
How Reductions to Sparse Sets

Collapse the Polynomial-time Hierarchy:

A Primer

Paul Young

Technical Report 93-03-07

March, 1993

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195

How Reductions to Sparse Sets

Collapse the Polynomial-time Hierarchy:

A Primer

Paul Young

�

1 Introduction

In [KL-80] it is proved

(KL-1) If SAT �

P

T

S for some sparse set S; then the polynomial time

hierarchy collapses to �

2

\ �

2

.

(KL-2) If SAT �

P

T

S for some sparse set S; then for every set A in the

polynomial time hierarchy, there is some sparse set S

A

such that A �

P

T

S

A

.

Using the well-known (and easy) result that A is �

P

T

reducible to a sparse

set if and only if A can be solved with polynomial size circuits,

1

(KL-2) may

be read as saying that if SAT has polynomial size circuits, then every set in

the polynomial-time hierarchy has polynomial size circuits.

�

Department of Computer Science and Engineering, University of Washington. This

expository paper is based on lectures given while the author was a Visiting Professor in

Dipartimento di Scienze dell'Informazione, Universit�a degli Studi di Milano in November

and December, 1991. The author is grateful for the support given by Consiglio Nazionale

delle Ricerche. Presented also at the 4

th

European Summer School in Logic, Language

and Information, Essex, England, August 1992. This revision of March, 1993, uni�es the

two separate parts of the paper which appeared in SIGACT News [Yo-92a], [Yo-92b], and

corrects a number of inaccurate statements involving Kadin's theorem which appeared in

[Yo-92a].

1

If we start with a deterministic Turing machine working in polynomial time, then

standard proofs of Cook's Theorem (see e.g., [MY-78]) build Boolean formulas (i.e., cir-

cuits) for mimicking the computation. Aside from the inputs, the circuits are uniform for

all inputs of any �xed length. Since these circuits are, a priori, of polynomial size, if the

Turing machine also has access to a sparse oracle then those polynomially many oracle

elements accessible from inputs of length n can also be coded directly into the circuits, in

e�ect making the circuits contain the relevant parts of the sparse oracle. Thus, any set

reducible to a sparse set can be solved with polynomial size circuits. Conversely, if we

have polynomial sized circuits each of which solve all membership questions \x 2 A?" for

inputs of lengths n; then the totality of all such circuits forms a sparse set, and a Turing

machine with access to these circuits can solve A:

1

It has long been known that if SAT is reducible to a sparse set by more

restrictive polynomial-time reductions, then even more dramatic collapses

of the polynomial-time hierarchy must occur. Recently, ([OW-91]), Ogiwara

and Watanabe proved that if SAT �

P

btt

S for some sparse set S, then P =

NP; a result which subsumed all earlier results on polynomial-time bounded

truth-table and many-one reductions of SAT to sparse sets.

It is the purpose of this paper to give simple proofs, in a uniform format,

of the major known (pre-1992) results relating how polynomial-time reduc-

tions of SAT to sparse sets collapse the polynomial-time hierarchy. To help

the reader familiar with basic facts of complexity theory follow the main

ow of ideas, while keeping the exposition self-contained, straight forward

proofs from elementary complexity theory are relegated to footnotes. We

treat polynomial-time Turing reductions (i.e., Cook reductions) in Section 2.

Bounded truth-table reductions (and many-one reductions) are treated in

Section 3. Sections 2 and 3 may be read independently of each other. Sec-

tion 4 uses the de�nitions of Section 3 to give simple proofs of results on

conjunctive and disjunctive reductions. A comprehensive discussion of early

work on how reductions to sparse sets collapse the polynomial-time hierar-

chy may be found in [Ma-89]. Additional discussions of this topic, as well

as extensive bibliographies, may be found in [JY-90] and in [Yo-90].

2 Polynomial-Time Turing Reductions

2.1 Introduction

In [Lo-82], Long explicitly used the result (KL-1) to prove:

(Lo-1) If SAT �

P

T

S for some sparse set S; then every set in the polynomial-

time hierarchy reduces to the very same sparse set, S:

I.e., ifNP can be solved with only a sparse amount of \free advice," then

that same small amount of advice is su�cient to solve the entire polynomial-

time hierarchy. This result is not only important in its own right, but it has

interesting consequences.

For example:

2

(Lo-2) If SAT �

P

T

S for a sparse set S 2 �

2

; then the polynomial-time

hierarchy collapses to �

2

:

In [Ka-87], Kadin proved a variation of (Lo-2):

(Ka-1) If SAT �

NP

T

S for a sparse set S 2 NP; then the polynomial-time

hierarchy collapses to �

2

:

2

We give a simple proof of Kadin's Theorem in somewhat sharper form:

(Theorem 3) If SAT �

NP

T

S for a sparse set S 2 NP; then the polynomial-

time hierarchy collapses to a subclass of �

2

which we call simple parity, and

which we denote by �

simple

2

:

Simple parity is the class of sets, A; reducible to SAT by a reduction

which nonadaptively produces a polynomial list of questions q

1

?; q

2

?; : : : ;

q

p(jxj)

? to SAT: The answers are guaranteed to be a string of \yes" answers

followed by a string of \no" answers, with x 2 A i� the number of \yes"

answers to \q

i

2 SAT?" is even. Since the queries must be produced be-

fore any of the answers are received, and because the string of answers is

guaranteed to be of the form 11 : : :1100 : : :00 and of polynomial length,

the parity of the string can be checked in polynomial time with logarithmi-

cally many queries to SAT by simply doing a binary search on the questions

\q

i

2 SAT?" without ever producing the complete string of answers. Clearly

�

simple

2

� �

2

:

3

Our intent in this section is to give a simple, uniform, exposition of the

Karp-Lipton, Long, and Kadin results. Thus we intend that this section of

the paper contain simple proofs of all known major results on how general

polynomial-time Turing reductions of SAT to sparse sets force collapses of

the polynomial-time hierarchy.

2

�

2

is the collection of sets reducible to SAT via polynomial-time Turing reductions

which make only a logarithmic number of calls to SAT . We write�

P

log

T

for this reducibility.

3

By [KSW-87], certain parity sets are complete for �

2

: Harry Buhrman has pointed

out (personal communication) that it follows from these results that �

1�simple

2

= �

2

; and

Richard Beigel has pointed out that this equality is explicitly proved in [BH-91]. (Buss

and Hay [BH-91] call what we call simple-parity reductions \polynomial time normalized

reductions" and Wagner, [Wa-88], calls them \truth-table Hausdorf reductions.") Thus,

although we do not give the proof, Kadin's Theorem does imply Theorem 3.

3

2.2 Basic De�nitions.

We assume the reader familiar with the notion of both deterministic and

nondeterministic Turing reductions which operate in polynomial-time. We

denote these reducibilities by �

P

T

and by �

NP

T

, respectively. �

P

log

T

is exactly

like �

P

T

; except that only logarithmically many queries to the oracle are

allowed in the reduction.

De�nition 1 We say that a set A is simple-parity reducible to a set B;

and write A �

P

simple��

B; if, given x; we can in polynomial time produce

polynomially many queries q

1

?; q

2

?; : : : ; q

p(jxj)

?, the answers to q

1

2 B?; q

2

2

B?; : : : ; q

p(jxj)

2 B?, are guaranteed to be monotonically nonincreasing, and

x 2 A if and only if the number of successful queries is even.

4

De�nition 2

� �

0

= �

0

= �

0

= P; (where P is all polynomial-time sets)

� �

i+1

= fA j A �

NP

T

B for some B 2 �

i

g

� �

i+1

= fA j A �

P

T

B for some B 2 �

i

g

� �

i+1

= co��

i+1

= fA j A 2 �

i+1

g

� PH = [

i

�

i

� �

i+1

= fA j A �

P

log

T

B for some B 2 �

i

g

� �

simple

i+1

= fA j A �

P

simple��

B for some B 2 �

i

g

Elementary Facts

1. �

simple

i

, �

i

, and �

i

are all closed under complement

2. PH = [

i

�

i

= [

i

�

i

= [

i

�

i

� PSpace

3. �

simple

i

� �

i

� �

i

� �

i

\�

i

� �

i

� �

simple

i+1

4. �

i

= 989 : : :P; and �

i

= 898 : : :P; (i quanti�ers)

5

5. 99 = 9 and 88 = 8

5

4

Note that �

P

simple��

is not obviously transitive, and so is not obviously a reducibility.

But see [BH-91] and [Wa-88], as discussed in footnote 2. In any case, for our purposes,

we do not need transitivity.

5

In (4) and (5), P is a polynomially-time-decidable predicate and the quanti�ers \9"

and \8" range over all elements whose length is bounded by some polynomial in the

4

De�nition 3 A set S is sparse if there is a nondecreasing polynomial bound

b such that for all n,

jS

n

j =

def

jfx j x 2 S and jxj � ngj � b(n):

I.e., a set is sparse if, of all of the exponentially many elements of length

less than or equal to n, at most a polynomial number are actually in S: In

this sense, sparse sets don't have \very many" elements.

Finally, we takeN to be the universal set, either the set of all nonnegative

integers or the set of all �nite strings over some alphabet, as the reader

pleases.

2.3 Turing Reductions of SAT to Sparse Sets

Theorem 1 [KL-80] If there exists a sparse set S such that SAT �

P

T

S;

then �

2

� �

2

. Thus PH = �

2

\�

2

:

Proof We begin with an arbitrary set A 2 �

2

: Then by our de�nition of

�

2

and by our hypothesis on SAT and S;

A �

NP

T

SAT �

P

T

S:

Let M

SAT!S

be the machine which deterministically decides SAT when

given S as an oracle. Although M

SAT!S

correctly decides SAT given S as

oracle, we will be concerned about the behavior of M

F

SAT!S

when M

SAT!S

is given an oracle F 6= S: Standard techniques show that, without loss of

generality, we can make several assumptions about the behavior ofM

SAT!S

:

length of the instances in P: Thus the characterization of �

1

given by (4) is just the well-

known characterization of NP as sets de�nable from polynomial-time relations by one

polynomially bounded existential quanti�er. The characterization of �

1

(i.e. of co�NP)

then follows directly by complementation. Characterizations (4) and (5) are then proven

simultaneously by induction on i, using essentially the same proof at the i-th level as is

used to prove the base case i = 1:

The collapse of adjacent like quanti�ers described in (5) follows in a standard, and

straightforward, fashion by using polynomial-time computable pairing and projection

functions.

5

� For any oracle F; if M

F

SAT!S

(w) accepts, then w 2 SAT:

6

� There is some monotonically increasing polynomial bound p

1

(n) on the

length of the elements of any F which can be used in oracle appeals

while computing M

F

SAT!S

(w) on inputs w of length � n:

� M

S

p

1

(jwj)

SAT!S

(w) rejects implies that w 62 SAT:

7

Now let M

A!SAT

be the machine which nondeterministically decides A

when given SAT as an oracle. Using standard techniques for dealing with

nondeterministic computations, we can without loss of generality again make

several assumptions about the behavior of M

A!SAT

:

� There is some monotonically increasing polynomial bound p

0

(n) on the

length of the elements of any F which can be used in oracle appeals

while computing M

F

A!SAT

(x) on inputs x of length � n:

� For any oracle F , on any of the nondeterministic computation paths

of M

F

A!SAT

(x); the machine M

A!SAT

makes exactly one query to the

oracle, and that path accepts just if the answer to the query is \no."

8

6

Given the machine M

SAT!S

, we can use M

SAT!S

in a more or less \equiva-

lent" algorithm which partially \checks" its output in the following fashion: Given

a formula B(y

1

; y

2

; : : : ; y

n

), see if M

F

SAT!S

(B(y

1

; y

2

; : : : ; y

n

)) accepts. If it does not,

\reject." If it does, see if M

F

SAT!S

(B(0; y

2

; : : : ; y

n

)) accepts. If it does, see if

M

F

SAT!S

(B(0; 0; : : : ; y

n

)) accepts, but if it does not, see if M

F

SAT!S

(B(1; 0; : : : ; y

n

)) ac-

cepts. If M

F

SAT!S

(B(1; 0; : : : ; y

n

)) does not accept, see if M

F

SAT!S

(B(1; 1; 0 : : : ; y

n

)) ac-

cepts... Proceeding in this fashion, at most n queries to F lead us either to \reject" or

to an assignment of \true" and \false" values to the variables in B(y

1

; y

2

; : : : ; y

n

). We

can then check in polynomial time whether this assignment satis�es the formula B: If it

does, \accept," else \reject". Note that if F provides the same answers as does S, then

this algorithm must be correct, but in any case it cannot lead to acceptance of a formula

B(y

1

; y

2

; : : : ; y

n

) which is not satis�able.

7

Since the computation of M

S

SAT!S

(w) cannot access any elements of the oracle S

of length � p

1

(jwj); obviously M

S

p

1

(jwj)

SAT!S

(w) and M

S

SAT!S

(w) produce the same answers.

(Note that ifM

0

were a machine which decides SAT given some \advice" F which contains

only logarithmically many bits, then the technique we have outlined here would enable us

to actually solve SAT in polynomial time, since in polynomial time we could cycle through

all possible logarithmic advice sets, F; and we could be sure that if any such advice F led

us to accept some formula w; then we would really have w 2 SAT; ([KL-80]).)

8

Since this is a nondeterministic reduction, the machine M

A!SAT

can, along each of

its computation paths, guess its oracle queries and their answers. At the end of the

path, it then needs to verify the correctness of these guesses, which are of the form

\< w

1

; : : : ; w

k

> 2 SAT

k

?" and \< y

1

; : : : ; y

k

0
> 2 SAT

k

0

?", with the path accepting

6

We now letM

A!S

be the obvious composition of machinesM

A!SAT

and

M

SAT!S

, which nondeterministically decides x 2 A by running machine

M

A!SAT

nondeterministically on input x but replacing any oracle call \w 2

SAT?" by a deterministic calculation of M

S

SAT!S

(w), using S as oracle. We

now make some straightforward observations:

1. p

1

(p

0

(jxj)) serves as a polynomial bound on the length of the elements

of S which can be used in oracle appeals while computing M

S

A!S

(x):

2. For any input x; M

S

A!S

(x) and M

S

p

1

(p

0

(jxj))

A!S

(x) produce the same an-

swers. Therefore:

3. If M

S

p

1

(p

0

(jxj))

A!S

(x) accepts, then x 2 A:

9

4. jS

p

1

(p

0

(jxj))

j � b(p

1

(p

0

(jxj))

5. For any set F , M

F

A!S

(x) can produce a wrong answer to \x 2 A?"

only if for some query w, M

F

SAT!S

(w) produces a wrong answer to

\w 2 SAT?" This can occur only if M

F

SAT!S

(w) falsely rejects, and

the only error this can produce is for the computation of M

F

A!SAT

(x)

to falsely accept. Therefore:

6. For any F , if M

F

A!S

(x) rejects then x 62 A:

Putting (3) and (6) together we see that

x 2 A () (8F)

jF j�b(p

1

(p

0

(jxj)) & F�N

p

1

(p

0

(jxj))

[M

F

A!S

(x) accepts]:

But this describes the predicate x 2 A in 89 format. Since A was an

arbitrary set in �

2

, we have thus shown that �

2

� �

2

.

just if both answers are \yes." Because SAT and SAT are reducible to their conjunctive

closure, each of these questions can be regarded as a single query, �rst to SAT , and then to

SAT : But since this is a nondeterministic reduction, the appeal to SAT can be veri�ed by

further nondeterministic extensions of the computation path, carrying the query to SAT

to the end of the extended paths. If the extended path accepts or rejects without appeal

to SAT as oracle, we can always insert some trivial appeal which produces the \right"

answer, (provided the oracle really is SAT). Putting all of this together, we see that we

can assume without loss of generality that the nondeterministic machineM

A!SAT

on each

path of its computation tree makes exactly one oracle query and accepts along that path

if and only if the reply to the query is \no."

9

Observation 6 below shows that a very strong form of the converse of this observation

is also true.

7

Standard quanti�er reduction techniques now yield PH � �

2

\ �

2

:

10

2

We now wish to prove Long's Theorem, which asserts that if SAT �

P

T

S

with S sparse, then every set in the polynomial-time hierarchy is reducible

to S. In doing so, we adopt all of the de�nitions and results from the proof

of the Karp-Lipton Theorem. Obviously, from the Karp-Lipton Theorem, it

su�ces to prove that A 2 �

2

implies A �

P

T

S: One more de�nition is useful:

De�nition 4 We say that BAD(x; F; w) if the computation M

F

A!S

(x) calls

w and w 2 SAT; but when M

F

SAT!S

(w) is called it rejects w:

Note that the only way that M

F

A!S

(x) can fail to give the same answer

as M

S

A!S

(x) is forM

F

SAT!S

(w) to fail to correctly decide SAT and the only

way this can happen is forM

F

SAT!S

(w) to reject some w 2 SAT: I.e. the only

way thatM

F

A!S

(x) fails to correctly decide \x 2 A?" is if (9w)BAD(x; F; w).

Note also that (9w)BAD(x; F; w) is an NP predicate, and so can be decided

in polynomial time by any set which is NP hard.

Lemma 1 There is a polynomial-time procedure FIND(x; F); which, given

S as oracle, decides whether (9w)BAD(x; F; w) and, if such a w exists, �nds

an example of such a w and then returns with the set of all oracle queries

made to F in the execution of M

F

SAT!S

(w):

Proof The predicate R(x; w; F) de�ned by (9w

0

6= �)BAD(x; F; ww

0

) is

in NP; and hence can be decided in polynomial time, given S as oracle.

Furthermore, there is a polynomial bound on the length of any w satisfying

BAD(x; F; w):

Hence, given an oracle S for SAT and given x and F , if (9w)BAD(x; F; w)

we can (using essentially the same technique as outlined in footnote 5), by

starting with w as the empty string, �, in polynomial time iteratively extend

w to a (nonextendable) string w satisfying BAD(x; F; w): Given such a w;

we can then run M

F

SAT!S

(w) to �nd the set of all elements queried in this

computation. 2

Note for future use that if BAD(x; F; w) holds and if F � S then some

elements queried in the computation of M

F

SAT!S

(w) must be in S � F:

10

By complementation of �

2

� �

2

, one obviously gets �

2

� �

2

. From this we see

that if we have an arbitrary set in the polynomial-time hierarchy described (Elementary

Fact 4) by more than two alternating quanti�ers, the inner-most two quanti�ers can

be interchanged. This produces two adjacent quanti�ers of the same type, which by

Elementary Fact 5 can be collapsed, producing a predicate with one fewer quanti�er.

Continuing in this fashion eventually reduces the total number of alternating quanti�ers

to two, which as we've just seen can be written in either order.

8

Theorem 2 [Lo-82] Suppose that SAT �

P

T

S with S sparse. Then every

set A in the polynomial-time hierarchy is �

P

T

reducible to S:

Proof Our objective is, given any input x to M

A!S

(x), to systematically,

in polynomial time, build up a subset F � S

p

1

(p

0

(jxj))

such that the com-

putations of M

F

A!S

(x) and of M

S

p

1

(p

0

(jxj))

A!S

(x) are the same. But as we have

just seen at the end of the last proof, this is guaranteed for F if there is

no w such that BAD(x; F; w). Consider now the following algorithm, which

assumes S as oracle:

Begin by initializing F to be the empty set.

While (9w)BAD(x; F; w)

F := F [[FIND(F; x)\ S]:

Obviously, F � S

p(jxj)

is an invariant of the loop, so that F remains poly-

nomially bounded in size. But we have already seen that (9w)BAD(x; F; w)

implies that FIND(x; F) must produce some query in S � F: Consequently,

after a polynomial number of steps, the algorithm must stop with some

F � S

p(jxj)

for which there is no query w for which BAD(x; F; w):

But this means that for this F we have that x 2 A if and only ifM

F

A!S

(x)

accepts. Since

f< x

0

; F

0

> j M

F

0

A!S

(x

0

) acceptsg

is an NP set, S; (which is an oracle for SAT) can decide whether M

F

A!S

(x)

accepts. 2

Corollary 1 [Implicit in Lo-82] If there is a sparse set S in �

2

with

SAT �

P

T

S; then PH � �

2

:

Proof. By Long's theorem, every set A 2 PH is �

P

T

to the �xed set S 2 �

2

:

Since �

2

is closed under �

P

T

; the corollary is immediate. 2

Corollary 2 [Ma-82] If there is a sparse set in NP with SAT �

P

T

S; then

PH � �

2

:

Proof NP � �

2

: 2

9

A key feature of the proof of Long's Theorem is that, while most of the

predicates are in NP; S is not, and so we still need to use S as oracle to

test F � S: However if S itself is in NP; then the construction simpli�es,

and F need not even be explicitly found, giving us Kadin's improvement of

Mahaney's Theorem:

Theorem 3 [Ka-87] If there is a sparse set S in NP with SAT �

NP

T

S;

then PH � �

simple

2

� 	

2

:

Proof As we shall later see, given any set A in �

2

; our assumptions on SAT

guarantee that there is a nondeterministic machine M

A!S

which, given S

as oracle, nondeterministically accepts A: De�ne

SMALL(x;m) =

def

(9F)[F � S

p(jxj)

& jF j � m]; and de�ne

ACCEPT (x;m) =

def

[SMALL(x;m+ 1) _

(9F)[F � S

p(jxj)

& jF j = m & M

F

A!S

(x) accepts]:

Since S is sparse and in NP , the predicates SMALL and ACCEPT are also in

NP; and therefore by Cook's Theorem there are polynomially computable

functions g

0

and g

1

such that

ACCEPT (x;m) () g

0

(x;m) 2 SAT; and

SMALL(x;m) () g

1

(x;m) 2 SAT:

Now notice that if m

census

= jS

p(jxj)

j; then

� SMALL(x;m) () m � m

census

:

� The only way to satisfy ACCEPT (x;m

census

) is by taking F = S

p(jxj)

and having M

F

A!S

(x) accept.

Thus the answers to g

0

(x; 0) 2 SAT?; g

1

(x; 0) 2 SAT?; g

0

(x; 1) 2 SAT?;

g

1

(x; 1) 2 SAT?; : : : ; g

0

(x; b(p(jxj)) 2 SAT?; g

1

(x; b(p(jxj))) 2 SAT?; form a

monotonically nondecreasing sequence, and we have that x 2 A if and only

if the number of \yes" answers is even. Thus A 2 �

simple

2

; so

�

2

� �

simple

2

� 	

2

� �

2

:

By Theorem 1, it thus follows that PH � �

simple

2

� 	

2

:

11

11

Of course, from footnote 2, we know that �

simple

2

= 	

2

:

10

To complete the proof, we must merely verify that given any set A in

�

2

; there is a nondeterministic machine M

A!S

which, given S as oracle,

nondeterministically accepts A:

Since A 2 �

2

; there is a nondeterministic Turing machine, M

A!SAT

which, given SAT as oracle accepts A: By our hypothesis, there is also a

nondeterministic machine M

SAT
!S

which, given S as oracle, accepts SAT .

If we replace all oracle calls of M

A!SAT

asking whether some w 2 SAT; by,

concurrent nondeterministic calls to SAT with no oracle, and to M

SAT
!S

with S as oracle, then some nondeterministic path of one of these concurrent

calls must successfully tell us whether w 2 SAT; enabling us to proceed

with the nondeterministic calculation of M

A!SAT

: Clearly, this gives us a

nondeterministic calculation accepting A; given S as oracle. 2

There is a pleasing symmetry to Long's Corollary: the collapse of PH to

�

2

can be accomplished by requiring only that the sparse set S be in �

2

:

On the other hand, for Theorem 3 to get a collapse to �

simple

2

, we required

that the sparse set be all the way down in NP: It is therefore tempting to

conjecture that there should be some reasonable class C someplace between

NP and �

2

such that PH collapses to C provided the sparse set is in C.

To get this result it would su�ce to have NP � C; C contains a set which

is �

P

m

-complete for C; and \x 2 S?" in C implies that \F

x

� S?" is in C;

where F

x

ranges over all sets which are polynomial in jxj: All of the classes

�

i

; �

i

; and �

i

; satisfy these conditions, but the class �

simple

2

(�

2

) seems not

to, and we know of no interesting class between NP and �

2

which satis�es

the last of these conditions.

11

3 Bounded Truth-Table Reductions

De�nition 5

� A set A is k-bounded truth-table reducible to a set B (A �

P

k�tt

B) if,

given x, in polynomial time we can compute a truth-table T

x

(z

1

; : : : ; z

k

)

of k boolean variables, and a list < x

1

; : : : ; x

k

> and then know that

x 2 A () T

x

(C

B

(x

1

); : : : ; C

B

(x

k

)):

12

� The truth-table reduction is said to be via a �xed truth-table if the

truth-table T

x

is independent of x. I.e., the same truth-table is used

for all queries < x

1

; : : : ; x

k

> :

13

� A set A is bounded truth-table reducible to a set B (A �

P

btt

B) if

A �

P

k�tt

B for some k:

14

Despite considerable research on restricted polynomial-time truth-table

reductions ([Uk-83], [Ya-83], [Ye-83], [BK-87], [Wa-87], [Ko-88], [TB-88],

[Wa-88]), prior to the recent Ogiwara-Watanabe results [OW-91], only very

limited results have been obtained concerning the implications of restricted

truth-table reductions of sets in NP and coNP to sparse sets. The following

theorem summarizes most earlier (pre 1992) known results on such collapses

within the polynomial-time hierarchy.

Theorem 4 Restricted truth-table reductions to sparse sets.

15

12

C

B

is the characterisitic function of the set B:

13

SAT �

P

m

S i� SAT �

P

1�tt

S via a �xed positive one-truth-table reduction. SAT �

P

m

S

i� SAT

P

1�tt

S via a �xed negative one-truth-table reduction.

14

Bounded truth-table reductions are the basic reductions used to de�ne Boolean hi-

erarchies, which have recently been investigated by surprisingly large groups of authors,

([CGHHSWW-88], [CGHHSWW-89], [BBJSY-89],

15

Conjunctive truth-tables, (�

P

conj

), are truth-tables which are given by a simple con-

junction of the variables (with no negations). Similarly, disjunctive truth-tables use only

disjuncts of the variables. Conjunctive and disjunctive truth-tables are each special cases

of positive, (�

P

pos�tt

), truth-tables, which are monotonic in the sense that the output

of the truth-table can never be changed from \true" to \false" by changing one of the

variable's answers from \false" to \true." Positive bounded truth-tables, (�

P

pos�btt

), are

simply positive truth-tables which are bounded. Thus, if Yesha's results held for �

P

btt

instead of just for �

P

pos�btt

; they would strictly imply the results of Ukkonen and Yap.

12

� Fortune-79

If coSAT �

P

m

-reducible to a sparse set, then P = NP:

� Mahaney-82

If SAT �

P

m

-reducible to a sparse set, then P = NP:

� Yesha-83

If coSAT �

P

pos�btt

-reducible to a sparse set, then P = NP:

� Yesha-83

If SAT �

P

pos�btt

-reducible to a sparse set in NP then P = NP:

� Watanabe-89

If every set in D

P

is �

P

1�tt

-reducible to a sparse set, then P = NP:

� Ukkonen-Yap-83

If coSAT �

P

conj

-reducible to a sparse set, then P = NP:

� Yap-83

If SAT �

P

conj

-reducible and �

P

disj

-reducible to a sparse set in NP;

then P = NP:

It is interesting to note that Watanabe's result is the only result in the

above group to allow nonpositive reductions. Nevertheless, his proof is still

a fairly direct adaptation of Fortune's tree pruning argument.

In [OW-91], Ogiwara and Watanabe proved a result which superceded

all of the above results on how many-one and bounded truth-table reductions

of SAT to sparse sets force collapses of the polynomial-time hierarchy. They

proved that if SAT �

btt

S for some sparse set S, then P = NP:

It is our intent to give a simple proof of the Ogiwara-Watanabe Theorem.

16

After we give this proof, in Section 4 of this paper we shall explain how an

even simpler version of this method can be adapted to also prove both the

A one-truth-table, (�

P

1�tt

), or more generally a k-truth-table, (�

P

k�tt

), is one in which a

maximum of k questions can be asked. Thus, �

P

m

is just the general form of a positive

�

P

1�tt

-reduction. As introduced by Papadimitriou and Yannakakis, D

P

is the class of sets

which can be described as the intersection of a set in NP and a set in coNP: Thus, it sits

just above NP and coNP in the Boolean hierarchy over NP:

16

In [HL-91], Homer and Longpr�e give a proof which is simpler than the original proof

in [OW-91]. While our proof seems even simpler than the Homer-Longpr�e proof, both the

Homer-Longpr�e and the Ogiwara-Watanabe algorithms yield sharper time bounds than

the algorithm we give.

13

Ukkonen-Yap and the Yap results on unbounded truth-tables, and in fact

give a stronger version of the Yap-83 result.

The proofs we give are best visualized as breadth-�rst prunings of self-

reduction trees for SAT; and we begin with the necessary elementary de�-

nitions of these concepts.

De�nition 6 Let B(z

1

; : : : ; z

k

) be a a boolean formula, with k boolean vari-

ables z

1

; : : : ; z

k

: The daughters of B(z

1

; : : : ; z

k

) are de�ned to be the two

formulas B(0; z

2

; : : : ; z

k

) and B(1; z

2

; : : : ; z

k

): B(0; z

2

; : : : ; z

k

) lies to the left

of B(1; z

2

; : : : ; z

k

): Note that any formula with at least one free variable is

satis�able if and only if at least one of its daughters is satis�able.

The self-reduction tree for the formula B(z

1

; : : : ; z

k

); begins with the for-

mula B(z

1

; : : : ; z

k

) at the root, and successively adds daughters until no for-

mulas with free variables remain. The leaves of the tree thus have no free

variables, and the instantiation of the variables along the leaves give all pos-

sible assignments which might satisfy the root, B(z

1

; : : : ; z

k

):

If node n has daughters n

0

and n

1

with n

0

to the left of n

1

; then all

descendants of n

0

are said to be to the left of all descendants of n

1

: If we

have two nodes, n and n

0

at the same level of the tree, we write n � n

0

if n

lies to the left of n

0

:

Our goal in the proofs which follow will always be to do a breadth-�rst

search of the self-reduction tree for a boolean formula B(z

1

; : : : ; z

k

); but to

prune the tree as we go along so that every level of the tree has at most

polynomially many elements. Note that in the full, unpruned tree there is

a doubling of nodes as we proceed from one level of the tree to the next.

As we proceed down the tree pruning each level, once a given level, l, is

pruned, then for all remaining nodes we next add all daughter nodes to the

tree, doubling the nodes at the next level, l

0

; of the tree before pruning them

back to our polynomial bound. As we do this, we may well read and process

the entire (doubled) set of nodes in level l

0

before cutting level l

0

back to

our original polynomial bound. This enables the entire process to remain

polynomial.

14

De�nition 7 A tree-pruning algorithm for the self-reduction tree of a boolean

formula B(z

1

; : : : ; z

k

) is satisfactory if, at any step at which a node n

0

is

eliminated, there is a node n at the same level and to the left of n

0

for which

we know that:

� node n is not yet eliminated, and

� if B(z

1

; : : : ; z

k

) has a satisfying assignment, then the left-most satis-

fying assignment lies on or to the left of n

0

if and only if it lies on or

to the left of node n:

Clearly, if we use a satisfactory tree pruning algorithm to prune the

self-reduction tree for a Boolean formula, then the formula has a satisfying

assignment just if there is a satisfying assignment in one of the leaves re-

maining in the pruned tree. If the resulting tree has polynomial size, then

all leaves can be checked in polynomial time to see if a satisfying assignment

exists.

We obtain satisfactory self-reduction trees for SAT by considering the

following variation of SAT :

De�nition 8 L(SAT) = fn j n is a node in a self-reduction tree for

some formula B(z

1

; : : : ; z

k

) and a path to some satisfying assignment passes

through or to the left of node ng:

Obviously L(SAT) is in NP so that SAT �

k�tt

S implies that

L(SAT) �

m

SAT �

k�tt

S

so

L(SAT) �

k�tt

S:

It is this reduction which will be used to obtain satisfactory prunings of

the self-reduction tree for SAT: L(SAT) is a simple concept, but its in-

troduction in [OW 90] provided a key new tool for studying self-reduction

trees and reducibilities. (Note also for Section 4 that SAT �

conj

A implies

L(SAT) �

conj

A and that SAT �

disj

A implies L(SAT) �

disj

A:)

Our proof of the Ogiwara-Watanabe Theorem will be by induction on the

number of variables of the truth-table, so we begin with the special case of

one-truth-tables. The following points are worth noting for one-truth-tables:

15

� The proof seems much easier than any of the standard proofs of Ma-

haney's result that SAT �

P

m

-reducible to a sparse set implies P = NP:

� The proof is a uniform, simultaneous proof of both the Mahaney and

the Fortune Theorems.

Proposition 1 If SAT �

1�tt

S for some sparse set S via a �xed one-truth-

table, then there is a satisfactory tree pruning algorithm which prunes the

self-reducibility trees for SAT and solves SAT in polynomial time. Further-

more:

� The algorithm is independent of the particular one-truth-table which

accomplishes the reduction of SAT to S:

� The algorithm prunes each level of the self-reducibility tree for a for-

mula w to have at most 2q(jwj) + 1 nodes, where q(jwj) bounds the

maximum number of elements of S that can be queried using truth-

tables of size jwj:

� The time required for the algorithm is O(P (jwj) � jwj � (2q(jwj) + 1));

where P (jwj) bounds the time required to compute the truth-table reduc-

tions on inputs of length jwj and q(jwj) bounds the maximum number

of elements of S that can be queried using truth-tables of size jwj:

Proof For an input formula of length m = jwj; we prune the self-reduction

tree for SAT doing a breadth-�rst search, guaranteeing that at each level of

the tree at most 2q(m) + 1 nodes of the tree are retained.

Since we are assuming a one-truth-table reduction, at any node, n of the

tree we calculate a value T (n) which indicates some query \y 2 S?" in our

reduction of L(SAT) to S. As we do the breadth-�rst search from left-to-

right, we label each node we reach with this value, T (n). If two nodes, n

and n

0

with n � n

0

have the same label, the associated truth-tables must

either both evaluate to \true" or must both evaluate to \false". In either

case, we can clearly eliminate all nodes between n and n

0

, and also eliminate

the right most node, n

0

, since the left most satisfying assignment (if any) is

at or to the left of node n if and only if the left-most satisfying assignment

is at or to the left of node n

0

. If at any point in this left to right breadth-

�rst search for a level of the self-reduction tree we reach a node n

1

which

gives us an accumulation of q(m) + 1 distinct labels, we stop the left-to-

right breadth-�rst search of this level. Clearly at least one of the remaining

16

labeled nodes, say node n

0

; with n

0

� n

1

, belongs to S, although we may

not know which one, and in this case further pruning is necessary. (If the

process does not terminate before we traverse this level of the tree, then we

have pruned this level of the tree to at most q(m)+ 1 nodes, and no further

pruning is necessary.)

If the left-to right breadth-�rst search terminates because we accumulate

q(m) + 1 nodes, then we begin a right-to-left traversal of the tree at this

level, labeling and eliminating nodes just as in the left-to-right traversal of

the level. Again we stop if we reach a node n

2

which gives us an accumulation

of q(m) + 1 distinct labels in this right-to-left traversal of the level, or if we

reach node n

1

: If we reach node n

1

; we will have accumulated in both our

left-to-right and in our right-to-left searches at most 2q(m) + 1 nodes, and

no further pruning is necessary. If we stop before reaching node n

1

, we will

have again found q(m)+1 distinct labels in this right-to-left traversal of the

level. And again, clearly one of the nodes, n

3

; with n

2

� n

3

; which we've

labeled belongs to S, although we cannot know which one. In this case we

eliminate the nodes between n

1

and n

2

: The justi�cation for doing this is as

follows:

Since n

0

and n

3

both belong to S; the left most satisfying assignment

(if any) lies to the left of n

0

if and only if it lies to the left of n

3

. Thus,

we can clearly safely eliminate all nodes between n

0

and n

3

, including node

n

3

: Unfortunately, we do not know which of the labeled nodes are n

0

and

n

3

: But we do know that n

0

� n

1

� n

2

� n

3

: Furthermore, both n

1

and n

2

are known since the left-to-right search stopped at n

1

and the right-to-left

search stopped at n

2

: Thus we can safely eliminate all nodes between n

1

and

n

2

, including n

2

:

This procedure for eliminating nodes gives a self-reduction tree which has

at most 2q(m) + 1 nodes at each level. Furthermore, the invariant for node

elimination is that a node n

0

is eliminated only if there is an identi�ed node n

to the left of n

0

which has the property that a left most satisfying assignment

lies to the left of n

0

if and only if a left most satisfying assignment lies to

the left of node n: Therefore the procedure cannot eliminate the left-most

satisfying assignment.

Since the pruned self-reduction tree has at most m levels, it has at most

m � (2q(m) + 1) nodes, so we can build the pruned tree and test whether

any of the 2q(m)+1 leaves is a satisfying assignment of the original formula

in time which is approximately P (m) �m � (2q(m) + 1); where P (m) is the

time required to compute the truth-table tests on formulas of length m.

17

Obviously, the above algorithm is independent of the particular one-

truth-table used to reduce SAT to S. 2

To prove the full Ogiwara-Watanabe Theorem, we assume inductively

that we have an algorithm which, given any �xed truth-table of k variables

successfully prunes the self-reduction tree for SAT: Then, given a �xed truth-

table of k + 1 variables, we will prune the self-reduction tree for SAT by

successively trying all possible prunings obtained by �xing each of the k+1

variables to obtain at least k + 1 di�erent k-truth-tables, In doing this, we

use �rst left-to-right and then right-to-left prunings of each level of the self-

reduction tree. This process works essentially the way the left-to-right and

right-to-left pruning does for the pruning given above for one-truth-tables.

In the case of one-truth-tables, when the number of distinct labels got out

of hand, we knew that we were making some query to a node (n

0

or n

3

)

in S. In the case of k + 1-truth-tables, when the number of distinct labels

gets out of hand, we need to know that we were making some query to a

node (n

0

or n

3

) in S

k+1

: The following de�nitions and lemma set up the

necessary simple combinatorial machinery. Throughout, we now let S

q

� N

be a �nite set, with jS

q

j � q: Intuitively S

q

will be the set of elements of S

which can be queried using our presumed truth-table reduction of SAT to

S starting with elements of SAT of length m.

De�nition 9

B(k) = k! � (2q + 1)

k

(For later use, note that B(0) = 1; B(1) = 2q + 1; and that for n � 2, B(k)

is always even.)

De�nition 10 Let Y � N

k

; and let y = < y

1

; : : : ; y

i�1

; y

i

; y

i+1

; : : : ; y

k

> 2

Y:

� y is safe if (9i)[y

i

2 S

q

]:

� Y is safe if (8y)[y 2 Y) y is safe]:

� Y

fy

i

g

=

def

f< z

1

; : : : ; z

i

1

; z

i+1

; : : : ; z

k

> j

< z

1

; : : : ; z

i

1

; y

i

; z

i+1

; : : : ; z

k

> 2 Y g:

I.e., Y is safe if all members of Y have some element which has some com-

ponent in S

q

: For each individual coordinate point y

i

; Y

fy

i

g

may be viewed

as the k � 1 dimensional projection of Y from y

i

:

18

Lemma 2 For k � 1, if

� Y � N

k

� jY j �

B(k)

2

� (8y 2 Y)(81 � i � k)[jY

fy

i

g

j � B(k � 1)]

then Y is not safe.

Proof The third hypothesis of the lemma quarantees that for each coordi-

nate i (1 � i � k), there are at most q � B(k � 1) elements which can be

safe because the i

th

coordinate projects into S: Therefore there are at most

k � q �B(k � 1) = k � q � (k � 1)! � (2q + 1)

k�1

< k! � (

2q + 1

2

) � (2q + 1)

k�1

=

k! � (2q + 1)

k

2

=

B(k)

2

safe elements. Therefore any subset ofN

k

which satis�es the third condition

of the hypothesis and has at least

B(k)

2

members must have at least one

element which is not safe, i.e. which is also a member of S

k

. 2

Theorem 5 [OW-91] Suppose SAT �

k�tt

S with S sparse. Then P = NP:

We will prove this theorem by �rst proving a result which gives a suc-

cessful breadth-�rst tree pruning algorithm in the event that the truth-table

is a �xed k-truth-table. This is adequate, because for a general k-truth-

table reduction, on any input the algorithm calls at most one of 2

2

k

�xed

truth-tables, so if we label each node in the breadth-�rst search of the self-

reduction tree by the truth-table called, we will only have a �nite number

of such labels, and if we can prune each of these 2

2

k

independent sets of

labeled nodes down to polynomial size, we will have a breadth-�rst search

tree with only polynomial width at each level. Obviously, the running time

will be \only" increased by at most the rather large constant factor, 2

2

k

:

Thus to prove the result, it su�ces to prove the weaker result:

19

Theorem 6 Suppose SAT �

k�tt

S with S sparse, via a �xed k � truth �

table: Then there is a tree pruning algorithm which uses L(SAT) to prune

the self-reducibility tree for SAT and solves SAT in polynomial-time. Fur-

thermore,

� The algorithm is independent of the particular k-truth-table which ac-

complishes the reduction of SAT to S:

� The tree pruning algorithm successfully prunes the self-reduction tree

for SAT so that each level of the tree has at most B(k) nodes.

� The time required for the algorithm is polynomial in m; the size of

input formulas to the algorithm.

Proof We have already observed that B(1) = 2q+ 1; and B(0) = 1; where

q is polynomial in m; so Lemma 1 gives us the basis for an inductive proof

of the correctness of the theorem. So we assume now that we have proven

the result for truth-tables of size k; and give a tree-pruning algorithm for

truth-tables with k + 1 variables.

Our strategy is as follows. We will prune any given level of the tree

from left-to-right, and then from right-to-left, much as we did for the case

of 1-truth-tables. Suppose in this pruning we are at a node, n and we

calculate the value T (n) = < y

1

; y

2

; : : : ; y

i

; : : : ; y

k+1

> : If this same k + 1-

truth-table has occurred earlier, obviously, just as was the case for 1-truth-

tables, we may eliminate both this node and all intervening nodes. But in

addition, for any �xed i; if we hold y

i

�xed, while we do not know whether

y

i

2 S; we nevertheless know that if n and n

0

are two distinct nodes with

T (n) = < y

1

; y

2

; : : : ; y

i

; : : : ; y

k+1

> and T (n

0

) = < y

0

1

; y

0

2

; : : : ; y

0

i

; : : : ; y

0

k+1

>

for which it happens that y

i

= y

0

i

; then we can regard the reductions given

by T (n) and T (n

0

) as reductions given, not by a k + 1-truth-table, but

as reductions given by the same (but unknown) k-truth-table, obtained by

�xing the i

th

variable at the truth value given by the unknown answer to

the question \y

i

2 S?".

For each �xed position i; all of the nodes which agree when the i

th

variable is �xed can (by our induction hypothesis) be pruned so that at

most B(k) nodes remain. We do this, systematically moving left-to-right in

a breadth-�rst search of a level of our self-reduction tree for SAT:Whenever

we pick up new values y

i

located in positions i where y

i

has not occured

in position i to the left, we use generic k-truth-table pruning across the

20

entire level of the tree for this new position and value. If we do this for

every new variable position and node n visited in the left-to-right search,

then we will have guaranteed that in the entire set Y of distinct node labels,

T (n) = < y

1

; y

2

; : : : ; y

i

; : : : ; y

k+1

>; remaining after all of these prunings,

we will have satis�ed the condition

(8y 2 Y)(81 � i � k + 1)[jY

fy

i

g

j � B(k)]:

17

For each y

i

visited this will hold across the entire level of the tree, and there-

fore will certainly hold across all nodes to the left of our current position.

But by our basic combinatorial lemma, this guarantees that if the set Y

of distinct labels remaining at, and to the left of, our current position ever

gets at least B(k + 1)=2 distinct members, then at least one of these labels

to the left of our current position is not safe. I.e., all k + 1 of its elements

queried are really in S: I.e., at some unknown place to the left of our current

position in the left-to-right search of this level of the self-reduction tree for

SAT we must have been evaluating the truth-table T (f; f; : : : ; f):

This situation is now exactly as for the proof in the case for a 1-truth-

table: If the left-to-right pruning accumulates at least B(k + 1)=2 dis-

tinct members, then we stop the left-to-right pruning, and instead be-

gin a right-to-left pruning, both collapsing between nodes with identical

truth-table labels and trying at all nodes all possible k-truth-table prun-

ings, obtained by �xing any i (one of the k + 1 variable positions) and

identi�ying any two nodes, n and n

0

as using the same k-truth-table if

T (n) = < y

1

; y

2

; : : : ; y

i

; : : : ; y

k+1

> and T (n

0

) = < y

0

1

; y

0

2

; : : : ; y

0

i

; : : : ; y

0

k+1

>

with y

i

= y

0

i

:

Again, if the number of distinct nodes remaining during this right-to-left

pruning ever reaches at least B(k + 1)=2 distinct members, then we can be

sure that we have encountered some node for which the truth-table reduces

to T (f; f; : : : ; f): In this case, just as in the case for 1-truth-tables, all nodes

between those reached in the left-to-right search and those reached in the

right-to-left search, can be eliminated, leaving us with just B(k + 1) � 1

nodes.

Because k is �xed and independent of the size of the input, the steps

involved in going recursively from a k+ 1-truth-table to a polynomial num-

17

In simplist terms, what this amounts to is taking the k + 1-truth-table, and at each

level of the tree, taking every instance of every coordinate of the truth-table which appears

in the reduction, regarding those nodes which have this value at this coordinate as being

labeled by the same unknown k-truth-table and inductively pruning these nodes using the

generic k-truth-table pruning algorithm.

21

ber of k-truth-tables cannot turn the process, which is polynomial without

the recursion, into a nonpolynomial process, (although it certainly can enor-

mously blow up the polynomial). More speci�cally, if we let W (k) denote

the maximum time required to process any level of the tree while processing

a k-truth-table, then we see that

W (k+1) � O(2B(k+1)P (m) + (# of distinct k�truth�tables processed)W (k));

where 2B(k + 1) serves as a maximum bound on the width that any level

of the tree ever reaches, and P (m) bounds the di�culty of computing the

various truth-table labels of size k + 1: Since each node visited yields a

maximum of k + 1 new k-truth-tables requiring a recursion, this yields

W (k + 1) � 2B(k + 1)P (m) + 2B(k + 1)(k + 1)W (k)

� 2B(k + 1)(k+ 1)[P (m) + W (k)]

� 2B(k + 1)(k+ 1)[P (m) + [2B(k + 1)(k + 1)[P (m) + W (k � 1)]]]

� : : :

� [2B(k + 1)(k + 1)]

k+1

[P (m) + W (1)]:

We saw in Proposition 1 that W (1) has a polynomial bound, and of course

B(k+1) already contains a rather large polynomial, but since k+1 is �xed,

the time required to process any level of the tree remains bounded by a (very

large) polynomial. The proof is now completed by observing that there are

only linearly many levels to the tree, so that the entire tree can still be

processed in a polynomial number of steps. 2

As mentioned earlier, the algorithms given in [OW-91] and in [HL-91],

have much better polynomial bounds, with the better of the two in [HL-91].

As explained in [HL-91], the smaller bounds are better suited to obtain ex-

tensions of the Ogiwara-Watanabe results to \modestly unbounded" truth-

tables. Furthermore, just as in [HL-91], the techniques used in our proofs

can be applied not just at NP , but at any level of the polynomial-time

hierarchy.

22

4 Conjunctive and Disjunctive Reductions

Closing the gap between what is known for polynomial-time Turing reduc-

tions to sparse sets (Section 2) and what is known for bounded truth-table

reductions (Section 3), is an intriguing open problem. The results of this

section are a small step in this direction.

Using simpler versions of the tree-pruning arguments of Section 3, we

now prove extensions of the Ukkonen and Yap results stated in Theorem 4.

Note that the statement coSAT �

P

conj

-reducible to a sparse set, S; is

equivalent to saying that SAT �

P

disj

S:

Theorem 7 If S is sparse and either

� SAT �

P

disj

S (Ukkonen-Yap-83), or

� SAT �

P

conj

S

18

then P = NP:

Proof Suppose �rst that SAT �

P

disj

S: This implies that L(SAT) �

P

disj

S:

We give a simple pruning using a left to right traversal of the self-reduction

tree for SAT:

Suppose that we are looking at a level of the tree in which an input

generates a disjunctive truth-table of size k; (so k is now polynomial in the

size of the input).

Suppose that we are at some node n of the self-reduction tree for SAT

while doing a left-to-right breadth-�rst pruning of the self-reduction tree for

SAT . Let y

1

; y

2

; : : : y

k

be the elements queried by the truth-table for L(SAT)

for this node, and assume for the moment that all of these elements have also

been queried some place earlier in the left-to-right search (not necessarily

all at the same node). Now if the truth-table evaluates to \true," then one

of the y

i

must be in S; and since this same y

i

occured at some earlier node,

n

0

� n; node n

0

must also have evaluated to \true." Thus there is a satisfying

assignment someplace at, or to the left of node n

0

: In this case, node n can

be safely eliminated. But the other possibility is that node n evaluates to

\false." This means that there is no satisfying assignment either through

node n nor to the left of n; so again node n can be safely eliminated.

18

Added June, 1992: This extension of Yap's 83 result has been obtained independently

in several very recent papers on reductions to sparse sets, ([AHHKLMOSST-92], [RR-92]).

23

In either case, if the the elements queried by the truth-table at node n

are a subset of the elements queried to the left of node n; then node n can

be safely eliminated.

Thus we may assume that as we do the left-to-right search, we accu-

mulate at least one new query y

i

at each node that is retained. But then,

once we have retained k + 1 nodes, one of the nodes we have retained must

have at least one element of S as part of its query, and so it evaluates to

\true." Thus some satisfying assignment lies to the left, or at this node, so

the formula is satis�able.

So in any case, we may prune the tree to have at most a polynomial

number of nodes, enabling us to decide SAT; either because we terminated

knowing that a satisfying assignment exists, or by pruning the entire tree to

polynomial size and then testing all of the leaves of the tree.

In the case that SAT �

P

conj

S; we proceed similarly, but this time we

do a right-to-left search.

Suppose that in this right-to-left search we are at a node n for which

the queries for L(SAT) query only elements y

1

; y

2

; : : : y

k

which have already

been queried in our right-to-left search, and let n

0

be the node remaining

immediately to the right of node n:

If some y

i

is in S then node n evaluates to \false." Since y

i

also occurs

in some node to the right of n; this other node, and hence certainly also

node n

0

; must also evaluate to \false." In this case, there is no satisfying

assignment through node n

0

nor to the left of n

0

; so node n

0

may be safely

eliminated. The other possibility is that for L(SAT) the node n evaluates

to \true." But in this case, there is a satisfying assignment either through,

or to the left of node n; so again node n

0

may be safely eliminated.

In either case, if the elements queried by the truth-table at node n are

a subset of the elements queried to the right of node n; then node n

0

; the

node immediately to the right of node n; can be safely eliminated.

Thus we may assume that as we do the right-to-left search, we accumu-

late at least one new query y

i

at each node that is retained. But then, if

we retain k+1 nodes, one of the nodes we have retained must have at least

one element in S as part of its query, and so it evaluates to \false." Thus

no satisfying assignment lies at this node or to its left, so the right-to-left

search may be safely terminated at this node.

So in any case, we can prune the tree to have at most a polynomial

number of nodes, and this enables us to decide SAT by testing all of its

leaves. 2

24

5 Acknowledgements

I would like to thank Deborah Joseph and Tim Long for teaching me much

of what I know about reductions to sparse sets. Giovanni Faglia exhibited

much patience in listening to false proofs of extensions of Theorem 3. Special

thanks go to Harry Buhrman and Richard Beigel for pointing out the work

in [KSW-87] and [BH-91] equating parity and log reductions and to Tim

Long for especially useful comments on a near �nal draft of this paper.

6 References

[BBJSY-89] Bertoni, A., D. Bruschi, D. Joseph, M. Sitharam, and P. Young,

\Generalized Boolean hierarchies and Boolean hierarchies over RP," �nal

version prior to publication available as Univ Wisc CS Tech Report; short

abstract in Proc 7

th

Symp Foundations Computing Theory, (FCT-1989),

Springer-Verlag, LNCS 380, 35-46.

[BH-91] S. Buss and L. Hay, \On Truth-Table Reducibility to SAT," Infor-

mation and Computation 91 (1991), 86-102.

[CGHHSWW-88] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra,

V. Sewelson, K. Wagner, and G.Wechsung, \The Boolean hierarchy I: struc-

tural properties," SIAM J Comput, 6 (1988), 1232-1252.

[CGHHSWW-89] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra,

V. Sewelson, K. Wagner, and G. Wechsung, \The Boolean hierarchy II:

applications," SIAM J Comput, 7 (1989), 95-111.

[Fo-79] S. Fortune, \A note on sparse complete sets," SIAM J Comput,,

(1979) 431-433.

[JY-90] D. Joseph and P. Young, \Self-reducibility: E�ects of internal struc-

ture on computational complexity," in \Complexity Theory Retrospective,"

edited by A. Selman, Springer Verlag, 1990, 82-107.

[Ka-87] J. Kadin, \P

NP

[logn]

and sparse Turing complete sets for NP," Proc

Structure in Complexity Conference, 2 (1987), 33-40.

[KL-80] R. Karp and R. Lipton, \Some connections between nonuniform

and uniform complexity classes," Proc of the 12

th

ACM STOC, 1980, 302-

309. (Also appears as \Turing machines that take advice," L'Ensignement

Math�ematique 82 (1982), 191-210.)

[KSW-77] J. K�obler, U. Sch�oning, and K. Wagner, \The di�erence and the

truth-table hierarchies for NP," R.A.I.R.O. 21 (1987), 419-435.

25

[HL-91] S. Homer and L. Longpr�e, \On reductions of NP sets to sparse sets,"

Structure in Complexity Conference, 6 (1991), 79-88, JCSS, to appear.

[Lo-82] T. Long, \A note on sparse oracles for NP," JCSS, 24 (1982), 224-

232.

[Ma-82] S. Mahaney, \Sparse complete sets for NP: solution of a conjecture

of Berman and Hartmanis," JCSS, 25 (1982), 130-143.

[Ma-89] S. Mahaney, \The isomorphism conjecture and sparse sets," in

\Computational Complexity Theory," edited by J. Hartmanis in AMS Proc

Symp Applied Math Series, (1989).

[MY-78] M. Machtey and P. Young, \An introduction to the general theory

of algorithms," Elsevier-North Holland, (1978).

[OW-91] M. Ogiwara and O. Watanabe. \On polynomial-time bounded

truth-table reducibility of NP sets to sparse sets," SIAM Journal on Com-

puting, 20(3) (1991), 471-483.

[Uk-83] E. Ukkonen, \Two results on polynomial time truth-table reductions

to sparse sets," SIAM J Comput, 12 (1983), 580-587.

[Wa-87] O. Watanabe, \On intractability of the class up," Mathematical

Systems Theory, 24 (1991), 1-10.

[Wa-88] O. Watanabe, \On polynomial-time one-truth-table reducibility to

sparse sets," JCSS, 44 (1992), 500-516.

[Ya-83] C. Yap, \Some consequences of non-uniform conditions on uniform

classes," Theor Comput Sci 26 (1983), 287-300.

[Ye-83] Y. Yesha, \On certain polynomial time truth-table reductions to

sparse sets," SIAM J Comput, 12 (1983), 411-425.

[Yo-90] P. Young, \Juris Hartmanis: Fundamental contributions to isomor-

phism problems," in \Complexity Theory Retrospective," edited by A. Sel-

man, Springer Verlag, (1990), 28-58.

A Bibliography of Recent Papers, mostly added Summer 1992:

[AHHKLMOSST-92] V. Arvind, et al., \Reductions to sets of low infor-

mation content," in \Complexity Theory," edited by K. Ambos-Spies, S.

Homer, U. Sch�oning, Cambridge University Press (1993), to appear.

[AKM-92] V. Arvind, J. K�obler, M. Mundhenk, \Bounded truth-table and

conjunctive reductions to sparse and tally sets," Technical Report, Univer-

sit�at Ulm Fakult�at f�ur Informatik, 92-01 (April, 1992), 1-22.

26

[Bi-92] Bin Fu, \With quasi-linear queries, EXP is not polynomial time

Turing reducible to sparse sets," Proc Structure in Complexity Theory Con-

ference 8, (1993), to appear.

[BLS-93] H. Buhrman, Luc Longpre, Edith Spaan, \Sparse reduces conjunc-

tively to tally," Proc Structure in Complexity Theory Conference 8 (1993),

to appear.

[RR-92] D. Ranjan and P. Rohatgi, \Randomized reductions to sparse sets,"

Proc Structure in Complexity Theory Conference 7 (1992), 239-42.

[Yo-92a] P. Young, \How Reductions to Sparse Sets Collapse the Polynomial

Time Hierarchy: A Primer. Part I: Polynomial-time Turing Reductions."

SIGACT News, 84 (1992), 107-117.

[Yo-92b] \How Reductions to Sparse Sets Collapse the Polynomial Time Hi-

erarchy: A Primer. Part II: Restricted Polynomial-time Reductions." SIGACT

News, 85 (1992), 83-94.

27

