
Fast Data Breakpoints

David Keppel

3 May 1990, revised 14 April 1993

UW CSE TR# 93-04-06

Abstract

Debuggers allow a user to halt a program and ex-

amine its state. The debugger stops execution when

some user-speci�ed condition is satis�ed: Code break-

points halt program execution when a particular in-

struction is executed. Data breakpoints halt program

execution when a variable is referenced. Code break-

points are supported directly in hardware on most

machines and are fast. Data breakpoints, however,

are notoriously slow. This note describe how data

breakpoints can be made fast.

1 Introduction

Debuggers provide commands that allow the pro-

grammer to halt a program and examine it's state.

The most common command is a code breakpoint,

which halts the program when execution reaches a

certain instruction. Some debuggers also support

conditional breakpoints which evaluate an expres-

sion whenever a certain instruction is reached and

halt the program only if the expression evaluates to

true [Kes90]. Some debuggers provide data break-

points, which halt the program whenever a variable is

referenced; conditional data breakpoints halt the pro-

gram when a variable is referenced and an expression

evaluates to true.

Data breakpoints (and conditional data break-

points) are notoriously slow. Using data breakpoints

typically slows execution by several orders of magni-

tude, which makes execution too slow to allow debug-

ging of even small programs. Data breakpoints are

slow because debuggers typically implement them by

executing one instruction, evaluating the condition,

Please address corre-

spondence to the author at pardo@cs.washington.edu or at

the University of Washington, Department of CS&E, FR-35;

Seattle, Washington 98195

then executing one more instruction, then reevaluat-

ing the condition, and so on. Single-stepping a pro-

gram generally involves at least one trap to the oper-

ating system, and, typically, half a dozen protection

domain crossings.

Fast conditional breakpoints save many protection

domain crossings by evaluating some debugger code

in the context of the debuggee. Fast conditional

breakpoints suggest a way that data breakpoints

can be implemented more e�ciently [Kes90, Wah92]:

Each load and store instruction is patched with a

jump to code that performs a test. The debugger

is restarted if an \interesting" address is accessed.

Although this mechanism is faster, it still requires

patching, and thus slowing, of every memory refer-

ence instruction.

Here we suggest using page protection mechanisms

to patch memory reference instructions lazily. The

page that holds the interesting variable is access-

protected so that accesses to the page cause a trap.

An accessible copy of the page is placed elsewhere in

the address space. If the variable spans pages, then

all of those pages are access-protected and remapped.

When a memory reference instruction accesses a pro-

tected page and traps, the instruction is then patched

with a jump to code that evaluates whether the \in-

teresting" variable is being accessed. This implemen-

tation of data breakpoints has two features: First,

instructions are patched only when they reference

\close" to the interesting variable; most patching

is thus avoided. Second, instructions are patched

only once. Thus, each memory reference instruction

causes at most one trap.

The remainder of this note is organized as fol-

lows: Section 2 provides background on other mech-

anisms for performing data breakpoints. Section 3

gives more detail on the design presented here. Sec-

tion 4 illustrates the idea with an example. Section 5

considers related issues, such as setting multiple data

1



2 BACKGROUND 2

breakpoints, code patching issues, and the lifetime

of variables and the resulting e�ects on data break-

points. Finally, Section 6 summarizes and concludes.

2 Background

There are many ways of implementing data break-

points. Here we consider some of them:

� Native Hardware: Some processors, such as

the Intel 80386, have registers that can be set

to cause a trap when certain memory locations

are referenced. Other systems, such as the

Connection Machine CM-5, have bits associated

with each word of memory;

1

the bits can be

set to cause a trap when a particular word is

referenced [Cor91]. Although hardware is typi-

cally fastest [Wah92], it also the most machine-

dependent. Further, machines such as the 80386

can only check a small number of breakpoints: it

is not possible to set breakpoints simultaneously

on 10 locations.

� Simulation: The program is run on a vir-

tual machine. For each instruction that refer-

ences memory, the simulation executes code that

checks the e�ective address, which is the data

address being referenced. If the e�ective address

matches a breakpoint address, simulation stops

and the debugger is restarted. Simulators are

typically 5 to 50 times slower than native hard-

ware [Bed89, CK93], plus the cost of checking

memory operations.

� Single Stepping: Each instruction is checked

before it is executed. If the instruction references

memory and the e�ective address matches a

breakpoint, the user is noti�ed. Else, the instruc-

tion is executed, then the debugger examines the

next instruction and so on. Data breakpoints

implemented this way are typically slower than

simulation because single-stepping typically re-

quires many protection boundary crossings.

� Trap Patch: Each memory reference instruc-

tion is replaced with a trap to the debugger. This

1

The CM-5 bits are actually associated with each 32 bytes

(4 words) of memory. Either distinct variables must be

segregated in to di�erent 32-byte regions, or the memory

bits are used to implement virtual memory with very small

\pages" [RHL

+

93] and, thus, infrequent traps to the operat-

ing system.

improves over single stepping because typically

only about 30% of instructions are memory ref-

erence instructions, and only a third of those are

writes.

� Virtual Memory: Page(s) with breakpoint

variables are reference-protected. References to

other pages run at full speed. References to pro-

tected pages cause a trap to the debugger, which

evaluates the condition.

2

If execution contin-

ues, either the program is single-stepped with

pages unprotected, or the debugger simulates the

instruction. Virtual memory improves over

trap patch because only some of the mem-

ory reference instructions cause traps. However,

some memory reference instructions can still trap

frequently.

� Condition Searching: A search breakpoint is

inserted so that execution stops when the pro-

gram is half done. When the search breakpoint

is reached, the condition is checked. If the con-

dition has not yet been reached, the program

state is checkpointed and execution continues.

If the condition has been reached, execution is

restarted from an earlier checkpoint, with a new

search breakpoint set between the previous and

current search breakpoints. Condtion searc-

ing can run the program at or near full speed

while it is making forward progress [WM89]. Us-

ing a binary search means that if interrupts and

checkpointing halves the execution speed, the

overall slowdown will be at most a factor of four.

The scheme as described above is essentially

impossible to implement, because it is gener-

ally hard to decide where to put search break-

points in order to stop \half way" between two

search points. It is also impractical because half

the program is executed before any breakpoint

checks are performed. Thus, a better imple-

mentation periodically interrupts the program

and checks the condition.

3

Initally, interrupts

and checkpoints are performed at small intervals,

with the interval growing if the program runs for

a long time without backing up. When the pro-

gram is backed up and restarted from an earlier

checkpoint, the interrupt/checkpoint interval is

reduced. Eventually, the interval is small enough

2

Alternatively, the trap handler may evaluate the condi-

tional instead of the debugger [Wah92].

3

In some circumstances, it may be preferable to instrument

the code so that it performs polling.



4 AN EXAMPLE 3

that interrupt/checkpoint overhead is very high

cost, but the total number of instructions to be

executed before a breakpoint is so small that the

real execution time is still small.

Condition searching only works for certain

kinds of data breakpoints, those in which a con-

dition goes true and stays true for the remainder

of the program.

� Code Patch: Each instruction that references

memory is patched with a jump to a new code

fragment, called a displaced handler. The dis-

placed handler �rst checks the data breakpoint

condition and halts the program if necessary.

Otherwise, the displaced handler simulates the

displaced instruction and jumps to the logi-

cal succesor of the displaced instruction. Code

patching su�ers from three problems: First, it is

potentially hard to �nd all memory reference in-

structions. Second, it may be expensive to patch

all such instructions. Finally, the cost of test-

ing is paid by all memory reference instructions,

even though most instructions don't reference

the interesting memory.

3 Patch On Trap

This note proposes a scheme, patch on trap, based

on lazy code patching. Patch on trap incorpo-

rates ideas from code patch and virtual mem-

ory. There are several observations about each

scheme: First, code patch has high startup for �nd-

ing and patching memory reference instructions. Sec-

ond, code patch has an overhead for each memory

reference, whether or not it references \interesting"

memory. Third, virtual memory has low overhead on

references that miss \interesting" memory, but a high

overhead per execution for instructions that reference

data on the same pages as breakpoint variables.

Patch on trap uses virtual memory primi-

tives [AL91] to perform patching lazily: memory ref-

erence instructions are patched only if they actu-

ally reference a protected page. Like code patch,

the reference instruction is replaced with a jump in-

struction to a displaced handler that evaluates the

conditional and simulates the displaced instruction.

Unlike code patch, the displaced instruction can-

not be simulated in a straightforward way, because

the breakpoint page is reference-protected. There-

fore, the reference-protected page is remapped to an

otherwise unused address and memory references are

transliterated by the displaced handler.

Note that in principle, write breakpoints need only

write-protect the page, so that reads can run without

trapping and patching. However, if virtual aliasing

is a problem, then both reads and writes must be

displaced.

Patch on trap proceeds in three steps: First,

the page with the breakpoint variable is reference-

protected and remapped to a new part of the address

space. The program is then started. The second step

happens when the program references a protected

page: The debugger is invoked and it generates a dis-

placed handler and patches the memory reference in-

struction with a jump to the displaced handler. The

program is then restarted. The third step happens

each time the patched instruction is executed: execu-

tion jumps o� to the displaced handler, which checks

the memory reference. If it satis�es the breakpoint

condition, then the debugger is restarted. If the con-

dition is false, then execution continues. The code

displaced handler simulates the displaced instruction

by checking the e�ective address. If the reference

would go to the protected page it is instead redirected

to the page at its new mapping address. Otherwise

the memory reference simply completes.

4 An Example

This section walks through an example to make the

discussion more concrete. Suppose we want to trace

memory location 0x53 and stop when it reaches the

value 777. Since the breakpoint condition depends on

changes to the traced memory location, only writes

need to be patched and redirected. If the breakpoint

condition were instead to break whenever the value

777 is read from the location, then both reads and

writes would need to be redirected.

The �rst step proceeds as follows: 0x53 is on page

zero, so that page is remapped as read-only and a

writable copy is mapped at some other location, say,

page 8, starting at location 0x8000. 0x53 is therefore

\shadowed" at 0x8053. The �rst step is then done

and the program is (re)started.

Suppose the instruction store r1, 4(r0) causes

a protection fault. The instruction is then patched

with a jump to a new displaced handler, shown in

Figure 4. The trapping instruction is restarted, but

now it executes a branch to the displaced handler.

When the displaced handler is invoked, it checks



5 OTHER ISSUES 4

// Handler for "store r1, 4(r0)",

// checks writes to address 0x53,

// stops if value to write is 777.

if PAGE(4+r0) == 0 then

// Translate page 0 address

// to a page 8 address.

tmp = 4 + r0 + 0x8000;

if 4+r0 == 0x53 and r1 == 777 then

breakpoint();

endif

*tmp = r1

else

// Any page other than page 0.

*(4+r0) = r1

endif

jump to next instruction

Figure 1: Example displaced handler

the e�ective address: If it goes to a page other than

page zero, then the write simply completes. If the

write goes to page 0, the e�ective address and con-

ditional are checked. If the e�ective address is 0x53,

and if the new value is 777, then the displaced han-

dler causes a breakpoint. If no breakpoint is needed,

the write is transliterated to page 8. Execution then

continues at the instruction following the displaced

instruction.

Although the above handler is more expensive than

the original store instruction, it is probably a dozen

instructions in the common case.

4

Further, only some

memory reference instructions are patched; most run

at full speed.

When the breakpoint is deleted, the displaced in-

struction is replaced, clobbering the branch instruc-

tion. The displaced handler is deallocated, page zero

is mapped as read/write, and the page 8 duplicate is

removed.

4

This estimate ignores condition codes. However, many

RISC processors lack condition codes and some RISC proces-

sors can update condition codes cheaply. Further, condition

codes rarely span memory reference instructions, and thus can

be clobbered freely. Finally, even if saving and restoring con-

dition codes is \expensive" doing so is still typically cheap

compared to alternative implementations of data breakpoints.

5 Other Issues

5.1 Multiple Breakpoints

There are at least two ways to implement brekpoints

on multiple locations. One alternative is to have each

displaced handler check each possible breakpoint ad-

dress. However, each handler then checks for all pos-

sible writes, even if the particular instruction only

tends to write to one breakpoint page.

Another alternative is to apply lazy breakpoints to

displaced handlers. Each handler checks breakpoints

for one page. If the reference is o� that page, the

handler blindly performs the write. The write may

fault, causing the displaced handler's write instruc-

tion to be patched with a branch to a new handler.

This recursive application of breakpoints builds a dis-

placed handler chain, with each handler in the chain

handling one page.

When a breakpoint is removed, several schemes are

possible. One is to simply remove all handlers for

the application instruction and let it rebuild the dis-

placed handler chain. Another alternative is to splice

the particular handler out of the chain. The latter

approach is probably preferred where handlers are

inserted and deleted automatically by the debugger

(when, e.g., watching stack frames).

5.2 Limits On Insertion

Code patch only works in some cases. For example,

displacing a memory reference instruction must free

up enough space that a jump instruction can be put

there. In general, this requires help from the com-

piler. There are many other cases that need careful

attention [Kes90].

5.3 Stack Variables

Variables that allocated on the stack pose several

challenges. First, the debugger must ensure that

breakpoints to the variable have the same lifetime

as the variable itself. Second, each time the variable

is allocated it may appear at a new location. Finally,

there may need to be multiple breakpoints if there

can be several simultaneous invocations of the func-

tion.

For variables that are purely local, code patch is

probably the preferred implementation, since there

are a small number of write instructions (limited by

the procedure size) and the code patching need be

performed only once. Lazy patching performs badly



7 ACKNOWLEDGEMENTS 5

because breakpoints must be added and deleted at

each call and return, and because page protections

must be changed frequently.

When stack variables are exported to called pro-

cedures, lazy patching again becomes a reasonable

choice because it is easier to patch memory references

lazily.

If lazy patching is used, it is probably important

to allocate each stack frame (at least each that uses

a breakpoint) to use disjoint pages. Otherwise, ref-

erences to local variables in a called routine will be

very likely to su�er protection faults, code patching,

etc.

5.4 Breakpoint Lifetimes

Global and function-allocated variables have a well-

de�ned lifetime. It is harder to set breakpoints on

heap-allocated variables because they can be allo-

cated and freed at arbitrary times and the memory

can be reused for another variable.

If the variable has a well-de�ned destructor, then

setting a breakpoint on the variable can also set an

update point in the destructor. When the object is

freed, the update point removes the breakpoint.

Some allocators free objects implicitly so that,

e.g., freeing the root of a graph frees the entire

graph [Han90]. In these cases, the debugger may need

some \deep" understanding of the memory allocator

in order to determine when the object is being freed.

5.5 Named Breakpoints

The discussion so far has assumed a straightforward

mapping from variable name to memory address.

This is not always the case in the face of e.g., garbage

collection.

6 Summary

Data breakpoints are useful, but notoriously slow.

This note sketches out the technique patch on trap

that patches memory reference instructions and uses

lazy code patching to perform the patching on de-

mand. Lazy code patching reduces overhead com-

pared to other code patching techniques, because only

some instructions are patched. It also reduces over-

head because it checks accesses only to pages that

are actually referenced. The patch on trap tech-

nique also reduces overhead compared to trapping-

based breakpoint schemes, because only some mem-

ory reference instructions cause traps, and those that

do require traps cause at most one trap per break-

point.

7 Acknowledgements

Thanks to Robert Bedichek for discussing these ideas.

References

[AL91] Andrew W. Appel and Kai Li. Vir-

tual Memory Primitives for User Pro-

grams. Proceedings of the Fourth Inter-

national Conference on Architectural Sup-

port for Programming Languages and Op-

erating Systems (ASPLOS-IV), page 96,

1991.

[Bed89] Robert Bedichek. Some E�cient Architec-

ture Simulation Techniques. Winter '90

USENIX Conference, pages 53{63, 26 Oc-

tober, 1989.

[CK93] Robert F. Cmelik and David Keppel.

Shade: A Fast Instruction-Set Simulator

for Execution Pro�ling. Technical Report

(in preparation), Sun Microsystems Lab-

oratories, Inc. and University of Washing-

ton, 1993.

[Cor91] Thinking Machines Corporation. The

Connection Machine CM-5 Technical

Summary, 1991.

[Han90] David R. Hanson. Fast Allocation and

Deallocation of Memory Based on Object

Lifetimes. Software|Practice and Expe-

rience, 20(1), January 1990.

[Kes90] Peter Kessler. Fast Breakpoints: Design

and Implementation. Proceedings of the

ACM SIGPLAN '90 Conference on Pro-

gramming Language Design and Imple-

mentation; SIGPLAN Notices, 25(6):78{

84, June 1990.

[RHL

+

93] Steven K. Reinhardt, Mark D. Hill,

James R. Larus, Alvin R. Lebeck,

James C. Lewis, and David A. Wood. The

Wisconsin Wind Tunnel: Virtual Proto-

typing of Parallel Computers. ACM SIG-

METRICS, May 1993.



REFERENCES 6

[Wah92] Robert Wahbe. E�cient Data Break-

points. Proceedings of the Fifth Interna-

tional Symposium on Architectural Sup-

port for Programming Languages and Op-

erating Systems (ASPLOS-V), pages 200{

212, October 1992.

[WM89] Paul R. Wilson and Thomas G. Moher.

Demonic Memories for Process Histories.

Proceedings of the ACM '89 Conference

on Programming Language Design and

Implementation (PLDI), pages 330{343,

June 1989.


