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Abstract

While recent decades have brought substantial change to the form of the operating system interface,
the power of operating system commands has remained nearly constant. Conventiona commands,
whether visual or textual, specify one particular action to perform. To carry out a complex task, such as
reducing disk utilization, the user is forced to explicitly specify each of the necessary steps. Traditional
command-language extension mechanisms, such as shell scripts and pipes, enable the user to aggregate
and compose various commands, but force him or her to write and debug programs — a formidable
challengefor naive users.

This paper presents a goal-oriented approach to the operating system command interface, realized
through an implementation we cal OS agents. Using OS agents, the user simply specifies a goa
to accomplish, and the OS agent decides how to accomplish that goa using its knowledge base of
the system state and its commands. The OS agent dynamically synthesizes the appropriate command
sequence, issues the required commands and system calls, handles errors, and retries commands if
necessary. With OS agents, we have applied Al planning and |earning techniquesto the operating system
environment to increase the power of the user’s commands.

We have implemented OS agents within a distributed Unix environment. Our experience indicates
that it is practical to incorporate novel ideas of automatic planning and learning into contemporary
operating systems with a modest amount of work and little performance penalty. Inthispaper we present
OS agentsand their operation, and describe the general -purpose mechanism we have provided to flexibly
and efficiently support the needs of OS agents within the Unix operating system.

1 Introduction

The expressive power of operating system command interfaces, whether textual or visual, has evolved
little over the lifetime of operating systems. In this paper we present a new goal-oriented approach to the
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operating system command interface. Our approach enables the user to request tasks that while simple to
specify, may be complex to carry out with conventional commands. Often such requestsinvolve monitoring
status or maintaining constraints. For example, thefollowinglist presents classes of reasonabl e user requests
that are difficult to express using a conventional (e.g., Unix-like) command interface:

1. monitoring events:

¢ Send me mail if my disk utilization exceeds eighty percent.
¢ Tell mewhen Neal logsinto hisworkstation.

¢ Immediately display any posts containing the string “bicycle” that appear on the market bulletin
board this week.

2. enforcing constraints:

e Keepdl filesinthedirectory / paper s/ sosp group-readable.

¢ Ensurethat all my Postscript files are current (i.e., automatically generate a new postscript file
whenever the corresponding TeX file is modified).

3. locating and manipulating objects:

o At midnight, compressall of my files that have not been accessed in aweek whose size exceeds
10 megabytes.

¢ Print my file on any non-busy printer on the 4th or 5th floor, and tell me where to find it when
the print isdone.

These task classes are neither exhaustive nor mutually exclusive, but illustrate our main point: an ideal
interface should enable a user to specify what to accomplish, leaving the decision of how to accomplish it
to the system. While thisidea is widely accepted in the functional and logic programming communities,
current OS interfaces are incapable of such expressiveness.

This paper describes the goals, design, and implementation of OS agents, which satisfy high-level
user requests, as well as the operating system implications for support of OS agents. We use the agent
terminology in loose analogy to atravel agent or insurance agent who, given agoal, searches for ameansto
accomplishit. This approach has a number of obvious advantages over the typical command/programming
approach. First, the system is free to choose the most effective means of accomplishing a particular task,
relying on commands or information that the user may not even be aware of (e.g., printer-3 is down today).
Second, if one method for accomplishing the task fails unexpectedly, the system can fluidly recover and try
adifferent method. Third, thelanguage for specifying goalsto the OS agent is system independent, making
evolution or even radical change of the system transparent to the user.

OS agents may be viewed as a command-language extension mechanism, as are shell scripts [6].
However, to match the power of OS agents with shell scripts or conventional programs, a user or system
programmer would need to create programs to accomplish every conceivable user goal or combination
of gods. Furthermore, should a new system facility become available, each shell script would need to
be modified to use it. In contrast, once the OS agent knows about a new facility, that facility becomes
immediately availableto its planning process, and is automatically invoked to satisfy relevant user requests.

To achieve this functionality, an OS agent must be able to perform the following:
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¢ Dynamically synthesize a sequence of OS commands, system calls, or programinvocationsto accom-
plish a wide range of user goals.
We insist that the sequence be synthesized dynamically, instead of statically defined, because of the
large (potentiadly infinite) set of tasks the user can express. Furthermore, different circumstances
can dictate differing responses to the very same goal. The OS agent should dynamically choose the
appropriate actions based on the current system configuration. Thus, hard-coding the appropriate
responses ahead of timeisimpractical.

¢ Execute OS commands, recover from any unexpected failures, and automatically attempt alternative
methods for completing the task if necessary. For example, if the network crashes during a lengthy
file transfer, the OS agent should be able to restart the transfer, when appropriate, and even attempt to
retrieve the desired file from a different source, if necessary.

¢ Adapt to differing conditions, resources, and user tastes.
The OS agent has to be customized to itsindividual users and to conditionsprevailing in its operating
environment. To reduce disk utilization, for example, one user may prefer to compress ancient files,
another may wish to transfer files to a different disk, and a third may want to delete large postscript
files.

While designing and implementing an agent that meets these needs may sound difficult, in fact, the base
technology aready exists within two major areas of Artificia Intelligence (Al) known as planning and ma-
chinelearning [1, 21]. Inrecent years, concise a gorithmic descriptionsand public-domainimplementations
have become available, attesting to the maturity of the techniques[3, 18].

In thiswork, we are demonstrating the marriage of what may seem like strange bedfellows — Al and
operating systems— in order to add expressive power to the user's command interface. The organization of
this paper follows the two different viewpoints from which this work can be seen. In Section 2 we provide
ahigh-level description of the Al aspects of OS agents; thisincludes goa specification, planning of actions,
and representation of knowledge. We cannot hope to supply a comprehensive account of the relevant Al
technol ogy withinthispaper; instead, we present simpleexamplesthat givean intuitivefeel for the approach,
and provide pointersto the Al literature. We conclude Section 2 with adetailed comparison between the OS
agent approach and the traditional shell script or programming approach to command language extension.

In Section 3 we discuss our support for OS agents within Unix. A facility such as OS agents requires
specialized support from the operating system if it is to be effective and efficient. Specifically, OS agents
rely on event notification and general informational services. Since it isimpossibleto anticipate al types
of user requests, the underlying support system must be extensible, so that new types of information or
new events can be easily added. Thus, while some information and event services exist aready within all
operating systems, both through commandsand system calls, our goal wasto prototypeageneral, extensible
service on which OS agents could call for their needs.

Our implementation considers both distribution and heterogeneity; while the current implementation
and examples are in Unix, we are not depending on its specific properties. It is straightforward to link the
agents to other operating systems such as Mach, VMS, NT/Windows, etc.

Finally, Section 4 presents some performance measurements of the system, and Section 5 concludes.



2 An OSAgent for UNIX

This section describes the overal architecture and the components of the OS agent. At a high level, the
agent’s architecture is decomposed into the following modules:

e The Planner synthesizes sequences of OS commands to satisfy requests received from the user.
Commands to be executed are sent to the OS agent clerk.

¢ TheClerk handlesall interaction between the OS agent and itsexternal environment, including inter-
node communication (via RPC), command execution, status checking, and so on. The design and
implementation of the clerk is described in Section 3.

In thefirst subsection below, we present examples of the goa language to indicate how a user could specify
gods. Then, we present the planner’s algorithm and explain the formal guarantees we can make regarding
the planner’s operation.

2.1 TheGoal Language

This section provides examples illustrating the expressiveness of our OS agent’s goa language, and then
explains how the OS agent interprets and satisfies user requests. Note that while we are concerned with
what the user can say to the OS agent, we do not believe that the language we present here has the right
form. Coating the language with syntactic sugar, and linking it to a graphical user interface, are topics for
future work.

The simplest request to the OS agent is to immediately respond to an external event. For instance, the
following command instructs the agent to detect when a user named Neal becomes active on any machine,
and initiate atalk session with him.!

(request (talk ?self neal) :when (active.on neal ?machine))

In general, such requests have two components: an action designation and alogical expression that denotes
under what circumstances the action(s) should be executed:

(request <action>* :when <l ogical expr>)

The request need not employ a primitive action such ast al k. The triggered action may be a high-level
god initsdf:

(request (disk.util.below disk-1 70%
when (not (disk.util.below disk-1 80%))

The agent is thus instructed to reduce the disk utilization via all the means at its disposal including
compressing files, moving them to under-utilized disks, sending irate messages to system users, etc. In
many cases, such requests are conveniently specified as constraints:

!Variable names begin with “?’ asin ?sel f or ?2machi ne.



(rmaintain (disk.util.below disk-1 75%)
Constraints are often universally quantified. For example:

(maintain (forall ?file (parent.directory ?file /papers/sosp)
(protection ?fil e group.readabl e)))

Thisrequest instructsthe OS agent to make sure that all thefilesin thedirectory / paper s/ sosp aregroup
readable. Finally, note that temporal constraints such as “satisfy once, at midnight” or “repeatedly, during
the next ten days’ can be associated with each request. Defaults are used when, as above, the tempora
constraints are not specified explicitly. The default for standard requests is “do this once, now” and the
default for mai nt ai n requestsis”dothisalways.” Below, we explain howthe OS agent satisfies high-level
user requests.

2.2 ThePlanner

The OS agent’s planner maps user requests to appropriate sequences of OS commands. The inputs to the
planner are logical models of the OS commands at itsdisposal, and a user request. The modelsare currently
provided by the system manager. Although not yet incorporated into our implementation, algorithms exist
for automatically learning and refining classes of action models(e.g., [7, 12, 19]). Furthermore, sophisticated
users can add their own models.?

The planner’s goal is based on the user’s original request. Planner goals are quantified conjunctions
of atomic propositions. Each atomic proposition in the goal is referred to as a subgoal. For instance, the
planner's goa may be to retrieve all 1993 tech reports from a remote site and print them locally, which
would be expressed as follows:

(forall 2file (machi ne ?fil e cs. stanford. edu)
(parent.directory ?file /pub/trs)
(creation-date ?fil e ?date)

(year 7?date 1993)
(printed ?file ?printer))

To satisfy thisgoal, the OS agent has to access the remote machine, retrieve the desired files, reformat
them, select the appropriate local printers, and print the files.

Givenagoal, the planner dynamically synthesizesa sequence of OS commandsthat will satisfy the goal
(this sequence is called a plan) and invokes the clerk to execute the plan. To dynamically generate a plan,
the planner has to represent the available OS commands. The representation ought to answer (at |east) two
fundamental questions about each command:

¢ Under what conditionswill the command execute successfully?
The answer isa set of necessary conditions for including the command in a plan, which are referred

2\We expect both users and managers at different sites to share command models, so we do not expect the one-time burden of
encoding OS commandsin this language to be onerous.



to as preconditions. For instance, the preconditions for the command | pr paper . ps are that
paper . ps exist in the current directory, that it be readable by the OS agent, and so on.

¢ What isthe effect of executing the command?
Werefer to the effects of acommand asits postconditions. The postconditionof | pr issimply tosend
thefile to a printer. Other commands have multiple postconditions(e.g., f t p changes the OS agent’s
current directory, shell, and machine) or postconditions that provide the OS agent with information,
rather than changing the system’s state (e.g., we tellsthe OS agent about afile's length).

An action model can be viewed as a generalization of a Prolog inference rule to allow for multiple
postconditions, universal quantification, and state change. The precise syntax and semantics of our action
representation language are described in [10], and a sampl e action model appearsin Figure 1.

Narme: (WC ?fil e)

Preconds: Postconds:
(i sa fil e. obj ect ?fil e) (character.count ?file !char)
(isa directory.object 2dir) (word. count ?fil e 'word)
(name ?fil e ?nane) (line.count ?file !'line)

(parent.directory ?file ?dir)
(protection ?fil e readabl e)

Figure 1: Planner representation of the UNIX command we which provides the character, word, and line
count of a file. The preconditions uniquely designate a file and ensure that the file is readable. The
postconditions record the information gained by executing the command. The counts returned by wc are
bound to thevariables! char, ! word, etc.

The basic planning process proceeds as follows. The planner maintains a data structure representing
its plan. Initially, the plan contains a set of unsatisfied subgoals corresponding to the original input goal.
To derive the plan, the planner repeatedly chooses a subgoal to satisfy and searches for an action with a
postconditionthat unifieswith thesubgoal. Once such an action is chosen, the planner insertsit into theplan,
adding its preconditions to the list of subgoals “to be satisfied.” The planner then starts another iteration
of its cycle, choosing a new subgoal to satisfy, and so on. Some subgoals may be satisfied by the current
system state, or by actions already inserted into the plan. The planner notices this by keeping a model of
the system’s state, checking whether a subgoa is aready satisfied, and recording that fact. Planning can
necessitate backtracking. The planner may pursue a particular plan only to find that it contains a critical
flaw. For instance, it may plan to retrieve files from a particular machine and only then redize that its
account on that machine has expired and that the machine does not support anonymousf t p. In essence,
the planner carries out a backward-chaining search of the sort we might seein aProlog engine. The planner
is finished when it arrives at a plan where each action’s preconditions are satisfied, and which brings the
system to a state where the input goal is satisfied.

There are several more subtle aspects to the planning process. First, actions that change the system’s
state can interact. For example, if the planner decidesto execute f t p, it will put itself inthef t p subshell,
and thus won’t be able to execute commands such as gr ep, wc, etc. However, if the planner exitsthef t p
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subshell it won't beableto do | s remotely, and so on. The planner has to order its actions appropriately to
avoid harmful interactions and take advantage of useful ones. Second, due to the sheer size and dynamic
nature of the system’s state, the planner’smodel isnecessarily partial or incomplete. Asaresult, information
necessary for planning may be unknown to the planner (e.g., what isthe protection on thefile paper . ps).

Space precludes a comprehensive discussion of our planning algorithm (see[1, 5]). However, wewould
like to emphasize that planning is well understood as a search problem. Modern planning algorithms are
provably (see[18]):

e complete: if aplan exists, the planner will find it, and

¢ sound: if the planner outputs a plan, that plan is guaranteed to achieve itsgoal.

These formal guarantees do not ensure that the planner is efficient. However, we have not found efficiency
to be a problem in practice (see Section 4). The planner accepts control heuristics, specified in a high-level
language, which constrain the planner’s search by instructing it to ignore options, to prefer certain options
over others, etc. These heuristics can be hand-coded or generated automatically via machine learning
techniques |9, 17].

When the planner decides to execute acommand, it sends a message to its clerk detailing the command
and its arguments. The clerk responds with a message indicating whether the command was executed
successfully and what information was obtained (e.g., alist of file names in the case of | s). If execution
fails, the planner has the option of retrying the failed command at some later time, choosing an aternative
command, or entering a debugging mode in which the planner attemptsto determine the source of the error
and to prevent it from recurring in the future. Thisflexibility enables the planner to choose the appropriate
response to different types of execution failures.

System-dependent information is localized in the clerk, so the rest of the OS agent is invariant across
different operating systems.®> The results of execution may not be immediate. The agent may be forced
to wait for an exogenous event (i.e., an event outside of the agent’s control) before acting. If so, the clerk
assumes responsibility for detecting when the event occurs and immediately informing the planner about it.
The clerk’s internals are described in Section 3.

2.3 0OSagentsversus Standard Utilities

It isinstructive to compare OS agents with more standard methods of system extension, namely shell scripts
and shell languages. Although a competent system programmer could write an application or shell program
to satisfy many of the individual requests we have listed, OS agents have a number of advantages:

e The programmer would need to write a program for every composite goa that a user might wish
to express, whereas the OS agent accepts arbitrary logical combinations of primitive subgoals and
automatically decomposes them into their constituents.

JOf course, the caveat to this statement is the planner’s command models, which may vary in subtle ways from one system to
another.



¢ Theprogrammer could attempt to devel op aset of primitive programs and expect the user to compose
them, relying on a mechanism such as Unix pipes. However, this approach would yield afacility far
less powerful than OS agents, which would still burden the user with programming the OS command
interface.

¢ Shell programs are committed to a rigid control flow, determined a priori by the programmer. Yet,
writing programs that anticipate and adapt to al possible changes in system environment, error
conditions, and so on, is extremely difficult. In contrast, once a user specifies a goa, the OS agent
dynamically generates a sequence of commands to satisfy it, fluidly backtracking from one option to
another based on information collected at run time. The OS agent’s response to a particular goal can
change, depending on transient system conditions (e.g., printer-3 isjammed).

¢ We cannot expect the system programmer to modify his shell programs to suit each individual user.
Thus, the burden of customizing a potentialy large collection of programswouldfall on theindividual
user, asis the case with existing applications. In contrast, the OS agent’s control heuristics provide
a natural and flexible means of customizing the agent’s backtracking search to different users. For
example, the agent could learn that whoi s never finds a particular user’s acquaintances, and save
time by abstaining from that command. Simple, but effective, heuristics of this sort can be generated
automatically using machine learning techniques[9, 17].

¢ Toenableshell programsto utilizeanew command, or anew application, the programmer would have
to change all programsthat might potentially use the command. In contrast, model s of new command
or tools can be easily added to the agent’s database as they become available. More important, given
logical command models describing a new application, the agent can immediately begin to access the
application and incorporate this capability into all of its plans, for al user goals.

¢ Finally, in the absence of the event notification services provided by our clerk, shell programs are
reduced to frequent and expensive polling (or infrequent but unreliable polling) to notify the user
about events of interest.

To illustrate the extensibility of our approach, consider the goal of finding a user’s e-mail address given his
name (a common goal for our agent). To do this, the agent employsmodel s of the obviousfacilities, such as
finger and whoi s, aswell as more esoteric heuristics, such as searching for the user’'s name on bboards,
in bibliography files, and in old mail messages. Recently, we discovered the net find facility distributed
by the University of Colorado [20]. We added three command models to our agent’s repertoire, and it is
now able to utilize net find to locate users. The addition of this capability required only addition of the
command modelsfor net find to the database, no programming; yet, net find can now be used as part of
the plan to satisfy any goal. Furthermore, given the BNF of our command-model language, and definitions
for the predicates we use, programmers can encode models of their applications and make the applications
directly available to the OS agent.

In short, although one can imagine building a shell script or system program that exhibits some of
the above features for specific, individua tasks, our agent provides them as genera facilities available to
support arbitrary tasks in a uniform and extensible manner. Furthermore, the agent is poised to leverage
new advances: as new learning and planning a gorithms become available, we can plug them into the agent
improving its competence.



3 System Support for OS agents

The previous section described the OS agent’s planning capability, which ultimately issues requests to the
operating system. In this section we examine the operating system server that supports those requests.
At a high level, there are various classes of requests that the planner might make, each of which has its
requirements; for example, the server must be able to supply information requested by the planner, it
must be able to notify the planner of events that occur, usually asynchronously, and it must be able to
mani pul ate operating system objects. Furthermore, it must be able to handle such requests in a distributed
and heterogeneous environment.

The most obvious implementation, and in fact the one used by our first prototype of OS agents, was
to rely completely on an existing operating system command interpreter (viz. a Unix shell). There are
two problems with this approach. First, someinformation is not available through the command interface.
Second, certain kinds of constraint or monitoring requests will require repeated polling at the command
level, and over a network, this can result in unnecessary message overhead, particularly when severa OS
agents are requesting the same information from one site. Although one can reduce the polling rate, this
resultsin delayed notification. Thus, whileacommand interpreter can provide many of the functions needed
by OS agents, solereliance on acommand interpreter isinsufficient and potentially expensivein adistributed
environment. We describe a more genera and extensible implementation bel ow.

3.1 Prototype Server: Goalsand Structure

The goals of our prototype implementation described here are twofold: (1) to provide a structure capable of
handling distribution and heterogeneity, and (2) to provide support for extending the system to respond to
new types of queries. It isthis second objective that we describe in more detail in this section. We expect
that as users become accustomed to a goal-oriented facility such as OS agents, they will think of new kinds
of goasto express, some of which will require special operating system “hooks.” Thus, we have designed
a general -purpose mechanism to support the addition of such hooksto the operating system.

Figure 2 showsthe high level organization of the system, most of which has been previously described.
As aresult of the planning function, the planner generates a set of requests for the clerk, using standard
procedure calls. The clerk isthen responsiblefor handling all interactions with the external world, whichis
done through RPC callsto OS agent servers on its node and on other nodes. In turn, the OS agent servers
interact with the operating system through standard system call s and commands where possibl e, and through
extended mechanisms and abstractions where necessary. By defining aclerk/server interface based on RPC,
and locating in the server all of the operating system interface functions, we support both distribution and
heterogeneity: distribution because a clerk can communicate with both local and remote serversin the same
way; heterogeneity because the RPC interface is standardized and machine independent.

3.2 Operating System Extensionsfor OS agents

This section presents the structure and the abstractions we have used to support the needs of OS agents
within Unix. Our objective was to support general event signalling for OS agents, and to allow flexible
system modification in order to provide additional information where needed. Such modification would be
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Figure 2: Structure of the OS agent

permitted only to a trusted person, such as a system manager. Our approach has much in common with the
approach used by performance monitors and debuggers [16, 4]; in fact, our mechanism could be used to
support such facilities aswell.

Event Specification

From the point of view of the operating system, an “event” usually signifies a change of state within the
system, for example, a user enters a character, a file is modified, a kernel procedure is invoked, etc. We
determine in our design, a priori, the types of events that we believe are useful for the purposes of an OS
agent. Thus, “file modification” is an example of an event type. We expect the set of event types to change
slowly over time. In contrast, event instances of interest, such asthe modification of aparticular file, change
constantly.

In response to user requests, the OS agent clerk makes RPC callsto appropriate OS agent servers. Each
server translates a clerk request into a set of event notification demands that the kernel is expected to fulfill.
The server indicates itsinterest in a specific event instance by making a privileged system call that can only
be made by trusted principals. We refer to this mechanismsas “ setting atrigger” and indicateit as an arrow
labeled Set Trigger in Figure 2. By setting a trigger, the operating system and the OS agent server enter
into a contract, whereby the system guarantees to notify the server each time that particular event instance
occurs. Utilization of network and processor resources are consequently kept to modest levels, as both clerk
and server threads block waiting for the kernel to signal the event.

OS agent servers can limit the frequency of notification by specifying additiona constraints that have
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to be satisfied before notification occurs. For example, rather than requesting notification each timeafileis
modified, a server can confine itsinterest to cases where the file size grows beyond a specified threshold.
We refer to these additional constraints as “predicates,” which are boolean expressionsthat evaluate to true
or false.

Though the current prototype does not implement this, our design allows the server to patch short code
sequences into the kernel, to be executed when particular kernel events occur. Consider the following
example of its use: an OS agent server could cause code to be executed inside the kernel, perhaps incre-
menting a counter or setting aflag, each timeaparticular kernel procedureisinvoked. The operating system
mechani sm needed to do thisisstraightforward and has been used in the past to add performance probes[11]
or device drivers [22] dynamically to arunning kernel.

To summarize, event specification by OS agents is facilitated by three mechanisms. First, we define a
relatively static set of event types. Second, OS agent servers, which are considered trusted, can dynamically
express an interest in specific instances of these event types. The specific instances of events will depend
on the requeststhat OS agent servers receive from their clerks. Third, weinclude a mechanism for patching
small server-supplied code sequencesinto the kernel to signal specific event occurrences. Such code would
be supplied by a trusted system person: it is arelatively heavyweight operation, so we do not expect new
pieces of code to be installed very frequently.

3.3 An Example Implementation

To test the feasibility of our ideas, we modified a DEC Ultrix kernel to provide support for an OS agent
server. The framework presented in the previous section is sufficiently general to accommodate complex
requests from OS agent clerks. However, most current clerk requests can be satisfied by a subset of the
functionality outlined above. Currently, our implementation only provides support for setting triggers on
specific “i-nodes’; this allows us to be notified on logins, for example, by watching a specific system file
modified by login. Thus, one way of viewing the current event notification facility is as a generalization of
“watchdogs’ [2], an earlier system permitting watchpoints on files.

In our implementation, the OS agent server runsas a privileged process that receives RPC requestsfrom
aremote OS agent clerk. The clerk’s RPC request is blocked from proceeding until the server determines
that the request is complete. A clerk request translates into a set of constraints or predicates that need to be
satisfied; based on those predicates, the server issues commands or arranges if necessary for kernel event
notification.

Kernel event notifications typically involve simple constraints, for example, with respect to the mod-
ification or access time of i-nodes. Depending on the complexity of the request, the server may need to
make further queries after notification to ensure that additiona constraints are satisfied. We rely on the
server to ensure complex constraint satisfaction, rather than placing complex constraintsin thekernel. This
reduces the code executed in the kernel, and often a single event with a simple predicate meets the partial
requirements of multiple user requests. In practice, a large number of OS agent requests can be readily
handled with our current implementation.

There are situations, however, where our implementation might affect performance. For example, on a
DEC Ultrix system with no quotasin effect, it isdifficult to enforcefile sizelimits; every filewritecall could
potentially exceed the disk limit, thus the OS agent server could be repeatedly awakened on false alarms.
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Again, thisis tied to the decision to evaluate complex predicates in the server. Therefore, for efficiency
reasons, some predicates such as this one are better evaluated in the kernel, at the cost of some additional
kernel code complexity.

The Ultrix OS agent is an ongoing effort and additional triggers will be added as it matures. In the
interest of expedience, our implementation makes some simplifications, and we have not yet invested any
time in performance tuning. However, our experiments are real enough that we believe in the genera
structure, and we feel that extending the functionality and implementing it on other platforms would pose
no major hurdles.

4 Performance Analysis

Now that we have seen the basic planning cycle of the OS agent and the implementation of its server, this
section presents some measurements to show the time involved in satisfying some example requests. Our
objective is simply to indicate that a mechanism such as OS agents is practical; obviously users would not
be satisfied with a powerful but slow agent that takes 5 minutesto accomplish atask that the user cando in
2 seconds today.

Following are measurements from our prototype. As noted in the previous section, no effort has been
made to optimize our clerk. Furthermore, the Al components of the agent consist of approximately 15K
lines of lisp code. We could easily achieve substantial speedup by re-coding the Al portions of the system
inC.

Table 4 shows the time required by the Ultrix agent to satisfy a set of sample user goals. The agent is
running on a lightly loaded 25 MHz DECstation 5000/200. The times are broken down into Planner time
and Clerk time, where the Clerk time is further subdivided into time spent issuing system calls and time
spent on event notification. The first goal simply translatesto an upt i me command, executed remotely on
machi ne- 1; the second goal requires the agent to identify Draper’s userid and home machine utilizing
thenet find facility, thelocal st af f di r database, or finger , then beep when Draper becomes active on
her machine. The mai nt ai n goal requires the agent to detect that the disk utilization exceeds 75%, and
to respond by compressing postscript files, deleting old backup files, and moving certain directories to a
different disk. We report the time to detect that the disk utilization is too high and to rectify the problem.
Finally, the agent registersitsinterest in the file TR-93-03-22 at aremote site. When the clerk detects that
the TR isavailable, the agent retrieves thefile with anonymousf t p, printsit locally, and monitorsthe print
jab to ensure completion. We report the time from TR availability to print initiation.

Agent Goa Planner time Clerk time Total

system calls | notification

(find-1oad m1 ?l oad) 051 1.29 - 1.80
(contact alicen draper) 137 183 0.01 321
(rmaintain (disk.util.below disk-1 75)) 182 271 0.01 454
(retrieve TR-93-03-22) 2.52 3.19 0.05 5.76

Table 1: Sample Goal Satisfaction Times (in seconds of real time); the numbersiillustrate that, even in our
unoptimized prototype, OS agents do not impose an exorbitant performance penalty on the user.

12



Althoughinvoking the agent isclearly slower than directly executing the equivalent shell commands, the
performance penalty is modest. Thetable suggeststhat our implemented agent’s performanceisreasonable,
asit stands, but how will its running time scal e with various parameters, such as the number of commands
known to the agent, the number of event types, the number of “active” event instances (or triggers), and so
on?

We anticipate that the number of event types will not increase significantly, but the number of triggers
could become large during some periods. To test the effect of kernel triggers, we experimentally loaded the
system with a number of background processes, each of which setsatrigger and is periodically notified by
the kernel. We then examined the response time effect, both to a process making direct queries to the OS
agent server, and to several user-level commands. The query process saw only a 300 uis decrease in response
time to its server requests when the system was loaded with 50 processes and triggers. Our user requests
saw no change in elapsed time (as reported to the nearest second by thet i me command) at that level, but
with 64 trigger processes, t i me reported a 1 second increasein responsetimefor a Latex of this paper. We
believe as aresult of these basic tests that the performance impact of triggersis not significant.

As the agent increases in sophistication, the number of predicates, commands, and objects (e.g., files,
hosts, users) it knowswill increase substantialy. However, thisdoesnot necessarily imply that the agent will
slow down. Recall that to satisfy a user goal, the agent searches the space of plans (i.e., legal combinations
of known commands) in adirected fashion. To satisfy each goal, the agent considers al the operatorswhose
postconditions unify with that particular goa. If we bound the number of such operators by b, and bound
plan length by d, then Planning timeis O (4¢). In many cases, the number of known commands can increase
substantially without increasing & or d. While some goals, such as locating a user’s e-mail address, can
require trying many alternatives, many other goalsdo not: cd isthe operator for changing directories, nmv is
the operator renaming files, etc. Search-control heuristics aso serve to reduce b, often guiding the agent to
the small set of commands likely to satisfy itsgoa. Ultimately, the agent’s planning speed depends on the
amount and quality of search-control heuristics at its disposal. If the agent is provided with (or is able to
automatically learn) adequate control knowledge, we can expect the performance to remain nearly constant
as the agent increases in sophistication and knowledge.

5 Conclusions

We have described the philosophy, design, and implementation for OS Agents, a goal-oriented operating
system command mechanism that uses Al planning techniques to satisfy its objectives. With OS agents, a
user can request that the system carry out a complex action, and the system will automatically determine
the steps needed to carry out that request. Since planning is done dynamically, the agent is capable of
responding to changes in the system’s state and configuration. Our current implementation is based on
Unix, but in the framework of a distributed and potentially heterogeneous environment.

The agent metaphor has become popular recently [8, 13, 15, 14], however OS agents differ sharply
from this body of work in severa ways. We have successfully incorporated well-understood Al planning
algorithmsinto our agent, yielding aflexible and extensible system as discussed in Section 2.3. The precise
descriptions of the planning algorithm and operator representation language in [10, 18], combined with
the discussion in this paper, suffice to replicate our implementation and experimenta results. In addition,
the OS agent’s normal operation is rife with learning opportunities. Algorithms aready exist for learning
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control heuristics by analyzing past successes and failures [9, 17], and automatically generating logical
models of actions based on experiments and by observing human users[7, 12, 19]. In future work, we plan
to incorporate these agorithmsinto the OS agent and investigate their performance in the Unix domain.

We have aso described the integration of the OS agent facility within Unix. An OS agent server is
responsible for interfacing to the system, issuing commands, invoking system calls, and setting triggers
on internal system events of interest. We have provided some privileged support within Unix so that the
agent can express interest in particular system states without requiring polling or privileged access. The
mechanism also alows a trusted person to dynamically add additional event types to the system in support
of OS agent queries.

We believe that a facility such as OS agents will permit users to issue increasingly powerful requests.
As experience is gained, users will imagine new types of queries and requests that may require information
or event signaling not originally envisaged by the system designers. For this reason, designers of future
operating systemsintended to support such afacility should think seriously about the information and event
signaling needs, and should anticipate the need for system extension in support of user requests.
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