computation. SIAM Journal on Computing, 17:606{627, 1988.

[13] F. E. Fich and A. Wigderson. Towards understanding exclusive read. SIAM Journal on Comput-

ing, 19(4):717{727, 1990.

[14] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings of the Tenth

Annual ACM Symposium on Theory of Computing, pages 114{118, San Diego, CA, May 1978.

[15] M. T. Goodrich and S. R. Kosaraju. Sorting on a parallel pointer machine with applications

to set expression evaluation. In 30th Annual Symposium on Foundations of Computer Science,

pages 190{195, Research Triangle Park, NC, Oct. 1989. IEEE. Preliminary version.

21

[16] T. Hagerup and T. Radzik. Every robust CRCW PRAM can e�ciently simulate a Priority

PRAM. In Proceedings of the 1990 ACM Symposium on Parallel Algorithms and Architectures,

pages 117{124, Crete, Greece, July 1990.

[17] D. Harel and R. E. Tarjan. Fast algorithms for �nding nearest common ancestors. SIAM Journal

on Computing, 13(2):338{355, May 1984.

[18] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In J. van

Leeuwan, editor, Handbook of Theoretical Computer Science, volume A: Algorithms and Com-

plexity, chapter 17, pages 869{941. M.I.T. Press/Elsevier, 1990.

[19] T. W. Lam and W. L. Ruzzo. The power of parallel pointer manipulation. In Proceedings of the

1989 ACM Symposium on Parallel Algorithms and Architectures, pages 92{102, Santa Fe, NM,

June 1989.

[20] Logic and Algorithmic, An International Symposium Held in Honor of Ernst Specker, Z�urich, Feb.

5{11, 1980. Monographie No. 30 de L'Enseignement Math�ematique, Universit�e de Gen�eve, 1982.

[21] N. Nisan. CREW PRAMs and decision trees In Proceedings of the Twenty First Annual ACM

Symposium on Theory of Computing, pages 327{335, Seattle, WA, May 1989.

[22] A. Sch�onhage. Storage modi�cation machines. SIAM Journal on Computing, 9(3):490{508, Aug.

1980.

[23] R. E. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets. Journal

of Computer and System Sciences, 18:110{127, 1979.

[24] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,

33(8):103{111, Aug. 1990.

(RCS Revision: 1.56 Date: 1993/05/12 06:04:07)

