
An Automatic Veri�cation Technique for

Communicating Real-Time State Machines

�

Sitaram C. V. Raju

Department of Computer Science and Engineering

University of Washington

Seattle WA 98195

sitaram@cs.washington.edu

Abstract

We describe an automatic veri�cation technique for distributed real-time systems

that are speci�ed as Communicating Real-Time State Machines (CRSMs). CRSMs

are timed state machines that communicate synchronously over uni-directional chan-

nels. The proposed approach is to model the behavior of the system of (an expressive

subclass of) CRSMs by a timed reachability graph. The system behavior of CRSMs is

characterized by a time-stamped trace of communication events. We provide a decision

procedure for verifying timing and safety properties (speci�ed in a notation based on

Real-Time Logic) of the reachability graph, and hence of the corresponding system

of CRSMs. We also present a condition for the existence of deadlock in a system of

CRSMs. Finally, we briey describe an implementation of a veri�er program based on

the above algorithms.

Keywords | automatic veri�cation, deadlock, model checking, reachability, real-time,

requirements speci�cation.

1 Introduction

The distinguishing characteristic of a hard real-time system is that it must be temporally

as well as functionally correct. Subtle timing or functional errors in a real-time system can

potentially cause loss of life or can be hazardous to the physical environment. To cope with

such problems, formal methods [1, 3, 5, 7, 9] have been developed to specify real-time systems

and to verify their properties.

�

This research was supported in part by NSF under grant number CCR-9200858.

1

In this paper, we describe an automatic veri�cation technique for distributed real-time

systems using Communicating Real-Time State Machines (CRSMs). CRSMs, introduced in

[11], are an executable scheme for specifying the requirements and design of both a real-time

system and its physical environment. CRSMs are timed state machines that communicate

synchronously over uni-directional channels. A CRSM can have data variables that are local

to the machine (i.e., not shared), and do arbitrary computations on the variables. Every

CRSM has a partner clock machine that provides a timeout mechanism and can be queried

for the value of current time. System behavior is characterized by the time-stamped trace

or history of communication events between the machines. Desired properties of the system

behavior, including safety and timing constraints, are expressed as properties on the trace

of communication events.

In an earlier work [10] we described a toolset consisting of a graphical editor, a simulator

and an assertion checker for prototyping and testing CRSMs. The assertion checker tests for

violations over the simulation trace only, i.e., it is not an exhaustive veri�cation technique

1

.

This work addresses the shortcomings of the simulator/testing approach by developing an

automatic veri�cation method for a restricted model of CRSMs. The restrictions of the

model are:

1. using discrete time instead of continuous, or dense, time

2

.

2. restricting the values of data variables of CRSMs to a �nite set (as opposed to un-

bounded integers or oating point variables for example).

The veri�cation approach is based on model-checking: We represent all possible behaviors

of the system of CRSMs by a �nite timed reachability graph. By proving timing or safety

properties of the reachability graph we prove the same property of the corresponding system

of CRSMs.

The main di�erence between this work and other related work on automatic veri�cation

of �nite state real-time systems is that our novel speci�cation model, namely CRSMs, is

more expressive. For example, both the structure of transitions and the use of clocks in

CRSMs are very general as explained in the section on related work (Section 7). We believe

that the expressive power of CRSMs will enable us to specify and verify more complex and

interesting real-time systems.

The principal contribution of this paper is a method of generating a �nite reachability

graph for a system of restricted CRSMs. Generating a reachability graph for real-time

systems (and for CRSMs in particular) is not trivial because the global state of the system

includes a time component, and hence the �niteness assumption is not necessarily true. We

1

Automatic veri�cation of models as powerful as CRSMs (equivalent to Turing machines) is undecidable.

2

The original model of CRSMs [11] uses continuous time, but the simulator for CRSMs [10] uses discrete

time because it simpli�es some of the implementation details. The choice of discrete time was fortuitous

because the use of continuous time will make automatic veri�cation impossible. Also, the original CRSM

model assumes that every machine spends a minimum time � in every state.

2

also provide a decision procedure for verifying timing and safety properties of the reachability

graph. The properties are speci�ed in an assertion language that is a programming extension

of Real-Time Logic (RTL) [6]. The assertion language was �rst presented in [10], and was

shown to be useful for checking properties of a trace of simulation events. By using a common

assertion language for both simulation and veri�cation we gain an important advantage:

The entire system, which can be too complex to verify (because it is not �nite state), can

be simulated and the simulation trace tested for timing/safety properties (see [10]); and

by focusing on a small but critical portion of the system, which is �nite state, the same

properties that were tested on the simulation trace can now be veri�ed.

Since the deadlock problem is critical in real-time applications, we present a condition

for the existence of deadlock in a system of CRSMs. The condition can be checked in every

node of the reachability graph to identify the subset of CRSMs that are deadlocked forever.

The rest of the paper is organized as follows. In the next section, we present the CRSM

model. Section 3 describes the construction of reachability graphs. In section 4 we present

the decision procedure. The condition for the existence of deadlock is given in section 5.

Section 6 describes current and future work. Section 7 discusses related work.

2 CRSM: An Informal Introduction

As an example to describe the CRSM model we use a variation of the mouse clicker system

from [11]. The main variation is that the mouse CRSM is more elaborate. The description

of the system is:

A mouse sends down (D) and up (U) clicks to a recognizer. The mouse clicks

correspond to a user depressing the mouse button and releasing the mouse button

respectively. The recognizer uses the times between D and U signals to decide

if it should send a single click (SC), a double click (DC) or neither signal to a

handler. If the time between the D and U events is � 10ms then it is a single

click. A double click is two single clicks separated by an interval � 5ms. Double

clicks do not overlap and they override single clicks.

The CRSM model is a distributed one, except for a single shared variable representing the

current time. CRSMs are timed state machines that run concurrently except when they need

to communicate. Machines communicate synchronously (as in CSP [8]) and instantaneously

through messages over uni-directional channels. The set of machines for the mouse clicker

and its physical environment is shown in Figure 1. The Mouse and Handler machines describe

the behavior of the physical environment and the Recognizer machine describes the real-time

system. There are four channels: D, U, SC and DC.

Figure 2 shows the CRSMs for the Mouse, Handler and Recognizer. The CRSM for the

Handler is shown as a simple state machine; an alternative is a more elaborate machine that

3

D

U

SC

DC
HandlerRecognizerMouse

Figure 1: Global view of mouse clicker system

processes the single and double click events. A machine has a �nite number of states, one of

which is designated as the start state. State transitions are guarded commands and consist

of a guard, a command, and a time interval. The guard is a Boolean expression constructed

from constants and local variables of the machine. A transition is ready for execution if its

guard evaluates to true. If more than one transition is ready to �re, then a selection is made

non-deterministically. A command can be one of input, output, or internal command.

The Mouse uses the output command U ! and the Recognizer uses the input command

U ? to communicate with each other. The communication occurs when both the Mouse and

the Recognizer are ready, i.e., it is a synchronization signal. A channel can have message

components. For example,

temperature(integer centigrade)

When input (say, temperature(deg)?) and output (say, temperature(32)!) occur on the

channel, the e�ect of the IO is the assignment

deg = 32

at the receiving machine.

The time interval associated with IO transitions denotes the earliest and latest time IO

can occur after entering the state. Suppose Mouse enters the state up at time t

up

. Then the

Recognizer must accept the input on channelD somewhere in the time interval [t

up

+5; t

up

+9]

Otherwise, the Mouse machine will be deadlocked and can make no further progress. The

common cases of a true guard and the time interval [0,1] are omitted for the sake of brevity.

Also, the interval [t,t] is represented simply as [t].

An internal command can be a sequential program (C language syntax is used in this

paper) that changes the values of local variables, and/or it can denote a physical activity.

The time of an internal command represents the best and worst case execution time of the

command. In the Mouse machine, the internal command get x toggles the value of local data

variable x between 5 and 10 (Note: All variables are initialized to 0). This value is used as

the time interval ([x;1]) on the succeeding transition to generate the U event. This trick,

which is a form of parameterization of the system, generates U event at di�erent times.

4

down

up

DC?

SC?

U? [0,10]

timer? [5]

SC![0]

home

U? [0,10]

RECOGNIZER

MOUSE

h1

d1

U?

timer? [10]

D? [0,5]

DC! [0] SC! [0]

U?

timer? [10]

D?

HANDLER

get_x

D! [5,9]

 } else {

 }

} [0]

{ if (x == 10) {

 x = 5;

 x = 10;

U! [x,]

Figure 2: CRSMs for Mouse, Handler and Recognizer

5

Every CRSM has a discrete-time clock machine that can be queried for the value of

current time over the timer channel. The Recognizer uses

timer? [10]

to obtain a timeout after spending 10ms in state d1 and no IO has occurred on channel

U. If the timeout and U event occur simultaneously then one of them will be chosen non-

deterministically

3

. Current time can be retrieved, say in the variable t, by a call: timer(t)?

2.1 Formal Model of CRSMs

We now present a more formal description of CRSMs with our restrictions. In the rest of the

paper by CRSMs, we mean our restricted CRSMs, and not the CRSMs as de�ned in [11]. A

CRSM is a tuple (S; S

0

; V; I;O;R;C; T), where

� S is a �nite set of states

� S

0

2 S is the start state

� V is a �nite set of integer valued variables. Each variable v 2 V has a �nite range of

values. Also, each variable v is initialized to 0.

� I is a �nite set of input channels, including the timer channel

� O is a �nite set of output channels

� R is the discrete-time clock machine that is associated with the CRSM. R is always

ready to do IO on the timer channel.

� C is the union of all input, output and internal commands of the CRSM.

� T � S � S � B(V) � A(V) � A(V) � C is the set of transitions. B(V) is the set of

Boolean expressions composed from V and constants. A(V) is the set of non-negative

integer valued expressions composed from V and constants.

All CRSMs start in their respective start states at time 0. At time t

k

a CRSMm

i

changes

state from s to s

0

using a transition of the form (s; s

0

; b; a

1

; a

2

; c). The guard b, which is the

enabling condition, must evaluate to true in state s. The e�ect of command c, which can be

one of input, output or internal, is as described in the previous section. If c is an internal

command then its execution time must be an integer in the interval [a

1

; a

2

]. If c is an IO

command then its partner CRSM (say m

j

), with whom m

i

is doing IO, must also do an IO

3

When generating the reachability graph (Section 3), however, all possible execution paths, or behaviors,

of the system must be considered. In this case the corresponding node in the graph will have two successors:

one for the timeout event and another for the U event.

6

transition at time t

k

. Let the corresponding transition of CRSM m

j

be (s

j

; s

0

j

; b

j

; a

1

j

; a

2

j

; c

j

).

Let t

s

be the time CRSM m

i

entered state s and let t

s

j

be the time CRSM m

j

entered state

s

j

. Then the two intervals

[t

s

+ a

1

; t

s

+ a

2

] and [t

s

j

+ a

1

j

; t

s

j

+ a

2

j

]

must overlap so that IO can happen, and t

k

is the earliest possible communication time given

by the formula:

t

k

= max(t

s

+ a

1

; t

s

j

+ a

1

j

) (1)

The external behavior of a system of CRSMs is given by a trace of IO events:

(I

0

; t

0

); (I

1

; t

1

) : : : (I

i

; t

i

)

where, for each (I

i

; t

i

), I

i

is an IO command that has completed at time t

i

, and t

i

� t

i+1

for

all i � 0.

We avoid the case where time stops advancing by disallowing a cycle of transitions that

can be traversed in zero time. A simple way of avoiding this pathological case is by ensuring

that the time bounds of all commands is non-zero. Note that in Figure 2 even though state

h1 has self-loops with the default time intervals [0;1], the synchronization requirement

with the Recognizer machine (Formula 1) ensures that the time spent in state h1 is always

non-zero.

3 Constructing a Finite Reachability Graph

A reachability graph contains all possible states that can be reached starting from the start

state of the system. The nodes of the graph represent the global state of the system and the

edges represent transitions from one global state to another global state.

We �rst present the algorithm for constructing a �nite reachability graph for the case

where the lower and upper time bounds of a transition are constants (including 0 and 1).

In Section 3.2 we extend the algorithm to the case where the time bounds on transitions can

be arbitrary expressions.

To account for timing constraints on transitions, we augment a node of a reachability

graph with the time spent in each machine state. A node of a reachability graph consists

of :

1. current state of each machine

2. current values of local variables

3. time spent by each CRSM in its current state

7

b !
d ! [2,3]

p1

p2 p3

p4 q1 q2

a ? [2,3]

CRSM 1 CRSM 3

r1 r2

b ? [2,3]

a ! [1,]

c ! [1,]

d ? [1,]

CRSM 2
c ? [4,]

{x= (x+1) % 2} [1]

Figure 3: CRSMs example

For the system of CRSMs shown in Figure 3, a node of the reachability graph is the tuple

(s1, t1, x, s2, t2, s3, t3)

where,

s1: current state of CRSM 1

t1: time spent in current state of CRSM 1

x: value of variable x

s2: current state of CRSM 2

t2: time spent in current state of CRSM 2

s3: current state of CRSM 3

t3: time spent in current state of CRSM 3

The start node is (p1, 0, 0, q1, 0, r1, 0). Figure 4 shows the reachability graph for the system

of CRSMs.

We use the semantics of CRSMs to generate the successors of a node. Reference [11]

describes a simulation algorithm that serves as the operational semantics of CRSMs; the

algorithm chooses a single successor nondeterministically. We now present an extension of

the simulation algorithm. The extension is that instead of making a single nondeterministic

choice, all possible successors of a node are generated, i.e., all possible simulation scenarios

are considered. The new algorithm will prune away nodes that cannot be reached. Note that

some nodes cannot be reached because of timing constraints imposed on transitions. This

fact di�erentiates reachability algorithms for real-time systems from reachability algorithms

for concurrent (but untimed) systems.

The algorithm for generating all possible successors from a node is:

8

(p1, 0, 0, q1, 0, r1, 0)

(p2, 0, 0, q1, 2, r2, 0)

(p3, 0, 1, q1, 3, r2, 1)

(p1, 0, 1, q1, 5, r1, 0)

(p2, 0, 1, q1, 7, r2, 0)

(p4, 0, 0, q2, 0, r1, 2)

(p1, 0, 0, q1, 0, r1, 6)

(p4, 0, 0, q2, 0, r1, 8)

2,a

4,c

2,a

2,b

1

2,d

2,b

Figure 4: CRSMs reachability graph

Algorithm 1 (All Successors)

1. For each CRSM, �nd all possible next events.

2. Calculate the times of next events. If the next event is the completion of an internal

action with time bounds [t

1

, t

2

], then the actual execution time of the action can be

one of t

1

; t

1

+ 1; t

1

+ 2; : : : t

2

. If the next event is an IO then it is necessary to check if

it is an actual event, i.e., its IO partner must also be ready to engage in IO. Calculate

the communication time of the IO event according to Formula 1 (Section 2.1).

3. Compute the global earliest time among all possible next events.

4. From the possible next events �nd the set of events that can happen at the global

earliest time.

5. Determine all maximal matchings of the above set of events as follows:

(a) Construct a graph G = (V;E) from the set of events where the vertices correspond

to the CRSMs in the system and the edges correspond to the events. If there is

an IO between CRSMs c

i

and c

j

on channel chan, then there is an edge between

c

i

and c

j

labeled chan. If CRSM c

i

has an internal action inta, then there is a

self-edge on c

i

labeled inta.

9

chan2

c3
inta

c1

c2

chan1

Figure 5: Graph for �nding all maximal matchings

(b) Find all maximal matchings of graph G. (A maximal matching is E

0

� E such

that no two edges in E

0

share a common endpoint and every edge in E�E

0

shares

a common endpoint with some edge in E

0

.)

6. The events in each maximal matching are executed, and a successor of the current

node obtained.

To illustrate Step 5 of the algorithm consider a system of three CRSMs and let the

possible next events (at the global earliest time) in the current state be:

� CRSM c

1

can start executing internal action inta.

� CRSMs c

1

and c

2

can do IO on channel chan1.

� CRSMs c

2

and c

3

can do IO on channel chan2.

Figure 5 shows the graph; it has two maximal matchings fchan1g and finta, chan2g.

In the above algorithm, �nding all maximal matchings is intractable. This is established

by the following theorem.

Theorem 1 Finding all maximal matchings in a graph is NP-hard.

Proof: By restricting to the Minimum Maximal Matching (MMM) problem [4]. The MMM

problem is: Given a graph G = (V;E) and a positive integer K, is there a subset E

0

� E

with jE

0

j � K such that E

0

is a maximal matching ? To decide if an instance of MMM has a

solution, we simply run the all maximal matchings algorithm on graph G, and check if there

is any maximal matching with size � K.

�

Each edge in the reachability graph is assigned a weight that is the relative time of the

next event. Also, the edges are labeled with the channel names on which IO events have

occurred. This information is used by the decision procedure in Section 4.

When generating successor nodes, a node may turn out to be an instance of an earlier

(i.e., already generated) node. If the corresponding components of two nodes (i.e., states,

time values and data values) are the same then the nodes are instances of each other. Putting

the ideas in this section together, we obtain the following algorithm for constructing a reach-

ability graph.

10

Algorithm 2 (Reachability Graph Construction)

Construct N

start

the initial node of the graph, mark N

start

as an unexpanded node

While there are unexpanded nodes do f

Choose an unexpanded node, say N

Generate all successors of node N (Algorithm 1)

For each successor N

suc

of N f

If there exists a previously generated node (say N

prev

) such

that the corresponding components of N

suc

and N

prev

are the same

then

Add an edge from N to N

prev

else

Create a new node N

suc

, add an edge from N to N

suc

Mark N

suc

as an unexpanded node

g

Mark N as an expanded node

g

If a CRSM queries a discrete-time clock machine for the value of current time by a call

timer(x) ? (x is set to the value of current time), then the reachability graph is not �nite

because clock time is unbounded. In this case, only a partial graph can be generated; this

corresponds to �nding all behaviors of the system from start time until a �xed limit on

clock time. Even if the discrete-time clock machine is used only for the purpose of achieving

timeouts (e.g., the mouse clicker system), it is still not clear if Algorithm 2 will terminate,

because the set of unexpanded nodes may never become empty. Figure 4 illustrates this

point; the time in state q1 or state r1 increases monotonically with no end in sight.

In the sequel we assume that the discrete-time clock machine is used for doing timeouts

only. Note that this assumption follows from the earlier assumption that the range of values

of a data variable is �nite.

In Figure 3, after CRSM 2 has spent 4 time units in state q1, the exiting transition from

q1 cannot be taken (i.e., the machine is deadlocked). Also, after CRSM 2 has spent 4 time

units in state q2, it is ready to engage in IO on channel c whenever its partner (CRSM 1)

is ready. These examples suggest that there is a time (say threshold) associated with each

state of a machine, such that, after a machine spends threshold time units in the state, all

primed

4

IO transitions from the state either:

1. can perform IO whenever their partner is ready to engage in IO, or

2. can never perform IO because the upper time bound on the transition has been ex-

ceeded.

4

A transition is primed for execution if its guard evaluates to true.

11

We use this property to ensure that the timed reachability graph is �nite.

For a given transition with time bounds [l; u], de�ne the bound val of the transition to

be

bound val =

(

l if u = 1

u + 1 if u 6=1

For all exiting transitions i from a state, let threshold be

threshold = max(bound val

i

) (2)

For example, the threshold value for state p3 in Figure 3 is 4. We use the value `*' to denote

the case where the time spent in a state is � the threshold value for the state. Hence, the

possible values of time spent in a state are 0, 1, 2, : : : ,threshold-1, *.

Two nodes are de�ned to be instances of each other if the corresponding components

have the same value or if the corresponding times are both `*'. Nodes that are instances of

each other have exactly the same successors. This property is proved in Section 3.1.

Algorithm 3 (Reachability Graph Construction)

This algorithm is the same as Algorithm 2, except that the criteria for judging when a node

is an instance of another node is extended to include the value: *.

Figure 6 is the reachability graph for CRSMs of Figure 3 generated by Algorithm 3; it is

�nite.

3.1 Proof of Finiteness of Reachability Graph

In this section, we prove that the reachability graph generated by Algorithm 3 is �nite. We

�rst prove the following lemma.

Lemma 1 If two nodes, n and m of the reachability graph have the same values for corre-

sponding components (including `*'), then the nodes are instances of each other, i.e., they

have exactly the same successors.

Proof. The proof consists of showing that the trees rooted at nodes n and m in the reach-

ability graph are identical to each other. Let the components of n and m be

n : (s

n1

;d

n1

; t

n1

; s

n2

;d

n2

; t

n2

; : : : s

nk

;d

nk

; t

nk

)

m : (s

m1

;d

m1

; t

m1

; s

m2

;d

m2

; t

m2

; : : : s

mk

;d

mk

; t

mk

)

where s

n1

; s

m1

are the CRSM states, d

n1

; d

m1

are the data variables (the proof easily extends

to the case of an arbitrary number of data variables per machine), and t

n1

; t

m1

are the times

12

(p1, 0, 0, q1, 0, r1, 0)

(p4, 0, 0, q2, 0, r1, 2)

2,b 2,a

(p3, 0, 1, q1, 3, r2, *)

2,d

1

(p1, 0, 1, q1, *, r1, 0)

2,b

(p2, 0, 1, q1, *, r2, 0)

(p3, 0, 0, q1, *, r2, *)

2,d

(p1, 0, 0, q1, *, r1, 0)

2,b

(p2, 0, 0, q1, *, r2, 0)

(p3, 0, 1, q1, *, r2, *)

(p2, 0, 0, q1, 2, r2, 0)

(p1, 0, 0, q1, 0, r1, *)

4,c

2,d

(p4, 0, 0, q2, 0, r1, *)

1

1

2,a

4,c

Figure 6: CRSMs reachability graph (�nite)

w1 w2

n: m:

m’:

(sn1, dn1, tn1, snk, dnk, tnk)

(sn1’, dn1’, tn1’, snk’, dnk’, tnk’) (sm1’, dm1’, tm1’, smk’, dmk’, tmk’)n’:

(sm1, dm1, tm1, smk, dmk, tmk)

Figure 7:

13

spent in the current state. Note that s

n1

= s

m1

, d

n1

= d

m1

and t

n1

= t

m1

. Clearly, the

interesting case is when t

n1

= t

m1

= �.

We �rst consider the case of a successor node of n and m being generated by an IO

(say on channel a) between the machines whose current states are s

n1

and s

n2

respectively.

In node m the corresponding states are s

m1

and s

m2

. Figure 7 shows the nodes n, m and

their successors nodes. Figure 8 shows the relevant portions of the state diagrams of the two

machines. There may be other transitions from (and into) states s

n1

and s

n2

, but these are

not of interest and they are not shown. Figure 9 shows the corresponding machines of node

m. The values of t

n1

; t

n2

; t

m1

; t

m2

can be categorized into four cases :

1. t

n1

; t

m1

are between 0 and the threshold value for s

n1

, and t

n2

; t

m2

are between 0

and the threshold value for s

n2

. The time of IO on channel a is given by Formula 1

(Section 2.1). Since t

n1

= t

m1

and t

n2

= t

m2

it follows that the time of IO in Figures 8

and 9 will be the same.

2. t

n1

; t

m1

are between 0 and the threshold value for s

n1

, and t

n2

; t

m2

are � the threshold

value for s

n2

, i.e., t

n2

= t

m2

= �. Here, if l2 = 1 then machine 2 is ready to do IO

whenever machine 1 is ready to do IO. If l2 is �nite then since the threshold value is

greater than l2 (by de�nition), there can be no IO on a as long as machine 2 is in state

s

n2

. That is if IO can occur on channel a the IO time will be the same in Figures 8

and 9.

3. t

n1

; t

m1

are � the threshold value for s

n1

, and t

n2

; t

m2

are between 0 and the threshold

value for s

n2

. The reasoning here is similar to case 2 above.

4. The values of t

n1

; t

m1

, t

n2

and t

m2

are all equal to *. There are again four cases to

consider based on the values of k

2

and l

2

. The cases are:

(a) Both k

2

and l

2

are �nite. Since the threshold value of state s

n1

is greater than

k

2

, and the threshold value of state s

n2

is greater than l

2

, there can be no IO on

channel a.

(b) k

2

is �nite and l

2

= 1. Again, since the threshold value of state s

n1

is greater

than k

2

, there can be no IO on channel a.

(c) k

2

= 1 and l

2

is �nite. The reasoning here is similar to case (b) above.

(d) Both k

2

= 1 and l

2

= 1. This case cannot occur because it means that both

machines are ready to do IO on channel a. Hence the IO would have already

occurred from that state at an earlier time.

Based on the above we have shown that if IO between CRSMs 1 and 2 is the only possible

event to occur in nodes n and m, then s

0

n1

= s

0

m1

, t

0

n1

= t

0

m1

= t

0

n2

= t

0

m2

= 0, and the weight

of the edges w1 and w2 (which is the time of next event) will be the same. Now, d

0

n1

= d

0

m1

because the corresponding machines are performing outputs. Also, d

0

n2

= d

0

m2

because the

14

s
n1

a ! [k1, k2] a ? [l1, l2]

CRSM 1 CRSM 2

s
n2

Figure 8:

s

a ! [k1, k2] a ? [l1, l2]

CRSM 1 CRSM 2

sm1 m2

Figure 9:

value of the message component (if any) will be the same in Figures 8 and 9. Since the

remaining components of nodes n and m do not take part in a state transition, they will

remain in the same state and their times will be incremented by the weight w1, and converted

to * if the times are above a threshold.

We now consider the case of a successor node of n and m being generated by an internal

action, say intact. The start of an internal action is modeled by a transition (which takes

0 time) to a brand new state. The brand new state (say s

start

) signi�es that an internal

action is in progress. In state s

start

the completion of intact is the only possible event. It is

straightforward to show that in this case also, the successor nodes of n and m have the same

corresponding components.

It is possible for two or more events to occur simultaneously in a system. Step 5 of

Algorithm 1 determines the sets of events that can be executed to yield the successors of

the current node in graph. The reasoning presented above for the cases of IO and internal

events can be composed to show that if the same set of events happens in nodes n and m

then the successors of n and m will have the same corresponding components, and that the

weight on the edges will be the same.

We have shown that the successor nodes of n and m , say n

0

and m

0

, have the same

corresponding components. Hence, the above argument can be applied to n

0

and m

0

to show

that the successor nodes of n

0

and m

0

have the same corresponding components. Thus, by

induction on the level of subtree below n and m, it can be seen that the trees rooted at n

and m are identical to each other.

�

Theorem 2 The timed reachability graph is �nite.

15

Proof: The node of a reachability graph is a tuple and each element of the tuple is either

a state, or a value of a data variable, or time spent in a state. Each CRSM has a �nite

number of states and each variable has a �nite range of values. Lemma 1 shows that the

time values also have a �nite range, namely 0, 1, : : : threshold � 1, *, where threshold is a

�xed maximum value for a given state of a CRSM. Therefore the number of possible tuples

(or equivalently nodes) is �nite. Hence the timed reachability graph is �nite.

�

3.2 Extension to Expressions on Time Bounds of Transitions

Notice that the proof of �niteness of reachability graphs does not rely on transitions having

constant time bounds. The calculation of threshold value, however, depends on the transi-

tions having constant time bounds. We can permit an expression in a transition time bound

if the user can provide the maximum value of the expression. The maximum value can be

used to �nd the threshold value for the state. The maximum value can be checked during

graph construction and if the expression value exceeds the user given bound, an error can

be agged.

For example, in the mouse clicker speci�cation (Figure 2) the user can state that the

maximum value of lower time bound (x) from state down is 10. Hence, the threshold value

for state down is 10 (Formula 2). In this case since the expression is simply a variable the

maximum value of the expression can be deduced from the range of values of x and no user

intervention is required.

4 Decision Procedure

A key advantage of a �nite reachability graph is that algorithms can be developed for proving

properties of the graph and this implies proving properties of the original system of CRSMs.

An example of such a procedure is determining if all nodes in a reachability graph satisfy a

certain property, i.e., invariant checking.

Many logics have been proposed to express properties of real-time systems (for example

RTL[7], RTTL[9]). Decision procedures developed for these logics (or for a subset of these

logics) can be used to determine if our reachability graphs satisfy a given property. In this

section we specify properties using an assertion language that is a programming extension

of Real-Time Logic (RTL) [6]. The assertion language was introduced in [10], and was

shown to be useful for checking properties of a trace of simulation events. As mentioned

earlier (Section 1) the use of a common assertion language for simulation and veri�cation is

advantageous.

In the mouse clicker system a double-click must be emitted only when there are two

single-clicks that are separated by less than 5ms. The property is stated as an assertion that

must hold true over all possible traces of the system. In our syntax, the assertion is stated:

16

when DC

{

int tu1, tu2, td1, td2;

time("down", -1, &td1);

time("down", -2, &td2);

time("up", -1, &tu1);

time("up" -2, &tu2);

assert(td2-tu2 <= 10);

assert(td1-tu1 <= 10);

assert(tu2-td1 <= 5);

}

An assertion consists of two parts: a when clause and a C procedure. The when clause

speci�es when the assertion is to hold, i.e., be checked. An assertion can be checked when a

channel event occurs, or at a given time o�set from a channel event occurrence. The above

assertion will be checked whenever there is a communication on channel DC. The second part

of the assertion, the user-de�ned C procedure, gives the constraint. The constraint checking

procedure in the above assertion uses the prede�ned function time to get the relative times

5

(from the occurrence of the event on channelDC) of channel events, and then tests the values

(using function assert) to see if the desired relation holds. Assert checks if its parameter

evaluates to true. The assertion is true if all executed assert statements evaluate to true.

The relative times and values of message components of previous channel events can be

obtained by the following functions:

int time(char *channel, int ind, int *result);

int value(char *channel, char *�eld, int ind, int *result);

Function time returns the communication time and function value returns the values of

message components. The �rst parameter channel is the channel name. Parameter �eld in

the value function speci�es the desired message �eld. Ind is the event occurrence index.

Ind is always negative, and it refers to the ind

th

most recent occurrence of the event. For

example, an ind value of -1 refers to the last occurrence of an event. Result contains the

returned result. The functions return a value err if the desired event has not yet happened.

In the double-click assertion presented earlier, the times of the two previous down and

up events are obtained. Then the code checks there are two single-clicks (D and U separated

by 10ms or less), and that the single-clicks are separated by � 5ms. For example, consider

the following simulation trace,

: : : (D; 12); (U; 19); (D; 21); (U; 25); (DC; 25) : : :

5

There are some minor di�erences between the above assertion language and the one described in [10].

For example, the time function in [10] returns absolute time and not relative time.

17

start i

(a)

AIndex ! (i)

start i

BIndex ! (i)

(b)

AString ! (x) BString ! (x)i i

Figure 10: Transitions for strings A and B

start start

AIndex ? (inda) [1,]

AString ? (stra) [1,]

BIndex ? (indb) [1,]

BString ? (strb) [1,]

Figure 11: CRSMs 3 and 4

where the times are absolute times. The values of td1; td2; tu1 and tu2 are 4, 13, 0 and

6 respectively. For these values all three assert statements evaluate to true. Hence the

assertion is true for this particular trace.

The same assertion can be checked on a reachability graph. The reason is that the graph

is a compact �nite representation of all possible simulation traces of the system. A path in

the graph starting from the start state represents one possible simulation trace, or behavior,

of the system. If the assertion evaluates to true for all possible simulation traces of the graph

then the assertion is true for the graph, and hence for the system of CRSMs.

Finding all possible traces from the reachability graph can be done as follows. First every

edge (say from node n

1

to node n

2

) that is labeled with the channel event that triggered

the checking must be found. Alternatively, this information can be computed once and for

all when the graph is being created. From node n

2

start searching backwards and recreate

all possible simulation traces that lead up the to node n

2

. The simulation trace needs to

be recreated only so far into the past that the values of all time/value statements in the

assertion can be computed. If the assertion is to be checked at a time o�set from node n

2

,

then one needs to search forward from node n

2

and use the weights on edges to �nd every

state that can be reached at the time o�set. The simulation traces must be recreated from

each such o�set state.

Unfortunately, the presence of cycles in the reachability graph makes the veri�cation

problem undecidable. This is shown below.

Theorem 3 Verifying arbitrary assertions for a system of CRSMs is undecidable.

18

Proof Sketch: By reduction from Post's Correspondence Problem (PCP), which is known

to be undecidable. An instance of PCP consists of two lists : A = x

1

; x

2

; : : : ; x

m

and

B = y

1

; y

2

; : : : ; y

m

on an alphabet

P

. An instance of PCP has a solution if and only if there

is a �nite sequence of integers i

1

; i

2

; : : : ; i

l

such that x

i

1

x

i

2

: : : x

i

l

= y

i

1

y

i

2

: : : y

i

l

:

Given an arbitrary instance of PCP, we construct four CRSMs. CRSM 1 has a start

state, and for every string x

i

in A (note that a string can be encoded into an integer), add

a state i and two transitions shown in Figure 10a. Similarly, CRSM 2 has a start state and

for every string y

i

in B, add a state i and two transitions shown in Figure 10b. CRSMs 3

and 4 are shown in Figure 11. The following property checks for the absence of a simulation

trace where the concatenation of strings sent on channels AString and BString match.

when AString

f

int i, j, indexa, indexb, indicesmatch = true;

for (;;) f

i = -1;

for (j = -1; j>=i; j- -) f

value(\Aindex",\inda", j, &indexa);

value(\Bindex",\indb", j, &indexb);

if (indexa != indexb)

indicesmatch = false;

g

if (indicesmatch)

if (stringsmatch(j)) f /* does concatenation of strings on channels

AString and BString match ? */

assert(0); /* assert(false) */

g

i = i -1;

g

g

Thus, from an arbitrary PCP we have constructed a system of CRSMs and a property. It

is a straightforward exercise to show that the property is false if and only if the instance of

PCP has a solution.

�

Since the assertion language is in general undecidable, we identi�ed an expressive sub-

class (which includes the double-click property of the mouse clicker) whose satis�ability is

decidable. One restriction is to do away with loops in the assertion, i.e., the user de�ned

C procedure cannot contain loops. Also, we bound the number of times we traverse a cycle

in the reachability graph as follows: Let ind be the smallest index among all time/value

statements in the assertion, and let absind = jindj. We restrict the number of traversals

of a cycle in the reachability graph to a maximum of absind times. If a cycle in the graph

19

has been traversed absind times and not all time/value statements have been accounted for

then the property cannot be checked. With these restrictions the algorithm for checking

properties is as outlined earlier: from every trigger node search backwards and recreate all

possible simulation traces that lead up to the trigger node, and then evaluate the assertion

on all the traces.

5 Deadlock Detection

In this section we present a condition for detecting deadlock in CRSMs. As each new node

in the reachability graph is created, the condition can be used to identify the CRSMs that

are deadlocked in the node.

If the entire system is deadlocked then there is no next event, or successor state. This

condition is detected easily by the all successors algorithm (Algorithm 1, Section 3). It is

also possible for a subset of CRSMs in a system to be deadlocked. A CRSM is deadlocked

if none of the transitions in its current state can be executed. This can happen if for each

transition from the current state of the CRSM either:

1. the guard evaluates to false, or

2. the guard evaluates to true, the command is an IO, and the CRSM is unable to do IO

because the time it has spent in the current state exceeds the upper time bound on

the transition.

A more interesting case in shown in Figure 12a, where CRSMs m1 (in state s1) and

m2 (in state s3) are deadlocked waiting for IO on di�erent channels (a and b). To �nd

such deadlocked CRSMs we �rst represent the state of the entire system by a wait-for graph

G = (V;E). (Recall that a node of a reachability graph represents a particular system state.)

For each CRSM there is a vertex v 2 V . Each edge in the graph is de�ned as : if CRSM v

i

is waiting inde�nitely (i.e., its partner is not ready) to do IO on a channel c with CRSM v

j

,

then there is an edge, labeled c, from v

i

to v

j

. We show that a knot in the wait-for graph is

a su�cient condition for deadlock. (A knot K is a subset of graph G such that every vertex

in K is reachable from every other vertex in K, and no vertex outside K is reachable from

within K.) The wait-for graph for CRSMs in Figure 12a is shown in Figure 12b.

Theorem 4 A knot K in a wait-for graph is a su�cient condition for deadlock.

Proof. Consider the set of channels C on which the CRSMs in knot K are waiting to do IO.

By the de�nition of a knot, there are no edges out of K. Therefore all channels in C belong

to the CRSMs in K. So, no CRSM outside K can do IO on the channels in C. Hence all

CRSMs in K cannot progress further, i.e., they are deadlocked.

�

20

s2s1

m1

b !

a ! b ?

a ?

(a)

s3 s4

b

(b)
m2

m2m1
a

Figure 12: CRSMs and their wait-for graph

Note that a knot is not a necessary condition for deadlock. For example, consider a

system of two CRSMs, and, say that the guards on all transitions are not enabled. In this

case there is no knot in the wait-for graph, but the system is deadlocked nevertheless.

6 Current and Future Work

We have implemented a prototype veri�er program (in C++ on a Decstation 5000/125) based

on the theory described in the previous sections. A graphics editor has been developed for

creating CRSM speci�cations. The graphical representation is translated into a text form

that serves as the input to the veri�er. We have used the veri�er to check the mouse clicker

system (Section 2) and the tra�c-light controller described in [10]. For the mouse clicker

system the veri�er generates a reachability graph with 29 nodes in about 50ms. The double-

click property of the system (Section 4) and another property relating to single-clicks were

veri�ed. For the tra�c-light controller we checked properties relating to mutual exclusion,

delays and deadlines. Additional experimentation with more complex systems is planned

to determine the usefulness of our method and to understand the expressive power of our

assertion language. The details of the veri�er program will be described in another paper.

A concern with our veri�cation method (as with many other mechanical veri�cation

techniques) is that the reachability graphs may be too big for realistic systems. We are

considering techniques such as partial graph generation and minimal model checking [2] to

ameliorate the problem.

7 Related Work

We give a brief survey and comparison of veri�cation techniques for speci�cation methods

that are state machine based, because these methods are most closely related to our work.

The main di�erence between this work and other related work is that the CRSM speci�cation

scheme is di�erent; CRSMs cover some needs (of real-time systems) that other schemes do

not, as discussed below.

Modechart is a speci�cation language that partitions the state space of a real-time sys-

21

tem into modes. A veri�cation method for Modechart is presented in [7]. Unlike CRSMs,

Modechart does not allow IO events to have message components. Also, Modechart uses a

shared memory model (with broadcast for event communication), whereas CRSMs present a

distributed model. In addition, the time bounds on transitions in Modechart are constants,

whereas CRSMs permit arbitrary expressions.

Communicating Shared Resources (CSR) is a formalism that is also based on CSP. An

interesting aspect of CSR is that it permits the speci�cation of resource constraints (e.g.

CPU constraints) in a real-time system. A reachability analyzer for CSP is described in [5].

CSR appears to have no provision for performing computations in commands. Also, time is

not associated with IO.

Timed IO automata [3] have some similarities with CRSMs in that their transitions can

be one of input, output or internal actions, but the detailed de�nitions of transitions are

di�erent. For example, timed I/O automata are input enabled, which means that they are

unable to block inputs. This is in contrast with CRSMs, where inputs can be blocked until

the machine reaches an appropriate state. Also, we are not aware of a mechanical procedure

for veri�cation of timed I/O automata.

Timed Automata [1] is a speci�cation method that uses continuous, or dense, time instead

of discrete time. Another major di�erence between timed automata and CRSMs is that

timed automata do not permit data variables, and arbitrary expressions on time bounds of

transitions and assignment statements.

Finally, the new model of time in CRSMs (both for describing the passage of time and

for specifying timeouts) also distinguishes the model from the ones listed above.

Traces are used for reasoning about the behavior of general systems in [8], and for real-

time systems in [3, 10, 11]. Our method of reasoning with traces is noteworthy because it is

based on RTL. RTL is particularly well suited for real-time systems because it deals directly

with event times and can di�erentiate multiple occurrences of the same event.

8 Conclusions

We have described an automatic veri�cation technique for CRSMs. The approach is to

create a reachability graph that represents all possible behaviors of the system, and to use

the graph to verify timing and safety properties of the system. The graph is also used to

detect deadlock in CRSMs.

We have a prototype implementation of a veri�er program. The veri�er along with

the simulator program described in [10] can be used to prototype, simulate/test and verify

distributed real-time systems as follows: The entire real-time system, which may not be

�nite state (and therefore is di�cult to verify), is simulated and tested. Next small (but

critical) portions of the system, which are �nite state, are veri�ed.

22

Acknowledgements

I thank Prof. Alan Shaw, my advisor, for numerous fruitful discussions. I also thank Becky

Callison, Travis Craig, Ricardo Pincheira, Alan Shaw and Rakesh Sinha for their helpful

comments on the paper.

References

[1] R. Alur and D. Dill, \The Theory of Timed Automata", Real-Time: Theory in Practice,

Proc. REX Workshop, LNCS 600, pages 45-73, Springer-Verlag, June 1991.

[2] R. Alur et al., \An Implementation of Three Algorithms for Timing Veri�cation Based

on Automata Emptiness", Proc. IEEE Real-Time Systems Symp., pages 157-166, IEEE

Computer Soc. Press, Dec 1992.

[3] H. Attiya and N. A. Lynch, \Time Bounds for Real-Time Process Control in the Pres-

ence of Timing Uncertainty", Proc. IEEE Real-Time Systems Symp., pages 268-284,

IEEE Computer Soc. Press, Dec. 1989.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness, W. H. Freeman and Company, 1979.

[5] R. Gerber and I. Lee, \A Layered Approach to Automating the Veri�cation of Real-Time

Systems", IEEE Trans. on Software Eng. 18,9, pages 768-784, Sept. 1992.

[6] F. Jahanian and A. Mok, \Safety Analysis of Timing Properties in Real-Time Systems",

IEEE Trans. on Software Eng. 12, 9, pages 890-904, Sept. 1986.

[7] F. Jahanian and D. A. Stuart, \A Method for Verifying Properties of Modechart Spec-

i�cations", Proc. IEEE Real-Time Systems Symp., pages 12-21, IEEE Computer Soc.

Press, Dec 1988.

[8] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall International, 1985.

[9] J. S. Ostro�, \Real-Time Temporal Logic Decision Procedures", Proc. IEEE Real-Time

Systems Symp., pages 92-101, IEEE Computer Soc. Press, Dec 1989.

[10] S. C. V. Raju and A. C. Shaw, \A Prototyping Environment for Specifying, Execut-

ing and Checking Communicating Real-Time State Machines", TR 92-10-03, Dept. of

Computer Science and Eng., University of Washington (submitted for publication).

[11] A. C. Shaw, \Communicating Real-Time State Machines", IEEE Trans. on Software

Eng. 18,9, pages 805-816, Sept. 1992.

23

