
Building Counting Networks from Larger Balancers

�

Technical Report #93-04-09

Edward W. Felten Anthony LaMarca Richard Ladner

Dept. of Computer Science and Engineering

University of Washington

Seattle, WA 98195

U.S.A.

April 30, 1993

Abstract

We introduce a generalization of the counting networks of Aspnes, Herlihy, and

Shavit [AHS91]. Our counting networks are constructed using k-balancers, rather than

the 2-balancers of Aspnes et al. For reasonable values of k, k-balancers and 2-balancers

can be implemented with equal e�ciency on existing computers. Our k-bitonic networks

have depths ranging from O(1) to O(log

2

w), where w is the number of inputs to the

network. The depth of our networks varies with the choice of k; choosing the optimal

k depends on a tradeo� between the desire for a shallow network and the desire for low

contention.

We present the k-bitonic construction, prove its correctness, and introduce some

useful variations to the construction. We then compare the performance of our networks

with the networks of Aspnes et al., using simulation of idealized counting networks. Our

networks perform at least as well in all cases, and typically have throughput about 25%

higher than the networks of Aspnes et al.

1 Introduction

Recent years have seen the introduction of shared-memory parallel computers with both

larger numbers of processors and relatively longer latencies to access memory. Algorithms

for multiple processor coordination are especially important on machines with these char-

acteristics, and as a result interest in coordination algorithms has increased.

�

This material is based upon work supported by the National Science Foundation (Grants CCR-8619663,

CCR-9108314, CCR-9123308, and CCR-9200832), the Washington Technology Center, Digital Equipment

Corporation (the External Research Program and the Systems Research Center), and Apple Computer

Company. Felten was supported by an AT&T Ph.D. Scholarship and a Mercury Seven Fellowship. LaMarca

was supported by an AT&T Ph.D. Scholarship. Part of the research was done while Ladner was at Victoria

University of Wellington, New Zealand.

1

The usual approach to coordination is to serialize access to shared data by using a lock.

While much work has been done to optimize the performance of locking [And90, MCS91],

these techniques still su�er from memory contention, since the processors are forced to

serialize through a single memory location. The e�ect of contention grows as the number

of processors increases, and as memory latencies become relatively longer.

The cost of contention has motivated the search for low-contention coordination algo-

rithms, which require relatively few processors to access any one memory location. Counting

networks, which were originally de�ned by Aspnes, Herlihy, and Shavit [AHS91], are one

such mechanism. Counting networks are acyclic networks of shared objects called balancers.

Counting networks can be used to build shared counters, producer/consumer bu�ers and

distributed queues, none of which require synchronization on a single shared location. Due

to their low contention, counting networks o�er a potential advantage in performance over

traditional synchronization techniques.

1.1 Balancers and Counting Networks

A counting network is a network of objects called balancers. Abstractly, the balancers coop-

erate to route tokens through the network. In practice, a counting network is a linked data

structure made up of data objects representing balancers, and the tokens are represented

by processors traversing the linked structure.

A balancer behaves like a two-input, two-output toggle. Tokens arrive arbitrarily on the

balancer's two input wires and the balancer outputs tokens alternately on the �rst and then

the second output wire. Let X

0

and X

1

denote the input wires and Y

0

and Y

1

denote the

output wires. If i tokens have passed through a balancer, d

i

2

e tokens have left the balancer

on output wire Y

0

and b

i

2

c have left on output wire Y

1

.

A balancing network of width w is formed from a group of balancers by connecting the

outputs of some balancers to the inputs of other balancers in an acyclic fashion. There are

exactly w balancer input wires which remain unconnected. These w input wires are the

input wires of the balancing network. Similarly, there are exactly w unconnected balancer

output wires which form the output wires of the balancing network. Let x

i

be the number of

tokens that have entered on the counting network's ith input wire and let y

i

be the number

of tokens that have exited on the counting network's ith output wire. We say a balancing

network is quiescent if no tokens are in the network. A counting network is a balancing

network which has the step property. The step property says that in any quiescent state,

0 � y

i

� y

j

� 1 for any 0 � i � j < w.

Apnes, Herlihy and Shavit presented the bitonic counting network construction [AHS91]

based on Batcher's bitonic sorting network [Bat68]. A bitonic network with w input wires

has depth O(log

2

w)

1

; that is, a token must pass through O(log

2

w) balancers to tra-

verse the network. Recently Klugerman has presented alternative constructions with depth

O(logw log logw) and O(C

log

�

w

logw) [Klu91, KP92]. While these new constructions rep-

resent an asymptotic improvement in counting network depth, the constants are too large

1

All logarithms are base 2 unless otherwise speci�ed

2

B
2

B
2

B
2

B
2

B
2

B
2

B
4

B
4

B
4

B
4

B
2

B
2

B
2

B
2

Figure 1: The bitonic network of width 4, and the k-bitonic network C

4

(8). B

k

denotes a

k-balancer.

to make these networks practical. The original bitonic construction still performs best in

all practical situations.

The focus of our work has been to improve the depth of counting networks, while

retaining their practical viability. We begin by presenting k-balancers, a generalization of

the original balancers. Intuitively, a k-balancer behaves like a k input, k output toggle. On

existing machines, k-balancers are no more expensive in time or space than the traditional

2-balancers, unless k is so large that it cannot be represented in a single machine word.

We then present a construction for building counting networks from k-balancers. Our

k-bitonic construction is a generalization of the original bitonic construction. This new

construction allows us to trade o� depth for contention, independent of the width of the

network. Depending on the choice of k, our networks have depth ranging from O(1) to

O(log

2

w). Large values of k yield shallow networks with high contention; small values of k

yield deep networks with low contention. Optimally balancing these two factors yields the

network with the highest throughput.

In addition, we use simulation to explore the e�ects of width, depth and contention

on the throughput of counting networks. Our simulations show that the extra degree of

freedom available in the k-bitonic construction provides approximately a 25% performance

improvement over the bitonic construction, for simulations of several hundred processors.

2 K-Balancers

A k-balancer is a device with k input wires and k output wires. Intuitively, a k-balancer

behaves like a k-input, k-output toggle. Tokens arrive at arbitrary input wires and the

3

k-balancer outputs the tokens on the output wires in a cyclic fashion from the �rst output

to the kth. Let x

i

denote the number of tokens that have arrived on the k-balancer's i

th

input wire, and y

i

denote the number of tokens output on the k-balancer's i

th

output wire.

The formal properties of k-balancers are:

1. In any state

P

k�1

i=0

x

i

�

P

k�1

i=0

y

i

. (A k-balancer never creates tokens.)

2. Given that any �nite number of tokens

P

k�1

i=0

x

i

have arrived at the k-balancer, the

k-balancer reaches a quiescent state (a state in which

P

k�1

i=0

x

i

=

P

k�1

i=0

y

i

) within a

�nite amount of time. (A k-balancer never consumes tokens.)

3. In any quiescent state, 0 � y

i

� y

j

� 1 for any 0 � i � j < k (The output has the

step property.)

In actual implementations of balancers, the toggle state is represented with a word of

memory and the output wires are represented with pointers. Balancers can be manipulated

in two di�erent ways. If the architecture being used provides synchronization primatives

such as Fetch&Increment or Compare&Swap, these instructions can be used to directly

manipulate the balancer's state. For example, one can traverse a balancer by doing a

Fetch&Increment on the balancer's toggle memory, and exiting on the wire corresponding

to the fetched value modulo 2. In the absence of such powerful primitives, the balancer

must contain a lock, which processors hold while manipulating the balancer's state.

In theory, the original balancer requires only a single bit of state to be toggled, while

the k-balancer requires a logk bit operation. Actual machines, however, operate on entire

words in a single instruction. Thus, if our machine has b bit words, the original balancer

requires one operation to toggle the state, while the k-balancer requires d

logk

b

e operations

to toggle the state. Therefore, if k < 2

b

, our k-balancer requires no more operations than

the original balancer. On a typical 32-bit machine, k can be as large as 2

32

, without losing

any performance over traditional balancers.

It should be noted that we are not the �rst to generalize the balancer. Ahoronson and

Attiya use the b-balancer with a �nite number of inputs and b outputs [AA92]. However,

they do not use these larger balancers to construct practical networks. They present an

impossibility result showing that networks of certain sizes cannot be built with some sizes

of balancers. They also present a construction for counting networks of width p2

i

, but since

the resulting networks have large depth, their construction serves primarily as an existence

proof rather than a practical tool. Their networks have depth O(log

3

w), or alternatively

O(log

2

w) with a very large constant if the AKS sorting network [AKS83] is used in the

construction. Finally, they show how to build counting networks of arbitrary width by

adding cycles to the network.

3 The K-bitonic Counting Network Construction

We now present a construction for building counting networks of width 2

i

from k-balancers

for k = 2

j

, i; j � 1. We call our construction the k-bitonic construction since it is a gen-

4

eralization of the original bitonic counting network construction [AHS91]. The k-bitonic

construction attempts to build the network exclusively from balancers of size k. Our con-

struction, however, is recursive and at times the subproblems are too small to be built from

balancers of size k. In these situations, the construction uses balancers as close to size k as

possible.

C (w/2)
k

C (w/2)
k

M (w)
k

M (w/k)
k

M (w/k)
k

M (w/k)
k

B
k

B
k

B
k

M (w)
k

C (w)
k

Figure 2: The k-bitonic construction: building a C

k

(w) and a M

k

(w) from smaller parts.

B

k

denotes a k-balancer.

Let C

k

(w) be a k-bitonic counting network of widthw. C

k

(w) has w inputs x

0

; x

1

; :::; x

w�1

and w outputs y

0

; y

1

; :::; y

w�1

. C

k

(w) is constructed so that in a quiescent state, the output

y has the step property. In our construction, counting networks are built recursively from

smaller counting networks and merging networks.

Merging networks are balancing networks which guarantee that if both halves of their

inputs have the step property, the output has the step property. Let M

k

(w) be a merging

network of width w. M

k

(w) has w inputs and w outputs. Let x

0

; x

1

; :::; x

w

2

�1

be the �rst

half of the merger's inputs and let x

0

0

; x

0

1

; :::; x

0

w

2

�1

be the second half of the merger's inputs.

Let y

0

; y

1

; :::; y

w�1

be the merger's outputs. M

k

(w) is constructed so that in a quiescent

state in which the inputs x and x

0

each have the step property, the output y is guaranteed

to have the step property.

3.1 The Merging Network

The base case for the merger construction M

k

(w) is when w � k. In this case, our merger

M

k

(w) is simply a w-balancer.

If w > k, we build the M

k

(w) merging network from k M

k

(

w

k

) merging networks and

w

k

k-balancers. For clarity, we refer to the recursively-built mergers as \sub-mergers." In

order for these k sub-mergers to function properly, we must ensure that both halves of

their inputs have the step property. The merger's inputs serve as inputs to the sub-mergers

according to the following rules:

5

� Merger input wire x

i

serves as input wire x

b

i

k

c

of sub-merger i mod k.

� Merger input wire x

0

i

serves as input wire x

0

b

i

k

c

of sub-merger (k � 1)� (i mod k).

This input wire distribution guarantees that if the two halves of the merger's input have

the step property, the halves of the sub-merger's inputs will also have the step property.

The remaining task is to merge the sub-mergers' outputs into a sequence of length w with

the step property. This is achieved with a set of

w

k

k-balancers. Formally:

� The output wire y

i

of sub-merger j is connected to input wire x

j

of k-balancer i.

� The output wire y

j

of k-balancer i serves as output wire y

ki+j

of the M

k

(w).

Figure 2 provides a graphic illustration of the construction.

3.2 The Counting Network

The construction for C

k

(w) is simpler than that of the merger. In the base case that w � k,

C

k

(w) is a w-balancer. If w > k, our C

k

(w) is built from 2 sub-counting networks C

k

(

w

2

)

and a merging network M

k

(w).

The components are connected in a divide and conquer fashion. The counting network's

inputs are divided in two and sent through the sub-counters. The output of the sub-counters

are then sent to the merger for recombination. Formally:

� The counting network inputs x

0

; x

1

; :::; x

w

2

�1

serve as inputs x

0

; x

1

; :::; x

w

2

�1

of sub-

counter 0, and the counting network inputs x

w

2

; x

w

2

+1

; :::; x

w�1

serve as inputs x

0

; x

1

; :::; x

w

2

�1

of sub-counter 1.

� The outputs y

0

; y

1

; :::; y

w

2

�1

of sub-counter 0 serve as merger inputs x

0

; x

1

; :::; x

w

2

�1

,

and the outputs y

0

; y

1

; :::; y

w

2

�1

of sub-counter 1 serve as merger inputs x

0

0

; x

0

1

; :::; x

0

w

2

�1

.

� The merger outputs y

0

; y

1

; :::; y

w�1

serve as outputs y

0

; y

1

; :::; y

w�1

of the counting

network.

Figure 2 provides a graphic illustration of the construction.

3.3 Proof of Correctness

We now show that C

k

(w) is a counting network. We begin by giving a useful equivalent

form of the step property. Recall that a sequence x

0

; x

1

; x

2

; :::; x

w�1

of non-negative integers

has the step property if 0 � x

i

� x

j

� 1 whenever i < j.

Lemma 3.1 A sequence x

0

; x

1

; x

2

; :::; x

w�1

of non-negative integers satis�es the step prop-

erty if and only if

x

i

= b

X + w � 1� i

w

c

for 0 � i < w, where X =

P

w�1

k=0

x

k

.

6

Proof: Let x

0

; x

1

; x

2

; :::; x

w�1

satisfy the step property and let X =

P

w�1

k=0

x

k

. If x

i

= x

i+1

for 0 � i < w � 1 then X = wx

i

for 0 � i < w. Thus,

b

X + w � 1� i

w

c = b

wx

i

+ w � 1� i

w

c = x

i

+ b

w � 1� i

w

c = x

i

:

Suppose x

i

6= x

i+1

for some i where 0 � i < w � 1. By the step property, choose c such

that x

c

� x

c+1

= 1. By the step property, it must be the case that if i � c then x

i

= x

c

and

if i > c then x

i

= x

c+1

= x

c

� 1. Thus,

X =

w�1

X

k=0

x

k

= (c+ 1)x

c

+ (w� c� 1)(x

c

� 1) = w(x

c

� 1) + c+ 1:

We conclude that

b

X + w � 1� i

w

c = b

wx

c

+ c� i

w

c = x

c

+ b

c� i

w

c:

This quantity equals x

c

if i � c, and x

c

� 1 if i > c. In any case, this quantity equals x

i

.

To complete the proof, assume x

i

= b

X+w�1�i

w

c. Let i < j, then

0 � b

X + w � 1� i

w

c � b

X + w � 1� j

w

c = x

i

� x

j

:

Furthermore, we have

x

i

� x

j

= b

X+w�1�i

w

c � b

X+w�1�j

w

c

� b

X+w�1�i

w

�

X+w�1�j

w

c+ 1

= b

j�i

w

c + 1

= 1

The inequality follows from the general fact that bxc�byc � bx� yc+1. The �nal equality

follows from the fact that 0 � j � i < w. Thus, we have 0 � x

i

� x

j

� 1 whenever i < j.

The most di�cult part of the proof that C

k

(w) is a counting network is demonstrating

that the merging network M

k

(w) behaves correctly. The correctness of M

k

(w) is shown in

the following theorem.

Theorem 3.1 If the merging network M

k

(w) is quiescent and its inputs x

0

; x

1

; :::; x

w

2

�1

and x

0

0

; x

0

1

; :::; x

0

w

2

�1

both have the step property, then its outputs y

0

; y

1

; :::; y

w�1

have the

step property.

Proof: The theorem is proved by induction on w.

Base Case: w � k.

In the base case where w � k, the merger M

k

(w) is simply a w-balancer. By the

de�nition of a k-balancer, the output will have the step property.

Inductive Step: Assume the theorem holds for w

0

< w and that w > k.

7

Let x, x

0

, and y be the sequences x

0

; x

1

; :::; x

w

2

�1

, x

0

0

; x

0

1

; :::; x

0

w

2

�1

and y

0

; y

1

; :::; y

w�1

,

respectively. Assume x and x

0

have the step property. In the construction of the merger

M

k

(w) the top half of the inputs of any one of the submergers M

k

(w=k) is a subsequence

of x and the bottom half of the inputs is a subsequence of x

0

. Since a subsequence of any

sequence with the step property also has the step property,the top and bottom halves of

the inputs to each submerger have the step property. For 0 � a < k, let z

a

be the output

sequence of the a-th submerger with z

a

i

the output of the i-th output wire. By the induction

hypothesis, for each a, z

a

has the step property.

Let X =

P

w

2

�1

i=0

x

i

, X

0

=

P

w

2

�1

i=0

x

0

i

, and Z

a

=

P

w

k

�1

i=0

z

a

i

for 0 � a < k. By the constuc-

tion, the total contribution of the input x to submerger a is b

X+k�1�a

k

c. Similarly, the total

contribution of the input x

0

to submerger a is b

X

0

+a

k

c. The di�erence in the contributions

of x and x

0

comes from the fact that the inputs from x enter in the order of the submergers,

while the inputs from x

0

enter in the reverse order of the submergers. Thus,

Z

a

= b

X + k � 1� a

k

c+ b

X

0

+ a

k

c:

We next show that for 0 � a; b < k, �1 � Z

a

� Z

b

� 1. Without loss of generality,

assume 0 � a < b < k.

Z

a

� Z

b

= b

X + k � 1� a

k

c � b

X + k � 1� b

k

c+ b

X

0

+ a

k

c � b

X

0

+ b

k

c

Since a < b < k, 0 � b

X+k�1�a

k

c � b

X+k�1�b

k

c � 1 and �1 � b

X

0

+a

k

c � b

X

0

i

+b

k

c � 0. Thus,

�1 � Z

a

� Z

b

� 1.

Let e = minfZ

a

mod w=k : 0 � a < kg. We will show that for 0 � a; b < k and for

i 6= e, z

a

i

= z

b

i

. If Z

a

= Z

b

, then by lemma 3.1 z

a

i

= z

b

i

for all i. If Z

a

6= Z

b

, then, since for

all c and d, �1 � Z

c

�Z

d

� 1, it must be the case that one of Z

a

mod w=k or Z

b

mod w=k

equals e and the other is e + 1. Without loss of generality, assume Z

b

mod w=k = e and

Z

a

mod w=k = e+1. Thus, for some Q, Z

b

= Qw=k+e and Z

a

= Qw=k+e+1. By lemma

3.1

z

a

i

� z

b

i

= b

Z

a

+w=k�1�i

w=k

c � b

Z

b

+w=k�1�i

w=k

c

= b

Qw=k+e+w=k�i

w=k

c � b

Qw=k+e+w=k�1�i

w=k

c

= b

e�i

w=k

c � b

e�1�i

w=k

c

Thus, z

a

i

= z

b

i

for i 6= e.

In the construction there are exactly w=k distinct k-balancers. The i-th k-balancer

receives the i-th input from each of the submergers. Let S

i

be the total of the inputs to

k-balancer i, that is, S

i

=

P

k�1

a=0

z

a

i

. Hence, S

i

= kz

0

i

for all i 6= e. Furthermore, if i < j

then because each sequence z

a

, for 0 � a < k, satis�es the step property we must have

0 � S

i

� S

j

� k.

Let ik + i

0

< jk + j

0

where 0 � i; j < w=k and 0 � i

0

; j

0

< k. To complete the proof we

show that 0 � y

ik+i

0
� y

jk+j

0
� 1. There are four cases to consider.

8

Case 1: i = j. In this case both outputs y

ik+i

0
and y

jk+j

0
are outputs of the same k-

balancer. Hence, 0 � y

ik+i

0
� y

jk+j

0
� 1.

Case 2: i 6= j, i 6= e, and j 6= e. We have:

y

ik+i

0
� y

jk+j

0
= b

S

i

+k�1�i

0

k

c � b

S

j

+k�1�j

0

k

c

= b

kz

0

i

+k�1�i

0

k

c � b

kz

0

j

+k�1�j

0

k

c

= z

0

i

� z

0

j

+ b

k�1�i

0

k

c � b

k�1�j

0

k

c

= z

0

i

� z

0

j

.

Since the sequence z

0

has the step property, then 0 � y

ik+i

0
� y

jk+j

0
� 1.

Case 3: i = e and j 6= e. Let S

e

= S

j

+ m where 0 � m � k. We have S

j

= kz

0

j

and

S

e

= kz

0

j

+m. Thus,

y

ek+i

0
� y

jk+j

0
= b

S

e

+k�1�i

0

k

c � b

S

j

+k�1�j

0

k

c

= b

kz

0

j

+m+k�1�i

0

k

c � b

kz

0

j

+k�1�j

0

k

c

= b

m+k�1�i

0

k

c � b

k�1�j

0

k

c

= b

m+k�1�i

0

k

c

Since, 0 � m � k and 0 � i

0

< k then 0 � y

ek+i

0
� y

jk+j

0
� 1.

Case 4: i 6= e and j = e. This case is proved in a similar way to case 3 above.

Theorem 3.2 In any quiescent state the output of the counting network C

k

(w) has the step

property.

Proof: The theorem is proved by induction on w.

Base Case: w � k.

In the base case where w � k, the counter C

k

(w) is simply a w-balancer. By the

de�nition of a k-balancer, we know the output will have the step property.

Inductive Step: Assume the theorem holds for w

0

< w and that w > k.

By the inductive hypothesis, both of the sub-counters produce a sequence which has the

step property. The output of the �rst sub-counter serves as the �rst half of the input wires

to the merger. The output of the second sub-counter serves as the second half of the input

wires to the merger. Since the two halves of the merger's inputs have the step property, by

theorem 3.1, the merger's output has the step property. Since the merger's outputs serve

as the outputs for the counter, the counter's output has the step property.

3.4 Size and Depth

The size of a balancing network is de�ned to be the number of balancers contained in the

network. The depth of a balancing network is de�ned to be the length of the longest path

a token can follow through the network.

We know the depth of our merger to be equal to the depth of the sub-merger plus one

balancer. We know the depth of our counter to be the depth of a sub-counter plus the depth

9

of the merger. (Recall that w and k are assumed to be positive powers of two.) This yields

the following recurrences:

Depth(M

k

(w)) =

(

1 if w � k

Depth(M

k

(

w

k

)) + 1 otherwise

Depth(C

k

(w)) =

(

1 if w � k

Depth(C

k

(

w

2

)) + Depth(M

k

(w)) otherwise

Solving these recurrences, we �nd for all w and k

Depth(M

k

(w)) = dlog

k

we;

and for w � k,

log

2

w

2 logk

+

logw

2 logk

+

1

2

log

2

k

� Depth(C

k

(w)) �

log

2

w

2 logk

+

logw

2 logk

+

1

2

log

2

k

+ log

w

k

:

The size of our merger is equal to the size of the k sub-mergers plus the

w

k

balancers.

The size of the counter is equal to the size of the two sub-counters plus the size of the

merger. This yields the following two recurrences:

Size(M

k

(w)) =

(

1 if w � k

k � Size(M

k

(

w

k

)) +

w

k

otherwise

Size(C

k

(w)) =

(

1 if w � k

2 � Size(C

k

(

w

2

)) + Size(M

k

(w)) otherwise

which yield these upper bounds: for all w and k,

Size(M

k

(w)) =

w

k

(dlog

k

we � 1) + k

dlog

k

we�1

;

and for w � k,

w log

2

w

2k log k

+

w logw

2k logk

+

w

2k

log

2

k

� Size(C

k

(w)) �

w log

2

w

2k logk

+

w logw

2k logk

+

w

2k

log

2

k

+ w log

w

k

:

We see that the size and depth of our k-bitonic counting networks depend on the choice of

k. Note that the size of a counting network is not necessarily proportional to the amount of

memory space required to represent it. A k-balancer requires
(k) space, since it contains

one pointer for each of its k outputs. Thus, the space required by a counting network is

proportional to the product of k and the size. Since the number of wires connecting each

level of the counting network to the next level is exactly the width w, the space required

for the counting network is also proportional to the product of the width and the depth.

Figure 3 shows upper bounds on the size and depth of our counting networks for a few

likely choices of k.

10

k Size Depth

2

1

4

w log

2

w +

1

4

w logw

1

2

log

2

w +

1

2

logw

4

1

16

w log

2

w +O(w logw)

1

4

log

2

w +O(logw)

p

w
w +

1

2

p

w logw logw + 1

w

�

(1 � �)w logw +O(w

1��

logw)

1+2��3�

2

2�

logw +O(1)

w 1 1

Figure 3: Summary of the size and depth of k-bitonic counting networks of width w, for

various values of k. The bounds for k = 2; w

1

2

, and w are exact, while the remaining are

upper bounds. The formulas for k = w

�

holds for constant � where 0 < � < 1=2.

4 Variations

The construction we have presented is the straightforward generalization of the original

bitonic construction. We have developed a number of variations to our k-bitonic counting

network construction which result in more interesting and/or e�cient networks.

4.1 Using Balancers of Arbitrary Size

As presented, our construction allows for counting networks of size 2

i

to be built from

balancers of size 2

j

. We now relax this restriction, and use our construction to build

networks from balancers of arbitrary size, with a single restriction. Our construction can

be used to build counting networks of size p2

i

from balancers of size p, for any p � 2. This

allows us more choices when tuning the balancer size k.

With this change, however, the recursive construction may need to build M

a

(b) where a

does not evenly divide b. M

3

(12), for example, will attempt to build M

3

(4) in the recursive

step. In these cases, we build M

a

(b) as an M

a

0
(b) where a

0

is the largest number such that

a

0

� a and a

0

evenly divides b.

4.2 Layer Sorting

The merger's recursive construction results in scatter/gather token tra�c patterns. The

tokens are �rst scattered to the sub-mergers and are then gathered into the back-row bal-

ancers. Under light load, this token pattern makes contention more likely at the back-row

balancers. Since at most one token can pass through a balancer at the same time, the use

of smaller balancers in the back row will reduce contention.

Consider the merger M

4

(8), which forms the last two layers of the C

4

(8) shown in

�gure 1. The merger is built from two layers of balancers. The tokens are �rst scattered

into a layer of 2-balancers, and then gathered into a layer of 4-balancers. By our previous

observation, we can reduce contention by instead scattering into a layer of 4-balancers and

11

gathering into a layer of 2-balancers. While this change lessens the congestion in the merger,

it does not a�ect the correctness, size or depth of the merger.

The performance of our counting networks can be improved by always applying this

technique within our merger construction. Our construction is unconcerned about how the

sub-mergers are built and always builds M

k

(w) from

w

k

k-balancers and k sub-mergers of

width

w

k

. Our �rst change is to have the merger obtain some information about the size

of the layers to be built by the sub-mergers. We de�ne s

k

(w) to be the smallest balancer

size that will be needed in the construction of M

k

(w). For our construction s

k

(w) = w if

w � k, otherwise s

k

(w) = s

k

(

w

k

). We now change the merger construction to build M

k

(w)

from

w

s

k

(w)

s

k

(w)-balancers and s

k

(w) sub-mergers of width

w

s

k

(w)

. This change results in

the construction always using the smallest remaining balancers in the back row. After

the construction has �nished, the resulting merger will have its layers sorted in order of

ascending balancer size from back to front.

4.3 The Pyramid Construction

While our k-bitonic construction can use di�erent size balancers in di�erent layers, it tries to

build as much of the network as it can from balancers of size k. From our second variant, we

learned that under light loads the scatter/gather wire pattern results in congestion that can

be reduced by using smaller balancers in the back of the network. The pyramid construction

uses small balancers near the back of the network, and progressively larger balancers toward

the front of the network.

In order to reduce this contention, we propose a modi�cation to the construction in

which we use small balancers near the back of the network, and larger balancers toward

the front. This is achieved by changing the subnetworks that are recursively built. In our

construction, C

k

(w) recursively builds two C

k

(

w

2

) sub-counters. We now change C

k

(w) so

that it instead builds two C

2k

(

w

2

) sub-counters. Similarly, we changeM

k

(w) so that it builds

k M

2k

(

w

k

) sub-mergers. The resulting networks have succesive layers that double in size.

We call this the pyramid construction. While our previous variations have not changed

the size and depth of the network, this variant does. Applying this variant, our counting

networks have depth � 2 logwk log

logw

log k

+ log k.

Our choice to double the network layers is arbitrary. Many functions could be used and

all would have di�erent space/depth/performance tradeo�s. Both our original construction

and our pyramid construction are examples of a larger class of heterogeneous counting

networks that can be generalized from our k-bitonic construction.

5 Performance

Our performance results were obtained by simulation. We chose to simulate our counting

networks for a number of reasons. First, an analytical solution proved to be too complex.

Second, for an implementation study we did not have access to a machine with as many

processors as we wanted. Lastly, we were interested in the performance of counting networks

12

in general, rather than counting networks on a speci�c machine. By simulating an abstract

architecture, we hoped to obtain results of more universal value.

In our simulations, a �xed number of processors repeatedly traverse the counting net-

work. When a processor exits the network, it immediately reenters. A balancer services one

processor at a time; the service time is random with exponential distribution. We start with

all processors entering the network on randomly chosen wires. Before collecting statistics,

we simulate the network long enough for it to reach an equilibrium state. We then measure

the network's throughput: the number of tokens per unit time that exit the network. Note

that maximizing the throughput is equivalent to minimizing the average time it takes for a

processor to traverse the network.

In our simulations, activity at one balancer does not a�ect the performance of other

balancers; as a result, our performance graphs look di�erent than those generated by Aspnes

et al., in which accesses to all balancers are made across a single memory bus.

For bitonic networks, the width w is the only parameter that can be adjusted to optimize

performance. In k-bitonic networks, the balancer size k is an additional degree of freedom.

T
hr

ou
gh

pu
t (

ne
tw

or
k

tr
av

er
sa

ls
/ti

m
e

un
it)

Number of Procesors

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0 100 200 300 400 500 600 700 800 900 1000

Best bitonic for load
Best K-bitonic for load

Figure 4: Performance of the best bitonic and k-bitonic networks.

5.1 Performance of K-bitonic vs. Bitonic Networks

Figure 4 compares the performance of bitonic and k-bitonic networks. For each number of

processors, we varied the width of the bitonic network, and the width and balancer size of

13

O
pt

im
al

 B
al

an
ce

r
Si

ze

Number of Processors

0

2

4

6

8

0 100 200 300 400 500 600 700 800 900 1000

C (96)6 C (192)6

C (128)4

C (384)6

C (256)4

Figure 5: Optimal balancer size vs. network load for k-bitonic networks.

the k-bitonic network, to �nd the network of each type with the best performance. The

�gure shows that the k-bitonic network consistently outperforms the bitonic network; the

improvement in throughput is about 25%.

5.2 Choosing the Optimal k

When choosing k, we are balancing two competing factors. If k is too small, the network's

depth will be too large; it will take too long to traverse all the layers. If k is too large,

the contention for each balancer will be too high; it will take too long to pass through each

layer. The optimal k balances these factors perfectly.

Figure 5 shows the best balancer size for varying numbers of processors. The graph

shows that the optimal size varies with the load, but is not two. In all cases, the best

k is either 4 or 6, but there is no apparent pattern to guide our choice between the two

alternatives. The di�erence seems to lie in roundo� e�ects due to the oors and ceilings in

the expression for the network's depth.

Intuition, and approximate performance models

2

, suggest that the optimal k should

grow as the load increases. The experimental evidence does not support this hypothesis.

The lack of a pattern in �gure 5 does not allow us to �rmly reject it either. More evidence

is needed to decide.

2

not discussed in this version of the paper

14

T
hr

ou
gh

pu
t (

ne
tw

or
k

tr
av

er
sa

ls
/ti

m
e

un
it)

Number of Procesors

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0 10 20 30 40 50 60 70 80 90 100

Bitonic optimized for load of 50
K-bitonic optimized for load of 50

Figure 6: Robustness of bitonic and k-bitonic networks against changes in load.

5.3 Robustness

In practice, the load on a counting network might not be known in advance. Although

the number of processors might be known, the intensity with which they use the counting

network could be unpredictable, or could even vary over the course of a run. As a result,

we would like our networks to perform reasonably for unexpected loads.

Figure 6 considers the robustness of our networks under variations in load. We found

the optimal bitonic and k-bitonic networks for a load of 50 processors. We then observed

the performance of these two networks for loads between 1 and 100 processors. Figure 6

shows the performance of the k-bitonic C

4

(32) versus the bitonic C(16). As before the

k-bitonic counting network has higher throughput at all loads than the bitonic counting

network. Both networks appear to be equally robust; the performance di�erence merely

reects the inherent advantage of k-bitonic networks.

5.4 Performance Summary

Our k-bitonic networks clearly outperform the original bitonic networks; the di�erence is

about 25%. Both networks adapt reasonably well to changes in load.

Unfortunately, we have no de�nite procedure for choosing the balancer size k. Choosing

either k = 4 or k = 6 works well in all the cases we tried. We are unable to predict whether

this will hold true for larger values of k.

15

6 Conclusions

We have introduced counting networks built from k-balancers. The ability to vary k allows

us to smoothly trade o� network depth against contention. At one extreme, k = w, our

networks reduce to the traditional single-lock solution, with minimum depth but maximum

contention. At the other extreme, k = 2, our networks reduce to the counting networks

of Aspnes et al., with large depth but low contention. Our networks span the continuum

between these two extreme solutions.

In practice, the ability to vary the balancer size k allows a signi�cant performance ad-

vantage over either of the extreme solutions. With several hundred processors, our networks

typically have throughput about 25% higher than those of Aspnes et al. This performance

gap appears to be growing as the number of processors increases, but we cannot be sure

that it continues to do so asymptotically.

References

[AA92] E. Ahoronson and H. Attiya. Counting Networks with Arbitrary Fan-Out. In 3rd

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 104{113, January

1992.

[AHS91] J. Aspnes, M. Herlihy, and N. Shavit. Counting Networks and Multi-processor

Coordination. In 23st Annual ACM Symposium on Theory of Computing, pages

348{358, 1991.

[AKS83] M. Ajtai, J. Koml�os, and E. Szemer�edi. An O(n logn) sorting network. Combi-

natorica, 3:1{19, 1983.

[And90] T. E. Anderson. The Performance of Spin Lock Alternatives for Shared Memory

Multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 1(1):6{

16, January 1990.

[Bat68] K. E. Batcher. Sorting Networks and Their Applications. In Proceedings of AFIPS

Joint Computer Conference, volume 32, pages 307{314, 1968.

[Klu91] M. R. Klugerman. Lecture 17: Counting Networks. In F.T. Leighton, C.E. Leiser-

son, and N. Kahale, editors, Research Seminar Series 15: Advanced Parallel and

VLSI Computation, pages 153-161. MIT Press, 1991.

[KP92] M. R. Klugerman and C. G. Plaxton. Small-Depth Counting Networks. In 24st

Annual ACM Symposium on Theory of Computing, pages 417{428, 1992.

[MCS91] John Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchro-

nization on shared-memory multiprocessors. ACM Transactions on Computer

Systems, 9(1):21{65, February 1991.

16

