
Sharing and Protection in a

Single Address Space Operating System

Je�rey S. Chase, Henry M. Levy,

Michael J. Feeley, and Edward D. Lazowska

Technical Report 93-04-02

April 1993 (revised January 1994)

(to appear in ACM Transactions on Computer Systems, May 1994)

Department of Computer Science and Engineering, FR-35

University of Washington, Seattle, WA 98195 USA

Sharing and Protection in a

Single Address Space Operating System

Je�rey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D. Lazowska

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195

Technical Report 93-04-02

April 1993 (revised January 1994)

Abstract

The appearance of 64-bit address space architectures, such as the DEC Alpha, HP PA-RISC,

and MIPS R4000, signals a radical shift in the amount of address space available to operating

systems and applications. This shift provides the opportunity to reexamine fundamental op-

erating system structure { speci�cally, to change the way that operating systems use address

space.

This paper explores memory sharing and protection support in Opal, a single address space

operating system designed for wide-address architectures. Opal threads execute within protec-

tion domains in a single shared virtual address space. Sharing is simpli�ed, because addresses

are context-independent. There is no loss of protection, because addressability and access are

independent; the right to access a segment is determined by the protection domain in which a

thread executes. This model enables bene�cial code and data sharing patterns that are currently

prohibitive, due in part to the inherent restrictions of multiple address spaces, and in part to

Unix programming style.

We have designed and implemented an Opal prototype using the Mach 3.0 microkernel as a

base. Our implementation demonstrates how a single address space structure can be supported

alongside of other environments on a modern microkernel operating system, using modern wide-

address architectures. This paper justi�es the Opal model and its goals for sharing and pro-

tection, presents the system and its abstractions, describes the prototype implementation, and

reports experience with integrated applications.

This paper will appear in ACM Transactions on Computer Systems in the May 1994 issue. This work is sup-

ported in part by the National Science Foundation (Grants No. CCR-8907666, CDA-9123308, and CCR-9200832),

the Washington Technology Center, Digital Equipment Corporation, Boeing Computer Services, Intel Corporation,

Hewlett-Packard Corporation, and Apple Computer. H. Levy is supported in part by a Fulbright research award and

by INRIA. J. Chase is supported by an Intel Foundation Graduate Fellowship.

Categories and Subject Descriptors: C.1.3 [Processor Architectures]: Other Architecture Styles {

capability architectures; D.1 Programming Techniques; D.3.3 [Programming Languages]: Language

Constructs { modules, packages; D.4.2 [Operating Systems]: Storage Management; D.4.4 [Operat-

ing Systems]: Communications Management; D.4.6 [Operating Systems] Security and Protection

{ access controls, information
ow controls; D.4.7 [Operating Systems]: Organization and Design;

D.4.8 [Operating Systems] Performance { measurements; E.1 [Data Structures]; E.2 [Data Storage

Representations]

General Terms: Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: single address space operating systems, persistent storage, pro-

tection, capability-based systems, object-oriented database systems, microkernel operating systems,

wide-address architectures, 64-bit architectures.

1 Introduction

The appearance of 64-bit address space architectures, such as the DEC Alpha [Dig 92], HP PA-

RISC [Lee 89], and MIPS R4000 [MIP 91], signals a radical increase in the amount of address space

available to operating systems and applications. This shift provides the opportunity to reexamine

fundamental operating system structure { speci�cally, to change the way that operating systems use

address space. Our goal is to restructure operating systems in order to improve the organization

of both the system and its applications. In particular, we wish to enhance sharing, to simplify

integration, and to improve the reliability and performance of complex, cooperating applications

manipulating large persistent data structures. For example, our target application domain includes

integrated software environments, such as engineering design (CAD or CASE), composed of groups

of data-centered tools that are inherently interdependent and have rich interactions.

This paper describes Opal, a single address space operating system intended to support these

complex applications on wide-address architectures. Opal provides a single global virtual address

space that is shared by all procedures and all data. Crucial to the design is the full separation of

addressing and protection, which are intimately bound in the \process" concept of systems such as

Unix and Multics [Daley & Dennis 68].

The fundamental principle of the Opal system is that addresses have a unique interpretation, for

all applications, for potentially all time. Virtual addresses are context-independent: they resolve to

the same data, independently of who uses them. While a thread can name all data in the system,

it will generally not have the right to access all of that data; the protection domain in which that

thread executes de�nes its access rights, limiting its access to a speci�c set of pages at a speci�c

instant.

Wide-address architectures facilitate the single address space approach by eliminating the need to

re-use addresses, which is required on 32-bit architectures. We do not wish to debate whether a

particular address size is enough for what we propose here. A full 64-bit address space will last for

500 years if allocated at the rate of one gigabyte per second. We believe that 64 bits is enough \for

all time" on a single computer, enough for a long time on a small network, and not enough for very

long at all on the global internet. But in any case, it is clear that address sizes have leaped past the

32-bit boundary and will continue to grow. In the past, this growth has averaged one additional

address bit { a doubling of address space { every year [Siewiorek et al. 82].

The purpose of the Opal experiment is to explore the strengths and weaknesses of the sin-

gle address space approach, which is a signi�cant departure from the traditional model of pri-

vate virtual address spaces for each executing program (e.g., Unix). The concepts in Opal

are related to those of many previous hardware and software systems spanning over 25 years,

for example, Multics [Daley & Dennis 68], Hydra [Wulf et al. 75], Pilot [Redell et al. 80], Mon-

ads [Rosenberg & Abramson 85], Intel 432 [Organick 83], IBM System 38 [Houdek et al. 81], Psy-

che [Scott et al. 90], and the early work on capability systems [Dennis & Van Horn 66]. A detailed

discussion and comparison with these systems is provided in Section 7. Fundamentally, we hope

to demonstrate that recent advances in hardware, operating systems, and language technology en-

able us to achieve the goals of many previous systems, but without the need for special-purpose

hardware, without loss of protection or performance, and without requiring the single type-safe

language that many of those systems demanded.

The following section introduces the basic premises of Opal's single address space structure and

contrasts with the traditional private address space approach. We concentrate in particular on

1

a shared segment of memory.
overlapping protection domains with

(c) In Opal, components can be placed in

Domain A

Process BProcess A Domain B

(b) Placing multiple components in the same

Process

Incremental updates are difficult. protection.
process avoids copying but compromisesincurs costs to copy and store redundant data.

(a) Copying linearized data through a pipe or file

Figure 1: Three choices for structuring cooperation between application components.

Opal's support for sharing and on the use of protection structures. Section 3 gives an overview of the

basic Opal abstractions. Section 4 then describes our Mach-based prototype, which demonstrates

that the single address space structure can be supported on existing microkernel platforms in a

way that permits interaction with traditional Unix environments. Section 5 discusses the use of

Opal by applications in our target domain, describes a mechanism we have implemented on Opal

to manage sharing and protection, and provides some performance measurements of our prototype.

Section 6 explores some objections to the single address space approach, and Section 7 describes

the relationship to previous systems. We summarize our experience and conclude in Section 8.

2 The Single Address Space Approach

Before examining the concepts of a single address space operating system, it is useful to review the

multiple address space approach that we now take for granted. The major advantages of private

address spaces are: (1) they increase the amount of address space available to all programs, (2) they

provide hard memory protection boundaries, and (3) they permit easy cleanup when a program

exits. The disadvantage of this approach, however, is that the mechanism for memory protection

{ isolating programs within private virtual address spaces { presents obstacles to e�cient cooper-

ation between protected application components. In particular, pointers have no meaning beyond

the boundary or lifetime of the process that creates them, therefore pointer-based information is

not easily shared, stored, or transmitted. The primary cooperation mechanisms rely on copying

data between private virtual memories, typically converting it to and from a neutral intermediate

representation. This is inconvenient and expensive for large or sparsely used data structures.

Private address space systems force poor tradeo�s between protection, performance, and integra-

tion. An application designer has two basic choices: place application components in independent

processes that exchange data through pipes, �les, or messages (Figure 1a), thereby sacri�cing per-

formance, or place all components in one process, sacri�cing protection (Figure 1b). Neither choice

is adequate for a growing and important class of applications that are composed of groups of pro-

grams cooperating through a shared pointer-rich database. This results in software systems that

2

are slow, unreliable, or poorly integrated. These applications need better control of protection and

sharing than current systems can provide: protection is crucial because the programs are indepen-

dently developed and evolving, and yet there are natural sharing relationships, e.g., the output of

one program is often used as the input of another.

We believe that this dilemma can be resolved with judicious sharing of virtual memory between

protected components. Sharing need not compromise modularity, and can increase performance

substantially without sacri�cing protection (e.g., through read-only sharing). While most modern

systems support shared memory in some form, there are pitfalls and limitations to its use within

the private address space model. Use of pointers typically requires a priori coordination of address

space for shared regions, thus sharing patterns must be known statically. In a single address space

model, the system rather than the applications coordinates the address bindings, to accommodate

dynamic sharing patterns in a uniform way. Recent systems have taken steps in this direction;

examples include based sections in Microsoft Windows/NT [Custer 93] and the mmap facilities

in recent Unix systems. Even in these systems, however, the mix of shared and private regions

introduces several problems. Pointers may still be ambiguous: private data pointers in shared

regions are di�cult to detect or handle, and private code pointers (important for object-oriented

languages) cannot be passed or shared. Early decisions must be made about what can be shared

and what is private. Sharing is ad hoc, since any process that will ever use a shared region must

have the same virtual addresses available.

Single address space systems avoid these problems by treating all virtual address space as a global

resource controlled by the operating system, like disk space or physical memory. This can be done

without sacri�cing the major advantages of private address spaces. Speci�cally, (1) with wide-

address architectures, we can now provide su�cient addressing without multiple address spaces,

(2) there need be no loss of protection in the single address space, and (3) cleanup is no harder in

a single address space for \conventional" programs that do not share data. (Alternatively, cleanup

is no easier in private address spaces for programs that do share data.) In fact, many problems

with the use of sharing and protection, including reclamation, can be simpli�ed or eliminated by

decoupling protection domains from other concepts that are bundled in the notion of a \process"

on conventional systems. In addition to separating protection from addressing, Opal also separates

program execution, resource ownership, and resource naming from protection domains. The purpose

of this decoupling is to make memory protection cheaper, easier to use, and easier to change.

The independence of protection and addressing in Opal substantially increases
exibility. Programs

can directly share procedures and complex pointer-based data structures, without requiring a priori

negotiation of address space usage, as depicted in Figure 1(c). The common address space allows

dynamic imports and binding to data structures and code. There is no need to decide in advance

what is shared and what is private: any memory segment can be shared at any time without address

con
icts, and memory access rights are easily passed on-the-
y from domain to domain. Opal has

no conventional \programs": all code exists as procedures residing in the shared address space.

Any procedure can be an entry point for a protection domain: subprograms can execute with or

without a private protection domain, depending on the trust relationship between the caller and

callee.

Furthermore, the single address space structure has properties that can be exploited by the memory

system implementation. Speci�cally, address overloading is eliminated. This removes ambiguity in

virtual tags in processor caches, as well as the need to maintain separate tables of virtual-physical

translations for each process [Koldinger et al. 92]. On processors equipped with software-loaded

TLBs, it permits the use of alternative translation table structures (e.g., [Huck & Hays 93]) that

3

better accommodate large, sparse virtual memories. (On the negative side, this property prohibits

programs from mapping di�erent data at the same virtual addresses. The e�ect of this restriction

is discussed in Section 6.4.)

2.1 Sharing and Trust

Today's dominant protection model promotes protection domains (e.g., processes) encapsulating

fully-isolated software components and their data, interacting only through messages. This strict

model of fully disjoint protection accommodates distribution, is tempting in its simplicity, and is

central to both \server-structured" [Young et al. 87, Rozier et al. 88, Mullender & Tanenbaum 86,

Custer 93] and \object-oriented" [Allchin & McKendry 83, Almes et al. 85] systems. However, we

believe it is too simplistic and con�ning for several reasons:

� Asymmetric trust relationships are common and can be exploited: A might accept inputs (or

memory segments) from B even when B does not trust A. For example, a name server could

provide read-only access to its database, requiring protected messages only for updates.

� Direct sharing is useful even between mutually suspicious threads. Memory can be shared

read-only, used in restricted ways, or passed sequentially from domain to domain.

� Protection domains can be used to coordinate data access among mutually trusting threads.

For example, multiple instances of a database program may prefer to execute in separate

domains to enforce di�erent access privileges, or to use protection faults to drive implicit

locking [Chang & Mergen 88].

� Tradeo�s between protection and performance are unavoidable. Complete isolation can never

be achieved: even if protection is fully disjoint, granularity tradeo�s still must be made. Also,

programs may have naturally overlapping access to stored data, and this may not be known

in advance.

Fundamentally, we believe (as do others [Druschel et al. 92]) that operating system protection

structures are not the right level to impose modularity. In fact, protection structures do not

impose modularity, they only enforce selected module boundaries. In any case, shared data should

be accessed through procedural interfaces, and protection structures should be
exible enough to

permit application-speci�c choice of how modularity is enforced.

2.2 Persistence and Distribution

The single address space structure can accommodate address spaces of di�erent temporal or geo-

graphical scopes; that is, a single address space system on one node can be extended to include

network-wide data and persistent data not in active use. This is attractive for applications ma-

nipulating pointer-rich data structures, which often need to store structures or share them across

the network. In a distributed, persistent, single address space system, network nodes can exchange

addresses directly through messages, and data structures can be directly saved on long-term storage

and later accessed by other programs without the need to translate internal pointers. One of our

goals is to extend the addressing domain across a small workstation cluster; this is discussed in

more detail in Section 4.6.

4

We note that the purpose of including inactive and distributed data in the virtual address space

is not to eliminate entirely the mechanisms for data conversion (i.e., swizzling, marshaling, and

translation), but rather to reduce the frequency with which those mechanisms must be applied.

A distributed persistent address space can be used to eliminate translation for the most common

cases of transfers: between programs on a single node, between memory and long-term storage,

and between nodes within a small LAN cluster. This amounts to caching a precomputed machine-

dependent representation of the data, while retaining the ability to convert back to a machine-

independent representation in exceptional cases, e.g., transmission outside of the local address-

ing domain. Programming-in-the-large of pointer-based applications demands some language-level

knowledge (e.g., compiler-generated templates) of the structure of the data, in order to support

garbage collection and integrity checks. Such structures have been used (e.g., [Wilson 91]) { and

can continue to be used { to transparently convert the format of data as needed when crossing

boundaries outside of the single address space, whatever its scope.

This paper focuses on the implications of the single address space structure on sharing and protec-

tion on a single node, and thus we will not discuss persistence and distribution in much detail. We

simply note that the choice of a single address space for a node does not strictly require including

persistent and distributed data within the local address space; however, the ability to accommodate

these extensions naturally and uniformly is one of the model's strengths.

2.3 Summary

In summary, we believe that the familiar model of programs as independent short-lived processes

that transform a stream of input to a stream of output is needlessly restrictive and forces poor

structuring and performance tradeo�s for a broad and increasingly important class of applications.

We believe that these applications are better served by the single address space structure, which is

enabled by the appearance of 64-bit addressing on modern RISC processors. The objective of the

single address space operating system is to expand the choices in the structuring of computations,

the use of protection, and the sharing, storage, and communication of data.

3 Opal Abstractions and Mechanisms

This section de�nes the fundamental Opal mechanisms used for the management of the single

address space, and provides insight into our design choices. We limit our focus to aspects of the

system that are essential to the single address space structure, or to our goal of supporting modular

sharing and protection. The basic concepts should seem familiar to many, and have appeared

previously in various contexts. The key is the simple application of these concepts once you accept

the separation of protection and addressing on wide-address architectures.

The system facilities described in this section need not be exposed directly to applications; they

are intended as a substrate for building language and runtime environments, such as the mediators

framework described in Section 5.2. Our Opal prototype includes a standard runtime package that

de�nes a simple C

++

programming interface. This package is used throughout our prototype, but

alternative languages and application environments could be implemented within our framework.

The runtime package and other aspects of the prototype are described in more detail in Section 4.

5

3.1 Storage and Protection

The Opal units of storage allocation and protection are segments, which are contiguous extents of

virtual pages. The virtual address of a segment is a permanent attribute, �xed by the system at

allocation time. The smallest possible segment is one page, but in general we expect segments to

be large to allow growth of the structures they contain. Segments can be marked as persistent and

managed through explicit reference counting as described in Section 3.6.

The Opal units of execution are threads. A protection domain is an execution context for threads,

restricting their access to a speci�c set of segments at a particular instant in time. Each thread

executes in exactly one protection domain, but many threads may execute in the same domain.

Domains are the subjects of memory access control. An Opal domain is the analogue of a Unix

process, except that domains are not private virtual address spaces, but rather are passive protection

contexts within a global virtual address space. Alternatively, the \protection domain" could be

viewed as the collection of segments accessible to such a protection context.

Our philosophy in Opal is that storage allocation, protection, and reclamation should be coarse-

grained at the operating system level. Fine-grained control is best provided at the language level

by compilers and runtime systems. For example, our standard runtime package allocates large

segments in which it provides heap storage for dynamic memory allocation. Programs can allocate

objects from multiple heaps to control how data structures are partitioned across segments. We

believe that burdening the operating system (or worse, the hardware) with �ne-grained protection is

an error, particularly given the safety that can be guaranteed by strongly typed languages. However,

even with safe languages, the operating system must still support hard protection boundaries in

order to separate non-trusting parties and di�erent safe or unsafe language environments. Such

hard boundaries, provided in Opal as protection domains, can easily be supported through standard

page-based protection mechanisms on modern processors.

3.2 Access Control

All Opal kernel resources, such as protection domains and segments, are named by capabilities; a

capability is a 256-bit reference that confers permission to operate on the named object in spe-

ci�c ways. A name service supports symbolic names for capabilities, with access control lists

(ACLs) for protection. Opal uses password capabilities [Anderson et al. 86], similar to those in

Amoeba [Mullender & Tanenbaum 86] and Chorus [Rozier et al. 88], rather than Mach-style capa-

bilities (also called port rights [Young et al. 87]). The advantage is that password capabilities can

be passed directly in shared memory and used to name global resources; capabilities in Mach are

meaningful only within a Mach protection context (task), preventing this sharing.

Given a segment capability, an executing thread can explicitly attach that segment to its pro-

tection domain, permitting threads executing within that domain to access the segment directly.

Conversely, a thread can explicitly detach a segment to deny access. An Attach request can specify

particular access rights to the segment (e.g., read-only or read-write), but cannot specify more

rights than are permitted by the capability. Attach is the Opal analogue of the Unix mmap primi-

tive for mapping �les into a process, except that in Opal the system, rather than the application,

always chooses the mapped address. Also, all data in Opal resides in segments that are potentially

attachable, given the proper capability; there is no data that is inherently private to a particular

executing program.

6

Segments can also be attached transparently on address faults, if the application chooses. The

holder of a segment capability may publish that capability, along with an ACL.

1

When an address

fault occurs, a runtime fault handler in the domain requests the published capability, specifying the

faulting address. If access is granted (based on the ACL) then the handler attaches the segment

before returning from the address exception.

3.3 Interdomain Communication

In Opal, shared memory is the primary form of sharing and communication between trusting threads

in di�erent protection domains. In addition, the system must permit control transfers from one

domain to another. To support this, an Opal domain can create one or more portals that permit

other domains to call it in a protected and controlled manner. Portals can be used to implement

servers or protected objects.

A portal is an entry point to a domain, uniquely identi�ed by a 64-bit value (the portalID). Any

thread that knows the value of a portalID can make a system call that transfers control into the

domain associated with the portal. Threads entering through a portal begin executing at a global

virtual address that is a �xed attribute of the portal, speci�ed by its creator. In this way the

creator of a protection domain can control what code is executed within it.

2

The global name space for portals in Opal allows the exchange of cross-domain call bindings through

shared memory; password capabilities can then be implemented as a simple bind-time extension to

a general-purpose RPC facility. An Opal capability is simply a 256-bit value containing a portalID,

an object address, and a randomized check �eld that veri�es authority to operate on the named

object. The check �eld permits revocation, and a server may deny access even when called through

a valid capability. The portal name allows a client to make RPC calls to a server given a capability

for any of the server's resources. Servers can multiplex management of multiple objects through

the single portal. For example, a segment capability contains the portalID of the segment server

and identi�es a segment managed by that server; a domain capability contains the portalID of the

domain server and identi�es a domain managed by that server.

Opal capabilities are implemented in the runtime package, hidden from users behind a C

++

interface

based on proxies [Shapiro 86]. On the client side, the capability is hidden in an ordinary C

++

object

called a proxy; on the server side, the check �eld is stored in a corresponding object called a guard

that holds a pointer to the actual object named by the capability. The methods of the proxies and

guards are messaging stubs with embedded validation checks. Procedure calls to the proxy result

in an RPC call to the guard, passing the capability as an argument. The protection boundary and

the use of capabilities are transparent to the application. The proxy package is mentioned here for

completeness, and as an example of the support that can be built above raw portals. The details

are beyond the scope of this paper.

1

We assume the existence of an authentication service that supports some protected notion of identity as a basis

for these ACLs. ACLs are not implemented in our current prototype; access is always granted to any published or

symbolically named capability.

2

Portals were designed as a kernel primitive for implementing

protected procedure call (e.g., LRPC [Bershad et al. 90]), particularly in a system with user-level threads based

on scheduler activations [Anderson et al. 92].

7

3.4 Using Protection Domains

A thread running in one protection domain (the parent domain) can create a new (more restricted)

domain (a child), typically to protect the parent's data from an untrusted subprogram. Parents can

attach arbitrary segments to their children and cause arbitrary code to execute in their children.

Thus, the child fully trusts the parent, but not vice versa. (A child domain could also be used to

amplify the parent's rights in a protected way, but in this case a privileged server must create the

child on behalf of the nominal parent.)

Protected procedure call is the only means of causing code to execute in a child domain; in particu-

lar, there is no notion of \executing a program". To execute code in the child, the parent registers

a portal for the child domain, speci�es a procedure as the entry point, and then calls through that

portal. Ordinarily, a portal is created for a collection of procedures (e.g., the methods of a guard

type), and the code executed on entrance to the portal is a server-side dispatcher stub for those

procedures. This is the policy supported by our standard runtime package, which allows the parent

to create C

++

objects in segments shared with the child, generate capabilities for those objects,

and invoke them through the portal, so the calls execute in the child domain. Parents may also

pass those capabilities to other children, e�ectively setting up RPC connections between siblings.

These facilities make it easy to structure user software as a group of cooperating domains, with

arbitrary sharing patterns and cross-domain RPC bindings between them. An application can

simply create one or more domains, attach code and data to them, and make one or more protected

calls, possibly causing the domains to call each other or the parent.

3.5 Linking and Executing Code

The handling of executable code modules in systems such as Opal di�ers in several respects from

that of conventional systems. (This topic is the focus of related work by [Garrett et al. 93].) We

wish to make three points in this section: (1) the essentials of linking and execution are the same in

both classes of systems, (2) sharing and dynamic use of code modules is easy in the shared address

space, and (3) support of private data in shared modules is trickier in some respects.

A module is a group of compiled procedures together with (1) a table of symbols for code and

static data items (e.g., global variables) de�ned in the module, (2) initial values for these static

data items, and (3) a table of external symbols imported from other modules. The module's code

contains memory reference instructions (loads, stores, and branches) using addressing techniques

selected by the compiler (e.g., PC-relative, absolute, or register-relative modes). A linker utility

processes the module to resolve these references; once linked, executing threads can call the module

directly at the virtual addresses assigned to it.

Opal di�ers from conventional systems in the way that read-only symbols (code and constant data)

are bound to virtual addresses, and in the way that references to those symbols are resolved. On

conventional systems, each module is typically a complete self-contained program, linked to execute

in a private virtual address space. The linker statically binds virtual addresses to symbols in the

module, ordinarily assigning the same starting address to every program. In contrast, di�erent

Opal modules run at di�erent addresses in the shared address space, although a given module

continues to reside at the same address every time it runs.

Opal modules are statically linked into persistent segments of the global address space. The runtime

8

addresses of a module are globally �xed when the module's segment is allocated. There are three

distinct bene�ts from global linking of code modules:

� Threads executing in a module can easily share a single physical copy, even if the threads

are running in di�erent protection domains. Shared libraries make the most e�cient use of

physical storage, and can reduce program startup time.

� Procedure pointers can be freely passed and shared at the system level. Procedure pointers

are used by some programming languages to implement polymorphic abstract types.

� Any thread can dynamically attach and call any accessible procedure, simply by knowing its

address, with no possibility of address con
icts with other modules attached to the thread's

domain. This contrasts with conventional systems, in which \programs" cannot generally be

called directly because they are linked to execute in a private address space; early protection

structuring choices are \locked in" at static link time in these systems.

Opal also di�ers from conventional systems in the way that private static data is addressed. Multiple

instances of a module may exist concurrently, each sharing the module's code, but using a private

version of its writable static data. Private data references in the shared code must compute the

correct target address for each instance. On conventional systems, each instance of a given module

runs in a separate virtual address space; the private copies of its static data typically reside at

the same virtual addresses within those separate address spaces, although they map to di�erent

underlying physical pages. In Opal, di�erent instances of the private static data must exist at

di�erent virtual addresses. The linker cannot statically determine those addresses or even their

PC o�sets; therefore, code must use register-relative addressing for private static data, with base

register values assigned dynamically. (This issue is discussed in more detail in Section 4.5.) Note

that this leads to a
exible protection relationship between instances of an Opal module, since the

base register value of an executing thread completely determines the instance it addresses. Threads

in multiple domains can share an instance, or multiple instances can execute in the same domain,

as determined by the language environment.

3.6 Resource Management and Reclamation

Opal provides coarse-grained reclamation, similar to that used in conventional systems. The basic

storage management mechanism is explicit reference counting, which applications and support

facilities (runtime libraries, language implementations, and garbage collectors) use to allocate and

release untyped storage in coarse units. Reference counting of segments is automatic in simple

cases: Opal implicitly updates reference counts on Attach and Detach, deleting segments by default

after the last detach. User software can register a persistent reference to a segment, causing it to

persist even after the last detach.

Our general philosophy is not to dictate data management to languages. In particular, Opal does

not attempt to track or control the placement of capabilities and addresses, which can be freely

copied and shared in memory. Opal reference counts need not re
ect the number of capabilities for a

resource. Instead, a reference count indicates the number of entities that have registered an interest

in a resource; later, those entities or others must make calls to decrement the reference count.

Because erroneous or malicious software can prematurely (or never) release resources, the system

must isolate non-trusting entities from reclamation errors. To this end resource groups support

9

accounting and bulk deletes of unreclaimed resources, while reference objects prevent untrusting

entities from releasing each other's resource references. These mechanisms are described in the

following subsections.

3.6.1 Resource Groups

Every call to create an Opal resource or to increment a reference count must pass a capability for

a resource group as an argument. Opal tracks the resource references created on behalf of each

resource group and releases those references if the resource group is destroyed. The Opal runtime

package retains a current resource group for each thread, and passes a capability for that group as

a hidden argument on server calls; a thread can change its current resource group with a call to

the runtime system.

Resource groups are intended as the basis for a resource control policy, e.g., quotas or billing, to

encourage or require users and their applications to limit resource consumption. In addition, they

support bulk deletion of a group of related resources. This is useful as a backup should other

reclamation mechanisms fail or be untrustworthy. For example, resource groups can be used to free

up resources and reference counts held by a particular software entity that no longer exists.

Resource groups are nested to allow a �ner grain of control over accounting and resource man-

agement. Any holder of a resource group capability can create and delete subordinate resource

groups, or subgroups. Thus the set of resource groups is a collection of trees. Accounting charges

ow up the tree: resources allocated by a subgroup are charged to the parent, and ultimately to

users represented by the root. Deletion privileges extend down the tree: the holder of a resource

group capability can delete any descendent resource group, thus releasing all resources held by that

resource group, and so on. For example, a new subgroup can be created to run an untrusted pro-

cedure and be deleted when the procedure returns. In this way the traditional policy of releasing

resources held by a terminating process is easily emulated, yet resource ownership is decoupled

from protection domains.

3.6.2 Reference Objects

Reference objects separate the counts to a shared resource emanating from di�erent entities. This

prevents a non-trusted thread from releasing more counts than it requested, triggering early deletion

of a shared resource. Reference objects are internal to the implementation of a resource, but their

use is re
ected in the interface to the resource.

For example, Opal uses reference objects to provide protected reference counts for shared segments.

A segment capability names segments indirectly through a reference object (called a SegRef). There

may be many SegRefs for a given segment, each with a private reference count, and each named

by a separate capability. Any thread with a capability for a SegRef may access the underlying

segment, but it can manipulate the reference counts for only the SegRef named by its capability.

SegRefs serve other purposes as well: they support restricted accesses (e.g., a SegRef can be cloned

conferring read-only permission), and they support selective revocation (i.e., one SegRef can be

invalidated independently of others for the same segment).

10

3.6.3 Dangling References

Despite the use of reference counts, software can still delete objects prematurely, causing dangling

references of various forms. Dangling capabilities are detectable because they contain a randomized

64-bit check �eld. At the system level, dangling virtual addresses are viewed as an access control

problem. Programs granted access to a shared segment are trusted to use it correctly; erroneous

pointer references always result from incorrect use either by the thread that stored the pointer,

the thread that followed the pointer, or the thread that deleted the pointer's target. User code is

responsible for using the available mechanisms (including protection domains and segment access

control) to protect itself from damage caused by failures of untrusted threads.

3.7 Summary

This section described the basic Opal abstractions: protection domains, segments, portals, and

resource groups. These mechanisms support applications structured as groups of threads in over-

lapping protection domains, communicating through shared virtual storage and protected procedure

call. Virtual address pointers and resource capabilities are freely shared. Resource reclamation is

handled with explicit reference counts, backed by bulk delete using resource groups, and enforced

by accounting: this re
ects our view that reclamation should continue to be based on language-level

knowledge of pointer structures, application-level knowledge of usage patterns, and deletion of data

by explicit user command.

A key point of this section is that memory protection in Opal (using protection domains) has been

separated from other issues that are combined with protection (based on processes) in conven-

tional systems. Protection is decoupled from: (1) program execution, through use of RPC as the

basic mechanism for animating passive protection domains; (2) resource naming, through the use

of context-independent capabilities based on portals; (3) resource ownership, through the use of

resource groups; and (4) virtual storage, through the use of named segments in a global address

space. In addition, proxies can be used to make protection boundary crossings (RPC) syntactically

transparent to applications. The intent of these choices is to make memory protection cheaper,

easier to use, and easier to change.

4 Implementing an Opal Prototype

We have implemented an Opal prototype on top of the Mach 3.0 microkernel operating system.

The prototype has three major components:

� The Opal kernel supports the basic system abstractions (segments, protection domains, por-

tals, and resource groups) and coordinates the usage of address space.

� The standard runtime package supports an application interface tailored to the C

++

language,

including user-mode threads, capability-based RPC, proxies, and heap management.

� A set of custom linking utilities statically link code modules to execute at their permanently

assigned addresses in the persistent virtual address space.

11

Domain BProtection Domain

Segment

Resource Group

Domain A

Unix Server
Backing File

Backing File

Mach Microkernel

Standard
Runtime

Package

Opal Server

Task and VM control IPC and Thread control

Opal Operations
create/destroy

flush/purge/recycle

page-in page-out

Inode Pager

Figure 2: Organization of the Mach-based Opal prototype.

We have chosen to implement the \kernel" for our prototype as a server (the Opal server) built

above Mach, as shown in Figure 2. Although programs in the Opal environment share a single

address space, other address spaces can exist on the same host. We chose this path for expediency

and to allow Opal to coexist with the Unix implementation also hosted by Mach. We can thus use

Unix utilities to bootstrap, monitor, and debug the Opal environment. Unix utilities linked with

our runtime package can bind to the Opal server and use a subset of its facilities, e.g., create Opal

protection domains and make RPC calls to them, or create and/or attach segments that do not

con
ict with addresses already used by the Unix process. The prototype was initially implemented

on a 32-bit system, the DECstation 5000 (MIPS R3000), and has now been ported to a 64-bit DEC

Alpha-based system.

4.1 Use of the Mach Microkernel

Building an Opal prototype was a straightforward process, given existing Mach primitives. Within

the single address space, an Opal protection domain is implemented as a task, the Mach execution

context for threads. An Opal segment is implemented as a memory object, the Mach abstraction

for a virtual memory region whose backing storage is managed by a user-mode paging server.

Opal applications do not use Mach primitives directly; while they cannot cause damage if they

do, this may inhibit their ability to use Opal resources at a later time. Instead, Opal programs

make calls to the runtime package and to the Opal server. The Opal server maintains the assign-

ment of virtual address ranges to segments, and manages all tasks and memory objects and their

relationships.

Opal segments are backed by a modi�ed version of the standard Mach paging server, the inode

pager. The Mach kernel handles paging operations in Opal segments by making RPC calls to

this server. The paging server represents backing storage for each segment as an inode, the same

structure used to implement �les in Unix. We modi�ed the inode pager to allow the Opal server to

use backing �les directly as Mach memory objects, bypassing Unix mmap, and to exploit the fact

that they are never accessed through ordinary Unix system calls. We have also added enhancements

12

for Opal backing �le support: e.g., backing �les grow physically through zero-�ll page faults, and

they are recycled with a combined purge/truncate operation when the associated segments are

reclaimed.

We have not modi�ed the Mach kernel to support native portals. Naming and resolving of portals

is handled by the Opal server, but the runtime system simulates control transfers through portals

using the Mach message-passing facility. The Opal server creates a Mach message port for every

domain; all portals for the domain are multiplexed by sending messages to this single port. This is

transparent to Opal applications, which see only a standard interface for RPC through uniformly

named portals.

4.2 Standard Runtime Package

The standard Opal runtime package includes support for user-mode threads, with synchroniza-

tion using locks and condition variables. We use user-mode threads for the traditional reasons

{ lightweight concurrency and synchronization { and also because their state (when idle) can be

passed or shared between domains. Our thread package has several Opal-speci�c features. First,

synchronization objects (e.g., locks) can be shared: the same lock object can be uniformly used

for both local and cross-domain synchronization, without sacri�cing the performance of the lo-

cal case. Second, the thread scheduler adjusts processor usage within each domain as processors

move between domains for RPC calls and returns. The thread package is discussed in more detail

in [Feeley et al. 93].

Thread descriptors and thread stacks are allocated from ordinary heap segments. The thread de-

scriptors hold pointers to some additional thread-speci�c state. Each thread has a current resource

group, which is passed as a hidden argument to the server on all calls, and a current memory pool,

which is used for all heap allocations by that thread. Both items can be retrieved or changed with a

runtime system call. Applications use this feature to partition their data structures across multiple

segments, and to separate their allocated resources into groups, according to their needs for access

control and resource control.

The runtime system also caches mappings from portalIDs to Mach ports. If a thread attempts to

transfer control to domain S through portal x in S, the runtime system makes a ResolvePortal call

to the Opal server, passing portalID x, which returns a Mach send right for the port in domain S.

Runtime code then caches this association, so it ordinarily resolves each portal at most once. The

send right for the domain port for a child protection domain is returned as a hidden result from

the domain create operation, so there is no need to look up the mapping for freshly created portals

in a child domain.

4.3 The Opal Server

The Opal server creates every protection domain with an initial data segment, which the server

attaches to itself and preloads with runtime system data structures, including a user-mode thread

scheduler and structures to manage RPC connections to other domains. All fresh domains returned

by the server have the same initial state: the standard runtime package attached and loaded, one

initial data segment, one initial portal, one Mach port to receive messages, and one Mach thread

listening for incoming calls on that port. This allows protection domains to be preallocated and

cached to reduce the latency of new domain creation calls.

13

The Opal server keeps a record containing status information for every segment and domain, e.g.,

indicating the address range allocated to each segment, and the Mach references (port send rights)

for the underlying Mach resources. Each domain record has a doubly-linked list of pointers to

records for its attached segments. Attach and detach operations simply modify the list appropriately,

and map or unmap the segment's memory object from the domain's task at its assigned address.

Segment records are indexed by a global structure, used to retrieve a segment record given any

virtual address; this is used for resolving faults on \published" segments. In our prototype this

structure is a linear list, but we intend to use splay trees in later implementations.

The server also maintains a record for each resource group, organized into a tree that re
ects the

resource group hierarchy. Each resource group record holds a list of resources charged to it (at

present, just domains and SegRefs). Deleting a resource group causes the subtree rooted in that

resource group to be released.

4.4 Persistence and Recoverability

Segments managed by the Opal server may persist across system restarts. For example, linked

code modules are stored in persistent segments. Backing �les for persistent segments are stored

under synthesized names in a protected directory of the Unix �le system, so they can be recovered.

Opal capabilities for segments and other resources continue to be valid across restarts. However,

our current prototype does not support crash recovery. The server retains address bindings and

backing �les for persistent address ranges, but it does not propagate updates to backing �les to

guarantee that they will be in a consistent state after a crash. This support could be provided on

a segment basis in a runtime package or paging server.

To support persistent memory and persistent capabilities, the server's address space management

structures are themselves retained in persistent segments, rooted in a special segment at a statically

determined virtual address. These structures are reattached and recovered if the server is restarted.

One problem is that these structures may contain Mach port names for transient resources (tasks,

threads, memory objects). These Mach resources and ports are invalidated by a shutdown, so the

server must rebuild Mach kernel state and rebind the ports on recovery. To support this, each

instantiation of the server is a distinct epoch, represented by a value supplied at boot time. As one

example of how epochs are used, the current epoch is stored in all segment records, and is checked

on Attach; segment records from a previous epoch have their memory object ports refreshed from

the segment's symbolic name.

4.5 Linking

As described in Section 3.5, Opal code modules are statically linked into the global address space,

and can be shared and called dynamically. A collection of Unix utilities, including standard compil-

ers and build tools, prepares code for execution on the Opal prototype. A shell script calls the Opal

server to allocate a segment for the module being linked, then invokes the standard Unix linker,

telling it to link the compiled code to run at the virtual addresses assigned to the newly created

segment. Custom linking utilities called Purify and Resolve then postprocess the linker's output.

The result is a Unix �le that is executable in the Opal environment; this �le is then installed directly

as the backing �le for the module's segment.

The Purify utility examines the instructions generated by the compiler, possibly modifying some

14

instructions or addressing modes. Compilers on the MIPS and Alpha generally represent all private

static references as o�sets from a designated base register, the global pointer (GP) register. Any

private references based on di�erent addressing styles are modi�ed to use GP-relative addressing;

this may cause GP o�set space (limited to 64K on these architectures) to be consumed faster.

On the Alpha, Purify also removes or modi�es any instructions that change the value of the

GP register. Resolve then patches cross-module references (e.g., calls to the standard runtime

package), resolving symbols imported from a list of modules passed as an argument. At present,

all cross-module text and read-only data references are represented using statically determined

absolute addresses. This is simple and e�cient, but the resolved references do not automatically

bind to new versions of imported modules as they are produced. Language environments desiring

automatic rebinding could provide it in the traditional manner, using indirect addressing through

dynamic jump tables.

The puri�ed and resolved module can now be attached to protection domains and called directly

by threads in those domains. Our prototype treats each attachment as a separate instance of the

module, with a private copy of any writable static data. A runtime loader allocates a block from

the domain's initial data segment, copies initial values for the module's private static data into the

block, relocates any value initialized to the address of another static data element, and initializes

the module's global pointer to point to the newly allocated static data block. It is worth noting that

a private address space system can defer the copy using copy-on-write, and avoid the relocation

step altogether. We revisit this issue in Section 6.4.

Our prototype is limited in its ability to address private static data of multiple modules attached

simultaneously. Since each module has its own global pointer value, these values must be swapped

into the GP register on cross-module calls and returns. The Alpha compilers generate instructions

to maintain GP values, but the code computes those values as static linker-determined o�sets from

the PC. In Opal these values are determined dynamically, and must be saved and restored from

memory (i.e., the private static data of the calling module). We have not modi�ed Purify to do

this. Instead, our prototype uses one GP value for each domain; all threads entering the domain

through portals have their GP register initialized to this value. Purify coordinates GP o�sets

between application modules and \standard" modules, e.g., the standard runtime package. Linked

application modules that de�ne private static data are assigned con
icting GP o�sets, so domains

are restricted to attach only one such module at a time.

4.6 Summary

This section described our Mach-based Opal prototype, which demonstrates that a single address

space environment can be implemented in a straightforward way on a microkernel operating sys-

tem. This implementation strategy supports the coexistence of Opal with other operating system

environments, such as Unix, thus permitting bi-directional interaction between Opal and existing

applications.

We are currently extending our prototype in various ways, for example, to support distribution

across a small cluster of workstations. Our basic approach is to use a trusted server that preallocates

coarse address ranges to cluster nodes on request (as in Amber [Chase et al. 89]); the server also

provides stable backing storage for the global virtual memory. Cluster workstation and server

memories are viewed as a global cache of the server's backing storage, with the goal of satisfying

most paging operations with memory-to-memory network transfers, rather than from disk.

15

Distributing the single address space raises the issue of the coherency of shared segments. We believe

that solutions to problems such as coherency and recoverability should be applied at the application

level, through a mix of language support, runtime support, and customized external paging servers.

That is, many solutions exist (e.g., [Carter et al. 91, Bershad et al. 93]), and the operating system

should not dictate a single model for coherency and recoverability to all applications. For example,

collaborative work applications need di�erent models than do parallel programs. One alternative

that we are exploring uses coarse synchronization between nodes and �ne-grained synchronization

among threads within a node, with updates made by propagating local transaction logs to stable

storage and to other caching sites across the network.

5 Applications and Performance

This section discusses the use of Opal by applications and presents some performance results.

Opal's features |
exible protection, simple shared memory, and mapped persistent storage | are

useful in a range of contexts, but we believe they are particularly well-suited to the needs of the

important and growing class of integrated software environments. An \integrated environment" is

a collection of software tools that work together to support users in complex tasks: CAD, CASE,

image processing, physical modeling, etc. Integrated application systems may be large and evolving;

protection is crucial because the \tools" are separately authored programs, possibly running on

behalf of di�erent users, and yet these tools must work together and share information e�ciently.

We are using the Opal prototype to experiment with integrated environments developed by indus-

try (the Boeing Company) and by software engineering researchers. Our hypothesis is that private

address space systems encourage poor structuring tradeo�s for these integrated applications, caus-

ing loss of protection and/or performance. These applications can be restructured under Opal

to improve safety (using additional protection domains), performance (using shared memory), or

both. This can enhance their ability to scale, both in the range of functions they provide and in

the volume of data they manipulate.

We begin by describing Boeing's aircraft CAD system in order to illustrate the target application do-

main and its importance. We then present the results of an experiment using an Opal-based imple-

mentation ofmediators, a structuring paradigm for integrated environments [Sullivan & Notkin 92].

This experiment con�rms that shared memory can signi�cantly improve performance and scala-

bility of integrated applications, and demonstrates that its use is compatible with sound software

engineering principles. Finally, we discuss the performance of the underlying Opal primitives and

describe our experience with layering Opal on the Mach microkernel.

5.1 The Boeing CAD System

Our Opal prototype is being used by Boeing's High Performance Design Systems group, which

is experimenting with new database and operating system technologies for next-generation CAD

systems. It is useful to consider why the Opal model matches Boeing's needs.

Boeing's current CAD environment uses a centralized relational database; the database describes

aircraft parts and indexes tens of thousands of geometry �les. Boeing faces three major problems

with their CAD system. First, its performance problems add to precious design time and cost;

verifying part �ts and spatial relationships can take overnight, because it demands a scan of the

16

parts database. Second, the system cannot support anticipated order-of-magnitude growth in the

size of the data and in the number of engineers for future projects. Third, it is di�cult and

expensive to extend functionally. These problems are all caused by fundamental weaknesses in the

structure of the current CAD system.

The Boeing group, whose charter is to prototype future CAD software, is taking a three-pronged

approach to meeting Boeing's scale and performance needs. Their objectives are to:

1. Directly store design information as pointer-based structures in the database, and permit

CAD tools to read these structures in bulk, cache them in local memory, and navigate them

directly. The current relational system represents links as key �elds traversed by associative

lookups, requiring repeated queries to the database server. Opal represents links as ordinary

virtual addresses that can be processed directly by programs and interpreted directly by the

hardware.

2. Explicitly represent commonly needed parts relationships (e.g., spatial and functional) in the

database. CAD tools added to the current system must rebuild their internal structures

from parts records each time they run, because these structures do not match the prede�ned

database schema. Opal permits storage and sharing of arbitrary program-generated data

structures, making it easier to cache and reuse intermediate results computed by these tools.

3. Share cached information among CAD tools on each workstation, to reduce copying and

communication overhead. Current tools communicate through reads and writes to the shared

database, unnecessarily loading the network and server. Sharing is di�cult because tools

convert data into process-private pointer structures. Opal allows these structures to be shared,

while preserving the meaning of embedded pointers.

Boeing's CAD system is an example of a large integrated application with pointer-rich data struc-

tures. We believe that the support a�orded by existing operating systems is inadequate for these

kinds of database applications. E�orts to support such applications have focused on extensible and

object-oriented database systems (OODBs), with a number of commercial products now on the

market. In general, OODBs must convert between object IDs and virtual addresses as data moves

to and from the database. Under Opal, they can use virtual addresses instead; database-format

object IDs are not necessary, although they are of course not prohibited. In either case, the key

point is that whether or not virtual addresses are directly stored in the database, Opal facilitates

the sharing of a single copy of active data on the same node, resulting in a more e�cient use of mem-

ory and database bandwidth than is possible in current OODBs built above private address space

systems. This is similar in many respects to the Cricket database system [Shekita & Zwilling 90],

which allows CAD tools to directly map a shared database at �xed virtual addresses. In essence,

Opal generalizes the Cricket model throughout the entire operating system; there is no distinction

between the database and transient virtual memory, and protection domains can be used to prevent

tools from viewing or modifying speci�c parts of the database. This isolation of non-trusting tools

is essential if mapped databases are to be used safely.

5.2 Structuring Integrated Tools

Boeing's CAD system shares a key problem with other integrated design environments: given a

shared database containing source objects being modi�ed, how do we e�ciently propagate source

17

consumer

mediator

consumer

Update()

mediator

Readand are protected calls; data returned by

producer

Read

Announce

Read

(b) Overlapping configuration: the mediator’s domain

access to the consumer.
has read access to the producer and read-write consumer share a protection domain. Announce

is linearized in the reply message.

(a) Decomposed configuration: the mediator and

Read()

Update()Announce

producer

Figure 3: Two con�gurations of a tree indexing program built using mediators.

changes to other tools that maintain local structures derived from those sources? In the Boeing

environment, the source objects are aircraft part records, and the derived objects belong to tools

doing simulation, spatial analysis, and so on. Today, tools must repeatedly copy database records

for source objects through messages or pipes, scanning those records and reconstructing local objects

derived from those records. With Opal, we wish to access source parts in shared memory, updating

the derived objects incrementally rather than rebuilding, due to their large size.

This approach can signi�cantly improve performance and scalability. However, integrating inde-

pendent tools in this way can be quite complex. Tools must make assumptions about the format of

their input and adhere to standards for the format of their output. These standards are necessary

regardless of how the tools communicate, but the richness and fragility of shared pointer structures

would seem to force compromises in the independence of the tools. In contrast, stream-oriented

Unix programs (e.g., awk, grep, etc.) can be combined in unanticipated ways, because they ex-

change only unstructured streams of bytes. Independence of these tools is achieved at a cost: data

is copied by each tool, format conversion is necessary, and incremental change is not supported. We

wish to support similar interactions for tools with larger and richer information structures, without

this cost of converting and copying \lowest common denominator" interchange formats.

5.2.1 Mediators

We have implemented a framework to facilitate these kinds of tool relationships based on a variant

of mediators [Sullivan & Notkin 92]. Mediators do not solve the integration problem, but they do

reduce its complexity. The idea behind mediators is that knowledge of inter-tool dependencies is

factored out of the tools themselves and into separate components | mediators | that coordinate

the behaviors of the tools. This integrates the tools while allowing them to evolve independently.

Tools communicate implicitly by announcing events when updates occur. Events announced by

data-producing tools are received by mediators acting on behalf of data-consuming tools; these

mediators then make a series of calls to both tools to propagate the updates. Tools and mediators

should be thought of as modules with private data, executing in a variety of di�erent protection

con�gurations. The calls to announce and propagate updates may be either ordinary procedure

18

Thousands of 128-byte Records

Ti
m

e
(s

ec
on

ds
 /

ite
ra

tio
n)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

Decomposed
Monolithic
Overlapping

Figure 4: Execution time for three con�gurations of a tree indexing program built using mediators.

calls or protected procedure calls, depending on the protection relationship between the components

involved. This structure is depicted in Figure 3.

Our Opal mediator package includes runtime support and a protected event manager. Tools reg-

ister with the event manager, specifying the events they announce, along with capabilities for

segments containing procedures and data related to those events. Mediators register with the event

manager, specifying events they wish to receive. The event manager sets up the appropriate connec-

tions and attachments among tools and mediators. Our mediator implementation is a test system

built for demonstration purposes; however, the mediator paradigm has been used to implement

interesting systems for program restructuring [Griswold & Notkin 90], computer-aided geometric

design [McCabe 91], and radiotherapy planning [Kalet et al. 91], among others.

5.2.2 An Example of Structuring Using Opal Mediators

Opal applications built using mediators can be transparently con�gured to use di�erent protection

arrangements, including overlapping protection domains and shared memory. To illustrate the

structuring options and their performance, we implemented a simple mediator-based application.

A source tool (the producer) repeatedly creates and deletes �xed-size records, maintaining a tree

index on those records and announcing events after inserts or deletes. A derived tool (the consumer)

maintains and uses its own index structure on the same data, while a mediator keeps the derived

index up to date in response to changes by the producer. An asymmetric trust relationship exists

between the tools; the producer can be isolated from both the mediator and the consumer, but both

of them trust the producer to supply well-formed input data. Figure 4 shows the performance of this

application, as a function of the number of records processed, for three protection con�gurations.

1. Monolithic. All tools and the mediator share a protection domain, simulating a single Unix

process (sacri�cing safety).

2. Decomposed. There are two non-overlapping domains: the producer in one, the consumer

and mediator in the other, using RPC between domains to simulate separate Unix processes

(sacri�cing performance).

19

3. Overlapping. There are three Opal domains. The mediator domain has the producer data

and code segments attached read-only, and the consumer data segments attached read-write.

On an event, the source domain calls the mediator domain with an RPC, passing the address

of the changed elements in the shared segment.

Figure 4 con�rms the performance bene�ts of sharing for this environment. The overlapping or-

ganization, while as safe as the fully decomposed con�guration, is nearly as fast as the monolithic

con�guration. Furthermore, the performance advantage relative to the decomposed con�guration

increases as the amount of shared data increases.

The key points of this example are that: (1) read-only shared memory is a natural and e�cient

alternative to pipes, �les, or RPC, (2) read-only shared memory preserves the one-way isolation

provided by pipes and scratch �les, and (3) programs structured using mediators are easily adapted

to run in overlapping protection domains. In fact, all three con�gurations of our tree indexing

program are built from the same source code; the shared memory is completely invisible to the

program. In addition, there is a complete separation of modularity and protection; all interactions

are through procedure calls and clean modular interfaces. Overlapping protection domains exist

\over top of" these interfaces, representing di�erent trust relationships. For example, an event

signal (from producer to mediator) crosses both module and protection boundaries; an update call

(from mediator to consumer) crosses module and possibly protection boundaries; a source object

read call (from mediator or consumer to producer) crosses module but not protection boundaries.

5.3 Prototype Performance

The previous section used measurements of an Opal application to demonstrate the performance

advantages that arise from the sharing and protection supported by Opal. Here, we take a look at

the performance of some speci�c Opal primitives, based on our Opal prototype running above Mach

(MK83/UK42) on a Digital Alpha processor (DEC 3000/400 AXP, 133.3 Mhz, 74 SPECints). The

purpose is to demonstrate that we can build a single address space operating system on top of a

conventional microkernel (Mach in this case) with performance competitive with other environments

supported by that kernel, such as Unix. We have not put much e�ort into tuning at this point;

our objective in building the prototype was to implement an Opal environment rapidly, so that we

could experimentally investigate the match between Opal's abstractions and design applications

such as those just described.

The cost of certain Opal primitives varies widely because the Opal server preallocates and caches

segments and protection domains to meet future needs. Creating a new segment from scratch takes

3.6 ms on the current prototype. Much of that time goes to creating a segment backing �le (inode)

for the segment, which involves writes to disk. To reduce this cost, Opal recycles inodes; assuming

that the recycle list is non-empty, segment creation time is 315 �s, which is the time we expect

applications to typically see. Performing an attach/detach of an Opal segment takes 478 �s in

the best case. About one �fth of this is the cost of the underlying Mach vm map/vm deallocate

operations; the remainder is the cost of two RPC calls to the Opal server, with a small amount of

internal processing to allocate address space and record the attachment.

We now present the performance of Opal domain operations. As previously stated, Opal domains

are preinitialized and cached by the server; a cached domain can be allocated, called, and destroyed

in 3.0 ms. The majority of this time is spent destroying the domain; that is, a domain create/call

20

takes about 650 �s and the destroy a little over 2.3 ms. The high destroy penalty results from

purging and recycling the domain's data segment, which again requires disk writes due to our use

of the Unix �le system.

If no cached domains are available, creating a domain from scratch, calling it, and destroying

it is substantially more work, requiring 12.13 ms. This compares favorably with the time for

the fork/exec/exit/wait of a null Unix/CThreads program on Mach/Unix (12 ms). The un-

derlying Mach/Unix fork/exec/exit/wait (without CThreads) is 8.75 ms, yet the same opera-

tion on DEC's OSF/1, a monolithic Unix kernel, takes only 1.9 ms on the same hardware. This

gives some indication of the cost of building any system environment above Mach, but it is not a

good measure of overall performance. More importantly, the cost for an Opal cross-domain call is

133 �s, which compares favorably with cross-address space calls on Mach (88 �s) and other sys-

tems [Bershad et al. 90]. This includes a small cost incurred by our runtime support for password

capabilities built above Mach RPC.

5.4 Mach's Support for Opal

Implementing the Opal kernel as a Mach server clearly entails some performance loss compared

to a kernel-level implementation (as it does for Unix as well), and we can identify some of the

major costs. First, the Mach virtual memory system was designed for private address spaces, with

a separate translation map for each domain; a global hashed page directory (as in the HP PA-

RISC [Huck & Hays 93] system and others) would be better suited to Opal's single address space.

Second, our prototype does not support native portals, so it must start a Mach kernel thread in

each new domain and block it on a port, which represents roughly 25% of the cost of preparing

a domain. Third, all Opal memory segments are potentially sharable and persistent; this requires

that they be backed by an external paging server, which makes zero-�ll page faults (336 �s each)

and segment deletes (900 �s), somewhat more expensive than the \temporary" virtual memory

used by Unix on Mach. Finally, the Mach thread interface is used as the basis for our user-mode

thread package, rather than scheduler activations [Anderson et al. 92].

Overall, the two points to be gleaned from our Mach experience and performance data are: (1)

the Opal primitives have performance that is reasonable in an absolute sense, and (2) they do not

add signi�cantly to the cost of the underlying Mach abstractions on which they are implemented.

There are no signi�cant hidden costs to the single address space model. Of course, we could achieve

substantial performance improvements over our Mach-based prototype by building a native Opal

kernel implementation; or, we could reduce existing overheads in the current implementation using

straightforward and well-understood optimization techniques at various system levels. In any case,

we expect applications to ultimately perform better in our environment due to the ease of direct

memory sharing and the simpli�ed use of persistent storage.

6 Issues for the Single Address Space Approach

The previous sections have shown how Opal's structure expands the choices for use of protection

and sharing, and how applications can exploit this
exibility. These bene�ts arise, in part, because

virtual addresses have an unambiguous global interpretation in the single address space. In this

section we discuss several tradeo�s that are inherent in the pure single address space approach. In

general, these tradeo�s are related to the inability to use context-dependent addressing in single

21

address space systems. That is, private address space systems often bene�t from the assignment of

di�erent meanings to the same address.

6.1 Virtual Contiguity

In a single address space, programs are not free to select addresses for the segments they create. In

particular, segments cannot grow, and segments allocated at di�erent times will not be contiguous

in the address space. This loss of contiguity is not generally a problem for programs written in

high-level languages, but it could limit the use of data structures that assume contiguity. Programs

with indexed memory structures (e.g., arrays) must request segments that are large enough to store

these structures contiguously { yet the system must impose limits on the amount of address space

that can be preallocated to allow these structures to grow.

While this scheme indeed limits the maximum segment size, the truth is that the maximum segment

size is limited on current 32-bit systems as well; in fact most current operating systems limit the

maximum virtual space to a fraction of their four-gigabyte architectural limit, which itself is less

than one billionth of a full 64-bit address space. A single address space system can thus easily

provide larger segments than today's private address spaces.

6.2 Conserving Address Space

Opal manages virtual address space as a global system resource. As with other physical resources

(e.g., disk space), the system must ensure that address space is used fairly and that the needs of

all users are met. This requires accounting and quotas (based on resource groups), and the system

must deny any request that cannot be satis�ed from the available address space. These restrictions

are not visible in practice if the hardware address space is large enough to meet legitimate needs.

We have not answered the question of how much address space is \enough"; our goal is to de�ne

and evaluate the single address space structure on the assumption that wide-address processors will

soon provide su�cient virtual address space for this approach, without constraining applications.

If address space is limited, however, then the system must conserve it by recycling address ranges

that have been used and released. Address recycling can occur at several levels. For example,

heap managers recycle heap slots within a segment to conserve physical memory as well as virtual

address space. In this case, dangling references cannot a�ect other entities that are not using that

heap segment. Should the operating system reclaim the segment and later reassign it, however, an

entity with retained references into the original segment might then erroneously attempt to use a

pointer to the reassigned segment. This class of dangling references { like all erroneous address

references { must be handled by the access control mechanism. That is, neither dangling nor

erroneously generated references will permit access to memory, unless that memory lies within a

segment attached to the current protection domain.

Recycling is necessary at present given the terabyte-range virtual spaces implemented on current

wide-address processors. Opal avoids recycling as long as it can; if the address space is \large

enough" then addresses will never be recycled. [Kotz & Crow 94] compare several address space

allocation and recycling policies for single address space systems.

22

6.3 Unix-style Fork

The Unix fork operation copies a parent process' context, including its private address space, into

a child process. The address space cloning semantics of fork cannot be emulated in a single address

space: while a Unix implementation can coexist with Opal above a general-purpose microkernel,

Unix could not be built above a native Opal kernel.

In the past, there were two reasons for fork to clone the parent's address space: (1) to create

multiple concurrent processes executing the same program, and (2) to allow code from the parent

to initialize state (e.g., �le descriptors) in the child. In the �rst case, lightweight threads are a

better primitive for concurrency; in the second case, the system can provide a means to initialize

a child without executing code in the child's context. In fact, fork is a source of complexity and

ine�ciency in Unix systems: the majority of the state copied by a fork is not typically needed by

the child, inspiring e�orts to improve performance by deferring the copy (e.g., with copy-on-write)

or avoid it entirely (e.g., the vfork primitive in 4.2 BSD). The copying semantics of fork also

interfere with support for threads [McJones & Swart 87].

Opal replaces fork with primitives to create protection domains and initialize them by attaching

segments and installing RPC endpoints. Threads in the parent domain can then make cross-domain

calls to enter the child domain. This model is suited to an environment of software components

that cooperate over a period of time; in contrast, fork was designed for independently executing

programs that compute a result and terminate. Finally, we note that most Unix programs do not

use fork directly, and are thus capable of running in the single address space environment.

6.4 Data Copying and Copy-on-Write

An objective of the single address space approach is to replace data copying with in-memory sharing

wherever possible. Obviously, not all instances of copying can be eliminated. In particular, data

may be copied to create a new version that can then be modi�ed independently of the original,

either for protection reasons or to preserve the original.

When data is copied within an address space, internal pointers within the copied data must be

translated. Conventional systems can sometimes avoid this translation if the data is copied from

one address space to another, by placing the copied data into the same virtual address range in the

receiver process as it occupied in the sender. (Of course, it is then impossible for either process

to name both versions.) This is not possible in single address space systems, because there is

only one naming context; the copy must occupy di�erent virtual addresses than the original, and

pointers must be handled specially. Furthermore, a conventional system can lazily evaluate such a

copy using copy-on-write, while a single address space system cannot. In the single address space

system, pointers in the data must be relocated before the receiver can even read the data (otherwise,

the receiver might point to the wrong version when the copy is made); copy-on-reference can be

used, but not copy-on-write.

As mentioned in Section 4.5, this absence of remapped copying causes several problems for the

handling of code modules in our Opal prototype. Opal must copy initial values of writable static

data when a module is loaded (instantiated), and internal pointers must be relocated at load time.

The protection domain create time reported in Section 5 re
ects the higher cost of initializing code

segments that contain writable static data.

23

It might appear that copy-on-write is completely incompatible with single address space systems,

because assigning a new address range to the copy introduces aliasing in the form of multiple virtual

mappings to the same physical page. Copy-on-write introduces only a benign form of aliasing called

read-only aliasing [Chao et al. 90]. Read-only aliasing is a hidden optimization that neither violates

the consistent interpretation of pointers nor interferes with the use of a virtually-addressed cache.

General aliasing can cause a synonym problem, because the aliases will have separate entries in

a virtually-addressed cache, and these entries may be modi�ed independently. This problem does

not occur with read-only aliasing: on a write to either virtual address, a new physical address is

assigned to one of them, destroying the alias and restoring a unique mapping. Thus the value of a

cache line is never modi�ed in a way that a�ects the value of another cache line. Because read-only

aliasing is harmless, a single address space system can use copy-on-write in every instance that a

conventional system can use it, except when pointers in the copied data must be translated.

6.5 Summary

We conclude that the tradeo�s of the single address space model are reasonable, given su�cient

hardware address space. While context-dependent addressing is sometimes useful, an acceptable

or better alternative often exists. Furthermore while context-dependent naming may be useful

in some situations, virtual addresses may be the wrong level to apply the context-dependence;

context-dependence can appear at higher levels of naming interpreted by software (e.g., relative to

the registers of a particular thread) and mapped into a single context-independent virtual address

space interpreted by the machine.

7 Relation to Previous Work

Opal is closely related in style and objectives to a number of other systems, both commercial and ex-

perimental, dating back over the last 25 years. An early description of a software systemwith protec-

tion domains, capabilities, and dynamic sharing appeared in the late 1960s [Dennis & Van Horn 66],

and many systems tried to implement that approach.

We believe that Opal is signi�cant because it exploits modern 64-bit processors to meet the goals

of previous systems in a way that is simple, general, and e�cient. In particular, Opal requires

no special hardware, supports uniform context-independent naming at the memory address level,

includes persistent storage, and can be e�ciently implemented in a compatible way alongside current

operating systems on current wide-address processors. Opal also embodies a modern division

of responsibilities between the hardware, operating system kernel, system services, and language

environment. It accommodates alternative language and data models, and relies on language-based

facilities for �ne-grained protection and storage management.

In this section we discuss several previous systems, contrasting them with Opal's concepts, mech-

anisms, and goals.

7.1 Multics and Other Segmented Systems

Opal is similar to Multics [Daley & Dennis 68] and other segmented systems [Chang & Mergen 88,

Groves & Oehler 90] in (1) its use of medium-grained virtual memory segments as the units of

24

memory protection and access control, and (2) its emphasis on dynamic sharing and memory-

mapped persistent storage.

Opal di�ers from Multics and other segmented systems in one critical respect: program addresses

in segmented systems do not have a uniform meaning, which complicates sharing. That is, while a

Multics segment has a \global virtual address", programs do not use those global addresses directly.

Each process sharing a segment maps the segment into a private address space, perhaps at a di�erent

virtual location (e.g., using a di�erent segment register). The result is that processes cannot easily

share or exchange addresses, and procedures must include indirect addressing structures to manage

the multiple address assignments of shared data segments on which they operate. In general, all

traditional mapped �le systems operate in this way.

In contrast, all Opal segments, including persistent segments, are simultaneously and directly visible

(given proper protection) in virtual memory by all applications. Linked data structures in Opal

can easily span segments, perhaps with di�erent access controls. In this respect Opal is closer

to the HP PA-RISC [Lee 89], which supports traditional segmented addressing, but also allows

applications to use global virtual addresses directly. However, most software on the PA-RISC

uses short-form addresses, because they are more compact and e�cient, and because they permit

backward compatibility with private address space operating systems.

7.2 Cedar and Pilot

The Xerox Pilot [Redell et al. 80] and Cedar [Swinehart et al. 86] systems support a single virtual

address space in which all applications execute. Pilot includes a mapped �le system as well.

Protection is based on the use of a single safe programming language, therefore no protection is

provided or necessary at the hardware level.

We agree that safe languages permit a relaxation of hardware protection, and we wish to exploit

that fact in Opal. However, we also want to support multiple safe and unsafe languages, as well as

stronger isolation for those who want or need it.

7.3 Capability-Based Architectures

Opal's goals are similar in some ways to capability-based hardware systems [Fabry 74, Levy 84].

For example, the Intel 432 [Organick 83] emphasized uniform addressing as a basis for supporting

sharing and cooperation. In fact, the addressing on the 432 was not fully uniform, due in part to the

way the processor address space was managed: capabilities contained only 24 address bits, which

were translated to and from 80-bit UIDs [Pollack et al. 81] as objects moved between memory

and persistent storage. Second, the 432 used very complex hardware-based protection structures

and mechanisms to restrict access to �ne-grained objects. Opal does not require special hardware

support for object-based addressing and protection, and Opal's protection is on a coarser granularity

than the 432 and similar architectures.

We believe that most capability systems su�ered from (among other things) an insu�cient under-

lying hardware base. Because the underlying virtual address space on the physical hardware was

too small, the result has always been an emulation, at one level or another, of a large address space

system on a small address space machine.

25

The IBM System/38 [Houdek et al. 81, Soltis 81] and IBM AS/400 [IBM 88] are coarser-grained

and very similar to Opal in their protection model and granularity. Access to uniformly addressed

medium-grained segments is shared by multiple protection domains. (This is di�erent from the

432 in that access to shared user objects generally occurs with unprotected procedure calls, rather

than cross-domain calls.) The System/38 provides memory-level hardware support (e.g., tag bits

for each word) for capabilities. The key di�erence again is that Opal uses stock 64-bit processors to

gain most of the bene�ts of these capability-based systems without their costs. Our performance

and generality are comparable to standard page-based systems, but with improved support for

sharing.

7.4 Object-Based Operating Systems and Languages

Early object-based operating systems, such as Hydra [Wulf et al. 75], Eden [Almes et al. 85], and

Clouds [Allchin & McKendry 83], support operating system objects addressed via capabilities. Ob-

jects in Eden and Clouds are coarse-grained, meaning that they are implemented as separate virtual

address spaces; object encapsulation is enforced by hard protection boundaries. While these sys-

tems conceptually support a single global address space of objects (based on capabilities), this

address space exists at a higher level than virtual addresses, prohibiting �ne-grained low-cost data

sharing and communication between objects. (In fact, this prohibition is a goal of these systems.)

We believe that coarse-grained object-oriented systems confuse modularity and protection in a way

that excludes useful structuring choices. Speci�cally, objects are seen as equivalent to protection

domains in these systems. In Opal, objects are lightweight data items that are independent of

protection domains; an Opal domain may contain many objects, and objects can be passed or

shared between domains. Furthermore, programmers can move the protection boundaries between

objects to achieve the desired balance between protection and performance, without a�ecting the

modular structure of the program.

Object-based distributed languages, such as Emerald [Jul et al. 88]

and Guide-1 [Krakowiak et al. 90], provide lightweight support for �ne-grained objects in a dis-

tributed global address space. Again, the global address space exists at the object ID level, and

translation of addresses is required for communication and storage. Furthermore, these systems

require that all applications be written in a single safe language. These languages could run above

Opal { and bene�t from its
exible protection { but Opal can support sharing of pointer-based

data structures without them.

7.5 Monads

Monads [Rosenberg & Abramson 85, Rosenberg 92] uses a large (60-bit) shared virtual address

space that includes persistent data and spans a local network. A common goal of Monads and Opal

is to remove the distinction between persistent data and transient data. Monads partitions the

global address space among the network nodes, and can locate distributed pages and keep them

coherent. Monads demonstrates that a large, sparse, distributed address space is manageable.

Above its paged address space, Monads provides an object-based addressing and protection model

supported by custom hardware, including capability registers. In Monads, the purpose of the single

address space is to streamline the implementation of capabilities and to extend the capability space

across a network. Monads di�ers from Opal in several key respects: (1) Opal programs use
at

26

virtual addresses directly, with access determined by the protection domain, (2) memory protection

in Opal is segment-grained rather than object-grained, (3) Opal uses stock 64-bit processors, and

(4) the data model in Opal is de�ned by languages and applications rather than by the system.

7.6 Psyche and Hemlock

The Psyche system [Scott et al. 90] uses related concepts to explore parallel programming within a

protected global address space on shared-memory multiprocessors. The focus of Psyche is building

applications out of cooperating components based on di�erent parallel programming models; these

components are partially isolated in separate protection domains. Psyche's realms enforce object-

style access to data shared between models, in part to ensure that model-dependent operations (e.g.,

acquiring a lock) are handled correctly regardless of which component invokes them. In contrast,

Opal focuses on using domains to protect shared information in a multi-user operating system. We

generally assume that cooperating components use the same programming model.

Hemlock [Garrett et al. 93] extends the Psyche work to a Unix context, adding memory-mapped

persistent storage and dynamic linking to shared code modules that encapsulate shared data. Hem-

lock is a hybrid global/private address space system: addresses at the low end of the processor

address space have separate mappings in each process, with a large globally addressed region at the

upper end. The goal is to preserve backward compatibility with Unix (i.e., fork) while supporting

uniform addressing of shared memory.

Opal di�ers from Psyche and Hemlock in that it views segments rather than modules (or realms) as

the basic unit of sharing. In part this re
ects our emphasis on heap-based programming languages,

in which a given code module could be used to operate on data in many di�erent segments. For

example, in Hemlock, shared code modules are shared abstractions; all data used by a shared

module is also shared, and that data is generally referenced with language symbols (e.g., as shared

global static data), rather than with pointers. The Hemlock approach simpli�es many aspects of

linking, but it complicates the use of a given code module to operate on both private and shared

data.

7.7 Swizzling

Swizzling [Cockshot et al. 84] is a method of simulating a large address space on smaller address

hardware by translating pointers (from short \inform" to long \outform", or vice versa) when they

are moved in and out of memory. Swizzling has recently gained new popularity as a means of

supporting a persistent store [Wilson 91, Lamb et al. 91].

As described in Section 2.2, we believe that swizzling should be reserved for exceptional cases,

such as relocating groups of objects from one network address space to another. The crucial point,

however, is that whether or not data is swizzled on its way into memory, a shared virtual address

space is ultimately required to allow applications to share a single copy of that data in memory.

The single address space greatly simpli�es that sharing.

27

7.8 Alternative Usage of Large Address Spaces

Several other researchers have proposed using a single wide virtual address space to reduce the

cost of protection. [Okamoto et al. 92] suggests MMU hardware that uses the current value of

the PC to determine memory access permissions. [Druschel & Peterson 92] points out that shared

segments can be protected from accidental error and even malicious use by \hiding" them in the

large address space. This idea is generalized in [Yarvin et al. 93] to allow an untrusted thread

to operate on protected data with intra-domain \anonymous" protected calls (ARPC) at lower

cost than RPC calls across a hardware-enforced protection boundary. ARPC and the Opal model

are complementary, if Opal's implementation assigns segment addresses randomly (our current

prototype does not). That is, ARPC could be used by Opal applications to gain protection of a

di�erent strength and cost than hardware protection domains.

8 Conclusions

We have described the Opal system, a single address space operating system targeted for 64-bit

address space architectures. The key notions of Opal are the uniform interpretation of addresses

and the orthogonality of addressing and protection. Context-independent addressing removes im-

pediments to sharing. Procedures and data can be shared at any time without requiring a priori

address space coordination. Protection domains, which are independent of addressing, determine

the context in which a thread executes and its access rights to memory segments. Segments are dy-

namically created and dynamically shared through capabilities, which can be passed directly (along

with virtual addresses) through memory or message channels. Once created, a segment can persist

over system restarts, and will be available simply by accessing its data through virtual addresses.

The objective of Opal is to support a growing and important class of applications that consist of

highly-interacting tools manipulating a shared persistent database. We have studied the needs of

one industrial application (with the Boeing Company), as well as other environments that require

dynamic sharing between tools, and have prototyped a mechanism to manage sharing and protec-

tion relationships. For such applications, the Opal system simpli�es sharing, communication, and

persistence, and broadens the choices available for structuring computations and data.

Opal's concepts have much in common with previous systems, in particular, capability hardware

systems and object-oriented operating systems. Those systems tended to be overly complex and

slow. We believe that the problem was caused by applying (heavyweight) hardware or operating

system protection mechanisms to �ne-grained user and language objects. Opal provides segment-

grained protection and leaves �ne-grained storage management to languages and runtime systems.

Protection domains can be used in
exible ways to provide added protection, depending on the

trusting relationships and needs of cooperating parties.

A second problem faced by previous systems was the insu�cient addressing capacity of the under-

lying hardware base, which resulted in an additional level of software to translate from long-term

global addresses to short-term virtual addresses. In the �nal analysis, these systems were all emulat-

ing a large address space on small-address hardware. With the appearance of RISC microprocessors

with 64-bit addressing, we believe that this level of translation is no longer necessary. Moreover,

by continuing to use traditional operating system structures, modern operating systems are adding

unnecessary complexity; in a sense, they are emulating small-address space structures on top of

large-address architectures, causing extra work at several system layers.

28

We have demonstrated that a single address space system such as Opal can be implemented along-

side of other environments on a microkernel operating system, using modern wide-address architec-

tures. This permits experimentation with the single address space environment while we continue

to use and communicate with existing tools. Our initial experiments with Opal demonstrate how

the system can be used to provide added performance, added safety, or both relative to current

implementation choices on conventional operating systems.

Acknowledgements

Thanks to Kevin Sullivan for helping us to adapt his work with mediators to the Opal environment,

and to Bob Abarbanel, Virgil Bourassa, Joe Koszarek and Ashutosh Tiwary at Boeing. Jan Sanislo

built our Mach system base for the Alpha, while Brian Bershad, Rich Draves and Peter Stout pro-

vided much-needed assistance with Mach. Ted Romer implemented the MIPS linking utilities, and

Simon Auyeung modi�ed them for the Alpha. Robert Bedichek, Valerie Issarny, Povl Koch, Julien

Maisonneuve, Dylan McNamee, Stefan Savage, and Marc Shapiro commented on early versions of

the paper. Brian Marsh, Michael Scott, William Garrett, David Keppel, David Kotz, David Redell,

Chandu Thekkath, and John Wilkes also gave helpful advice. Nonna Skumanich and Alicen Smith

helped with typing for an author impaired by carpal tunnel syndrome. We would also like to thank

the Project SOR group at INRIA, and Sacha Krakowiak and his group at Bull/IMAG Labs.

References

[Allchin & McKendry 83] Allchin, J. and McKendry, M. Synchronization and recovery of actions.

In Proceedings of the 2nd ACM Symposium on Principles of Distributed Computing, pages

31{44, August 1983.

[Almes et al. 85] Almes, G. T., Black, A. P., Lazowska, E. D., and Noe, J. D. The Eden system: A

technical review. IEEE Transactions on Software Engineering, SE-11(1):43{59, January

1985.

[Anderson et al. 86] Anderson, M., Pose, R. D., and Wallace, C. S. The password-capability system.

The Computer Journal, 29(1):1{8, February 1986.

[Anderson et al. 92] Anderson, T. E., Bershad, B. N., Lazowska, E. D., and Levy, H. M. Scheduler

activations: E�ective kernel support for the user-level management of parallelism. ACM

Transactions on Computer Systems, 10(1):53{79, February 1992.

[Bershad et al. 90] Bershad, B., Anderson, T., Lazowska, E., and Levy, H. Lightweight remote

procedure call. ACM Transactions on Computer Systems, 8(1), February 1990.

[Bershad et al. 93] Bershad, B., Zekauskas, M., and Sawdon, W. The Midway distributed shared

memory system. In Proceedings of the 1993 IEEE Computer Conference, February 1993.

[Carter et al. 91] Carter, J. B., Bennett, J. K., and Zwaenepoel, W. Implementation and per-

formance of Munin. In Proceedings of the Thirteenth Symposium on Operating Systems

Principles, pages 152{164. ACM, October 1991.

29

[Chang & Mergen 88] Chang, A. and Mergen, M. F. 801 storage: Architecture and programming.

ACM Transactions on Computer Systems, 6(1):28{50, February 1988.

[Chao et al. 90] Chao, C., Mackey, M., and Sears, B. Mach on a virtually addressed cache archi-

tecture. In Usenix Mach Workshop Proceedings, pages 31{51, October 1990.

[Chase et al. 89] Chase, J. S., Amador, F. G., Lazowska, E. D., Levy, H. M., and Little�eld, R. J.

The Amber system: Parallel programming on a network of multiprocessors. In Proceedings

of the 12th ACM Symposium on Operating System Principles, pages 147{158, December

1989.

[Cockshot et al. 84] Cockshot, W. P., Atkinson, M. P., and Chisholm, K. J. Persistent object

management system. Software { Practice and Experience, 14(1), January 1984.

[Custer 93] Custer, H. Inside Windows/NT. Microsoft Press, 1993.

[Daley & Dennis 68] Daley, R. C. and Dennis, J. B. Virtual memory, processes, and sharing in

Multics. Communications of the ACM, 11(5):306{312, May 1968.

[Dennis & Van Horn 66] Dennis, J. B. and Van Horn, E. C. Programming semantics for multipro-

grammed computations. Communications of the ACM, 9(3):143{155, March 1966.

[Dig 92] Digital Equipment Corporation, Maynard, MA. Alpha Architecture Handbook, 1992.

[Druschel & Peterson 92] Druschel, P. and Peterson, L. High performance cross-domain data trans-

fer. Technical Report 92-11, University of Arizona, Department of Computer Science,

June 1992.

[Druschel et al. 92] Druschel, P., Peterson, L. L., and Hutchinson, N. C. Decoupling modularity and

protection in Lipto. In Proceedings of the 12th International Conference on Distributed

Computing Systems, June 1992.

[Fabry 74] Fabry, R. S. Capability-based addressing. Communications of the ACM, 17(7):403{412,

July 1974.

[Feeley et al. 93] Feeley, M. J., Chase, J. S., and Lazowska, E. D. User-level threads and interpro-

cess communication. Technical Report 93-02-03, University of Washington, Department

of Computer Science and Engineering, March 1993.

[Garrett et al. 93] Garrett, W., Scott, M., Bianchini, R., Kontothanassis, L., McCallum, R.,

Thomas, J., Wisniewski, R., and Luk, S. Linking shared segments. In Proceedings of

the Winter 1993 Usenix, January 1993.

[Griswold & Notkin 90] Griswold, W. and Notkin, D. Program restructuring to aid software main-

tenance. Technical Report 90-08-05, University of Washington, Department of Computer

Science and Engineering, September 1990.

[Groves & Oehler 90] Groves, R. D. and Oehler, R. RISC system/6000 processor architecture.

In Misra, M., editor, IBM RISC System/6000 Technology, pages 16{23. International

Business Machines, 1990.

[Houdek et al. 81] Houdek, M., Soltis, F., and Ho�man, R. L. IBM System/38 support for

capability-based addressing. In Proc. of the 8th Symposium on Computer Architecture,

May 1981.

30

[Huck & Hays 93] Huck, J. and Hays, J. Architectural support for translation table management in

large address space machines. In Proceedings of the 20th Annual International Symposium

on Computer Architecture, May 1993.

[IBM 88] IBM. Application System/400 Technology. International Business Machines, 1988.

[Jul et al. 88] Jul, E., Levy, H., Hutchinson, N., and Black, A. Fine-grained mobility in the Emerald

system. ACM Transactions on Computer Systems, 6(1):109{133, February 1988.

[Kalet et al. 91] Kalet, I., Jacky, J., Kromhout-Shiro, S., Niehaus, M., Sweeney, C., and Unger, J.

The Prism radiation treatment planning system. Technical Report 91-10-03, University

of Washington, Radiation Oncology Department, October 1991.

[Koldinger et al. 92] Koldinger, E. J., Chase, J. S., and Eggers, S. J. Architectural support for single

address space operating systems. In Proceedings of the Fifth International Conference on

Architectural Support for Programming Languages and Operating Systems, Department

of Computer Science and Engineering, October 1992. ACM SIGOPS Operating System

Review, Volume 26.

[Kotz & Crow 94] Kotz, D. and Crow, P. The expected lifetime of \single-address-space" operat-

ing systems. In Proceedings of the ACM Conference on Measurement and Modeling of

Computer Systems (SIGMETRICS 94), 1994. (Technical Report PCS-TR93-198, Dept.

of Mathematics and Computer Science, Dartmouth College).

[Krakowiak et al. 90] Krakowiak, S., Meysembourg, M., Van, H. N., Riveill, M., Roisin, C., and

Rousset de Pina, X. Design and implementation of an object-oriented, strongly typed

language for distributed aapplications. Journal of Object-Oriented Programming, 3(3):11

{ 22, September 1990.

[Lamb et al. 91] Lamb, C., Landis, G., Orenstein, J., and Weinreb, D. The ObjectStore database

system. Communications of the ACM, 34(10), October 1991.

[Lee 89] Lee, R. B. Precision architecture. IEEE Computer, pages 78{91, January 1989.

[Levy 84] Levy, H. M. Capability-Based Computer Systems. Digital Press, Bedford, Massachusetts,

1984.

[McCabe 91] McCabe, T. Programming with mediators: Developing a graphical mesh environ-

ment. Master's thesis, Department of Computer Science and Engineering, University of

Washington, 1991.

[McJones & Swart 87] McJones, P. R. and Swart, G. F. Evolving the Unix system interface to

support multithreaded programs. Technical Report 21, DEC Systems Research Center,

September 1987.

[MIP 91] MIPS Computer Systems, Inc., Sunnyvale, CA. MIPS R4000 Microprocessor User's

Manual, �rst edition, 1991.

[Mullender & Tanenbaum 86] Mullender, S. and Tanenbaum, A. The design of a capability-based

operating system. The Computer Journal, 29(4):289{299, 1986.

[Okamoto et al. 92] Okamoto, T., Segawa, H., Shin, S., Nozue, H., Maeda, K., and Saito, M.

A micro-kernel architecture for next generation processors. In USENIX Workshop on

Microkernels and Other Kernel Architectures, pages 83{94, April 1992.

31

[Organick 83] Organick, E. I. A Programmer's View of the Intel 432 System. McGraw-Hill, 1983.

[Pollack et al. 81] Pollack, F. J., Kahn, K. C., and Wilkinson, R. M. The iMAX-432 object �ling

system. In Proc. of the 8th ACM Symposium on Operating Systems Principles, December

1981.

[Redell et al. 80] Redell, D., Dalal, Y., Horsley, T., Lauer, H., Lynch, W., McJones, P., Murray,

H., and Purcell, S. Pilot: An operating system for a personal computer. Communications

of the ACM, 23(2):81{92, February 1980.

[Rosenberg & Abramson 85] Rosenberg, J. and Abramson, D. MONADS-PC: A capability-based

workstation to support software engineering. In Proceedings of the 18th Hawaii Interna-

tional Conference on System Sciences, 1985.

[Rosenberg 92] Rosenberg, J. Architectural and operating system support for orthogonal persis-

tence. Computing Systems, 5(3), July 1992.

[Rozier et al. 88] Rozier, M., Abrossimov, V., Armand, F., Boule, I., Gien, M., Guillemont, M.,

Herrmann, F., Leonard, P., Langlois, S., and Neuhauser, W. Chorus distributed operating

systems. Computing Systems, 1(4), 1988.

[Scott et al. 90] Scott, M. L., LeBlanc, T. J., and Marsh, B. D. Multi-model parallel programming

in Psyche. In Proceedings of the Second ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pages 70{78, March 1990.

[Shapiro 86] Shapiro, M. Structure and encapsulation in distributed systems: The proxy principle.

In Proceedings of the Sixth International Conference on Distributed Computing Systems,

May 1986.

[Shekita & Zwilling 90] Shekita, E. and Zwilling, M. Cricket: A mapped, persistent object store. In

Proceedings of the Fourth International Workshop on Persistent Object Systems: Design,

Implementation and Use, September 1990.

[Siewiorek et al. 82] Siewiorek, D. P., Bell, C. G., and Newell, A. Computer Structures: Readings

and Examples. McGraw Hill Book Company, 1982.

[Soltis 81] Soltis, F. G. Design of a small business data processing system. Computer, September

1981.

[Sullivan & Notkin 92] Sullivan, K. and Notkin, D. Reconciling environment integration and soft-

ware evolution. ACM Transactions on Software Engineering, 1(3), July 1992.

[Swinehart et al. 86] Swinehart, D., Zellweger, P., Beach, R., and Hagmann, R. A structural view

of the Cedar programming environment. ACM Transactions on Programming Languages

and Systems, 4(8), October 1986.

[Wilson 91] Wilson, P. R. Pointer swizzling at page fault time: E�ciently supporting huge address

spaces on standard hardware. ACM SIGARCH Computer Architecture News, 19(4), June

1991. University of Illinois at Chicago Technical Report UIC-EECS-90-6, December 1990.

[Wulf et al. 75] Wulf, W. A., Levin, R., and C.Pierson. Overview of the Hydra operating system

development. In Proceedings of the 5th Symposium on Operating Systems Principles,

pages 122{131, November 1975.

32

[Yarvin et al. 93] Yarvin, C., Bukowski, R., and Anderson, T. Anonymous RPC: Low latency

protection in a 64-bit address space. In Proceedings of the Summer USENIX Conference,

June 1993.

[Young et al. 87] Young, M., Tevanian, A., Rashid, R., Golub, D., Eppinger, J., Chew, J., Bolosky,

W., Black, D., and Baron, R. The duality of memory and communication in the imple-

mentation of a multiprocessor operating system. In Proceedings of the Eleventh ACM

Symposium on Operating Systems Principles, pages 63{76, November 1987.

33

