
�

Adh�ara: Runtime Support for

Dynamic Space-Based Applications on

Distributed Memory MIMD Multiprocessors

Immaneni Ashok and John Zahorjan

Technical Report # 93-04-01

April 1993

(Revised March 1994)

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

To appear in the proceedings of the

Scalable High Performance Computing Conference, May 1994

�

Adh�ara: Runtime Support for Dynamic Space-Based Applications

on Distributed Memory MIMD Multiprocessors

�

Immaneni Ashok and John Zahorjan

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

Abstract

In this paper we describe

�

Adh�ara, a runtime sys-

tem specialized for dynamic space-based applications,

such as particle-in-cell simulations, molecular dynam-

ics problems and adaptive grid simulations.

�

Adh�ara

facilitates the programming of such applications by

supporting spatial data structures (e.g., grids and par-

ticles), and facilitates obtaining good performance by

performing automatic data partitioning and dynamic

load balancing.

We demonstrate the e�ectiveness of

�

Adh�ara by e�-

ciently parallelizing a speci�c plasma physics applica-

tion. The development of the parallel program involved

the addition of very few lines of code beyond those re-

quired to develop a sequential version of the applica-

tion, and executed at 90% e�ciency on 16 nodes of an

Intel Paragon.

1 Introduction

Dynamic space-based applications are simulations

of objects moving through a closed k-dimensional

space subject to mutual forces. There are a wide

variety of such applications, di�ering in the kinds of

objects and forces being simulated. Many important

scienti�c applications in plasma physics, molecular dy-

namics, and applications that use multi-level adaptive

grid methods for solving di�erential equations fall into

the category of dynamic space-based applications.

These applications exhibit strong data locality pat-

terns, but these patterns change during the computa-

tion as objects change position in the simulated space.

�

This material is based uponwork supported by the National

Science Foundation (Grants CCR-9123308 and CCR-9200832),

the Washington Technology Center, and Digital Equipment

Corporation Systems Research Center and External Research

Program. Authors' email addresses: ashok@cs.washington.edu,

zahorjan@cs.washington.edu.

To achieve good performance when run on distributed

memory MIMD multiprocessors, two con
icting goals

must be addressed: the strong spatial locality must

be exploited, and the computational load must be bal-

anced across the processors. These optimizations can

be done statically, by either the programmer or the

compiler, or dynamically, by handwritten application

code or a runtime system. Relying on the programmer

for these functions imposes an unreasonable burden

on her, as it is a hard and time consuming process

to develop the code required. At the same time, a

general purpose compiler cannot be expected to auto-

matically generate code leading to good performance,

since it cannot extract the space-based data depen-

dencies from the program source. Thus, the most ap-

propriate approach to providing the needed functions

is through a specialized runtime system that can be

used with any dynamic space-based application.

The runtime system that we propose simpli�es the

process of developing parallel code so that scientists

need to worry only about the \physics" of the appli-

cation, and not the details of parallelizing their pro-

grams.

�

Adh�ara achieves this objective by providing

mechanisms for expressing space-based data objects,

such as grids and particles, and operating with them.

The programs developed using

�

Adh�ara are portable

across di�erent types of MIMD architectures, since the

programming model does not assume any speci�c ar-

chitecture, and since all optimizations are performed

by the runtime system.

�

Adh�ara aims to achieve performance as close to a

hand-coded parallel program as possible. This objec-

tive is realized by minimizing the overheads of com-

munication and load imbalance, by exploiting spatial

locality and balancing the load dynamically.

�

Adh�ara

aims to optimize the time spent on load balancing by

initiating load balancing only when needed, and by

using clever schemes for balancing the load.

2 Comparison with Existing Systems

We compare

�

Adh�ara with the relevant existing sys-

tems based on the following features that a program-

ming environment must support for simplifying the

process of developing e�cient parallel code for dy-

namic space-based applications:

1. Mechanisms for expressing and operating with

space-based data objects: Without these mecha-

nisms, the user needs to develop complicated code

for maintaining distributed spatial data struc-

tures. If the system does not support dynamic

space-based data, such as particles, the burden of

determining the granularity of space partitioning

and load balancing falls on the user.

2. Mechanisms for sharing data along partition

boundaries: These mechanisms relieve the user

from managing communication, and increase

portability.

3. Automatic data partitioning: The performance

impact of a partitioning scheme depends not only

on the application characteristics (such as com-

munication patterns and load distribution and

movement), but also on the number of processors

and machine architecture (in particular, the speed

of inter-processor communication). To achieve

high performance and portability, the system

must support automatic data partitioning.

4. Automatic dynamic load balancing: The optimal

frequency of load balancing depends on the over-

heads due to load imbalance and load balancing.

The load balancing cost depends on the algorithm

as well as the machine architecture. Clearly, im-

plementing this feature in each application would

be a signi�cant burden on the application devel-

opers.

�

Adh�ara supports all the above features. Details are

given in the next section.

High-level languages such as Fortran-D [12], Vi-

enna Fortran [9] and HPF [10] provide annotations

for controlling data partitioning. The compiler and

its associated runtime environment take care of the

communication. This type of high-level environment

reduces program development time, but may not of-

fer good performance, since not all characteristics of

the application can be exploited by a general purpose

compiler. There is no convenient way of expressing

dynamic space-based data objects and their spatial

relationships. The user is responsible for deciding on

the partitioning scheme, and when and how to perform

dynamic load balancing.

PARTI [6] is a runtime system that has been de-

veloped primarily to support compilers for languages

such as HPF. PARTI addresses a broader class of

applications that includes unstructured mesh codes.

Support for the class of space-based applications is

limited to irregularly coupled regular mesh computa-

tions [1]. There is no convenient way of expressing

computations that involve dynamically moving parti-

cles, such as plasma physics, molecular dynamics and

N-body simulations.

The only other specialized runtime system for

space-based applications that we are aware of is LPAR

[5] (which is based on genMP [4]). LPAR provides

mechanisms for expressing sharing of data along parti-

tion boundaries. However, dynamic space-based data

objects, such as particles, cannot be conveniently ex-

pressed in LPAR. The user needs to keep track of

the data relationships by partially sorting the parti-

cles into slots. Partition granularity depends on the

size of the slot, and must be determined by the user.

The user is also responsible for deciding on the parti-

tioning scheme, and how and when to load balance.

3 Design of

�

Adh�ara

�

Adh�ara is implemented as a C-library. It assumes

simple message passing support, and does not re-

quire any speci�c processor interconnection topology

for correctness.

�

Adh�ara presents a non-shared mem-

ory, data-parallel (SPMD) programming model to the

user.

To make program development easier,

�

Adh�ara pro-

vides high-level executable statements that are spe-

cialized for dynamic space-based applications, using

only concepts that are natural to this class of scienti�c

applications. A pre-processor converts these special-

ized statements into a set of C-statements that make

calls to the runtime library.

�

Adh�ara partitions the data using a computation

space (the closed physical space that is modelled by the

application) as the basis. To exploit spatial locality,

�

Adh�ara partitions the data using domain decomposi-

tion [15], where the computation space is partitioned

into contiguous regions and each region is assigned

to a processor. Each region is a rectangular block

and forms the basis for exploiting data locality and

for balancing the load. Load balance is maintained

by balancing the load across the regions. Each node

owns all the data objects that map into its region, and

is responsible for maintaining consistent values of the

data that it owns.

2

P P

PP

P

(a) SCATTER PHASE (b) SOLVE PHASE (c) PUSH PHASE

GRID POINT PARTICLE

Figure 1: Data Dependencies in various phases

in one time step of the EMPIC application

(Only two dimensions are used for simplicity of illus-

tration. The grid points refer to the Electric Field,

Magnetic Field or Current Density data, depending

on the context.)

3.1 Example Applications

This section outlines two sample dynamic space-

based applications that are used in the following sec-

tion to explain the design and the programming inter-

face of

�

Adh�ara.

EMPIC

The EMPIC (plasma physics) application simulates

movement of charged particles that interact by exert-

ing electric and magnetic �eld forces on each other

[7, 13, 15]. The force experienced by a particle depends

on the current position and velocity of all the parti-

cles, and this changes continuously with time. The

current implementation uses a particle-mesh method

which discretizes space by a grid, and time by up-

dating the position and velocity of the particles only

at the boundaries of small time intervals. Time is

simulated in a series of steps. Each step consists of

three phases. In the scatter phase, current-density is

assigned to the grid points using the position and ve-

locity of all the particles (Figure 1(a)). In the solve

phase, new values of electric and magnetic �elds are

computed at each grid point, using the old �eld values

and the current density assigned in the scatter phase

(Figure 1(b)). In the push phase, using the �eld values

at the grid points, the force on each particle is com-

puted, and the position and velocity of all the particles

are updated (Figure 1(c)).

CGV

CGV is a chemistry application that simulates Crys-

tal Growth from Vapor, which can be used to study

the formation of crystals of metals such as platinum

and copper [2]. Atoms are dropped, one by one, onto

the existing crystal. When a new atom collides with

the stable crystal, the existing atoms are disturbed,

settling down after a while. For each new atom, the

system is simulated for several time steps, until the

crystal comes back to a stable state. Each time step

has two phases: In the potential phase, potential

i;j

and electronDensity

i;j

are computed for each atom

pair (i; j) such that distance between i and j is less

than some cut-o� distance. In the push phase, using

the values computed in the previous phase, the force

on each atom is computed, and the position and ve-

locity of all the particles are updated.

3.2 Spatial Data Structures

�

Adh�ara distinguishes between two types of data

structures: particle and regular-grid. (Support for

adaptive multi-level grids is under development.) The

data objects of a particle data structure can lie any-

where in the computation space, and can change their

positions dynamically. A regular-grid is a restricted

form of a particle data structure that is regular and

static. It is perfectly aligned with the computation

space. The mapping of a regular-grid onto the com-

putation space is implicitly speci�ed by giving the di-

mensions of the grid, whereas the mapping of a parti-

cle data structure is explicitly speci�ed by giving the

coordinate of each object of the data structure, and is

allowed to change dynamically.

�

Adh�ara supports the most common access patterns

to operate on the spatial data structures, which is to

iterate over the sets of their objects. A regular-grid is

declared and accessed as follows:

typedef struct f double X, Y, Z; g tType;

R-GRID tType MagneticField (N

x

,N

y

,N

z

);

FORALL (I,J,K) IN MagneticField DO

MagneticField[I,J,K] = function of (

ElectricField[I,J,K],

ElectricField[I,J,K+1], ..)

The user can access the objects in a particle data

structure either one at a time, or in groups of arbi-

trary size, such that all members in each group are

within some �xed distance of each other. (Molecular

dynamics applications, for example, iterate over pairs

of particles that are within a cut-o� distance of each

other.) A particle data structure is declared and ac-

cessed as given below. The coordinates of a particle

are given by the implicit �elds coordX, coordY, coordZ.

PARTICLE-DEF atomType f

int type;

double velocityX, velocityY, velocityZ;

double charge; g

PARTICLE atomType Atoms;

3

copy copy

copy

copy

copy from the top edge of Region 0 copy from the top edge of Region 1

Assigned Region
(local data)

Extended Region
(non-local data)

Region 0 Region 1

Region 2 Region 3

copy from

copy from

of Region 0
the left edge

of Region 2
the left edge

Figure 2: Read Overlap in the Solve Phase of

the EMPIC Application

(The space is partitioned into four regions. The �gure

gives the read overlap for all the regions. Only two

dimensions are used for simplicity of illustration.)

atomType aa;

aa.coordX = 0.25; aa.coordY = 0.5; ...

ADD aa TO Atoms;

FORALL (A

1

,A

2

) IN Atoms CUTOFF R

cut

DO

potential = function of (

A

1

!coordX � A

2

!coordX,

A

1

!coordY � A

2

!coordY)

3.3 Sharing Data along the Partition

Boundaries

A processor can access that portion of the data

which it owns (local data), and some overlapped data

owned by the other nodes (non-local data). The shar-

ing of data along the boundaries of the regions is de-

scribed by specifying how each region must be over-

lapped with the neighboring regions. The user can

specify, for each direction, the overlap distance or cells

(in case of regular-grid), and the boundary condition.

The following statement is used in the solve phase of

the EMPIC application:

READ-BOUNDARY ElectricField OVERLAP(

fX-DIR = (0,1),Y-DIR = (0,1),Z-DIR = (0,1)g,

PERIODIC-BOUNDARY);

In the READ-BOUNDARY statement, \X-DIR =

(a,b)" means that there is an overlap of `a' cells in the

negative X direction and an overlap of `b' cells in the

positive X direction. The statement given above spec-

i�es that the partition of the regular-grid ElectricField

must be overlapped by one cell along the positive X,

Y, and Z directions, and that the data must be read

into the extended region using a periodic boundary

condition (Figure 2).

In the scatter phase of the EMPIC application, for

Region 0

Region 2

Region 1

Region 3

(+) (+)

(+)

Assigned Region
(owned local data)

Owned data at the top
and left edges updated
by the other nodes

Extended Region
(non-local data)

Figure 3: Write Overlap in the Scatter Phase

of the EMPIC Application

(The �gure gives the write overlap for the data as-

signed to Region-3 only. Only two dimensions are used

for simplicity of illustration.)

each particle p, current density is assigned to the grid

points enclosing p. If the particle lies near the bound-

ary of its region, then some of the non-local values of

current density may need to be updated. At the end of

the phase, the updated non-local data must be sent to

its owner. This task is accomplished by the following

statement:

WRITE-BOUNDARY CurrentDensity

OVERLAP(f ALL-DIR=1 g,

PERIODIC-BOUNDARY)

OPERATION(DOUBLE-ADD);

More than one node can update the current density at

the same grid point. The OPERATION speci�es the

commutative-associative operation that must be used

to combine the values of CurrentDensity at the same

grid point that are updated by more than one node.

3.4 Automatic Data Partitioning and Dy-

namic Load Balancing

�

Adh�ara uses heuristics to dynamically choose a

good partitioning scheme from among seven possible

schemes (block, beams in three directions and slices

in three directions { Figure 4) based on the commu-

nication patterns and the distribution and movement

of the load. The computation is divided into phases,

where each phase computes on a particular data struc-

ture called its primary data structure. (It often corre-

sponds to the computation in a do-loop of a sequential

algorithm.) This phase, in concept, is similar to the

phase de�ned in the Phase Abstractions Model [11].

The compute load in a phase is assumed to be pro-

portional to the sum of the computation (measured in

terms of iterations) on the objects in the correspond-

ing primary data structure. This information is used

4

No partitioning
in this dimension

Partitioning only
in this dimension

BLOCK: Three dimensions BEAM: Two dimensions SLICE: One dimension

Figure 4: Methods of Partitioning a 3D Space

into Eight Rectangular Regions

by

�

Adh�ara to balance the load in each phase. Phases

are speci�ed by the user, and they are natural to the

application. For example, the phases in the EMPIC

application can be declared as follows:

PHASE GridPhase f

(ElectricField, PRIMARY,

USAGE READ-WRITE)

(MagneticField, USAGE READ-WRITE)

(CurrentDensity, USAGE READ-ONLY)

g

PHASE PushPhase f

(ChargedParticle, PRIMARY,

USAGE READ-WRITE)

(ElectricField, USAGE READ-ONLY)

(MagneticField, USAGE READ-ONLY)

g

PHASE ScatterPhase f

(ChargedParticle, PRIMARY,

USAGE READ-ONLY)

(CurrentDensity, USAGE WRITE-ONLY)

g

In the GridPhase, ElectricField is the primary data

structure, so the computation is proportional to the

number of grid points. The data structures Magnet-

icField and CurrentDensity are also accessed in the

GridPhase. The USAGE speci�es how the data is used

in this computation. The information about the us-

age is used by

�

Adh�ara to determine whether to redis-

tribute the data or not, when the execution proceeds

from one phase to another. The computation is per-

formed by executing a procedure within a phase:

void SolveRoutine() f g

void PushRoutine() f g

void ScatterRoutine() f g

main() f

for T time-steps do:

EXECUTE SolveRoutine IN GridPhase;

EXECUTE PushRoutine IN PushPhase;

EXECUTE ScatterRoutine IN ScatterPhase;

g

In the GridPhase, the space is partitioned into equal

sized regions, since the computation is proportional to

the number of elements in ElectricField, a regular-grid.

In the PushPhase, the computation is proportional to

the number of particles, which are nonuniformly dis-

tributed in space, so the space is partitioned in such

a way that each region contains approximately equal

number of particles. Since the distribution of particles

in space changes dynamically, the space partitioning

in PushPhase must also change dynamically. In the

above fragment of the program, in between the com-

putation of SolveRoutine and PushRoutine, the data

elements of ElectricField and MagneticField are au-

tomatically redistributed, if the space partitioning in

PushPhase is di�erent from that in GridPhase.

�

Adh�ara uses predictive [3] and monitoring [14]

schemes for determining when to balance the load.

The goal is to minimize the sum of the overheads due

to load imbalance and load balancing.

�

Adh�ara does

not attempt to �nd an optimal partitioning every time

it load balances, but instead uses heuristics to �nd a

reasonably good one. It uses a non-uniform, adap-

tive load balancing grid to discretize the computation

space, and maintains the load in each cell of this grid.

Each node maintains a portion of this grid and com-

municates the local information with the other nodes

to globally repartition the grid.

�

Adh�ara alters this grid

dynamically depending on the load density and move-

ment, and uses a hierarchical scheme [8] for globally

repartioning the grid. This scheme incurs very lit-

tle overhead, and exploits the information about load

movement and distribution. (Traditional orthogonal

recursive bisection schemes do not exploit this infor-

mation.) In this paper we focus only on the runtime

support and the programming interface provided by

�

Adh�ara. The details of the load balancing scheme are

covered in another paper [3].

4 Results

We give the results of parallelizing a speci�c three-

dimensional electromagnetic particle-in-cell (EMPIC)

application using the

�

Adh�ara runtime system. This

application was developed by hand converting a se-

quential Fortran program (written by David Walker,

Oak Ridge National Laboratory) to a sequential C

program, and then to an

�

Adh�ara program.

Convenience of Programming and Portability

Parallelizing a 1500 line sequential 3D EMPIC appli-

cation using

�

Adh�ara required the addition of less than

50 lines of code (to declare spatial data structures,

phases, and overlaps for data sharing), and modi�-

cation of the for-loops to forall-loops (for iterating

5

Table 1: Performance of a three-dimensional

EMPIC application

(A 327680 particle, 65536 grid-point application is

simulated on 16 nodes of Intel Paragon for 500 time-

steps. The numbers given below represent the time as

a percentage of the optimal compute time, which is

2325 seconds.)

Static Load Dynamic Load

Balancing Balancing

Block Beam Block Beam

total measured 221.3 141.6 118.7 111.5

optimal 100.0 100.0 100.0 100.0

data locality 11.0 3.6 3.4 2.6

communication 10.3 8.0 11.5 7.0

load balancing 0.0 0.0 1.6 0.6

load imbalance 100.0 30.0 2.2 1.3

e�ciency 45% 71% 84% 90%

over the set of objects of the spatial data structures).

We estimate that developing an optimized hand-coded

parallel program involves writing at least 5000 lines of

extra code, based on the amount of

�

Adh�ara code ex-

ercised by this program.

Using

�

Adh�ara there is absolutely no necessity

for the programmer to develop any code to handle

data partitioning, communication and load balanc-

ing. Since the details about communication are com-

pletely hidden from the programmer, the code devel-

oped on

�

Adh�ara can be easily ported to di�erent par-

allel (MIMD) architectures. Thus,

�

Adh�ara provides

two advantages: easy porting of an application on to

a new parallel machine, and easy development of a

new application using the same parallelism manage-

ment primitives.

Performance

Table 1 gives the performance of the 3D EMPIC

application developed using the

�

Adh�ara runtime sys-

tem. The application is executed on 16 nodes of an

Intel Paragon. (We are currently porting

�

Adh�ara to

the KSR1.) A 32�64�32 grid is used to discretize the

physical space, and the movement of 327680 particles

is simulated for 500 time steps. The �rst two columns

of Table 1 is for the case where data locality is ex-

ploited but no dynamic load balancing is performed

(the load is balanced statically at the beginning of

the execution). This is representative of the code a

user might reasonably custom develop. The �rst col-

umn shows results for a block partitioning scheme,

and the second column for a beamX scheme where

only Y and Z dimensions are partitioned. The last

two columns is for the case where load is balanced dy-

namically while exploiting data locality. The results

show that the performance is sensitive to the partition-

ing scheme.

�

Adh�ara dynamically estimates load move-

ment and density, and uses these estimates to choose

a good scheme (the beamX scheme, in this case).

We compare the results in each case to the optimal

compute time, which is calculated by measuring the

time taken by the true sequential program and divid-

ing by 16. The numbers given in Table 1 represent the

time as a percentage of this optimal time. The total

observed time is the measured execution time of the

application for 500 simulation time steps. The data

locality overhead includes the following: the overhead

of implementing the particle data structure for main-

taining the spatial coordinates of the particles (which

constitutes more than 80% of the data locality over-

head), and the overhead of exchanging particles among

the processors. The communication overhead gives the

time spent on exchanging data for data overlaps and

redistributing data between phases. The load balanc-

ing overhead gives the time spent on the load balanc-

ing protocol. The processor idle time due to the load

imbalance is given by the load imbalance overhead.

The bottom line on execution performance is given

by the measured processor e�ciency. (Processor e�-

ciency is the average fraction of time each processor in

a parallel execution spends performing work inherent

to the computation, rather than overhead. We note

that the e�ciences reported here are computed using

a true sequential implementation of the program as

the basis of comparison.) We see that the implemen-

tation using

�

Adh�ara achieves very high e�ciency, and

that, in contrast, the more di�cult to construct hand-

coded version employing static partitioning performs

much worse.

While it would be possible to build load balancing

by hand into this application, it would require greatly

increased programming e�ort, and when done would

be functionally identical to the easily coded

�

Adh�ara

version. Because the execution overhead of provid-

ing this functionality in a run-time system, rather

than directly in the application, is small, we con-

clude that there is no performance bene�t to hand

coding into each application the parallelism manage-

ment functions that

�

Adh�ara provides. Additionally,

because hand coding requires vastly increased e�ort,

�

Adh�ara is clearly the better choice for the development

of dynamic, space-based applications.

6

5 Conclusions

Dynamic space-based applications, those exhibiting

spatial locality and operating on data objects whose

spatial relationships change dynamically, are an im-

portant class of scienti�c applications. To e�ciently

parallelize them on distributed memory multiproces-

sors, spatial locality must be exploited and compu-

tation load must be balanced across the processors.

In this paper we argued that specialized runtime sys-

tems are required for this purpose. We described the

design and the programming interface of

�

Adh�ara, a

system that is specialized for dynamic space-based ap-

plications. We showed the e�ectiveness of

�

Adh�ara by

e�ciently parallelizing a plasma physics application,

requiring very little additional code compared to a

functionally equivalent sequential program and involv-

ing only a very few, simple concepts to deal with the

parallel execution, thus minimally distracting the pro-

grammer from her primary job of implementing the

physics of the application.

Acknowledgements

We would like to thank Ed Felten for introducing

us to the class of space-based applications, and David

Walker for helpful discussions on the topic of this work

and for providing us the sequential code for the EM-

PIC application.

References

[1] Gagan Agrawal, Alan Sussman and Joel Saltz. Com-

piler and Runtime Support for Structured and Block

Structured Applications. Proceedings of the Super-

computing Conference, pp.578-587 (November 1993).

[2] M.P.Allen and D.J.Tildesley. Computer Simulation of

Liquids. Clarendon Press, Oxford (1987).

[3] Immaneni Ashok and John Zahorjan. Data Partition-

ing and Dynamic Load Balancing for Dynamic Space-

Based Applications. In Preparation.

[4] Scott Baden. Programming Abstractions for Dynam-

ically Partitioning and Coordinating Localized Scien-

ti�c Calculations Running on Multiprocessors. SIAM

Journal of Science and Statistical Computation, Vol-

ume 12, Number 1, pp.145-157 (January 1991).

[5] Scott Baden and Scott Kohn. Lattice Parallelism: A

Parallel Programming Model for Manipulating Non-

Uniform, Structured Scienti�c Data Structures. SIG-

PLAN Notices (1992 Workshop on Languages, Com-

pilers, and Runtime Environments for Distributed

Memory Multiprocessors) (January 1993).

[6] Harry Berryman, Joel Saltz and Je�rey Scroggs. Ex-

ecution Time Support for Adaptive Scienti�c Al-

gorithms on Distributed Memory Machines. Con-

currency: Practice and Experience, Volume 3(3),

pp.159-178 (June 1991).

[7] Charles K. Birdsall and A. Bruce Langdon. Plasma

Physics via Computer Simulation. McGraw-Hill In-

ternational, New York (1985).

[8] Philip M. Campbell, Edward A. Carmona and

David W. Walker. Hierarchical Domain Decomposi-

tion With Unitary Load Balancing for Electromag-

netic Particle-In-Cell Codes. Proceedings of the Fifth

Distributed Memory Computing Conference, pp.943-

950 (April 1990).

[9] Barbara Chapman, Piyush Mehrotra, Hans Moritsch

and Hans Zima. Dynamic Data Distributions in

Vienna Fortran. Proceedings of the Supercomputing

Conference, pp.284-293 (November 1993).

[10] B. Chapman, P. Mehrotra and H.Zima. High Perfor-

mance Fortran Without Templates: An Alternative

Model for Distribution and Alignment. Proceedings

of the Fourth ACM SIGPLAN Symposium on Princi-

ples and Practice of Parallel Programming (PPoPP)

(May 1993).

[11] William G. Griswold, Gail A. Harrison, David Notkin

and Lawrence Snyder. Scalable Abstractions for Par-

allel Programming. Proceedings of the 5th Dis-

tributed Memory Computing Conference (April

1990).

[12] Seema Hiranandani, Ken Kennedy, Charles Koelbel,

Ulrich Kremer and Chau-Wen Tseng. An Overview

of the Fortran D Programming System. Proceedings

of the Fourth Workshop on Languages and Compilers

for Parallel Computing (August 1991).

[13] Roger W. Hockney and James W. Eastwood. Com-

puter Simulation Using Particles. Adam Hilger, Bris-

tol, England (1988).

[14] David M. Nicol and Joel H. Saltz. Dynamic Remap-

ping of Parallel Computations with Varying Resource

Demands. IEEE Transactions on Computers, Volume

37, Number 9, pp.1073-1087 (1988).

[15] David W. Walker. Characterizing the Parallel Perfor-

mance of a large-scale Particle-In-Cell Plasma Simu-

lation Code. Concurrency: Practice and Experience,

volume 2, pp.257-288 (1990).

7

Appendix - Parallel EMPIC Application

Using

�

Adh�ara

/* specify size of the simulation box */

COMPUTATION-SPACE (size

x

, size

y

, size

z

);

typedef struct f double X, Y, Z; g tripleType;

R-GRID tripleType

MagneticField (N

x

,N

y

,N

z

),

ElectricField (N

x

,N

y

,N

z

),

CurrentDensity (N

x

,N

y

,N

z

);

PARTICLE-DEF particleType f

int type;

double velocityX, velocityY, velocityZ;

.........

double charge;

g

PARTICLE particleType ChargedParticle;

PHASE GridPhase f

(ElectricField, PRIMARY,

USAGE READ-WRITE)

(MagneticField, USAGE READ-WRITE)

(CurrentDensity, USAGE READ-ONLY) g

PHASE PushPhase f

(ChargedParticle, PRIMARY,

USAGE READ-WRITE)

(ElectricField, USAGE READ-ONLY)

(MagneticField, USAGE READ-ONLY) g

PHASE ScatterPhase f

(ChargedParticle, PRIMARY,

USAGE READ-ONLY)

(CurrentDensity, USAGE WRITE-ONLY) g

/***/

main() f

particleType part;

ADHARA-INIT();

/* read initial particle con�guration */

for (i = 0; i < N; i++) f

read the initial position and velocity of

the i-th particle into

part.coordX, ..., part.velocityX,...

.....

ADD part TO ChargedParticle;

g

... other initialization ...

for (step = 0; step < NumTimeSteps; step++) f

EXECUTE SolveRoutine IN GridPhase;

EXECUTE PushRoutine IN PushPhase;

EXECUTE ScatterRoutine IN ScatterPhase;

g

g

/***/

void SolveRoutine() f

/* This algorithm uses the leap-frog scheme

for the time integration */

/* Advance Magnetic Fields from step K to K+1/2 */

READ-BOUNDARY ElectricField OVERLAP(

fX-DIR = (0,1), Y-DIR = (0,1), Z-DIR = (0,1)g,

PERIODIC-BOUNDARY);

FORALL (I,J,K) IN MagneticField DO f

MagneticField[I,J,K].X = function of (

ElecField[I,J,K].Y - ElecField[I,J,K+1].Y,

ElecField[I,J,K].Z - ElecField[I,J+1,K].Z,

.......)

........

g

/* Advance Electric Fields from step K to K+1 */

READ-BOUNDARY ElectricField OVERLAP(

fX-DIR = (1,0), Y-DIR = (1,0), Z-DIR = (1,0)g,

PERIODIC-BOUNDARY);

FORALL (I,J,K) IN ElectricField DO f

ElectricField[I,J,K].X = function of (

MagField[I,J,K].Y - MagField[I,J,K-1].Y,

MagField[I,J,K].Z - MagField[I,J-1,K].Z,

CurrentDensity[I,J,K].X,)

........

g

/* Adv. Magnetic Fields from step K+1/2 to K+1 */

................

g

/***/

void PushRoutine() f

READ-BOUNDARY ElectricField

READ-BOUNDARY MagneticField

FORALL (P) IN ChargedParticle DO f

compute the electric and magnetic �elds on P

by interpolating the �elds at the grid points

enclosing P (CELL(P)[1..8])

update the position and velocity of P

g

g

/***/

void ScatterRoutine() f

FORALL (I,J,K) IN CurrentDensity INCLUDING

BOUNDARY f ALL-DIR = 1 g DO

CurrentDensity[I,J,K].X =

CurrentDensity[I,J,K].Y =

CurrentDensity[I,J,K].Z = 0.0;

FORALL (P) IN ChargedParticle DO f

for each grid point (I,J,K) in CELL(P) do:

CurrentDensity[I,J,K] += function of (

P�>coordX, ,

P�>velocityX,)

g

WRITE-BOUNDARY CurrentDensity

OVERLAP(f ALL-DIR = 1 g,

PERIODIC-BOUNDARY)

OPERATION(DOUBLE-ADD);

g

8

