
1

Hierarchical Constraint

Logic Programming

(Ph.D. Dissertation)

Molly Ann Wilson

Technical Report 93-05-01

Dept. of Computer Science and Engineering

University of Washington

May 1993

2

University of Washington

Abstract

Hierarchical Constraint Logic Programming

by Molly Ann Wilson

Chairperson of the Supervisory Committee: Professor Alan H. Borning

Department of Computer Science and Engineering

A constraint describes a relation to be maintained; it states what the relationship is as

opposed to how to maintain it. In many applications, such as interactive graphics, planning,

document formatting, and decision support, one needs to express preferences as well as strict

requirements. Such constraints are sometimes called soft constraints; the required ones are called

hard constraints. We allow an arbitrary number of levels of preference, each successive level being

more weakly preferred than the previous one. A collection of constraints at various levels of

preference is known as a constraint hierarchy. Constraint Logic Programming (CLP) is a general

scheme for extending logic programming to include constraints. It is parameterized by D, the

domain of the constraints. However, CLP(D) languages, as well as most other constraint systems,

only allow the programmer to specify constraints that must hold. If we wish to make full use of

the constraint paradigm, we need ways to represent these defaults and preferences declaratively,

as constraints, rather than encoding them in the procedural parts of the language. We describe a

scheme for extending CLP(D) to include both required and preferential constraints. We present

a theory of constraint hierarchies, and an extension, Hierarchical Constraint Logic Programming,

of the CLP scheme to include constraint hierarchies. We give an operational, model theoretic

and �xed-point semantics for the HCLP scheme. Finally, we describe two interpreters we have

written for instances of the HCLP scheme, give example programs, and discuss related work.

TABLE OF CONTENTS

Page

List of Figures : iv

Chapter 1: Introduction : 1

1.1 What is a Constraint : 1

1.2 What is a Constraint Hierarchy : 2

1.3 What is Logic Programming : 3

1.4 Why Add Constraints to Logic Programming : 4

1.5 Overview of the Dissertation : 4

Chapter 2: Constraints and Constraint Hierarchies : 6

2.1 De�nitions : 6

2.1.1 Error Functions : 7

2.1.2 Combining Functions : 7

2.1.3 Solutions to Constraint Hierarchies : 8

2.2 A Brief Example : 9

2.3 Comparators : 9

2.4 Examples : 11

2.5 Remarks on the Comparators : 14

2.5.1 Errors for Inequalities : 15

2.5.2 Existence of Solutions : 16

2.5.3 Disorderly Aspects of Comparators : 17

Chapter 3: Extensions to the Constraint Hierarchy Theory : : : : : : : : : : : : : : : : : 19

3.1 Read-only Variables in Constraint Hierarchies : : : : : : : : : : : : : : : : : : : 19

3.1.1 Blocked Hierarchies : 23

3.1.2 Illustrative Examples of Using Read-only Annotations : : : : : : : : : : : : 26

3.1.3 Practical Examples of Using Read-only Annotations : : : : : : : : : : : : : 27

3.1.4 Circularities : 28

3.2 Write-only Annotations : 29

3.3 Inter-Hierarchy Comparison : 30

3.3.1 Extended De�nitions : 31

Chapter 4: Logic Programming, Constraint Logic Programming, and Hierarchical Con-

straint Logic Programming : 33

4.1 Logic Programming : 33

4.1.1 De�nitions and Syntax : 33

4.1.2 Semantics : 35

4.1.3 Prolog | an Example : 37

4.2 Constraint Logic Programming : 38

4.2.1 CLP(R)| an Example : 39

4.3 Putting It All Together: Hierarchical Constraint Logic Programming : : : : : : 40

4.3.1 Adding the Constraint Hierarchy to Logic Programming : : : : : : : : : : 40

4.3.2 HCLP : 41

4.3.3 HCLP(R) : 41

Chapter 5: Semantics : 44

5.1 Operational Semantics of HCLP : 44

5.2 A Model Theory for HCLP : 47

5.2.1 Review of CLP Model Theory : 47

5.2.2 An Extended Model : 48

5.2.3 Comparators as Preference Relations : 51

5.2.4 Mapping the Extended Model to a Standard Model : : : : : : : : : : : : : 51

5.2.5 A Model for Inter-Hierarchy Comparison : : : : : : : : : : : : : : : : : : : 52

5.3 A Fixed-Point Semantics : 53

5.3.1 A Fixed-Point Semantics for Inter-Hierarchy Comparison : : : : : : : : : 54

5.4 Relations between the Operational, Model-theoretic, and Fixed-Point Semantics

of HCLP : 55

Chapter 6: Implementation : 63

6.1 Constraint Satisfaction Algorithms : 63

6.2 Algorithms for Linear Equality and Inequality Constraints : : : : : : : : : : : : 64

6.2.1 A Recursive De�nition : 65

6.2.2 An Example : 66

ii

6.2.3 The Algorithm Itself : 67

6.3 Other Algorithms : 70

6.4 Implementation of HCLP(R) : 71

6.4.1 A Simple Interpreter for HCLP(R;LPB) : : : : : : : : : : : : : : : : : : : 71

6.4.2 A DeltaStar-Based Interpreter for HCLP(R; ?) : : : : : : : : : : : : : : : : 72

Chapter 7: Applications : 78

7.1 Interactive Graphics Examples : 79

7.2 Planning and Scheduling : 83

7.3 Document Formatting : 85

7.4 Which Comparator to Use? : 86

7.5 Inter-Hierarchy Comparison in HCLP(R) : 87

Chapter 8: Related Work : 91

8.1 Constraint Logic Programming Languages : 91

8.2 Other Constraint Languages : 94

8.3 Applications : 94

8.4 Reasoning : 95

Chapter 9: Conclusion : 98

9.1 Contributions : 98

9.2 Future Research : 99

Bibliography : 101

Appendix A: An Algorithm for Interpreting HCLP Programs : : : : : : : : : : : : : : : : 108

iii

LIST OF FIGURES

Number Page

6-1 Basic algorithm : 68

6-2 Incremental algorithm|Adding a constraint at level 2 : : : : : : : : : : : : : : : : 69

6-3 Disjoint Subproblems : 69

6-4 Local Comparator Algorithm : 70

7-1 Moving an endpoint of a horizontal line : 79

7-2 Moving an endpoint of an anchored horizontal line : : : : : : : : : : : : : : : : : : 80

iv

ACKNOWLEDGMENTS

I am deeply indebted to my advisor, Alan Borning, for his continued support, and for his be-

lief in my ability to be both a good researcher and a good parent. Bjorn Freeman-Benson has

collaborated with us on constraint hierarchies and constraint satisfaction algorithms throughout

the project, and Amy Martindale and Michael Maher worked with us on the original version of

HCLP. Joxan Ja�ar and Pascal Van Hentenryck gave valuable suggestions and advice, particu-

larly with the formal semantics aspects of HCLP. Anonymous referees for the article \Hierarchical

Constraint Logic Programming" (to appear in the Journal of Logic Programming) provided par-

ticularly useful and detailed recommendations and suggestions for improving both the content

and readability of this work. Michael Sannella, Steve Hanks, and Dan Weld made many useful

comments on drafts of this dissertation. Thanks to all for their help. I am especially grateful

to my family for their patience and understanding | my husband Andy whose response to my

wanting to get a Ph.D. was to propose marriage, and Nathaniel and Calla Rose who, both pre-

natally and postnatally, endured the stresses of qualifying exams, interviews, and deadlines. I

never could have done it without their help.

This research was supported in part by the National Science Foundation under Grant No.

CCR-9107395 and by a fellowship from Apple Computer.

v

Chapter 1

Introduction

Many problems in computer science involve keeping track of relations. These may be relations

among graphical objects on a display, arithmetic relations among numbers, information about

which nodes in a graph are adjacent to each other, or requirements about job scheduling, to name

just a few. These relationships can quickly grow complex as the number of objects in a system

increases. Frequently, these problems can be solved more easily when these relations can be

represented declaratively: when there is a language that can capture the underlying constraints

on the objects without depending on how the actual relations are to be solved. The notion of a

constraint language arises from this desire for abstraction. Constraints provide an elegant means

of stating relationships and of declaratively characterizing properties among objects that can be

maintained by an underlying system.

1.1 What is a Constraint

A constraint describes a relation that should be satis�ed. Examples of constraints include:

� a constraint that a resistor in a circuit simulation obey Ohm's Law

� a constraint that two views of the same data remain consistent (for example, bar graph

and pie chart views)

� a default constraint that parts of an object being edited remain �xed, unless there is some

stronger constraint that forces them to change.

2

A constraint describes a relation to be maintained; it states what the relationship is as opposed

to how to maintain it. There are many advantages to stating such relations declaratively: it frees

the user from having to write procedures, and a single constraint succinctly represents many

operations because in general constraints are multi-directional. As an example, the constraint

A + B = C allows the value of any one of A, B, or C to be determined from the other two. It

also describes a predicate that will be true whenever A+B = C and false otherwise. In addition,

constraints are modular. The constraint B = D, taken in conjunction with the previous one, sets

up dependencies among A, B, C, and D, but a user can simply state the two local constraints

and let the underlying system be responsible for ensuring that both are satis�ed.

Of course, we must be careful to avoid putting so much power into the constraints that there is

no solver, or no adequately e�cient solver, to maintain the relations speci�ed by the constraints.

This issue will be discussed further in Chapter 6 Section 6.1.

1.2 What is a Constraint Hierarchy

Many applications of constraints either need, or would bene�t from, support for default and

preferential constraints, as well as required ones. Such constraints are sometimes called soft

constraints; the required ones are called hard constraints. The required constraints must hold.

The system should try to satisfy the preferential or soft constraints if possible, but no error

condition arises if it can't. We allow an arbitrary number of levels of preference, each successive

level being more weakly preferred than the previous one. A collection of constraints at various

levels of preference is known as a constraint hierarchy. A more formal de�nition of a constraint

hierarchy is given in Chapter 2 Section 2.1.

Thus, in the A+B = C example, we could also include weak constraints that A and B remain

unchanged, and a weaker constraint that C remain the same. Given this hierarchy, if we edit A,

the system will change C rather than B to re-satisfy the constraints.

Another example of the usefulness of soft constraints arises in an interactive graphics appli-

cation where we want to state a default that objects in the picture remain stationary during

editing, unless there is some constraint or user edit that forces them to move. In a scheduling

application, to cite another example, some constraints might be requirements, while others would

be only preferences (such as not scheduling a meeting too early in the morning). In a screen lay-

out application, it might be required that two windows be aligned vertically, but only preferred

3

that they be at the top of the screen.

Some of the preferences may be stronger than others. For example, it might be strongly

preferred that the meeting last an hour, but only weakly preferred that it be at 9:00 am. Also,

if a preferential constraint cannot be satis�ed, we may still wish to satisfy it as well as possible,

using some error metric, rather than simply ignoring it if it can't be satis�ed completely. In

the interactive graphics application mentioned above, if an object must move during editing, we

probably wish it to move as little as possible, rather than arbitrarily hurtling o� the screen.

In much of the previous applications-oriented work in this area (e.g., [Borning 81, Gosling 83]),

soft constraints were encoded procedurally in the constraint satis�er. If we wish to make full use of

the constraint paradigm, it is important to represent these defaults and preferences declaratively,

as constraints, rather than encoding them in the procedural parts of the language. Introducing

the notion of the constraint hierarchy has enabled us to enlarge the domain of problems that are

conducive to being solved via the constraint paradigm.

1.3 What is Logic Programming

Logic programming is a programming paradigm based on a subset of �rst order logic. Logic

programs are declarative rather than procedural in that they state the logical relationships nec-

essary to solve the problem at hand. The underlying system is responsible for making the logical

inferences that allow computation to occur. Users can pose queries to the system which then

uses the rules supplied by the programmer to answer the queries. In general, logic programs

can be used either to prove an assertion, or to determine which set of variable bindings make a

query true. In the former case, the variables in the original query are bound and can therefore be

considered as input. In the latter case they are unbound and can be viewed as output variables.

The declarative property of logic programming languages not only makes them appealing to

programmers, it also means that these languages have a clean and well-de�ned semantics. The

meaning of logic programming languages is derived from the semantics of logic itself, and is

therefore well founded.

4

1.4 Why Add Constraints to Logic Programming

Constraints seem to be a natural extension to the logic programming framework, as they share

many of the properties discussed above. They are declarative; they are multidirectional; what

constitutes a solution to a set of constraints is well de�ned for many domains. In fact Ja�ar

and Lassez [Ja�ar & Lassez 87] showed that pure Prolog can be viewed as an instance of a more

general Constraint Logic Programming (CLP) scheme. This paradigm extends the notion of logic

programming to include constraints, and overcomes the limitations of some logic programming

languages while retaining the clean semantics that have characterized languages in this family.

The next step seemed to be to add the notion of a constraint hierarchy, as well as simple hard

constraints to the logic programming framework. This can be viewed in two complementary

ways. Firstly, constraint hierarchies in and of themselves are not a programming language. Logic

programming, because of its similarity to constraints, seemed a good choice for a wiring language,

i.e. a language with the power of recursion and conditionals that could be used to incorporate the

hard and soft constraints. Secondly, CLP had extended and generalized the logic programming

scheme. Why not similarly extend the CLP scheme to include levels of constraints? Thus two

related notions led to the development of Hierarchical Constraint Logic Programming (HCLP),

a family of languages that combine hard and soft constraints within the logic programming

framework.

1.5 Overview of the Dissertation

This dissertation goes on to discuss HCLP, its components, its semantics, an implementation of

an HCLP language, and various applications. The HCLP family of languages was introduced

in [Borning et al. 89]. Reference [Borning et al. 92] discusses constraint hierarchy theory and

applications. A general algorithm for solving constraint hierarchies was given in [Freeman-Benson

et al. 92]. Reference [Wilson & Borning 89] explores the nonmonotonic properties of HCLP.

Portions of this thesis appear in [Wilson & Borning 93].

� Chapter 2 gives formal de�nitions for constraints, constraint hierarchies, and solutions to

constraint hierarchies. It includes examples of using constraint hierarchies and discusses

relations that hold among various comparators, i.e. methods of comparing solutions to

constraint hierarchies.

5

� Chapter 3 discusses some extensions to the constraint hierarchy theory including read-only

and write-only annotations, as well as inter-hierarchy comparison. Reading this chapter is

not necessary for understanding the remainder of the dissertation, with the exception of

Section 7.5.

� Chapter 4 gives a brief introduction to Logic Programming, and includes a small program

written in Prolog. Then Constraint Logic Programming is introduced, and a brief CLP(R)

program is given. Finally, we discuss Hierarchical Constraint Logic Programming, and

extend the CLP(R) program to include hierarchies.

� Chapter 5 presents the operational and declarative semantics of Hierarchical Constraint

Logic Programming and gives results that demonstrate the equivalence of the logical, �xed-

point, and operational semantics of the HCLP languages.

� Chapter 6 discusses two implementations of HCLP languages. The DeltaStar algo-

rithm for solving constraint hierarchies is introduced, and its incorporation into the current

HCLP(R) interpreter is explained.

� Chapter 7 presents a number of examples of HCLP programs. It also discusses the pros

and cons of using inter-hierarchy comparison in HCLP(R) programs.

� Chapter 8 discusses related work. Speci�cally, we relate HCLP to general constraint logic

programming languages, other constraint languages, some applications, and research in

arti�cial intelligence.

� Chapter 9 summarizes the contributions of the work in HCLP and discusses some directions

for further research.

Chapter 2

Constraints and Constraint

Hierarchies

In this chapter, formal de�nitions for constraints, constraint hierarchies, and solutions to con-

straint hierarchies are presented. Then we give some examples of using constraint hierarchies.

Finally, we discuss relations that hold among various comparators, i.e. methods of comparing

solutions to constraint hierarchies.

2.1 De�nitions

A constraint is a relation over some domain D (e.g. integers, booleans, �nite domains). The

domain D determines the constraint predicate symbols �

D

of the language, which must include

=. A constraint is thus an expression of the form p(t

1

; : : : ; t

n

) where p is an n-ary symbol in �

D

and each t

i

is a term. A labeled constraint is a constraint labeled with a strength, written lc,

where l is a strength and c is a constraint. The strengths are totally ordered.

A constraint hierarchy is a �nite set of labeled constraints. Given a constraint hierarchy H,

H

0

is a vector of the required constraints inH, in some arbitrary order, with their labels removed.

H

1

is a vector of the constraints in H at the strongest non-required level, and so forth through

the weakest constraints H

n

, where n is the number of non-required levels in the hierarchy. We

also de�ne H

k

= ; for k > n.

A valuation for a set of constraints is a function that maps the free variables in the constraints

7

to elements in the domain D over which the constraints are de�ned. A solution to a constraint

hierarchy is a set of valuations for the free variables in the hierarchy. We require any valuation in

the solution set to satisfy at least the required constraints. In addition, the solution set contains

those valuations that satisfy the non-required constraints at least as well as any other valuation

that also satis�es the required constraints. In other words, there is no valuation satisfying the

required constraints that is \better" than any valuation in the solution. There are a number of

reasonable methods for comparing valuations to determine which is better. We call such methods

comparators. In the following sections we give formal de�nitions for the solution to a constraint

hierarchy and for various comparators.

2.1.1 Error Functions

In order to compare valuations, we will need some measure of how well a particular valuation

satis�es a given constraint. The error function e(c�) indicates how nearly constraint c is satis�ed

for a valuation �. This function returns a non-negative real number and must have the property

that e(c�) = 0 if and only if c� holds. (c� denotes the result of applying the valuation � to

c.) For any domain D, we can use the trivial error function that returns 0 if the constraint is

satis�ed and 1 if it is not. A comparator that uses this error function is a predicate comparator.

For a domain that is a metric space, in place of the trivial error function, we can de�ne an error

function by using the domain's metric. For example, the error for X = Y would be the distance

between X and Y. Such a comparator is a metric comparator. Because the de�nition of a speci�c

comparator depends on the error function used, metric comparators are domain dependent.

The error function E(C�) maps e over a vector of constraints C = [c

1

; : : : ; c

k

]:

E(C�) = [e(c

1

�); : : : ; e(c

k

�)]

An error sequence is a vector [E(H

1

�);E(H

2

�); : : : ;E(H

n

�)].

Finally, the error v

i

for the i

th

constraint can be weighted by a weight w

i

. Each weight is a

positive real number.

2.1.2 Combining Functions

Some of the comparators that we are interested in will �rst combine the errors at a given level in

the hierarchy before comparing valuations. We now introduce the notion of a combining function,

g, that is applied to real-valued vectors and that returns some value that can be compared using

8

the associated relations <>

g

and <

g

. For example, g may sum a vector of numbers, or select the

maximum of a vector of numbers. We require <

g

to be irre
exive, antisymmetric, and transitive.

We require <>

g

to be re
exive and symmetric. (We use the notation <>

g

rather than = because,

for some of the comparators, the relation is not transitive. The symbol <>

g

indicates that two

valuations cannot be ordered using <

g

. For some comparators, this will be because they are

equal; for others, because they are incomparable.)

The combining function G is a generalization of g that is applied to error sequences and that

returns a sequence of values that can be compared using <>

g

and <

g

. Such a sequence is a

combined error sequence. Let R = [E(H

1

�); : : : ;E(H

n

�)]. Then

G(R) = [g(E(H

1

�)); : : : ; g(E(H

n

�))]

A lexicographic ordering <

g

can be de�ned on combined error sequences u

1

; : : : ; u

n

and

w

1

; : : : ; w

n

in the standard way:

u

1

; : : : ; u

n

<

g

w

1

; : : : ; w

n

if

9k 2 1 : : :n such that

8i 2 1 : : :k � 1u

i

<>

g

v

i

^

u

k

<

g

v

k

2.1.3 Solutions to Constraint Hierarchies

Finally, we can de�ne the solution set S to a constraint hierarchy H, by using the comparator

de�ned by the combining function g, its associated function G, and the lexicographic ordering

de�ned by <

g

.

S

0

= f� j 8c 2 H

0

e(c�) = 0g

S = f� j � 2 S

0

^ 8� 2 S

0

:(G([E(H

1

�); : : : ;E(H

n

�)]) <

g

G([E(H

1

�); : : : ;E(H

n

�)]))g

S

0

is the set of solutions to the required constraints (ignoring the soft constraints). The desired

set S is all valuations in S

0

for which no better valuations in S

0

exist, where better is determined

using the lexicographic ordering de�ned by <

g

.

9

2.2 A Brief Example

Before we give de�nitions for various comparators, a brief example will help to solidify the notion

of a solution to a constraint hierarchy.

Let us consider the following simple constraint hierarchy over the domain of the reals:

required X > 0

strong X < 10

weak X = 4

The set S

0

consists of all valuations that map X to a positive real number. The solution set

S consists of the single valuation that maps X to 4. Let us call this valuation �. Consider the

valuation � that maps X to 5. Then e((X < 10)�) is 0. e((X < 10)�) is also 0. E([(X < 10)�])

is [0]. (There is only one constraint at the strong level.) E([(X < 10)�]) is also [0]. e((X = 4)�)

is 0. e((X = 4)�) is 1. E([(X = 4)�]) is [0]. E([(X = 4)�]) is [1]. The combined error sequence

G(E([(X < 10)�]);E([(X = 4)�])) evaluates to [[0]; [0]]. (Again, there is only one constraint at

each level in the hierarchy, so the combining function has no e�ect.) The combined error sequence

G(E([(X < 10)�]);E([(X = 4)�])) evaluates to [[0]; [1]]. Since [[0]; [0]]<

g

[[0][1]], � is not in S.

Moreover, there is no valuation in S

0

that is less than [[0][0]] in the lexicographic order de�ned

by any <

g

where <

g

and <>

g

have the properties de�ned above. So � is in S.

2.3 Comparators

We now de�ne a number of comparators, each of which gives rise to a di�erent way of de�ning

the set of solutions to a constraint hierarchy. We can classify types of comparators (as opposed

to de�ning a speci�c comparator) as either global, local, or regional. Since the error sequences

for the constraints at levels H

1

; : : : ;H

n

are being compared using a lexicographic ordering, if

a solution � is better than a solution �, there is some level k in the hierarchy such that for

1 � i < k, g(E(H

i

�)) <>

g

g(E(H

i

�)), and at level k, g(E(H

k

�)) <

g

g(E(H

k

�)).

For a local comparator, each constraint is considered individually. Solution � must do exactly

as well as � for each constraint in levels 1 : : :k� 1, and at level k, � must do at least as well as �

for all constraints, and strictly better for at least one. For a global comparator, the errors for all

constraints at a given level are aggregated using g. For a regional comparator, each constraint

at a given level is considered individually (as with a local comparator). However, unlike a local

10

comparator, two solutions that are incomparable at strong levels may still be compared at weaker

levels and one discarded, so that a regional comparator will, in general, discriminate more than

a local one.

We now de�ne a number of useful classes of comparators, by de�ning the combining function

g and the relations <>

g

and <

g

for each. Each of these classes de�nes some number of actual

comparators by specifying the error function.

Weighted-sum-better, worst-case-better, and least-squares-better are global comparators, in

which the constraint errors at a given level are combined by taking the weighted sum, the weighted

maximum, and weighted sum of the squares respectively. Locally-better and regionally-better are

local and regional comparators, respectively.

For weighted-sum-better, g(v) =

P

jvj

i=1

w

i

v

i

, <

g

is de�ned as for the reals, and <>

g

is equiv-

alent to = for the reals.

For worst-case-better, g(v) = maxfw

i

v

i

j 1 � i � jvjg, <

g

is de�ned as for the reals, and

<>

g

is equivalent to = for the reals.

For least-squares-better, g(v) =

P

jvj

i=1

w

i

v

2

i

, <

g

is de�ned as for the reals, and <>

g

is equiv-

alent to = for the reals.

For locally-better, g(v) = v and <>

g

and <

g

are de�ned as follows:

v <

g

u � 8i v

i

� u

i

^ 9j such that v

j

< u

j

v <>

g

u � 8i v

i

= u

i

For regionally-better, g(v) = v and <>

g

and <

g

are de�ned as follows:

v <

g

u � 8i v

i

� u

i

^ 9j such that v

j

< u

j

v <>

g

u � :((v <

g

u) _ (u <

g

v))

Orthogonal to the choice of a global, local, or regional combining function, we can choose

an appropriate error function for the constraints. Locally-predicate-better (LPB) is locally-better

using the trivial error function that returns 0 if the constraint is satis�ed and 1 if it is not.

Locally-metric-better (LMB) is locally-better using a domain metric in computing the constraint

errors. Weighted-sum-predicate-better, weighted-sum-metric-better, and so forth, are all de�ned

analogously.

Unsatis�ed-count-better is a special case of weighted-sum-predicate-better, using weights of 1

on each constraint; it counts the number of unsatis�ed constraints in making its comparisons.

The predicate versions of the other two global comparators aren't particularly useful: worst-

case-predicate-better has an all-or-nothing behavior which doesn't �lter out solutions as well as

11

one might like; and least-squares-predicate-better always gives the same results as weighted-sum-

predicate-better (since 1

2

= 1). Hereafter, we will use the more concise worst-case-better (WCB)

and least-squares-better (LSB) to refer to the metric versions of these two global comparators.

We will use the terminology better(�; �;H) to signify that G([E(H

1

�); : : : ;E(H

n

�)]) <

g

G([E(H

1

�); : : : ;E(H

n

�)]).

All of the comparators are irre
exive:

8�8H :better(�; �;H)

Most of the comparators are transitive:

8�; �; � 8H better(�; �;H) ^ better(�; �;H)! better(�; �;H)

The regional comparators are not transitive, as the corresponding <>

g

relation is not transitive.

However, for any comparator where <>

g

is transitive, then the corresponding better will also be

transitive.

While there are many plausible candidates for comparators, we insist that better respect the

hierarchy|if there is some valuation in S

0

that completely satis�es all the constraints through

level k, then all valuations in S must satisfy all the constraints through level k:

if 9� 2 S

0

^ 9k > 0 such that

8i 2 1 : : :k 8p 2 H

i

p� holds

then 8� 2 S 8i 2 1 : : :k 8p 2 H

i

p� holds

2.4 Examples

As a simple example to illustrate some of the di�erences among the comparators, consider a

constraint-based spreadsheet, or a graphical calculator such as was described in [Borning 81].

Suppose there is a \sum" constraint relating real-valued variables A, B, and C. Previously, the

values for these variables were A=2, B=3, and C=5. The user has just edited C to be 7. The

following constraint hierarchy expresses the desired semantics:

required C = A+ B

strong C = 7

weak A = 2

weak B = 3

12

The required C = A+ B constraint represents the sum constraint. The strong C = 7 constraint

represents the user's edit. (Making this constraint a strong preference rather than a requirement

allows the system to refuse to accept the edit if it con
icts with some required constraint; if

instead we wished to be noti�ed of a failure in this case we would make the edit also required.)

The two constraints weak A = 2 and weak B = 3 express a desire that the rest of the system

be changed as little as possible in accommodating the edit to C. Without them, A = 1000000,

B = {999993, and C = 7 would be a perfectly valid result.

We now list the solutions for a number of the comparators.

Locally-predicate-better yields two solutions:

A = 2, B = 5, C = 7

A = 4, B = 3, C = 7

In the �rst solution, the A = 2 constraint is satis�ed but not B = 3; in the second, B = 3 is

satis�ed but not A = 2.

Locally-metric-better yields an in�nite number of solutions:

A = x, B = 7� x, C = 7 for all x 2 [2 : : :4]

None of the solutions in the set is better than any other in the set. For example, the solution

A = 2:9, B = 4:1, C = 7 doesn't satisfy the constraint on A as well as A = 2, B = 5, C = 7,

but does better for the constraint on B. However, outlying solutions such as A = 1000000,

B = {999993, and C = 7 are ruled out.

Weighted-sum-predicate-better yields the same two solutions as locally-predicate-better if

the weights on the two weak constraints are equal; otherwise it picks one solution or the other

depending on which weight is larger.

Weighted-sum-metric-better yields the same in�nite set of solutions as locally-metric-better

if the weights on the two weak constraints are equal; otherwise it picks either A = 2, B = 5,

C = 7, or A = 4, B = 3, C = 7 respectively, depending on whether the weight on the constraint

on A or on B is larger.

Least-squares-better yields a single solution, which is A = 3, B = 4, C = 7 when the weights

on the weak constraints are equal. (This is also the solution for worst-case-metric better with

equal weights.)

For this example, the regional comparators yield the same solutions as their local counterparts.

Now consider a simple scheduling problem in which the regionally-metric comparator does

give a di�erent answer than locally-metric-better. In this example, we have three people who wish

13

to get together for a meeting. It is crucial that two of those people, Bjorn and Michael, attend

the meeting, so their wishes will have higher priority than the third person, Alan, who wants

to sit in on the meeting, but whose attendance is not absolutely necessary. Bjorn and Michael

agree that their requested meeting times are preferential, rather than required constraints, as

they know that it is vital that this meeting take place. The meeting will last about an hour.

Bjorn would like to be �nished by noon. Michael would prefer to meet after work | at 5:00 p.m.

Alan decides that 3:00 p.m. is the best time for him. The following constraint hierarchy re
ects

these preferences:

strong Bjorn: meet before or at 11:00 a.m.

strong Michael: meet at or after 5:00 p.m.

weak Alan: meet at 3:00 p.m.

The weight on each of these constraints is 1. Note that there are no required constraints.

If we made Bjorn's and Michael's requests required, then there would be no solutions. Alan's

request is weak because it is not crucial that he attend the meeting.

Here is a list of solutions for various comparators.

Locally-predicate-better yields two answers | either meet at or before 11:00 a.m. as Bjorn

prefers, or meet at or after 5:00 p.m., as Michael prefers.

As with the previous example, locally-metric-better yields an in�nite number of solutions:

any hour between 11:00 a.m. and 5:00 p.m. inclusive. As in the case of the locally-predicate

solutions, Alan's weak desires have no bearing on the �nal meeting time.

Regionally-predicate-better has the same solutions as locally-predicate-better. (Note that

if Alan wished to meet before 11:00 a.m., say at 9:00 a.m., then regionally-predicate-better

would select 9:00 a.m. as the solution, whereas the solutions given by the locally-predicate-better

comparator would favor 9:00 a.m. over all other morning times, but not over any of the evening

times. Similarly, if Alan wished to meet at a time that was compatible with Michael, say at 5:30

p.m., then regionally-predicate-better would yield 5:30 as the meeting time.)

Regionally-metric-better yields the single solution of having the meeting at 3:00 p.m. In this

example, the regional comparator was able to further discriminate based on preferences weaker

in the hierarchy. This highlights the di�erence between the regional and local comparators.

Weighted-sum-predicate-better gives the same solutions as locally-predicate-better, before or

at 11:00 a.m. and at or after 5:00 p.m. Weighted-sum-metric-better gives the same 3:00 p.m.

solution as does regionally-metric-better. Least-squares-better and worst-case-better both yield

14

a meeting time of 2:00 p.m. For both of these latter cases, the weak constraint has no e�ect on

the solution.

2.5 Remarks on the Comparators

The de�nitions of the global comparators include weights on the constraints. For the local

comparators, adding weights would be futile, since the result would be the same with or without

the weights.

One might argue that allowing an arbitrary number of constraint strengths is unnecessary:

since soft constraints can have weights on them, one could make do with only two levels (required

and one preferential level), and use appropriate weights to achieve the desired e�ects. There are

three reasons we believe such an argument is not valid: two conceptual, and the other pragmatic.

To illustrate the �rst reason, consider moving a line with a mouse in an interactive graphics

application. The line has a strong constraint that it be horizontal, and another strong constraint

that one endpoint follow the mouse. There is also a weaker constraint that the line be attached

to some �xed point in the diagram. The user's expectations in this case are likely that the line

will remain exactly horizontal and will precisely follow the mouse (letting the weaker attachment

constraint be unsatis�ed), rather than keeping the line nearly horizontal, or quite close to the

mouse, but letting the weaker constraint have a bit of in
uence on the result. Second, since

adding weights to constraints is futile for the local comparators, we would need to give up these

comparators and use only global ones. Third, solutions to constraint hierarchies in which one

level completely dominates the next can often be found much more e�ciently than solutions to

systems with only one preferential level and weights on the constraints|see Section 6.1.

Most of the concepts in constraint hierarchies derive from concepts in sub�elds of operations

research such as linear programming [Murty 83], multiobjective linear programming [Murty 83],

goal programming [Ignizio 85], and generalized goal programming [Ignizio 83]. The domain of

the constraints in operations research is usually the real numbers, or sometimes the integers

(for integer programming problems). The notion of constraint hierarchies is preceded by the

approach to multiobjective problems of placing the objective functions in a priority order. The

concept of a locally-better solution is derived from the concept of a vector minimum (or pareto

optimal solution, or nondominated solution) to a multiobjective linear programming problem.

Similarly, the concepts of weighted-sum-better and worst-case-better solutions are both derived

15

from analogous concepts in multiobjective linear programming problems and generalized goal

programming.

There are a number of relations that hold between local and global comparators.

Proposition 1 For a given error function e,

8�8�8H locally-better(�; �;H)! weighted-sum-better(�; �;H)

Proof: Suppose locally-better(�; �;H) holds. Then there is some level k > 0 in H such

that the error after applying � to each of the constraints through levels k�1 is equal to that

after applying �. It then follows that the sum of the weighted errors after applying � to the

constraints through levels k�1 is equal to that after applying �. Furthermore, at level k the

error after applying � is strictly less for at least one constraint and less than or equal for all

the rest. This implies that the weighted sum of the errors after applying � to the constraints

at level k is strictly less than that after applying �. Therefore weighted-sum-better(�; �; H)

also holds.

Corollary 1 For a given constraint hierarchy, let S

LB

denote the set of solutions found using

the locally-better comparator, and S

WSB

that for weighted-sum-better. Then S

WSB

� S

LB

.

Proposition 2 For a given error function e,

8�8�8H locally-better(�; �;H)! least-squares-better(�; �;H)

The proof is similar to that for Proposition 1.

Corollary 2 Let S

LSQ

denote the set S of solutions found using the least-squares-better com-

parator. Then S

LSQ

� S

LB

.

Propositions 1 and 2 concern particular instances of the globally-better schema. However,

locally-better does not imply globally-better for an arbitrary combining function g. In particular,

locally-better does not imply worst-case-better.

2.5.1 Errors for Inequalities

A problem arises in connection with metric predicates and strict inequalities. For example, what

should be the error function for the constraint X > Y , where X and Y are reals? If X is greater

than Y, then the error must be 0. If X isn't greater than Y, we'd like the error to be smaller the

closer X is to Y. Thus, an obvious error function is e(X > Y) = 0 if X > Y , otherwise Y �X.

16

This isn't correct, however, since it gives an error of 0 if X and Y are equal. However, if the

error when X and Y are equal is some positive number d, then we get a smaller error when Y

is equal to X + d=2 than when Y is equal to X, thus violating our desire that the error become

smaller as X gets closer to Y.

To solve this problem, we introduce an in�nitesimal number � [Robinson 66], which is greater

than 0 and less than any positive standard real number. Using � we can then de�ne

e(X > Y) =

8

>

>

>

<

>

>

>

:

Y �X if X < Y

� if X = Y

0 if X > Y

e(X 6= Y) =

8

<

:

0 if X 6= Y

� if X = Y

e(X < Y) =

8

>

>

>

<

>

>

>

:

0 if X < Y

� if X = Y

X � Y if X > Y

Note that � is only being added to the range of the error function, not to the domain D. If we

did try to change the domain itself to be the hyperreal numbers, we would end up with the same

problem as before.

1

2.5.2 Existence of Solutions

If the set of solutions S

0

for the required constraints is non-empty, intuitively one might expect

that the set of solutions S for the hierarchy would be non-empty as well. However, this is not

always the case. Consider the hierarchy required N > 0, strong N = 0 for the domain of the real

numbers, using a metric comparator. Then S

0

consists of all valuations mapping N to a positive

number, but S is empty, since for any valuation fN 7! dg 2 S

0

, we can �nd another valuation,

for example fN 7! d=2g, that better satis�es the soft constraint N = 0.

However, the following proposition, especially relevant for
oating point numbers, does hold:

Proposition 3 If S

0

is non-empty and �nite, and if a transitive comparator is used, then S is

non-empty.

1

What would be the error for the constraint 0 > �=2? According to the de�nition, the error

would be �=2. But this is less than the error for 0 > 0, even though the 0 > 0 constraint is more

nearly satis�ed.

17

Proof: Suppose to the contrary that S is empty. Pick a valuation �

1

from S

0

. Since �

1

62 S,

there must be some �

2

2 S

0

such that better(�

2

; �

1

;H). Similarly, since �

2

62 S, there is an

�

3

2 S

0

such that better(�

3

; �

2

;H), and so forth for an in�nite chain �

4

; �

5

; : : :. Since better is

transitive, it follows by induction that 8i; j > 0 [i > j ! better(�

i

; �

j

;H)]. The irre
exivity

property of better requires that 8i > 0 :better(�

i

; �

i

;H). Thus all the �

i

are distinct, and so

there are an in�nite number of them. But, by hypothesis S

0

is �nite, a contradiction.

For most (if not all) practical applications of constraint hierarchies, H will be �nite. For ex-

ample, when constraint hierarchies are embedded in programming languages, then if the program

terminates, the resulting set of constraints will be �nite.

2

The next proposition tells us that in

many cases of practical importance, if the required constraints can be satis�ed, then solutions to

the hierarchy exist.

Proposition 4 If S

0

is non-empty, and if a predicate comparator is used, then S is non-empty.

Proof: Suppose to the contrary that S is empty. Using the same argument as before,

we show that there must be an in�nite number of distinct valuations �

i

2 S

0

. However, if

the comparator is predicate, one valuation cannot be better than another if both valuations

satisfy exactly the same subset of constraints in H. Therefore each of the �

i

must satisfy a

di�erent subset of the constraints in H. However, this is a contradiction, since H is �nite.

2.5.3 Disorderly Aspects of Comparators

There are times when we would like to consider the e�ect of adding a constraint to an existing

hierarchy, thereby re�ning the set of valuations that solves the hierarchy. This can occur, for

example, if we are trying to solve constraints concurrently; the system would like to begin solving

the hierarchy before all of the constraints are known.

Unfortunately, the orderliness property de�ned below does not hold for comparators that

respect the hierarchy. Intuitively, this means that adding new constraints to a hierarchy may

result in a solution that is not a re�nement of the previous solution, but rather a di�erent solution

altogether.

De�nition. Let H and J be constraint hierarchies. Let C be a comparator. Then C is orderly

if S

fH[Jg

(C) � S

fHg

(C): A comparator that is not orderly is disorderly.

2

Unless we had a language that allowed an in�nite set of constraints to be speci�ed by a single

statement.

18

Note that adding only required constraints to an existing set of required constraints will either

narrow or leave the same the set of valuations that satisfy those constraints. Thus disorderliness

arises only in the case of non-required constraints. This orderliness property is similar to the

\stability of rejection" property discussed in [Saraswat 89].

Proposition 5 Let D be a nontrivial domain. Then any comparator that respects the hierarchy

is disorderly.

Proof: Let H = fweak X = ag, and let J = fstrong X = bg, where a and b are two

distinct elements in D. Let C be a comparator that respects the hierarchy. Then S

fHg

(C)

consists of the valuation that maps X to a, and S

fH[Jg

(C) consists of the valuation that

maps X to b. S

fH[Jg

(C) 6� S

fHg

(C) since a and b are distinct. Therefore C is not orderly.

Thus, if we have an incremental solver, adding a new constraint could in general require us

to retract a previous solution.

Chapter 3

Extensions to the Constraint

Hierarchy Theory

In this chapter, various extensions to the constraint hierarchy theory are explored. The �rst

two extensions involve adding read-only and write-only annotations to the variables in the con-

straints. The third extension allows for comparing solutions across two or more di�erent hierar-

chies. Read-only and write-only annotations are not incorporated in the current HCLP theory or

implementation, although we believe that they could be in the future. Inter-hierarchy comparison

is supported by the current theory (see Chapter 5 Section 5.2.5), but not by the current imple-

mentation. Some of the advantages and disadvantages of incorporating it into the implementation

are discussed in Chapter 7 Section 7.5.

3.1 Read-only Variables in Constraint Hierarchies

We can roughly classify constraint-based languages and systems as using one of two approaches:

the re�nement model or the perturbation model. In both cases constraints restrict the values that

variables may take on. In the re�nement model, variables are initially unconstrained; constraints

are added as the computation unfolds, progressively re�ning the permissible values of the vari-

ables. This approach is more or less universally adopted in the logic programming community,

for example, in the CLP language scheme [Cohen 90, Ja�ar & Lassez 87] and instances of it (e.g.

[Colmerauer 90, Dincbas et al. 88, Heintze et al. 91, Van Hentenryck 89, Ja�ar & Michaylov 87]),

20

and the cc languages [Saraswat et al. 91, Saraswat 89].

In contrast, in the perturbation model, at the beginning of an execution cycle variables have

speci�c values associated with them that satisfy the constraints. The value of one or more

variables is perturbed (usually by some outside in
uence, such as an edit request from the user),

and the task of the computer is to adjust the values of the variables so that the constraints are

again satis�ed. The perturbation model has been often used in constraint-based applications

such as the interactive graphics systems Sketchpad [Sutherland 63], ThingLab I [Borning 81],

Magritte [Gosling 83], and Juno [Nelson 85], and user interface construction systems such as

Garnet [Myers et al. 90a, Myers et al. 90b]. We can also view the ubiquitous spreadsheet as

using the perturbation model: formulas are constraints relating the permissible values in cells.

Before a user action, cells have values that satisfy the constraints (formulas). The user edits the

value in a cell, or edits a formula, and the system must change the values of other cells as needed

so that the constraints are again satis�ed.

In the perturbation model, there will generally be many ways to update the current state

so that the constraints are again satis�ed. As a trivial example, suppose we have a constraint

A+B = C, and edit the value ofB. Should we change A, C, both A and C, undo the change to B,

or what? These systems often employ read-only annotations to help limit this choice. A common

special case is to use one-way constraints, that is, constraints in which all but one of the variables

are declared to be read-only. For the A+B = C constraint, if A and B are declared to be read-

only, it is clear what to do when B is edited (at least if there are no circularities in the constraint

graph). Spreadsheets are examples of systems using one-way constraints; Garnet is another.

However, even in perturbation systems that use multi-way constraints, read-only annotations are

often employed. In Sketchpad, for example, the constraint that related a \master" picture and

an instance of it was read-only on the master. In ThingLab I read-only annotations were used

to force a spreadsheet-like constraint on a column of numbers and their sum to be used in one

direction only.

Constraint hierarchies provide an alternative method for specifying this choice, without giving

up the generality of multi-way constraints. In a sum constraint similar to the one in Chapter 2

Section 2.4, for example, we could have medium constraints that the values for A and B remain

the same, while having a weak constraint that the value for C remain the same. Then updates

to A or B would have the e�ect of forcing C to change, and in this way we could achieve

directionality without using read-only annotations. However, even in a multi-way constraint

21

system with hierarchies, read-only annotations can still be useful. One use is in constraints that

reference an external input device or other outside source of information. If we have a constraint

that a point follow the mouse, the constraint should be read-only on the mouse position (unless,

of course, the mouse is equipped with a small computer-controlled motor). Another use is in

constraints describing a change over time, where the constraint relates an old and a new state.

Here, we may wish to make the old state read-only, so that the present can't alter the past.

Intuitively, when choosing the best solutions to a constraint hierarchy, constraints should not

be allowed to a�ect the choice of values for their read-only variables, i.e., information can
ow

out of the read-only variables, but not into them. (Alternatively we can say that constraints

are only allowed to a�ect the choice of values for their unannotated variables.) However, we still

want the constraints to be satis�ed if possible (respecting their strengths). In particular, required

constraints must be satis�ed, even if they contain read-only annotations.

We now give an informal outline of the de�nition for solutions to constraint hierarchies with

read-only annotations. One way of preventing a constraint from a�ecting the choice of values for a

variable is to replace that occurrence of the variable by a constant. Thus, we begin the de�nition

of the set of solutions to a constraint hierarchy H by forming a set Q of constraint hierarchies,

where each element of Q is a constraint hierarchy with arbitrary domain elements substituted

for the read-only variables. (Note that the same variable v may have read-only occurrences and

normal occurrences. Only the read-only occurrences are replaced when forming elements of Q.)

Intuitively, we guess a valuation for v, and then form a hierarchy using that guess. After making

all possible guesses, we weed out solutions arising from incorrect ones. (Note that this is purely

a speci�cation of the meaning of read-only annotations, not a reasonable algorithm for actually

solving such constraint hierarchies!)

Here is an example. (X? signi�es that this occurrence of X is read-only.)

Original H q 2 Q formed by replacing Y ? with d 2 D

Y ? 7! 9:83 Y ? 7! 3 Y ? 7! �6:2 � � �

required X = Y ? X = 9:83 X = 3 X = �6:2

strong X = 4 X = 4 X = 4 X = 4 � � �

weak Y = 3 Y = 3 Y = 3 Y = 3

Next we solve the constraint hierarchies in Q, discarding any valuations that map the remain-

ing unannotated occurrences of a variable to something di�erent from what was substituted for

its read-only occurrences. (In other words, we discard all valuations in which we guessed incor-

22

rectly.) This ensures that the permissible values for a variable won't be a�ected by read-only

occurrences of that variable, but that they will be consistent with the read-only occurrences.

Continuing the example:

q 2 Q formed by replacing Y ? with d 2 D

replacement � Y ? 7! 9:83 Y ? 7! 3 � � �

required X = 9:83 required X = 3

hierarchy q strong X = 4 strong X = 4 � � �

weak Y = 3 weak Y = 3

valuation � fY 7! 3; X 7! 9:83g fY 7! 3; X 7! 3g � � �

consistency Y � 6= Y ?� Y � = Y ?� � � �

outcome Discard Keep � � �

The valuation fY 7! 3; X 7! 3g is the only consistent solution, and thus is the solution to the

original hierarchy.

We now give a formal de�nition of the meaning of read-only annotations. In the de�nition,

we will introduce new variables w

i

, which we will want to omit in the �nal solution. We therefore

de�ne an operator omitting.

De�nition. Let � be a valuation. Let the domain of � be the variables v

1

; : : : ; v

n

. Then

� omitting w

1

; : : : ; w

m

is the valuation � such that the domain of � is fv

1

; : : : ; v

n

g�fw

1

; : : : ; w

m

g, and such that �v = �v

for all v in the domain of �. Similarly, if � is a set of valuations,

� omitting w

1

; : : : ; w

m

= f� omitting w

1

; : : : ; w

m

j � 2 �g

De�nition. Let X be a variable in a constraint. We de�ne a read-only annotation on X as

X?.

De�nition Let H be a constraint hierarchy containing read-only annotations, and let D be

the domain of the constraints. Let v

1

; : : : ; v

m

be the variables in H that have one or more read-

only occurrences. Let w

1

; : : : ; w

m

be new variables not occurring in H, and let J be the hierarchy

that results from substituting w

i

for each read-only occurrence of the corresponding variable v

i

.

(The w

i

are no longer annotated as read-only in J ; also, occurrences of the variables v

i

that

23

aren't annotated as read-only are una�ected.) De�ne Q as the set of all hierarchies J�, where

each � is formed by substituting arbitrary domain elements for the w

i

:

Q = fJ� j d

1

2 D; : : : ; d

m

2 D; � = fw

1

7! d

1

; : : : ; w

m

7! d

m

gg

Let solutions(J�) be the set of solutions to J� . (Here we are using the de�nition of \solutions"

given in the basic theory Section 2.1, since J has no variables with read-only annotations.) Let

the set of consistent solutions to J� be de�ned as:

consistent (J�) = f� j � 2 solutions(J�) ^

w

1

� = v

1

� ^ : : : ^ w

m

� = v

m

�g

In English, to be a consistent solution, if � maps w

i

to some domain element d

i

, then � must

map the corresponding v

i

to the same domain element d

i

(i.e., we guessed correctly).

The desired set of solutions to H is the set of all consistent solutions, omitting the mappings

for the newly introduced variables w

i

:

solutions(H) =

0

@

[

J�2Q

consistent (J�)

1

A

omitting w

1

; : : :w

m

Proposition 6 For a constraint hierarchy H containing only required constraints, let H

0

be the

same hierarchy, but with the read-only annotations removed. Then solutions(H) = solutions(H

0

).

Proof:

solutions(H) � solutions(H

0

)

Let v

1

; : : : ; v

m

, w

1

; : : : ; w

m

, and J be de�ned as above. Let � be a solution for H

0

. De�ne

� = fw

i

7! v

i

�; : : : ; w

m

7! v

m

�g. (In other words, if � maps v

i

to d

i

, then � maps the corre-

sponding w

i

to d

i

.) Then clearly � 2 solutions(J�) and � is consistent. So � 2 solutions(H).

solutions(H) � solutions(H

0

)

Now assume � is a solution for H. By de�nition, � is a consistent solution to J� for some �.

As H consists only of required constraints and as � is consistent with �, � also satis�es all

of the constraints in H

0

.

3.1.1 Blocked Hierarchies

Even with this de�nition, it is possible for a constraint to restrict the values that its read-only

annotated variables can take on. For example, consider the following constraint hierarchy for the

domain R:

24

required V > 0

required V ? = 1

The V > 0 constraint contains the only unannotated occurrence of V, and thus only V > 0 is

allowed to a�ect the choice of values for V, and not V ? = 1. However, the solutions to the �rst

constraint by itself, V > 0, includes V 7! 0:3, V 7! 1:728, and so forth, in addition to V 7! 1,

while solutions(H) = fV 7! 1g. Thus, the choice of values for V is being a�ected by the V ? = 1

constraint. We therefore impose an additional check, blocked(H), that tests for this situation.

The blocked (H) predicate is true if any constraint in H limits the permissible values for

one of its read-only annotated variables. In such a case, additional constraints can be added

to the hierarchy so that the set of solutions can be found without any constraints limiting the

permissible values for the read-only annotated variables.

The de�nition of blocked (H) is based on the following observation: if there is a domain element

d such that there are no solutions when d replaces all occurrences of a variable (both annotated

and unannotated), but there are solutions when d replaces only the unannotated occurrences,

then the annotated (read-only) occurrences are eliminating d from solutions(H). Thus, if such a

d exists, the annotated occurrences are restricting the values that the variable can take on, and

blocked(H) is true.

De�nition.

blocked (H) � 9d 2 D 9i 2 [1 : : :m] such that

solutions(J���) = ; ^ solutions(J��) 6= ;

where � = fw

i

7! dg ; � = fv

i

7! dg ; and

� = fw

1

7! v

1

; : : : ; w

i�1

7! v

i�1

;

w

i+1

7! v

i+1

; : : : ; w

m

7! v

m

g

If there are no read-only annotations on the variables in H, then clearly blocked(H) is false.

The following proposition shows the relationship between solutions to hierarchies without

read-only annotations and the solutions when a constraint with read-only annotations is included

in the hierarchy. In the �rst case, the resultant hierarchy is not blocked, and in the second case,

it is.

25

Proposition 7 Let H be a constraint hierarchy without read-only annotations. Let c be a con-

straint and let v

1

; : : : ; v

n

be the variables in c with read-only annotations. Let V be the variables

in H [fcg.

:blocked(H [fcg)!

solutions(H [fcg) omitting V � fv

1

; : : : v

n

g =

solutions(H) omitting V � fv

1

; : : : v

n

g

blocked(H [fcg)!

solutions(H [fcg) omitting V � fv

1

; : : : v

n

g �

solutions(H) omitting V � fv

1

; : : : v

n

g

Note that solutions(H) omitting V � fv

1

; : : : v

n

g contains valuations only for the variables with

read-only annotations.

Within the logic programming community, read-only annotations were originally introduced

in Concurrent Prolog [Shapiro 86] for an entirely di�erent purpose than ours, namely for the

control of communication and synchronization among networks of processes. In our work so

far, having a blocked solution is an unusual and undesirable state, which would arise only if a

design or other error had been made in specifying the constraints. In contrast, in concurrent

logic programming, blocking caused by read-only annotations is ubiquitous and essential for

controlling program execution.

There were problems with the original formulation of read-only annotations in Concurrent

Prolog (see [Saraswat 85] for a discussion), and a number of alternatives have been proposed. For

example, Maher [Maher 87] describes ALPS, a class of languages that incorporates constraints

into a
at committed-choice logic language. There are some similarities between the ALPS work

and the use of read-only annotations in constraint hierarchies. In particular, the de�nition of

blocked relates to the notions of satisfaction and validation given by Maher for the ALPS commit

law. In this context, satisfaction and validation are concerned with the head, H, and the guard,

G, of the rule in question. This head-guard pair is satis�ed by a particular atom, A, if the current

set of constraints (or global constraints) is consistent with the constraint A = H and with the

constraints in the guard G. The head-guard pair is validated if A = H and G follow from the

global constraints, or in other words, the rule can not be invalidated in the future by a further

restriction of the values of global variables. According to this law, a rule can be committed to if

26

it is the only rule satis�ed by the existing set of constraints, or if the rule is validated by those

constraints.

Proposition 7 highlights the relationship with ALPS. When the hierarchy H [fcg is not

blocked, then H is in a sense validating the constraint c, or at least validating the read-only

component of that constraint. When H [fcg is blocked, then c is satis�ed, or rather, it is

satis�able. Some new constraint, say c

0

, can be added to H to form the new hierarchy H

0

so that

the hierarchy H

0

[fcg is no longer blocked and H

0

thus validates c.

3.1.2 Illustrative Examples of Using Read-only Annotations

Consider the hierarchy H for the domain R:

required C � 1:8 = F?� 32:0

strong C = 0:0

weak F = 212:0

Without the read-only annotation on F , the solution to this hierarchy would be

ffC 7! 0:0; F 7! 32:0gg. With it, the solution is ffC 7! 100:0;F 7! 212:0gg. (Note that the

strong C = 0:0 constraint is not satis�ed because there is no consistent solution that satis�es it.)

To �nd the solution while accommodating the read-only annotation, the hierarchy J is formed

by replacing F? by a newly introduced variable W :

required C � 1:8 =W � 32:0

strong C = 0:0

weak F = 212:0

Q is the set of all hierarchies resulting from substituting an arbitrary real number for W . For

example, the hierarchy resulting from the substitution � = fW 7! 14:0g is:

required C � 1:8 = 14:0� 32:0

strong C = 0:0

weak F = 212:0

which has the singleton set of solutions f� = fC 7! -10:0; F 7! 212:0gg, but is not consistent

because W� 6= F� (14:0 6= 212:0).

The only hierarchy in Q with a consistent solution results from � = fW 7! 212:0g :

27

required C � 1:8 = 212:0� 32:0

strong C = 0:0

weak F = 212:0

Now consider the motivating example in Section 3.1.1 for which blocked is true:

required V > 0

required V ? = 1

To illustrate the de�nition of blocked, form the new hierarchy J by replacing V ? with W :

required V > 0

required W = 1

There exists a d 2 R, for example d = 6, such that, for the substitutions � = fW 7! 6g,

� = fV 7! 6g, and � = fg, J��� has no solutions, but J�� does have a solution:

J��� J��

required 6 > 0 required 6 > 0

required 6 = 1 required W = 1

no solutions ffW 7! 1gg

Hence blocked is true for this hierarchy. However, if we added the additional constraint

required V = 1 to the original hierarchy, then blocked would become false.

3.1.3 Practical Examples of Using Read-only Annotations

A trivial but useful example is a spreadsheet-like constraint that A? +B? + C? = Sum. The

read-only annotations prevent the user from editing Sum and having the change propagate back

to A, B, or C, but still allow the user to edit A, B, or C.

As noted in the introduction, an important use of read-only annotations is in constraints that

reference an external input device or other outside source of information. For example, if we have

a constraint that a point P follow the mouse, the constraint should be read-only on the mouse

position:

P = mouse.position?

28

As another example, suppose we have a simple scrollbar displayed on the screen. When the

\thumb" is dragged up and down, we want the top and bottom of the scrollbar to remain �xed.

However, we want to be able to reposition the scrollbar as a whole, so simply anchoring the top

and bottom isn't the correct solution.

1

To handle this problem cleanly, we de�ne a constraint

relating the position of the thumb, the top, the bottom, and a number percent, in which the the

top and bottom are annotated as read-only:

percent =

thumb � bottom?

top?� bottom?

The read-only annotations on top and bottom are speci�c to this constraint, so the whole

scrollbar can be repositioned by some other \move" constraint.

3.1.4 Circularities

While the sets of solutions to many hierarchies are intuitively clear, this clarity often vanishes

when the hierarchy contains cycles. We present two such examples here. These are pathological

cases that would not arise in realistic applications|but nevertheless the theory should and does

specify how they are to be handled.

The following two hierarchies both contain a cycle through variables annotated as read-only.

In the �rst hierarchy, none of the constraints in the cycle is more restrictive than the others and

so, intuitively, information can
ow properly and still yield a solution.

required X? = Y + 1

required X = Y ? + 1

For this hierarchy, blocked is false and the set of solutions is the in�nite set

ffX 7! d+ 1; Y 7! dg j d 2 Rg.

In the second hierarchy, however, the required X? = Y +1 constraint is more restrictive than

the required X � Y ? one. Thus the \unequal" information
ow results in blocked being true.

required X? = Y + 1

required Y = 20

required X � Y ?

1

We could almost achieve the desired result by putting strong (but not required) anchors on

the top and bottom of the mouse. However, if other constraints on the output value from the

slider became too strong, then the top or bottom would move; we would prefer a more robust

object.

29

For this hierarchy, the set of solutions is ffX 7! 21; Y 7! 20gg; however, blocked is true.

3.2 Write-only Annotations

In addition to read-only annotations, it is also convenient if write-only annotations are available.

Intuitively, if a variable is annotated as write-only in a constraint, we only want information to

be able to
ow from the constraint into that variable, and not back. We could de�ne the e�ect

of write-only annotations from �rst principles, in a manner analogous to the de�nition for read-

only annotations. However, it is simpler to de�ne write-only annotations in terms of read-only

annotations.

De�nition. Let X be a variable in a constraint. We de�ne a write-only annotation on X as

X!.

De�nition. Let H be a constraint hierarchy containing write-only annotations (it may

contain read-only annotations as well), and let D be the domain of the constraints. Let v

1

; : : : ; v

m

be the variables in H that have one or more write-only occurrences. Let w

1

; : : : ; w

m

be new

variables not occurring in H, and let J be the hierarchy that results from substituting w

i

for

each write-only occurrence of the corresponding variable v

i

. Let J

0

be the hierarchy formed by

augmenting J with the additional required constraints v

i

= w

i

? for 1 � i � m. The desired set

of solutions to H is the the set of solutions to J

0

, with the mappings for the w

i

omitted:

solutions(H) = solutions(J

0

) omitting w

1

; : : :w

m

The de�nition of the set solutions(J

0

) used above is, of course, that given in Section 3.1.

For example, let H be:

required X! = Y

strong X = 4

weak Y = 3

Intuitively, even though the constraint X = 4 is stronger than the constraint Y = 3, infor-

mation will only be allowed to
ow from Y to X in the X! = Y constraint, since X is annotated

as write-only. Tracing through the de�nition, the hierarchy J

0

is formed by replacing X! by a

newly introduced variable W , and adding the required constraint X = W?.

30

required W = Y

required X =W?

strong X = 4

weak Y = 3

The set of solutions to J

0

is ffW 7! 3; X 7! 3; Y 7! 3gg. The desired set of solutions to H is

the same, but with the mapping for W omitted: ffX 7! 3; Y 7! 3gg.

3.3 Inter-Hierarchy Comparison

In some applications, it is useful to compare not just solutions to a given constraint hierarchy,

but also solutions arising from several di�erent hierarchies, for example, hierarchies arising from

di�erent rule choices in a logic program. To return to the scheduling example given in Chapter 2

Section 2.4, suppose that instead of only being able to meet before noon, Bjorn decides that he

can also meet at 6:00 p.m. Then instead of a single constraint hierarchy, we would now represent

this problem using the following two hierarchies:

strong Bjorn: meet before or at 11:00 a.m.

strong Michael: meet at or after 5:00 p.m.

weak Alan: meet at 3:00 p.m.

strong Bjorn: meet before or at 6:00 p.m.

strong Michael: meet at or after 5:00 p.m.

weak Alan: meet at 3:00 p.m.

As mentioned previously, 11:00 a.m. is one of many locally-predicate-better solutions to the

�rst hierarchy. 6:00 p.m. is the only solution to the second hierarchy. It seems evident to a person

trying to solve this problem that 6:00 p.m. is the \best" solution since it satis�es the schedules of

the two people who strongly prefer to attend the meeting. One way to achieve this answer using

the constraint hierarchy theory is to allow a comparison between the solutions arising from the

�rst hierarchy and those arising from the second with respect to how well a solution satis�es its

own hierarchy. (Clearly we wouldn't want to compare 11:00 a.m. and 6:00 p.m. using just one of

the hierarchies. 11:00 a.m. isn't even a solution to the second hierarchy!)

31

In [Wilson & Borning 89] an earlier version of the constraint hierarchy theory was extended

to allow for such inter-hierarchy comparisons. In what follows, the de�nitions from Chapter 2

Section 2.1 are similarly extended.

3.3.1 Extended De�nitions

A solution to a set of constraint hierarchies � will consist of a valuation for all the free variables

in �. We wish to generalize the previous de�nitions so that the set S contains all solutions to

�, rather than just to a single hierarchy. Where � consists of a single hierarchy, the following

de�nitions are equivalent to those given above.

S

0

�

= f�

H

j H 2 � ^ 8c 2 H

0

e(c�

H

) = 0g

S

�

= f�

H

j �

H

2 S

0

�

^ 8�

J

2 S

0

�

:(G([E(J

1

�

J

); : : : ;E(J

n

�

J

)]) <

g

G([E(H

1

�

H

); : : : ;E(H

n

�

H

)]))

where n is the max of the number of levels in H and Jg

We �rst de�ne the set S

0

�

of valuations that satisfy all the required constraints in some hierarchy

in �. Each valuation � in S

0

�

is annotated by the hierarchy H that it satis�es. Using S

0

�

, we

de�ne the set S

�

as before, only now we are comparing across di�erent hierarchies. Thus we

eliminate potential valuations that are worse than some other from any hierarchy in �.

Consider the example given in Section 3.3. Let us refer to the �rst hierarchy as J and the

second as H. Let � be the valuation that maps the meeting time to 11:00 a.m. and let � be the

valuation that maps the meeting time to 6:00 p.m. The combined error sequence for the valuation

�

J

using the weighted-sum-better comparator is [[6]; [4]]. The combined error sequence for the

valuation �

H

, also using weighted-sum-better, is [[0]; [3]]. According to the extended de�nition

given above, it is apparent that �

H

is better than �

J

because is satis�es the constraints in its own

hierarchy better than � satis�es the constraints in the hierarchy H. Note that � is not a weighted-

sum-better solution to hierarchy J , nor is � a solution (using any comparator) to hierarchy H.

We achieve the desired solution of meeting at 6:00 p.m. only by using inter-hierarchy comparison.

Extending the de�nition in this way gives rise to some nonmonotonic properties. These will

be discussed in Chapter 7 Section 7.5.

We should point out that inter-hierarchy comparison only makes sense with respect to the

global comparators, in which the errors at each level in the hierarchy are conglomerated, and it is

therefore reasonable to compare those errors arising from completely di�erent sets of constraints.

32

For the local and regional comparators, on the other hand, it is not clear what it would mean

to order vectors of errors from di�erent constraints via the <

g

relation. For this reason, inter-

hierarchy comparison is only de�ned for global comparators.

As before, we insist that all comparators respect the set of hierarchies|the analogue to

respecting the hierarchy. A comparator respects the set of hierarchies i�: if there is some valuation

in S

0

that completely satis�es all the constraints through level k in its respective hierarchy, then

all valuations in S must satisfy all the constraints in their respective hierarchies through level k.

if 9�

H

2 S

0

^ 9k > 0 such that

8i 2 1 : : :k 8p 2 H

i

p�

H

holds

then 8�

J

2 S 8i 2 1 : : :k 8p 2 J

i

p�

J

holds

Chapter 4

Logic Programming, Constraint

Logic Programming, and

Hierarchical Constraint Logic

Programming

4.1 Logic Programming

Logic programming is a programming paradigm based on a subset of �rst order logic. Its appeal

stems from its simplicity, its declarative properties, and its well-de�ned semantics.

4.1.1 De�nitions and Syntax

A term is de�ned in the manner of [Lloyd 84] as

� a variable,

� a constant, or

� if f is an n-ary function, and t

1

; : : : ; t

n

are terms, then f(t

1

; : : : ; t

n

) is also a term.

34

If p is an n-ary predicate, and t

1

; : : : ; t

n

are terms, then p(t

1

; : : : ; t

n

) is called an atom. A clause

is de�ned as a formula of the form

8x

1

: : :8x

n

(L

1

_ : : :_ L

m

)

where each L

i

is a literal, that is either an atom or a negation of an atom, and where x

1

; : : :x

n

are the variables occurring in L

1

_ : : :_ L

m

. In other words, a clause is a disjunction of literals

where all the variables are universally quanti�ed.

In logic programming, a special notation is used to represent clausal formulas. A clause of

the form

8x

1

: : :8x

n

(A

1

_ : : :_A

j

_ :B

1

_ : : :_ :B

k

)

is written as

A

1

; : : : ; A

j

 B

1

; : : : ; B

k

The literals on the left hand side of the are all positive and the comma denotes disjunction.

The literals on the right hand side are negative and the comma denotes conjunction.

There is a special type of clause that forms the basis of logic programming that is called a

de�nite clause, or sometimes a program clause. A de�nite clause consists of exactly one positive

literal and is of the form

A B

1

; : : : ; B

k

This clause, or rule, has a single positive literal on the left hand side called the head of the rule,

and zero or more negative literals on the right hand side which make up the body of the rule. In

the case where the right hand side is empty, the rule is called a unit clause, or sometimes a fact

and is written

A

or just simply,

A:

In the case where the left hand side is empty, the clause is called a goal, or sometimes a query,

and is written

 B

1

; : : : ; B

k

The empty clause is a special case and is written 2.

Most logic programming languages are restricted to that subset of �rst order logic consisting

of Horn clauses, i.e. rules, facts, and goals.

35

4.1.2 Semantics

In order to give meaning to logic programs, we need to de�ne their behavior over some idealized

interpreter. This is referred to as the procedural or operational semantics. To determine whether

this ideal interpreter is doing its job correctly, we need to compare the procedural semantics to

a more declarative semantics that de�nes the meaning of the underlying logical formulas. There

are several equivalent ways of specifying the declarative semantics for logic programming. These

include the logical consequence (or model theoretic or minimal model) semantics and the �xed

point (or set-theoretic) semantics.

Operational Semantics

Let us consider again a typical rule in a logic programming language:

A B

1

; : : : ; B

k

In the logical framework, we can think of this rule as meaning that A is true if B

1

; : : : ; B

k

are all true. But we can also think of this in a more typical programming language fashion

as a procedure. The head of the rule can be viewed as the procedure name, while the right-

hand-side of the rule can be viewed as the procedure body. A query is a sequence of (possibly

non-deterministic) procedure calls. Computation proceeds by calling each procedure in the query

by �rst matching the call to a procedure of the same name in the program (i.e. the left-hand-side

of a rule), and then computing the body of the procedure (i.e. the right-hand-side of the same

rule), which itself may consist of more procedure calls. Computation halts when there are no

more calls to be made.

To see why this procedural view works, remember that

A B

1

; : : : ; B

k

is in essence an alternate way of writing

(A _ :B

1

_ : : :_ :B

k

)

The deduction rule resolution states that for formulas, f , g, and h, if f _ h and g _ :h, then

f _ g. Using resolution, therefore, we can take a set of goals

A

1

; : : : ; A

i

; : : : ; A

n

36

and the rule

A B

1

; : : : ; B

k

and assuming that A = A

i

, form the resolvent

(A

1

; : : : ; A

i�1

; A

i+1

; : : :A

n

; B

1

; : : : ; B

k

)

Resolution is a refutation procedure that works by showing that something is false; it is only

complete if it refutes a given formula by deriving the empty formula. Therefore, in the case of

logic programming, if computation ends by deriving the empty clause, then the initial goal is

true.

There are many di�erent types of resolution. A form called SLD resolution, or SL resolution

with de�nite clauses, is both sound and complete [Lloyd 84]. SL stands for selected literal and

is a special case of linear resolution. In linear resolution the clause that is selected for the next

resolution step must be the resolvent from the previous step. SL resolution further restricts

the choice of literals on which to resolve, by selecting one that was among those most recently

introduced [Maier & Warren 88]. A computation rule selects which atom to resolve next. A

search rule determines which clause in the program will be selected next in the refutation step.

An SLD interpreter using the breadth �rst search rule is both sound and complete, independent

of the computation rule employed [Lloyd 84].

Declarative Semantics

There are two major results equating the operational and declarative semantics of logic pro-

gramming. The �rst has to do with the equivalence of the operational semantics and the logical

consequence semantics. In [Emden & Kowalksi 76] it is noted that the completeness of resolu-

tion means that derivability (in the operational model) coincides with logical implication (in the

model theory). Hill [Hill 74] also gives this result: a query will succeed (i.e. have a derivation

ending with the empty goal) if and only if the query is a logical consequence of the program.

The second major result equates the operational semantics to the �xed-point semantics. In

[Emden & Kowalksi 76] the notion of a �xed-point is extended from the denotation of proce-

dure de�nitions to the denotation of predicate logic programs. A transformation (or functional

operator) T is associated with a program, and the meaning of the program is taken to be the least-

�xed-point of T . It turns out that the �xed-point and model-theoretic semantics also coincide;

we now have three ways of thinking about the meaning of logic programs.

37

4.1.3 Prolog | an Example

Prolog is the prototypical logic programming language. The syntax of Prolog is similar to the

syntax of declarative clauses described above, except that we use the symbol :- rather than

 , and ?- is used to denote a query. Prolog uses SLD resolution, but the search rule is based

on depth-�rst search, rather than breadth-�rst. This amounts to an ordering rule in Prolog,

that is the order of the rules in the program determines which derivations will occur �rst. It is

possible that a query has a successful derivation, but that the ordering of the rules prevents the

interpreter from �nding it, and an in�nite derivation will occur. For this reason, most standard

Prolog implementations are not complete. Prolog sacri�ces semantic purity for e�ciency in

several other ways as well. The occur check, which determines whether the system is attempting

to unify a term with another term containing it, for example, is omitted for e�ciency reasons.

Cut is an operator that is used to avoid excessive backtracking, but which also further erodes

the semantic equivalence of the operational and logical semantics.

Below is a sample Prolog program that determines ancestors:

mother(molly,hannah).

father(molly,jake)

mother(nate,molly)

mother(calla,molly)

parent(X,Y):- mother(X,Y).

parent(X,Y):- father(X,Y).

ancestor(X,Y):- parent(X,Y).

ancestor(X,Y):- parent(X,Z), ancestor(Z,Y).

The query ?- ancestor(calla,Y) will produce three answers unifying Y with Molly, Han-

nah, and Jake respectively. These three answers represent three separate, successful derivations,

although in practice they will be produced via backtracking to the last choice point and selecting

a di�erent rule in the resolution process.

Logic programming languages, as exempli�ed by Prolog, o�er many advantages. They are

declarative and have a clear semantics. They can express problems and solutions concisely owing

38

to the ability to have variables in answers and to the fact that they are multidirectional; the same

program can be used with di�erent input and output modes to achieve di�erent programming

goals. Furthermore, logic programming lends itself to certain types of programming styles such

as generate and test.

On the other hand, logic programming languages can be ine�cient because of the tremendous

amount of searching for successful derivations that can occur. They are also restricted in their

domain. For example programs that use numbers cannot be run multidirectionally. It was these

drawbacks that led to the formulation of constraint logic programming [Ja�ar & Lassez 87].

4.2 Constraint Logic Programming

The domain of Prolog is restricted to the Herbrand Universe, i.e. all those terms that can be

constructed using the constant and function symbols of the program. Logic programming with

constraints, on the other hand, extends the domain of discourse to include more powerful con-

straints. Constraint Logic Programming [Ja�ar & Lassez 87] is a general scheme for such ex-

tensions, and is parameterized by D, the domain of the constraints. The language that arises

from a �xed set of constraints over D can be denoted by CLP(D). In place of uni�cation (which

can be viewed as testing the satis�ability of equations over the Herbrand universe), constraints

are accumulated and tested for satis�ability over D, using techniques appropriate to the domain.

Several such languages have now been implemented, including CLP(R) [Ja�ar & Michaylov 87,

Ja�ar et al. 92], Prolog III [Colmerauer 90], CHIP [Dincbas et al. 88, Van Hentenryck 89], CAL

[Satoh & Aiba 90], CLP(�*) [Walinsky 89], and Echidna [Sidebottoms & Havens 91].

The formal semantics of such languages di�er mainly in the choice of underlying domain and

constraints, as was shown formally in [Ja�ar & Lassez 87]. It was also shown that for every

language that can be obtained from the CLP scheme for solution-compact and satisfaction-

complete domains D, numerous desirable properties of the declarative and operational semantics

hold|properties that had been considered characteristic of logic programming. In particular,

CLP languages have coincident logical, �xed-point, and operational semantics.

Formally, a constraint is a relation over some domain D. The domain D determines the

constraint predicate symbols �

D

of the language, which must include =. A constraint is thus an

expression of the form p(t

1

; : : : ; t

n

) where p is an n-ary symbol in �

D

and each t

i

is a term.

39

In CLP, rules are of the form

p(t) :� q

1

(t); : : : ; q

m

(t); c

1

(t); : : : ; c

n

(t):

where where p; q

1

; : : : ; q

m

are predicate symbols, t denotes a list of terms, and c

1

; : : : ; c

n

are

constraints. Operationally, we can think of executing the Prolog part of the program in the

usual way, accumulating constraints on logic variables as we go, and either verifying that the

constraints are solvable or else backtracking if they are not. The program can terminate with

substitutions being found for all variables in the input, or with some constrained variables still

unbound, in which case the output would include the remaining constraints on these variables.

4.2.1 CLP(R)| an Example

CLP(R) is a CLP language de�ned over the domain of the real numbers. The CLP(R) rules for

computing mortgage interest [Heintze et al. 91] illustrate of the power of the language, since they

can be used in a variety of ways (to compute the monthly payment given the other information,

to �nd the symbolic relation between the principal and monthly payment, and so forth).

mortgage(Principal,Months,Interest,Balance,MonthlyPayment) :-

Months > 0,

Months <= 1,

Balance + MonthlyPayment = Principal * (1 + Interest).

mortgage(Principal,Months,Interest,Balance,MonthlyPayment) :-

Months > 1,

mortgage(Principal * (1 + Interest) - MonthlyPayment,

Months - 1, Interest, Balance, MonthlyPayment).

Compare the e�ciency of the two goals,

?- mortgage(100000,T,0.01,0,MP),

T >= 240.

40

?- T >= 240,

mortgage(100000,T,0.01,0,MP).

In both cases, we are asking the system to compute the relation between the life of the

mortgage and the monthly payments given a selling price of $100,000 and a 1% monthly interest

rate. In addition, the life of the loan is constrained to be greater than or equal to 20 years. In

the �rst query, this constraint follows the mortgage predicate, whereas in the second query it

comes �rst. The �rst query is extremely ine�cient, as the system will set up a constraint relating

time to 1, then 2, then 3, and so on until T = 239 and failing each time as it discovers that the

constraint T >= 240 is unsatis�able. In the second query, the information in the constraint can

be carried around symbolically, without needing to ground the time variable T. As this example

demonstrates, constraints can detect early failure, and as a result prune large areas of the search

tree, thereby increasing the e�ciency of the interpreter.

This example also shows how the use of constraints extends the multidirectionality of logic

programming to other domains. The mortgage predicate can be called with its arguments instan-

tiated to values (i.e. as input) or with variable arguments (i.e. as output), or with any combination

of the two.

Now consider the goal ?- mortgage(P,360,0.01,0,MP). In this query, we are asking for the

relation between the principal and the monthly payments given a 30 year loan and a 1% monthly

interest rate. This query succeeds with the constraint P = 97.2183*MP. This is called an answer

constraint and demonstrates the ability of constraint logic programming languages to represent

an in�nite number of solutions quite concisely in the form of constraints.

4.3 Putting It All Together: Hierarchical Constraint

Logic Programming

4.3.1 Adding the Constraint Hierarchy to Logic Programming

As discussed in Chapter 1 many applications of constraints either need, or would bene�t from,

support for default and preferential constraints, as well as required ones. ThingLab [Borning 81],

as well as the other applications, used a constraint package built on top of an existing language.

However, there are many bene�ts to having constraint hierarchies completely integrated with

41

a programming language. For example, in an integrated language we will be assured that the

constraints are considered, and there is no need to call the constraint satis�er explicitly. (In

a package, the programmer might simply ignore the constraints.) An integrated system allows

more opportunities for optimizing the implementation. Finally, in the case of logic programming,

there is an elegant theory available (the CLP scheme).

Thus, just as CLP is an extension of logic programming, the CLP scheme can be extended to

include both hard and soft constraints. The Hierarchical Constraint Logic Programming scheme

HCLP is just such an extension and is parameterized both by the domain D of the constraints

and by the comparator C, which is used to select among alternate ways of satisfying the soft

constraints.

4.3.2 HCLP

An HCLP rule (or clause) takes the form

p(t) :� q

1

(t); : : : ; q

m

(t); l

1

c

1

(t); : : : ; l

n

c

n

(t):

where t is a list of terms, p(t); q

1

(t); : : : ; q

m

(t) are atoms and l

1

c

1

(t); : : : ; l

n

c

n

(t) are labeled

constraints. An HCLP program is a collection of rules. A goal, or query, is a multiset of atoms.

Operationally, goals are executed as in CLP, temporarily ignoring the non-required constraints,

except to accumulate them. After a goal has been successfully reduced, the answer may still not

be unique. In this case, the accumulated hierarchy of non-required constraints is then solved,

using a method appropriate for the domain and the comparator C, thus further re�ning the

valuations in the solution. Additional valuations may be produced by backtracking.

An HCLP program can include a list of symbolic names for the strength labels, which in an

implementation are then mapped to the non-negative integers. This is accomplished by the use

of a \levels" predicate. If the label on a constraint is omitted, the label defaults to required.

Regarding the comparator to be used, if it is signi�cant, we will refer to the program as e.g. an

HCLP(D;LPB) one; but if any of various comparators might be appropriate, we will refer to the

code simply as an HCLP(D) program.

4.3.3 HCLP(R)

HCLP(R) is an HCLP language de�ned for the domain of the real numbers. As such, all CLP(R)

programs can be viewed as instances of HCLP(R) programs without any non-required constraints.

42

Conversely, we can begin with CLP(R) programs and add non-required constraints to produce

an HCLP(R) program. We could, for example, take the mortgage program written in CLP(R)

and add preferential constraints. The following goal uses the standard CLP(R) rule to �nd a

symbolic constraint relating the Principal and the MonthlyPayment for a conventional �xed-rate

30 year mortgage at 1% interest per month, and then gives preferences regarding the maximum

monthly payment and the minimum amount borrowed. For the given goal, the two preferences

can be satis�ed simultaneously.

?- mortgage(Principal,360,0.01,0,MonthlyPayment),

strong Principal >= 100000, strong MonthlyPayment <= 1500.

When the monthly payment falls between $1,500 and $1,028.61, then both of the strong

constraints can be satis�ed. However if the query changes to

?- mortgage(Principal,360,0.01,0,MonthlyPayment),

strong Principal >= 100000, strong MonthlyPayment <= 1000.

then the strong constraints can not be satis�ed at the same time, i.e. given the constraints on

the interest rate and the life of the loan, a buyer could not purchase a house for $100,000 or

more and keep the monthly payment below $1,000. In this case, the single solution found by

weighted-sum-metric-better would yield a monthly payment of $1,028.61 for a loan of $100,000.

(No other solution has as small a combined error, since a given change in the principal results

in a much smaller change to the monthly payment.) Worst-case-better and least-squares-better

give solutions that are very close (within a dollar) to this one.

As another simple example, consider the A + B = C problem discussed in Chapter 2 Sec-

tion 2.4, where we want updates to C to produce reasonable behavior in A and B. We could

code an adder in HCLP(R) by �rst de�ning the four levels in the hierarchy using the levels

predicate, and then de�ning a rule for the adder as follows:

43

levels([required,strong,medium,weak]).

adder(OldA,OldB,OldC,NewA,NewB,NewC):-

required OldA + OldB = OldC,

required NewA + NewB = NewC,

medium OldA = NewA,

medium OldB = NewB,

weak OldC = NewC.

To update the value of C we can invoke the goal,

?- strong NewC = 7, adder(2,3,5,NewA,NewB,NewC).

Of course, the solution depends on the actual choice of comparator.

Chapter 5

Semantics

This chapter presents the operational and declarative semantics of hierarchical constraint logic

programming. Just as CLP preserves the strong relationship between the procedural and declar-

ative semantics that is one of the important properties of logic programming, HCLP programs

have logical and �xed-point theories that coincide with the operational models for the same pro-

grams. These three ways of viewing HCLP programs are presented below, followed by the results

that demonstrate their equivalence.

5.1 Operational Semantics of HCLP

As presented in Chapter 4 Section 4.3.2, an HCLP rule (or clause) takes the form

p(t) :� q

1

(t); : : : ; q

m

(t); l

1

c

1

(t); : : : ; l

n

c

n

(t):

where t is a list of terms, p(t); q

1

(t); : : : ; q

m

(t) are atoms and l

1

c

1

(t); : : : ; l

n

c

n

(t) are labeled

constraints. (In actuality, the atoms and constraints may include di�erent lists of terms, but for

simplicity we use t, which is a list of all terms contained in the predicates and constraints of

the rule.) An HCLP program is a collection of rules. A goal, or query, is a multiset of atoms.

Whereas in practice, a goal may also contain constraints, without loss of generality, we will view

goals as consisting only of atoms. (Any goal consisting of constraints can be renamed as a new

predicate, and then this predicate can become the new goal.)

We present the notion of a derivation for a query Q to capture the operational behavior of an

HCLP program. We assume in what follows that selected rules undergo a variable transformation

45

to ensure that they do not clash with existing variables. For each step in the derivation, an atom

from the goal list is matched against the head of a rule in the program P, that atom is removed

from the list of goals, and the atoms on the right hand side of the rule are added to the new

goal list. (A computation rule determines which atom will be selected next. A fair computation

rule is one in which each atom that appears in the derivation is chosen at some step. We assume

that a fair computation rule is used.) The constraints are added to the constraint hierarchy

(that consists of all the labeled constraints accumulated up to this point in the derivation). In

addition, required equality constraints are created between the arguments in the selected atom

and the arguments in the head of the selected rule. These constraints are treated no di�erently

than any other constraints and are merely accumulated and added to the hierarchy. If there is

no solution to the required constraints in the hierarchy, then the derivation is said to have failed.

If there is some element in the derivation sequence such that all of the goals in the goal list have

been reduced, and if there is a solution to the resulting constraint hierarchy, then the derivation

is said to have succeeded. The �nal constraint hierarchy is the hierarchy associated with this

empty goal list. A solution to this �nal hierarchy is then a solution to the original query.

More formally, a derivation for a program P and a query Q with selection rule R is a (possibly

in�nite) sequence of tuples G

0

; G

1

; : : : Each tuple G

i

consists of a goal list and a constraint

hierarchy. We de�ne

G

0

= hQ;H

0

= ;i

Note that H

0

;H

1

; : : : are the hierarchies for G

0

; G

1

; : : :, in contrast to H

0

;H

1

; : : : ;H

n

which are

the sets of constraints in the hierarchy H at levels 0; 1; : : : ; n respectively.

Let G

i

be a of tuple of the form hfp

1

(x

1

); : : : ; p

n

(x

n

)g;H

i

i where S

0

(H

i

) 6= ;. If there is a

rule

p

j

(t) :� q

1

(t); : : : ; q

m

(t); l

1

c

1

(t); : : : ; l

k

c

k

(t):

in P , and if R selects the atom p

j

(x

j

) at step i, then,

G

i+1

= hfp

1

(x

1

); : : : ; p

n

(x

n

)g � fp

j

(x

j

)g [fq

1

(t); : : : ; q

m

(t)g ;

H

i

[fl

1

c

1

(t); : : : ; l

k

c

k

(t)g [ft = x

j

g

�

In the above equation, fp

1

(x

1

); : : : ; p

n

(x

n

)g � fp

j

(x

j

)g are the remaining unreduced goals from

G

i

, fq

1

(x

1

); : : : ; q

m

(x

m

)g are the new goals from the rule, H

i

is the previous hierarchy, and

46

fl

1

c

1

(t); : : : ; l

k

c

k

(t)g are the new constraints from the rule. ft = x

j

g are the required constraints

that result from equating each argument in t with its corresponding argument in x

j

. For this

derivation to be successful, it must be the case that S

0

(H

i+1

) 6= ;. We emphasize that this

derivation step is relative to the rule

p

j

(t) :� q

1

(t); : : : ; q

m

(t); l

1

c

1

(t); : : : ; l

k

c

k

(t):

i.e. if some other rule with head p

j

was used at this step, then another derivation would result.

A derivation is successful if there is some tuple G

f

= h;;H

f

i in the derivation sequence, and

if the hierarchy H

f

has a solution. H

f

is known as the �nal constraint hierarchy. A valuation

s is a computed solution for the query Q i� Q has a successful derivation with �nal constraint

hierarchy H

f

and s is a solution for H

f

. A derivation is �nitely failed if there is no rule in P

whose head has the same predicate symbol as the atom selected at a given step, or if the set

of required constraints at some step in the derivation has no solutions, or if the �nal constraint

hierarchy has no solutions. (See Chapter 2 Section 2.5.2 for cases where there are no solutions

to constraint hierarchies even when there is a solution for the required constraints.) A query is

�nitely failed if every derivation for that query is �nitely failed. Let FF

P

denote the �nite failure

set with respect to a program P .

FF

P

= fQ j Q is �nitely failed g

The �nite failure set is used to characterize the \no" answers given by an HCLP interpreter.

If a goal succeeds, an interpreter will return an answer. An answer consists of a set of

constraints (without strength annotations) on the variables in the initial goal. Additional answers

may be produced by backtracking. Each answer represents one or more valuations in the solution

to the constraint hierarchy. For example, the answer X = 2 represents the single valuation that

maps X to 2, while the answer Y > 5 represents an in�nite set of valuations, with each member

of the set mapping Y onto a di�erent number greater than 5. We make this distinction between

answers and valuations since, on the one hand, we obviously prefer that an algorithm return

Y > 5 rather than an in�nite number of valuations. On the other hand, it is easier to de�ne the

comparators in terms of valuations rather than answers.

47

5.2 A Model Theory for HCLP

In [Shoham 88], the notion of preferred models is introduced as a way to represent the meaning

of certain nonmonotonic logics. Some subset of the models of a set of formulas can be selected as

the \preferred" models, thereby de�ning a particular nonmonotonic logic. A preference relation

< is used to partially order the models. M

1

< M

2

denotes that the interpretation M

1

is preferred

over the interpretation M

2

. A preferred model for a sentence A is an interpretation M such that

M j= A and there is no other interpretation M

0

such that M

0

j= A and M

0

< M . There are

many possible methods of ordering models, and various logics can be characterized by de�ning

di�erent preference criteria.

There has been other work, speci�cally in the area of logic programming with negation,

that deals with the notion of a canonical model for a particular logic program. There have been

various methods used for de�ning what a canonical model should be (see [Apt et al. 88, Gelfond &

Lifschitz 88, Przymusinski 88]), but the intention is always that the canonical model represent

exactly those queries that have \yes" answers in the program. A canonical model for a program P

is de�ned in several of these approaches by selecting some variant of P , P

0

, and using a minimal

model for P

0

. While we might also wish to adopt the concept of a canonical model to represent

the meaning of an HCLP program, the idea of ordering models via a preference relation �ts more

closely with the notion of comparators than does the variation of the canonical model approach.

In this section, we �rst give a very short review of CLP theory and then discuss some of

the aspects of HCLP that require us to use the notion of extended models. We then use these

extended models with a preference relation to de�ne the preferred models of HCLP programs.

Finally we show how this framework can be altered to give a formal semantics for HCLP programs

with inter-hierarchy comparison.

5.2.1 Review of CLP Model Theory

In [Ja�ar & Lassez 87] a model is de�ned for CLP programs. First, the base of a program is

de�ned as:

P

base

= fp(x

1

; x

2

; : : : ; x

n

)� j

p is a predicate in �

D

and

� is a valuation for the variables x

1

; : : : ; x

n

g

48

Then a model of a program P is de�ned as a subset I of P

base

such that for every rule in P

A B

1

; B

2

; : : : ; B

m

; C

and for every valuation � that satis�es the constraints in C,

fB

1

�; B

2

�; : : : ; B

n

�g � I implies A� 2 I

5.2.2 An Extended Model

A model for an HCLP program must contend with the non-required constraints. This can be

quite complicated, as any reading of the program that doesn't in some way take error into account

will not capture the intended meaning of the constraint hierarchy. In fact, unlike CLP, we cannot

determine whether a particular valuation satis�es a non-required constraint unless it is viewed

in the context of the entire hierarchy. It is the disorderly property of constraint hierarchies (see

Chapter 2 Section 2.5.3) that gives rise to this phenomenon. In essence, this property states

that the solution to a constraint hierarchy, H, may be disjoint with the solution to the hierarchy

H [flcg where l is a label and c is a constraint. This means that we cannot look at error

in isolation|the meaning depends on how rules are combined. To handle this, we de�ne an

extended model for P which consists of tuples of predicates and error sequences. If we consider

the predicates in the extended model without the error sequences, then we simply have a model

for P minus all of the non-required constraints, i.e. a CLP program. Intuitively we want to start

out with a model for the underlying CLP program and then use the comparators to de�ne a

preference relation that utilizes the error sequences.

Proceeding as described above yields a model theory for HCLP with inter-hierarchy compar-

ison. In order to �rst give a model theory for intra-hierarchy, or single hierarchy comparison,

we need to complicate the notion of an extended model so that we can isolate all tuples in the

extended model arising from the same derivation. It is not su�cient to look at a valuation in

isolation, as its being in the solution set depends on how well it satis�es the hierarchy in compar-

ison to other valuations that also satisfy the required constraints and that arise from the same

derivation. To clarify this point, consider the following HCLP(R;LMB) (locally-metric-better)

program. (The numbers on the left are not part of the program; they will be used later to refer

to particular rules.)

49

1 squid(X):- mollusc(X), weak X � 10.

2 mollusc(X):- X = 11.

3 mollusc(X):- X � 3.

The query ?- squid(X) has two answers, one that maps X to 11 and one that maps

X to 3. An extended model would include the tuples hmollusc(11); []i, hsquid(11); [[0]]i, and

hsquid(2); [[8]]i, among others. (Note that [] is the empty error sequence.) If we compare the

tuples hsquid(11); [[0]]i and hsquid(3); [[7]]i, then we would wrongly eliminate squid(3) from the

solution set as [[0]]<[[7]]. On the other hand, if we look at the tuple hsquid(2); [[8]]i by itself, we

will not recognize that there is another valuation, namely that which maps X to 3, whose error

is less than the error for the valuation that maps X to 2. In order to avoid false comparisons,

while also ensuring that the right valuations are compared, the extended model is made up of a

set of sets, rather than a single set. Each set corresponds to a particular constraint hierarchy and

each valuation in a set can be compared with every other valuation in the same set. Numbering

the rules and subscripting the subsets of the extended model are record-keeping devices used to

di�erentiate the di�erent subsets.

While this appears to diminish the declarative nature of the model theory, it is a necessary

extension. Intra-hierarchy comparison based as it is on a single derivation is in some sense

inherently operational. Yet we �nd it useful to present a model theory for several reasons. First,

it is helpful to be able to make comparisons with the more standard CLP model theory. It

turns out that HCLP programs without non-required constraints yield extended models whose

similarity to the models for the equivalent CLP programs are evident (which is as it should

be!). Second, one of the main motivations for using single hierarchy comparisons is e�ciency.

The extended models for HCLP programs with inter-hierarchy comparison are declarative in

nature, and with the exception of the error sequences are identical to models for the equivalent

CLP programs. Third, the model theory enables us to consider the comparators as preference

relations. This is a quite useful view and it allows us to see HCLP in relation to nonmonotonic

logic. The constraint hierarchy in conjunction with logic programming allows us to prune the set

of preferred valuations.

Let a numbered program be a program such that every rule has a unique number.

Let the extended base of a program P be de�ned as

50

P

ext-base

= fhp(x

1

; : : : ; x

n

)�;Ri j

p is a predicate in �

D

and

� is a valuation on the variables x

1

; : : : ; x

n

and

R is an error sequenceg

(Error sequences are de�ned formally in Chapter 2 Section 2.1.)

Let the result of interleaving error sequences R

1

; R

2

; : : : ; R

m

, each of length n, be a new

sequence of length mn, denoted by R

1

�R

2

�� � ��R

m

. If R

1

= [r

11

; : : : ; r

1n

], R

2

= [r

21

; : : : ; r

2n

],

: : : , and R

m

= [r

m1

; : : : ; r

mn

], then

R

1

� R

2

� � � � � R

m

= [r

11

; r

21

; : : : r

m1

; : : : ; r

1n

; r

2n

; : : : r

mn

]

Let }(B) denote the power set of the set B. Let an extended model for a program P be a

subset I of }(P

ext-base

) such that for every rule in the numbered program P

(i) A B

1

; B

2

; : : : ; B

m

;H

and for every valuation � 2 S(H

0

),

hB

1

�;R

1

i 2 I

1

; hB

2

�;R

2

i 2 I

2

; : : : ; hB

m

�;R

m

i 2 I

m

for I

1

; I

2

; : : : ; I

m

2 I

implies

hA�;R

1

� R

2

� � � � � R

m

� [E(H

1

�);E(H

2

�); : : : ;E(H

n

�)]i 2 I

i;1;2;:::;m

Let the minimal extended model for a program P , denoted MM

P

, be an extended model for

P such that there is no other extended model M

0

P

for P such that M

0

P

� MM

P

.

For the program fragment given above, the extended minimal model consists of 4 subsets.

The singleton subset I

2

consists of the tuple hmollusc(11); []i. I

3

is in�nite and contains all

tuples of the form hmollusc(X); []i, for all X � 3. The singleton subset I

1;2

consists of the tuple

hsquid(11); [[0]]i. I

1;3

is also in�nite and contains all tuples of the form hsquid(X); [[10�X]]i, for

all X � 3. For example, hsquid(3; [[7]]i, hsquid(0); [[10]]i, and hsquid({1.3); [[11:3]]i are members

of I

1;3

, among others.

51

5.2.3 Comparators as Preference Relations

Intuitively, the minimal extended model contains the smallest set of subsets of tuples that satisfy

the required constraints, without taking the non-required constraints into consideration. It is

through applying the comparators that the intended meaning of the hierarchy is achieved, but

using the comparators to eliminate less desirable valuations means, in e�ect, that the subsets of

tuples are getting smaller, i.e. some valuations that satisfy the required constraints will no longer

be in the solution set. In other words we can no longer refer to this \better" solution set as an

extended model, according to the de�nition given above. Therefore, we will de�ne preference re-

lations over subsets of }(P

ext-base

) (extended interpretations), rather than over extended models.

Let g be a comparator, and let I and I

0

be extended interpretations for a program P . Let S

and S

0

be members of I and I

0

respectively such that S and S

0

have identical subscripts. Then

I

0

<

g

I if

1. S

0

� S, and

2. if 9hp(x

1

; : : : ; x

n

)�;R

�

i 2 S; 62 S

0

then 9hp(x

1

; : : : ; x

n

)�;R

�

i 2 S

0

and G(R

�

)<

g

G(R

�

)

5.2.4 Mapping the Extended Model to a Standard Model

Our goal is to de�ne a model for an HCLP program P using the comparator g. We still need

to de�ne a set that represents the answers to a query. First we de�ne the pruning operator that

simply removes the error sequences from an extended interpretation and collapses the subsets

into a single set. Let I be an extended interpretation. Then

prune(I) = fp(x

1

; : : : ; x

n

)� j 9S 2 I ^

hp(x

1

; : : : ; x

n

)�;R

�

i 2 Sg

Now we say that prune(M) is a preferred model for a program P using the comparator g if

1. MM

P

is an extended minimal model for P using g and M <

g

MM

P

, and

2. there is no other extended interpretation M

0

such that M

0

<

g

M

If a program contains no non-required constraints, then there is an equivalent CLP program

that can be produced by simply omitting the required label from each constraint. In this case the

extended minimal model I will consist of sets of tuples whose second elements are empty error

52

sequences. Therefore, none of these empty sequences will dominate any other sequence in the

same set and no ground atoms will be eliminated in the preferred model M. For programs with

required constraints only, M consists simply of all the �rst elements in the tuples in the sets in

I.

5.2.5 A Model for Inter-Hierarchy Comparison

With only a small change, the extended model theory can be altered to give a semantics for inter-

hierarchy comparison. (Inter-hierarchy comparison in HCLP programs is discussed in Chapter 7

Section 7.5.) Rather than dividing the extended model I into sets, the extended model for

inter-hierarchy comparison consists of a single subset of P

ext-base

.

Let an extended model for a program P using inter-hierarchy comparison be a subset I of

P

ext-base

such that for every rule A B

1

; B

2

; : : : ; B

m

;H in P , and for every valuation � 2 S(H

0

),

hB

1

�;R

1

i; hB

2

�;R

2

i; : : : ; hB

m

�;R

m

i 2 I

implies

hA�;R

1

� R

2

� � � � �R

m

� [E(H

1

�);E(H

2

�); : : : ;E(H

n

�)]i 2 I

where � is the interleave operator de�ned in Section 5.2.2.

A minimal extended model is de�ned as above.

The preference relation on extended interpretations is also a bit simpler than the one used for

single hierarchy comparison. Let g be a comparator, and let I and I

0

be extended interpretations

for a program P using inter-hierarchy comparison. Then I

0

<

g

I if

1. I

0

� I, and

2. if 9hp(x

1

; : : : ; x

n

)�;R

�

i 2 I; 62 I

0

then 9hp(x

1

; : : : ; x

n

)�;R

�

i 2 I

0

and G(R

�

)<

g

G(R

�

)

Finally, we need to rede�ne the prune operator for inter-hierarchy comparison.

prune(I) = fp(x

1

; : : : ; x

n

)� j

hp(x

1

; : : : ; x

n

)�;R

�

i 2 Ig

Then, as de�ned for intra-hierarchy comparison, prune(M) is a preferred model for a program

P with comparator g using inter-hierarchy comparison if

53

1. MM

P

is an extended minimal model for P using g and M <

g

MM

P

, and

2. there is no other extended interpretation M

0

such that M

0

<

g

M .

5.3 A Fixed-Point Semantics

To provide a �xed-point semantics for HCLP (without inter-hierarchy comparison), a function

T

P

is de�ned that maps sets of sets of tuples of the form hA�;Ri into sets of sets of tuples that

can be formed via the application of a single rule in the program P . A single set represents

derivations that can later be compared because they are constructed from the same constraint

hierarchy.

More formally:

T

P

: }(}(P

ext-base

))! }(}(P

ext-base

))

For I � }(P

ext-base

)

T

P

(I) = fF j

A B

1

; B

2

; : : : ; B

m

;H is a rule in P , and

F = fhA�;Ri j

hB

1

�;R

1

i 2 I

1

;

hB

2

�;R

2

i 2 I

2

;

.

.

.

hB

m

�;R

m

i 2 I

m

;

for I

1

; I

2

; : : : ; I

m

2 I; and

� 2 S(H

0

); and

R = R

1

�R

2

� � � � �R

m

� [E(H

1

�);E(H

2

�); : : : ;E(H

n

�)]g

g

Let

T

P

" ! =

1

[

i=1

T

i

P

(;)

T

P

! =

1

\

i=1

T

i

P

(}(P

ext-base

))

54

While T

P

" ! is a �xed-point, the valuations contained in its sets still need to be compared.

The S

best

operator is essentially a �lter that eliminates those valuations whose combined error

vectors are larger than some other valuation in the same subset. S

best

computes the preferred

solutions of the set I. Let

S

best

(I) = fA� j

9I

0

2 I and

9hA�;R

�

i 2 I

0

and

:9hA�;R

�

i 2 I

0

such that

G(R

�

)<

g

G(R

�

)g

If a program contains no non-required constraints, then T

P

" ! will consist of sets of tuples

whose second elements are empty error sequences. Therefore, none of these empty sequences

will dominate any other sequence in the same set and no ground atoms will be eliminated in

S

best

(T

P

" !). For programs with required constraints only, S

best

(T

P

" !) consists simply of all

the �rst elements in the tuples in the sets in I.

5.3.1 A Fixed-Point Semantics for Inter-Hierarchy Comparison

We can also alter the de�nition of S

best

only slightly to achieve a �xed-point characterization for

inter-hierarchy comparison, in much the same way as for the model theory. I now consists of a

single subset of }(P

ext-base

). Then we rede�ne the mapping function T

P

as

T

P

: }(P

ext-base

)! }(P

ext-base

)

For I � P

ext-base

T

P

(I) = ffhA�;Ri j

A B

1

; B

2

; : : : ; B

m

;H is a rule in P , and

hB

1

�;R

1

i 2 I;

hB

2

�;R

2

i 2 I;

.

.

.

hB

m

�;R

m

i 2 I;

� 2 S(H

0

); and

55

R = R

1

�R

2

� � � � �R

m

� [E(H

1

�);E(H

2

�); : : : ;E(H

n

�)]g

g

Similarly, we rede�ne S

best

as

S

best

(I) = fA� j

hA�;R

�

i 2 I and

:9hA�;R

�

i 2 I such that

G(R

�

)<

g

G(R

�

)g

In this de�nition, the mapping S

best

is not monotonic, as is also discussed in [Wilson & Born-

ing 89].

5.4 Relations between the Operational, Model-theoretic,

and Fixed-Point Semantics of HCLP

The following two propositions give an equivalence for the computed solutions of a correct HCLP

interpreter and both the preferred model of a program, and the preferred solutions of the �xed-

point of the T operator.

Proposition 8 v is a computed solution for a query Q and program P i� Qv is in the

preferred model for P

Proof: Without loss of generality, we will assume that an initial query consists of a single

predicate. (Note that a multiset of atoms can always be replaced by a single atom by the

introduction of a new predicate and a new rule whose body is the original query.) Let

Q = fq

0

(x)g. We also assume that programs are numbered. We �rst prove the following

lemma equating derivations of length i with sets inMM

P

which are subscripted by sequences

of length i.

Lemma 1 A query Q has a successful derivation of length i with �nal constraint hierarchy

H

f

i� there is a set I

s

2MM

P

, with jsj = i, and

I

s

= fhq

0

(x)�;R

q

0

i j

� 2 S(H

f

0

) and

R

q

0

= [E(H

f

1

�); : : : ;E(H

f

n

�)]g

56

Proof: We show the �rst direction ()) by induction on i.

Base Case: Let i = 1. Then G

0

= hfq

0

(x)g; ;i and G

1

= G

f

= h;;H

f

i. So there

must be a rule in P of the form

(a) q

0

(t) :� s

1

c

1

(t); : : : ; s

k

c

k

(t):

and H

f

= fs

1

c

1

(t); : : : ; s

k

c

k

(t)g [ft = xg. By the de�nition of MM

P

, there is a

set I

a

in MM

P

such that

I

a

= fhq

0

(x)�;R

q

0

i j

� 2 S(J

0

) and

R

q

0

= [E(J

1

�); : : : ;E(J

n

�)]

where J = fs

1

c

1

(t); : : : ; s

k

c

k

(t)gg

So J = H

f

� fx = tg, J

1

= H

1

; : : : ; J

n

= H

n

, and � 2 S(H

f

0

). We know that

the latter holds as � 2 S(J

0

), and if one of the constraints in fx = tg violated

a constraint in H

0

, then the derivation would not succeed. (Note that if the

constraint x = t implies further restrictions on the set S(H

f

0

) because one or

both of x and t is a vector of terms as well as variables, then the claim will still

hold because a valuation is a mapping for only the free variables in a constraint.)

Induction Step: Assume that the claim holds for derivations of length i. Consider

a successful derivation for fq

0

(x)g of length i + 1 with �nal constraint hierarchy

H

f

. G

0

= hfq

0

(x)g; ;i: So there is a rule in P

(b) q

0

(t) :� p

1

(t); : : : ; p

m

(t); s

1

c

1

(t); : : : ; s

k

c

k

(t):

G

1

= hfp

1

(t); : : : ; p

m

(t)g; J [fx = tgi, where J = fs

1

c

1

(t); : : : ; s

k

c

k

(t)g. We

know that the derivation is successful, so fp

1

(t)g; : : : ; fp

m

(t)g must all have

successful derivations whose lengths sum to i with �nal constraint hierarchies

H

f

1

; : : : ;H

f

m

. So by the induction hypothesis, there are sets I

p

1

; : : : ; I

p

m

in

MM

P

such that for all j 2 1 : : :m

I

p

j

= fhp

j

(t)�;R

p

j

i j

� 2 S(H

f

j

0

) and

R

p

j

= [E(H

f

j

1

�); : : : ;E(H

f

j

n

�)]g

So, again by the de�nition of MM

P

, there exists a set I

b;p

1

;:::;p

m

in MM

P

such

that

57

I

b;p

1

;:::;p

m

= fhq

0

(x)�;R

q

0

i j

� 2 S(J

0

) and

R

q

o

= R

p

1

� : : :�R

p

m

� [E(J

1

�); : : : ;E(J

n

�)]g

We know that H

f

= J [fx = tg [

S

m

j=1

H

f

j

. Let F = H

f

� fx = tg. Then

R

q

0

= [E(F

1

�); : : : ;E(F

n

�)]. H

f

1

= F

1

; : : : ;H

f

n

= F

n

, and � 2 S(F

0

) because for

j 2 1 : : :m, � is in S(H

f

j

0

), � is in S(J

0

), and � satis�es fx = tg for the same

reasons discussed in the base case.

This completes the proof of the forward direction. We now prove the other

direction (() by induction on the length of s.

Base Case: Let jsj = 1. Assume there is a set I

s

in MM

P

with jsj = 1, and

I

s

= fhq

0

(x)�;R

q

0

i j

� 2 S(J

0

) and

R

q

0

= [E(J

1

�); : : : ;E(J

n

�)]g

By de�nition of MM

P

, there must be a rule in P of the form

(s) q

0

(t) :� s

1

c

1

(t); : : : ; s

k

c

k

(t):

So there is a successful derivation for fq

0

(x)g of length 1, namely G

0

=

hfq

0

(x)g; ;i, G

1

= G

f

= h;;H

f

i, where H

f

= fs

1

c

1

(t); : : : ; s

k

c

k

(t)g [fx = tg.

By arguments similar to those used in the proof of the other direction, we can

see that H

f

1

= J

1

; : : : ;H

f

n

= J

n

, and � satis�es the constraint x = t.

Induction Step: Assume the induction hypothesis holds for all s � i. Consider a

set I

a;s

in MM

P

such that jaj = 1, jsj = i, and

I

a;s

= fhq

0

(x)�; R

q

0

i j

� 2 S(J

0

) and

R

q

0

= [E(J

1

�); : : : ;E(J

n

�)]g

Again, by de�nition of MM

P

, there is a rule

(a) q

0

(t) :� p

1

(t); : : : ; p

m

(t); s

1

c

1

(t); : : : ; s

k

c

k

(t):

in P , J = fs

1

c

1

(t); : : : ; s

k

c

k

(t)g, and for j 2 1 : : :m, there are sets I

p

j

in MM

P

such that

I

p

j

= fhp

j

(t)�;R

p

j

i j

� 2 S(H

f

j

0

) and

R

p

j

= [E(H

f

j

1

�); : : : ;E(H

f

j

n

�)]g

58

R

q

o

= R

p

1

� : : : � R

p

m

� [E(J

1

�); : : : ;E(J

n

�)]: Now we know that

P

m

j=1

jp

j

j =

jsj = i. So for j 2 1 : : :m; jp

j

j � i, and the induction hypothesis holds. It

follows that for j 2 1 : : :m there are derivations of fp

j

(t)g with �nal constraint

hierarchies H

f

j

. We can therefore construct a derivation for fq

0

(x)g by �rst

reducing q

0

(x) using rule (a), and then following the derivations for each of the

fp

j

(t)g. The �nal hierarchy in this derivation is

H

f

= J [fx = tg [

m

[

j=1

H

f

j

Again, we can see that if R

q

0

= [E(F

1

�); : : : ; E(H

n

�)], then H

f

1

= F

1

; : : : ;H

f

n

=

F

n

, and � satis�es the constraint x = t. This completes the proof of the lemma.

Returning to the proof of the proposition, let v be a computed solution for Q = fq

0

(x)g so

that fq

0

(x)g has a successful derivation with �nal constraint hierarchy H

f

and v 2 S(H

f

).

Based on the lemma, we know that there is a set I

s

in MM

P

such that

I

s

= fhq

0

(x)�;R

q

0

i j

� 2 S(H

f

0

) and

R

q

0

= [E(H

f

1

�); : : : ;E(H

f

n

�)]g

Since I

s

contains all tuples of the form hq

0

(x)�;R

q

0

i for exactly those valuations � 2 S(H

f

0

),

and since v 2 S(H

f

), q

0

(x)v must be in the preferred model for P .

Similarly, if q

0

(x)v is in the preferred model for P , then by the lemma, there is a successful

derivation for fq

0

(x)g with �nal constraint hierarchy H

f

. As hq

0

(x)v;R

q

0

i is in I

s

which

in turn is in MM

P

, it follows that v 2 S(H

f

0

). As q

0

(x)v is in the preferred model, there

can be no other valuation w 2 S(H

f

0

) such that the combined error sequence for w precedes

the combined error sequence for v in the lexicographic ordering de�ned by the comparator.

Therefore v 2 S(H

f

).

Proposition 9 Qv is in the preferred model for a program P i� Qv 2 S

best

(T

P

" !)

Proof: We will do this proof in two parts. First we show that MM

P

= T

P

" !. Then we

show that the preferred model is equivalent to S

best

(MM

P

).

We show that the claim 8i > 0; T

i

P

(;) �MM

P

holds by induction on i.

Base Case: Let i = 1. Then

59

T

1

P

(I) = fF j

A H is a rule in P , and

F = fhA�;Ri j

� 2 S(H

0

); and

R = [E(H

1

�); : : : ;E(H

n

�)]g

g

Let (a) be the number of the rule A H in P . Then by de�nition of MM

P

, there is a set

I

a

in MM

P

such that

I

a

= fhA�;Ri j

� 2 S(H

0

) and

R = [E(H

1

�); : : : ;E(H

n

�)]g

Induction Step: Assume that for all values less than or equal to i, T

i

P

(;) �MM

P

. Consider

T

i+1

P

(;) = T

P

(T

i

P

(;)). By de�nition

T

P

(T

i

P

(;)) = fF j

A B

1

; B

2

; : : : ; B

m

;H is a rule in P , and

F = fhA�;Ri j

hB

1

�;R

1

i 2 I

1

;

hB

2

�;R

2

i 2 I

2

;

.

.

.

hB

m

�;R

m

i 2 I

m

;

for I

1

; I

2

; : : : ; I

m

2 T

i

P

(;); and

� 2 S(H

0

); and

R = R

1

� R

2

� � � � � R

m

� [E(H

1

�);E(H

2

�); : : : ;E(H

n

�)]g

g

By the induction hypothesis, since I

1

; I

2

; : : : ; I

m

2 T

i

P

(;), I

1

; : : : ; I

m

are also in MM

P

. By

de�nition of MM

P

, there is a set I

a;1;:::;m

in MM

P

such that

I

a;1;:::;m

= fhA�;Ri j

� 2 S(H

0

) and

R = R

1

� : : :�R

m

� [E(H

1

�); : : : ;E(H

n

�)]g

60

To complete the proof that MM

P

= T

P

" !, we now show that if I

s

is in MM

P

, then there

is a value i = jsj such that I

s

2 T

i

P

(;). We will proceed by induction on jsj.

Base Case: Let jsj = 1. Therefore there is a rule

(s) A H:

in P , and

I

s

= fhA�;Ri j

� 2 S(H

0

) and

R = [E(H

1

�); : : : ;E(H

n

�)]g

Clearly I

s

2 T

1

P

(;).

Induction Step: Assume for all sets I

s

in MM

P

where jsj = i that I

s

2 T

i

P

(;). Consider a

set I

a;s

in MM

P

such that jsj= i, jaj = 1,

(a) A B

1

; : : : ; B

m

;H:

is a rule in P, and

I

a;s

= fhA�;Ri j

� 2 S(H

0

) and

R = [E(H

1

�); : : : ;E(H

n

�)]g

We know from the induction hypothesis that I

1

; : : : ; I

m

2 T

i

P

(;). From the de�nition of T

P

it is easy to see that I

a;s

2 T

i+1

P

(;) holds. This completes the proof that MM

P

= T

P

" !.

Let prune(M) be a preferred model for a program P . We now show that prune(M) =

S

best

(MM

P

).

Assume for the sake of contradiction that there is a valuation � 2 prune(M), but � 62

S

best

(MM

P

). We know that there is some set I 2 MM

P

such that hA�;R

�

i 2 I. As

hA�;R

�

i 2 M , there can be no tuple hA�;R

�

i 2 I such that G(R

�

)<

g

G(R

�

). Otherwise,

we could create an M

0

containing a set I

0

such that hA�;R

�

i 2 I

0

, and hA�;R

�

i 62 I

0

and

M

0

<

g

M . But then by de�nition of S

best

, A� 2 S

best

(MM

P

), leading to a contradiction.

Now assume for the sake of contradiction that A� 2 S

best

(MM

P

), but A� 62 prune(M). By

de�nition of S

best

, we know that there can be no tuple hA�;R

�

i in the same set in MM

P

as

hA�;R

�

i such that G(R

�

)<

g

G(R

�

). Consider prune(M). As M <

g

MM

P

(by de�nition),

there is a set I 2 MM

P

, and there is a set I

0

2M such that I

0

� I, and hA�;R

�

i 62 I

0

;2 I.

61

But this implies that there is a tuple hA�;R

�

i 2 I

0

and G(R

�

)<

g

G(R

�

). This leads

to a contradiction. This completes the proof that the preferred model is equivalent to

S

best

(MM

P

).

Given that we have established that MM

P

= T

P

" !, we can see that Qv is in the preferred

model for a program P i� Qv 2 S

best

(T

P

" !).

The following proposition characterizes the \no" answers to queries in a HCLP program.

Proposition 10 Q 2 FF

P

i� 8�; Q� 62 S

best

(T

P

!)

Proof: Assume that there is a query Q = fq

0

(x)g 2 FF

P

. There are three cases in which a

derivation can be �nitely failed. The �rst case occurs when there is no rule in the program

P whose head has the same predicate symbol as the atom selected at the given step. We

can see that in this case such an atom, let's call it r(t), would not occur in T

1

P

(}(P

ext-base

)),

or more precisely, the tuple hr(t)�;Ri for any valuation �, would not appear in any set in

T

1

P

(}(P

ext-base

)). Therefore the head of any rule containing r(t) on the right hand side would

not occur in T

2

P

(}(P

ext-base

)), and so on. For some i > 0, hq

0

(x)�; Ri for any valuation �

would not occur in T

i

P

(}(P

ext-base

)).

The second case in which a derivation can �nitely fail is when the set of constraints at some

step in the derivation has no solutions. It is easy to see from the de�nition of T , that when

the rule corresponding to that step is used to construct the set F , that the requirement that

� 2 S(H

0

) would not hold, and F would be empty.

The third case occurs when there is a solution for all of the required constraints encountered

in the derivation, but the resulting �nal constraint hierarchy H

f

has no solutions. In this

event, there would be a set F in (T

P

!) corresponding to the derivation, but the set

S

best

(T

P

!) would not contain any valuations relating to that set, because for any given

valuation �, there would always be another valuation � such that G(R

�

)<

g

G(R

�

).

Now assume that there is a query Q = fq

0

(x)g 62 FF

P

. For a query not to be in the �nite

failure set, it must be the case that either the query has a successful derivation, or it has an

in�nite derivation. In the former case, q

0

(x) 2 S

best

(T

P

" !). We now show by induction

on i that 8i; T

i

P

(;) � T

P

!.

Base Case: Consider the case when i = 1. As the empty set is a subset of any set, it is clear

that T

P

(;) � T

P

!.

Induction Step: Assume that T

i

P

(;) � T

P

! holds for all values less than or equal to

i. Consider T

P

(T

i

P

(;)). From the induction hypothesis, we know that T

i

P

(;) � T

P

!.

62

As T

P

! consists of the intersection of all sets of the form T

j

P

(}(P

ext-base

)) for j 2

1 : : :1, we know that T

i

P

(;) � T

j

P

(}(P

ext-base

)) for some arbitrary j. Therefore T

i+1

P

(;)) �

T

j+1

P

(}(P

ext-base

)). As j was selected arbitrarily, we can see that T

i+1

P

(;) � T

P

!.

In the case of an in�nite derivation, note that any rule which is selected at some step in the

derivation must have all of the predicates on the right hand side of the rule de�ned. (We say

that a predicate is de�ned in P if there is at least one rule in P whose head consists of that

predicate.) Because we are assuming a fair computation rule, any atom that appears in the

derivation must be selected at some step. If some predicate in the body of a rule was not

de�ned, then the fair computation rule ensures that the derivation would be �nitely failed.

Consider a query fq

0

(x)g with an in�nite derivation. There must be a rule selected by the

derivation of the form

q

0

(t) :� p

1

(t); : : : ; p

m

(t); s

1

c

1

(t); : : : ; s

k

c

k

(t):

It is clear that there will be a set in T

1

P

(}(P

ext-base

)) with tuples of the form hq

0

(x)�;Ri

where � satis�es the required constraints on the right side of the rule. From the argument

given above, the predicates p

1

; : : : ; p

m

are de�ned in the program and so tuples corresponding

to these predicates will be in sets in T

1

P

(}(P

ext-base

)). So tuples of the form hq

0

(x)�;Ri will

be in a set in T

2

P

(}(P

ext-base

)). But the predicates on the right hand side of the rules selected

for p

1

; : : : ; p

m

are also de�ned, using the same argument. So tuples corresponding to these

predicates will be in sets in T

2

P

(}(P

ext-base

)), and tuples of the form hq

0

(x)�; Ri will be in a

set in T

3

P

(}(P

ext-base

)), and so on. Therefore for queries Q 62 FF

P

because they have in�nite

derivations, it is the case that 9� such that Q� 2 S

best

(T

P

!).

Chapter 6

Implementation

In this chapter, we discuss two implementations of HCLP(R). We introduce the DeltaStar

algorithm for solving constraint hierarchies. Then we discuss its incorporation into the current

HCLP(R) interpreter.

6.1 Constraint Satisfaction Algorithms

Searching for an e�cient constraint satisfaction algorithm that works for all domains, compara-

tors, and kinds of constraints would be a futile endeavor. Rather, we need to look for algorithms

specialized by one or more attributes. In [Freeman-Benson et al. 90] a number of algorithms for

solving constraint hierarchies are outlined, each of which makes a trade-o� between generality and

e�ciency. Much of the constraint hierarchy research so far has used the locally-predicate-better

comparator over arbitrary domains. When there are no circularities in the constraint graph,

there is an e�cient incremental algorithm for this comparator. For arbitrary linear constraints,

there is also an e�cient algorithm based on linear programming techniques, and this is the al-

gorithm used in the current implementation of HCLP(R). For more details on the incremental

acyclic algorithm, the reader is referred to [Freeman-Benson & Maloney 89, Freeman-Benson et

al. 89, Freeman-Benson et al. 90, Maloney 91, Sannella et al. 93]; [Freeman-Benson et al. 90] and

[Maloney 91] include proofs of correctness and complexity results.

64

6.2 Algorithms for Linear Equality and Inequality Con-

straints

One disadvantage of local propagation algorithms is that they usually cannot reliably handle

cycles in the constraint graph. In some cases these algorithms will �nd an acyclic solution to

a cyclic graph, but this behavior is not guaranteed; the algorithms often halt with a \cyclic

constraint graph" error message instead. Further, if the constraints are truly simultaneous, then

local propagation algorithms simply cannot �nd a solution. Therefore, we designed another set

of algorithms that can solve constraint hierarchies consisting of arbitrary collections of linear

equality and inequality constraints using the weighted-sum-metric-better, worst-case-better, and

locally-metric-better comparators. These algorithms are instances of our general DeltaStar

[Freeman-Benson & Wilson 90, Freeman-Benson et al. 92] framework and are collectively referred

to as the Orange algorithms.

The DeltaStar framework is an algorithm for incrementally solving a constraint hierarchy,

based on an alternate, but provably equivalent, description of the constraint hierarchy. Delta-

Star is actually a family of algorithms, parameterized by an underlying \
at" constraint solver

(i.e., one that solves a collection of required constraints). It is an algorithm for incrementally

solving constraint hierarchies, but not for solving the constraints themselves. Rather, Delta-

Star is built above a
at incremental constraint solver that provides the actual constraint solving

techniques (numeric, symbolic, iterative, local-propagation, etc.). Thus it is adaptable to many

di�erent constraint solving algorithms.

One of the motivations for the DeltaStar framework was to replace the solver in our original

HCLP(R;LPB) interpreter (see Section 6.4.1) with an incremental version. In HCLP, there are

two situations in which an incremental algorithm can save computation. First, if backtracking

occurs in the normal course of executing an HCLP program that contains multiple de�nitions

of a predicate, the constraints arising from the old de�nition of the predicate must be retracted,

and ones from the new de�nition added, but other constraints are una�ected. An incremental

algorithm would allow solutions to be modi�ed incrementally in this situation. Second, an incre-

mental algorithm is important for e�ciency in interactive graphics applications where answers

must be produced before a goal is completely reduced|we cannot wait until the complete his-

tory of the input events is known before computing display information. Instead, at appropriate

points in program execution, we need to solve the currently generated constraint hierarchy. And

65

again, we'd prefer not to start from scratch each time we do.

6.2.1 A Recursive De�nition

It was useful to alter our original constraint hierarchy de�nitions in order to construct an e�cient

implementation because the original de�nitions compared all valuations across all levels in the

hierarchy simultaneously. What was wanted was a way to de�ne the set of solutions recursively,

level by level, so that a solver would not have to know about hierarchies explicitly, but instead

could treat the constraints at each level in the same manner.

For global comparators, this desired de�nition is easy to formulate: S

R

, the solution set,

is de�ned using S

i

, the set of valuations that best satisfy the constraints through level i in

the hierarchy. At each level, valuations in S

i�1

are compared based on how well they satisfy

constraints at level i. Only those valuations that are no worse than any other make it through to

the next level. The �nal solution S

R

is simply the valuations that remain after passing through

the entire constraint hierarchy. Formally, let g be a combining function that, when applied to

real-valued vectors, returns some value that can be compared via <>

g

and <

g

. Then,

S

i

is a set of solutions:

S

0

= f� j 8c 2 H

0

e(c�) = 0g

S

i

= f� j � 2 S

i�1

^ 8� 2 S

i�1

:(g(E(H

i

�)) < g(E(H

i

�)))g

S

R

= S

n

(where n is the number of

non-required levels in H)

However, for local comparators, the desired de�nition is not as obvious. The di�culties are

formally described in [Wilson 91, Freeman-Benson 91], but informally the problem is that global

comparators use a total order over the valuations but local comparators use a partial order. Thus

we use the following formulation when dealing with local comparators: T

R

is de�ned using T

i

, the

set of sets of valuations that best satisfy the constraints through level i. As with S

i

, valuations

in T

i�1

are compared at each level based on how well they satisfy constraints at level i. The

di�erence between S

R

and T

R

has to do with what happens to a valuation that graduates to

the next level. In the case of S

R

, all such valuations are placed in the same set. In the case of

T

R

, the valuations are pruned and partitioned using the function P: valuations that are equal

66

in the partial order are put into the same set, valuations that are incomparable are put into

di�erent sets, and valuations that are dominated are discarded. The �nal solution set T

R

is

simply the union of the sets of solutions remaining at the �nal level. (This �nal union is done

for convenience, so that the result is a set of solutions rather than a set of sets.)

P(�;H

i

) = fQ

1

; : : : ; Q

m

g

8�; � 2 �;

�

�; � 2 Q

j

,

~

� <>

g

~�

�

^ 8� 2 �;

�

� 2 Q

j

, 69� 2 �; ~� <

g

~

�

�

where

~

� = g(E(H

i

�))

~� = g(E(H

i

�))

T

i

is a set of sets of solutions:

T

0

= fS

0

g

T

i

=

[

�2T

i�1

P(�;H

i

)

T

R

=

[

V2T

n

V

6.2.2 An Example

To clarify the distinctions between S

R

and T

R

, consider the following constraint hierarchy. The

S

R

example uses the unsatis�ed-count-better comparator, a special case of weighted-sum-better

that uses the trivial error function and unit weights, and the T

R

example uses the locally-predicate-

better comparator.

symbolic numeric

strength strength constraints

required 0 X � 0

strong 1 X � 4, X � 10

medium 2 X = 12

S

0

= fX 7! [0 : : :1)g

S

1

= fX 7! [0 : : :4; 10 : : :1)g

S

2

= fX 7! 12g

S

R

= fX 7! 12g

T

0

=

�

fX 7! [0 : : :1)g

	

T

1

=

�

fX 7! [0 : : :4]g ; fX 7! [10 : : :1)g

	

T

2

=

�

fX 7! [0 : : :4]g ; fX 7! 12g

	

T

R

= fX 7! [0 : : :4] ; X 7! 12g

67

There is only one set of valuations in each of S

0

, S

1

, S

2

, and S

R

. There is one set is T

0

,

however there are two sets in T

1

: one that satis�es \X � 4" but not \X � 10", and the other

that satis�es \X � 10" but not \X � 4". (In the partial order of valuations, these two sets are

incomparable yet they dominate all other sets.) There are also two sets at level T

2

. Furthermore,

the medium strength \X = 12" constraint only applies to [10 : : :1), thus it only re�nes the

second set|the �rst set is untouched.

6.2.3 The Algorithm Itself

For brevity, we describe the algorithms in the following sections in terms of adding constraints to

a constraint hierarchy. However, all the algorithms work equally well for removing constraints.

A complete listing of the code for the DeltaStar algorithm is available in [Freeman-Benson &

Wilson 90].

The Flat Solver Interface

The DeltaStar algorithm is built above a
at constraint solver that provides the actual con-

straint solving techniques and comparison methods. The key routine provided by the
at solver

is filter:

filter(S : Solution, C : Set of Constraints) -> Solution

Return the subset of the existing solution that minimizes the error of the set of

constraints. The implementation of this routine e�ectively de�nes the error metric

and the comparator supported by the
at solver.

In addition, the
at solver should provide other entries for e�ciently determining if a new con-

straint is compatible with a current solution (i.e., if the error in satisfying it is 0), and for quickly

adding a constraint to a current solution, given a guarantee that the constraint is compatible.

A Basic Algorithm

The S

R

construction can be converted directly into the algorithm in �gure 6-1. This basic

algorithm iteratively �lters the set of all possible valuations, all, using the constraints at each

level in the hierarchy. However, for incremental use, this basic algorithm has some obvious

defects:

68

all Flat.all solutions;

n number of levels in H;

for i 0 : : : n do

all Flat.filter(all, H

i

);

return all;

Figure 6-1: Basic algorithm

Overeager If H

m

is the only level in the hierarchy that is modi�ed (either by adding or

removing constraints), then the solution sets of levels 0; : : : ;m�1 will not change.

Recomputing these solution sets wastes CPU cycles.

Redundant If a redundant constraint is added to the hierarchy, it will not change any solution

sets, thus again this algorithm does unnecessary work.

Disjoint If the constraint graph formed by hierarchy H forms disjoint subgraphs, then

modi�cations to one subgraph cannot a�ect other subgraphs. In other words, if

H

a

and H

b

have no variables in common, then the solution of their union is the

union of their solutions, i.e., S

a[b

= S

a

[S

b

. And, if only H

a

is modi�ed, then

only S

a

will be a�ected, thus the basic algorithm does unnecessary work by also

computing S

b

.

A Better Algorithm

The �rst two ine�ciencies can be easily solved using an incremental algorithm that retains the

partial solution sets S

0

; : : : ; S

n

between invocations and thus can avoid recomputing the sets that

do not change. Figure 6-2 includes the code and an illustration of adding a new constraint at

level 2.

A Disjoint Subgraph Algorithm

Because the run-time cost of
at constraint solvers is polynomial or exponential in the size

of the problem, it can be more e�cient to solve many small problems than one big problem.

Fortunately, the constraints in many graphical applications can be divided into disjoint sets. For

example, the x and y dimensions are completely independent in the graphical layout system of

69

global array S[n];

l index of modified level;

for i l : : : n do

t Flat.filter(S[i� 1], H

i

);

if t = S[i] then return S[n];

S[i] t;

return S[n];

Figure 6-2: Incremental algorithm|Adding a constraint at level 2

Figure 6-3: Disjoint Subproblems

[Bill & Lundell 90] and, by solving for each dimension independently, they more than halved the

response time. Similarly, when using a constraint hierarchy, two subproblems may be disjoint

through level i � 1 but connected at level i. Figure 6-3 illustrates how each level is divided into

a number of subproblems, and how the incremental algorithm recomputes as few of them as

possible. Recall that the top is the strongest (H

0

) and the bottom is the weakest (H

n

). Our

preliminary performance measurements indicate that using disjoint subgraphs can improve the

run-time by more than one order of magnitude.

Using Local Comparators

Because they compare solutions constraint-by-constraint rather than computing a global aggre-

gate, local comparators are potentially more e�cient than global ones. The DeltaStar algo-

70

global array T[n];

l index of modified level;

for i l : : : n do

s ;;

for each set t in T[i� 1] do

s s [f F j F = Flat.filter(t, H

i;t

)g;

T[i] s;

return union of all t in T[n];

Figure 6-4: Local Comparator Algorithm

rithm for local comparators uses the T

R

construction from Section 6.2.1. Figure 6-4 illustrates

that there is a set of sets of solutions for each level, and how each set can generate multiple sets

at the next level.

Typically, graphical applications can only display one solution at a time (consider displaying

sixteen di�erent solutions to the placement of a dialog box). Based on this observation, two

modi�cations can be made to the local comparator algorithm: one, compute just one solution

by discarding all but one of the sets at each level T

i

(illustrated graphically using grey regions

in Figure 6-4); or two, use backtracking or lazy lists to produce solutions on demand. The

discarding-all-but-one technique has the disadvantage that the remaining solutions can never be

examined, but the powerful advantage of using less memory.

6.3 Other Algorithms

Although not designed for solving constraint hierarchies, many other constraint solving techniques

are available, including augmented term rewriting [Leler 87], relaxation [Borning 81, Konopasek &

Jayaraman 84, Sutherland 63], and searching for a solution over a �nite domain. Augmented term

rewriting is an equation rewriting technique borrowed from functional programming languages,

with added support for objects and multi-directional constraints. Relaxation is an iterative

numerical technique, in which the value of each real-valued variable is repeatedly adjusted to

minimize the error in satisfying its constraints. Relaxation will converge on a solution close

to a least-squares-better solution, unless it gets trapped in a local but suboptimal minimum.

Mackworth [Mackworth 77], Van Hentenryck [Van Hentenryck 89], and others describe e�cient

algorithms for solving sets of constraints on variables ranging over �nite domains.

71

6.4 Implementation of HCLP(R)

To test our ideas, and to allow us to experiment with HCLP programs, we �rst implemented a

simple interpreter for HCLP(R;LPB), i.e., for the domain of the real numbers, using the locally-

predicate-better comparator, in CLP(R). We implemented a second interpreter in Common

Lisp, again for the domain of the real numbers, but which supports several di�erent metric

comparators rather than the single LPB comparator.

6.4.1 A Simple Interpreter for HCLP(R;LPB)

Our �rst interpreter is written in CLP(R), allowing it to take advantage of the underlying CLP(R)

constraint solver and backtracking facility. It has two phases. (The code for the interpreter is

given in Appendix A.)

The �rst phase is a meta-interpreter, much like traditional Prolog meta-interpreters [Ster-

ling & Shapiro 86]. It accepts a goal and either satis�es it immediately, or looks up the goal in

the rule base, reduces it to subgoals, and recursively solves the subgoals. Required constraints are

passed on to the CLP(R) solver immediately, while non-required constraints are simply pushed

onto a stack. Non-required constraints that are part of the body of some rule are of course only

added to the stack if that rule (minus the non-required constraints) succeeds. Upon completion

of this phase, variable bindings and required constraints are maintained within the environment,

and the stack of non-required constraints is passed as a constraint hierarchy to the second phase.

The second phase performs a recursive search for answers representing locally-predicate-better

solutions to the constraint hierarchy produced for the particular derivation found during the �rst

phase. The algorithm uses a recursive rule Solve. Each invocation of Solve represents a node

in an implicit search tree of possible non-required constraints to satisfy next. A number of

data structures are maintained by each invocation of Solve, including Answer (a list of unlabeled

constraints that represents the answer computed so far), and Untried (a list of labeled constraints

that have not yet been dealt with). Let s be the strongest strength of the constraints in Untried.

For each constraint c in Untried with strength s, Solve appends c to the current answer, re�nes

Untried by removing constraints that either have become unsatis�able by the assumption that

c holds or that are implied by the current answer, and then recursively calls itself with the

remaining untried constraints. The base case is reached when the hierarchy is empty.

Each leaf in the implicit search tree represents an answer to the goal. Upon request, the

72

interpreter will backtrack to �nd alternate answers. These answers can arise in two ways. First,

it is possible that the constraint hierarchy produced by the current choices of rules has more than

one answer. Second, it is also possible that a goal can be satis�ed in more than one way at the

rule level: by using di�erent rules to solve a goal, a new constraint hierarchy may be obtained.

All answers to the current hierarchy are given before an attempt is made to resatisfy the goal.

There is a unique computation tree associated with every answer, but the answers themselves

are not always unique.

Here is a trivial example in HCLP(R;LPB) to illustrate the interpreter's behavior upon

backtracking.

banana(X) :- artichoke(X), weak X>6.

artichoke(X) :- strong X=1.

artichoke(X) :- required X>0, required X<10, weak X<4.

The �rst answer to ?-banana(A) is produced by selecting the �rst of the artichoke clauses,

yielding the hierarchy strong A = 1, weak A > 6. There is a single answer to this hierarchy,

namely A = 1. Upon backtracking, the second artichoke clause is selected, resulting in the

hierarchy required A > 0, required A < 10, weak A < 4, weak A > 6. This hierarchy has two an-

swers. The �rst is 0 < A < 4. Upon backtracking the second and �nal answer 6 < A < 10 is

then found.

As a result of being implemented on top of CLP(R), the interpreter is small (2 pages of

code) and clean. However, the second phase is not incremental|rather, it recomputes all the

LPB answers for each invocation, instead of incrementally updating its answers as constraints

are added and deleted due to backtracking, thus making it not particularly e�cient. A second

de�ciency is that it doesn't check for duplicate constraints when pushing non-required constraints

onto the stack. However, since it implements only the LPB comparator, rather than one of the

global ones, the only consequence is that a given answer could be produced more than once upon

backtracking.

6.4.2 A DeltaStar-Based Interpreter for HCLP(R; ?)

This �rst implementation only supported the locally-predicate-better comparator. However, met-

ric comparators are important for such applications as interactive graphics, layout, and schedul-

ing, since if a soft constraint is unsatis�ed we may nevertheless wish to satisfy it as well as

73

possible by minimizing its error. Global comparators, which consider the aggregate error for the

constraints at a given level, are useful as well for such applications. There is also a fundamental

e�ciency problem, as noted above, since the interpreter used a batch algorithm, rather than an

incremental one, to produce its answers.

We therefore wrote a second HCLP interpreter, again for the domain of the real numbers,

but which supports the weighted-sum-metric-better, worst-case-better, and locally-metric-better

comparators. The comparator to be used in a given program is indicated by a declaration at the

beginning of an HCLP program. This second interpreter could thus be precisely but verbosely

named HCLP(R,hWSMB,WCB,LMBi). (So far we have resisted the name HCLP(R,h#; j;&i).)

An unfortunate consequence of the desire to support metric comparators is that we could no

longer build so simply on top of CLP(R), since we now care not just whether or not a constraint

is satis�ed, but also about the error in satisfying it|information not conveniently available from

CLP(R). The second interpreter is thus implemented in Common Lisp, and has to do much

more of the work itself (such as keeping track of backtracking information).

The interpreter uses the incremental algorithm, DeltaStar, to �nd solutions to constraint

hierarchies. DeltaStar manages the incremental addition and deletion of constraints at di�erent

levels of the hierarchy, given the pluggable
at solver. The remainder of the interpreter maintains

the database of clauses, backtracking information, and other details.

The HCLP(R; ?) interpreter includes some evaluable predicates for performing input and

graphical output, so that we can use HCLP(R; ?) for interactive graphics applications. For

example, there are predicates for getting the mouse position and button state, and for drawing

lines, circles, placing text, and so forth. The interpreter makes the appropriate calls to Garnet

routines to perform the needed actions. (Garnet [Myers et al. 90b] is a user interface toolkit,

written in Common Lisp and using X windows.)

Using DeltaStar in HCLP(R; ?)

In our Common Lisp implementation of HCLP(R; ?), the
at solver is the Simplex algorithm,

with implementations of filter that support minimizing the weighted sum of a set of constraints,

minimizing the maximum error of a set of constraints, and minimizing the pareto-optimal point

of a set of constraints, thus implementing weighted-sum-metric-better, worst-case-better, and

locally-metric-better respectively. The class of constraints that can be accommodated are linear

equalities and non-strict inequalities.

74

To support these comparators, DeltaStar transforms the constraint hierarchy into a series

of linear programming problems. In a standard linear programming problem [Murty 83], we wish

to minimize (or maximize) a linear expression in k real-valued variables x

1

; : : : ; x

k

, subject to

the nonnegativity constraints x

1

� 0; : : : ; x

k

� 0, and also to m additional linear equality or

inequality constraints on x

1

; : : : ; x

k

. The expression to be minimized or maximized is called the

objective function. Reference [Murty 83] is a comprehensive discussion of linear programming

theory and algorithms; all of the transformation techniques mentioned in the following paragraphs

are discussed in this volume. Our implementation uses code for the Simplex algorithm taken from

[Press et al. 86] and translated to Lisp.

In general, the variables in the constraint hierarchy are unrestricted in sign, while those in a

linear programming problem must be nonnegative. There is a standard technique for handling

unrestricted variables in linear programming problems. Each unrestricted variable x

j

is replaced

by the di�erence of two nonnegative variables x

+

j

and x

�

j

, so that x

j

= x

+

j

� x

�

j

. We then

solve the problem involving the x

+

j

and x

�

j

variables, and use this solution to �nd values for the

original x

j

. (This is not a particularly e�cient way of handling this situation, but we used it in

this prototype implementation as we wanted to use the Simplex code unaltered.)

We now consider the weighted-sum-metric-better comparator. Initially, we minimize the

weighted sum of the errors of the H

1

constraints, subject to the H

0

constraints. Even after

the transformation to handle the variables without sign restrictions, this still isn't quite a linear

programming problem, since the objective function is a weighted sum of absolute values. However,

we adapt another standard technique for converting a problem in which the objective function is

the weighted sum of absolute values into a linear programming problem. Let c be a constraint

in H

1

. If c is an equality constraint a

1

x

1

+ � � � + a

k

x

k

= b, then the error in satisfying c is

e =j a

1

x

1

+ � � � + a

k

x

k

� b j. We augment the linear programming program with two new

variables e

+

and e

�

(both of which must obey the usual non-negativity constraints), and add

the constraint a

1

x

1

+ � � �+ a

k

x

k

� b = e

+

� e

�

. If the property

e

+

= 0 if e � 0

e

�

= 0 if e � 0

is satis�ed, then clearly e = e

+

+ e

�

. Conveniently, this property is in fact satis�ed by the

solution produced by the Simplex algorithm. Hence, if the weight for constraint c is w, then its

contribution to the objective function (the weighted sum of the errors) is we

+

+ we

�

. If c is an

75

inequality a

1

x

1

+ � � �+ a

k

x

k

� b, then its contribution to the objective function is simply we

+

.

(In this case we drop the we

�

term from the objective function. If the inequality is satis�ed,

then e

+

will be 0, and e

�

will be 0 or positive. If the inequality is not satis�ed, then e

+

will be

positive and e

�

will be 0.) Finally, if c is an inequality a

1

x

1

+ � � �+a

k

x

k

� b, then its contribution

to the objective function is we

�

.

If this initial linear programming problem (minimizing the weighted sum of the errors of the

H

1

constraints, subject to the H

0

constraints) has a unique solution, we are done. Otherwise, we

add to the linear programming problem a constraint that the weighted sum of the H

1

constraints

attain its minimum value (as computed in the previous step), and set up another problem, where

the new objective function minimizes the weighted sum of the errors of the H

2

constraints. We

continue in this manner for the remaining levels.

For the worst-case-better comparator, we initially minimize the maximum of the weighted

errors of the H

1

constraints, subject to the H

0

constraints. As before, this isn't a linear pro-

gramming problem, but yet another standard technique is available for transforming it into one.

See [Murty 83, page 18].

For locally-metric-better, we consider each constraint in level H

1

individually in relation to

the solution for H

0

. Calling Simplex with a particular H

1

constraint tells us the bounds of the

solution with respect to that constraint. When all of the constraints in H

1

have been handled,

the various solutions are combined to yield a solution for level H

1

. If all of the constraints at

that level are satis�ed, then this process continues using the constraints at level H

2

in relation

to the current solution. If some constraint at level H

1

is not satis�ed, then the current solution

is the solution to the entire hierarchy.

Filter routines for each of these comparators are de�ned separately from the logic program-

ming interpreter. A call to filter solves a single level in the hierarchy by minimizing the error

of a set of constraints (the current solution) with respect to some other set of constraints (the

constraints at some level in the constraint hierarchy). The calling routine in the interpreter uses

filter to solve the entire constraint hierarchy.

Regionally-metric-better is not currently available. However, it could be added to the imple-

mentation by changing the routine that calls filter. The �lter for locally-metric-better could

be used as is. Rather than stopping iteration through the hierarchy when some constraint cannot

be satis�ed, as is now done for locally-metric-better, the routine would continue to call filter

through all levels of the hierarchy. If, in the future, we wanted to implement least-squares-better,

76

we would de�ne a �lter using some non-linear equation solver. The logic programming interpreter

would not need to be revised.

E�ciency Issues

This second interpreter is still a research prototype to test our ideas, rather than being

production-quality software. Among its limitations are its restriction to linear equalities and

non-strict inequalities, and its e�ciency.

Regarding the classes of constraints that can be accommodated, clearly it would be desirable

to at least provide local propagation for non-linear constraints, �a laCLP(R). Regarding e�ciency,

implementing the interpreter in Common Lisp has made the implementation easier, but slower

than writing in a language such as C. In addition, DeltaStar uses only a narrow interface

between the
at constraint solver and the rest of the algorithm. Many optimizations would

be possible here, following the excellent example of the CLP(R) interpreter [Ja�ar et al. 92],

such as handling simple constraints within the inference engine, providing di�erent solvers for

equalities and inequalities, and implementing an incremental version of the Simplex algorithm

more e�ciently. Nevertheless, the use of the DeltaStar algorithm has aided us in rapidly

testing di�erent satisfaction algorithms and comparators. For example, only one person-hour

was needed to add the weighted-sum-metric-better comparator once the DeltaStar framework

was in place.

The time complexity of the HCLP interpreter is dominated by the cost of the
at constraint

solver. In the complexity discussion below, we factor out this cost, and represent it simply

as p (where p is a function of the number of variables and the number of constraints). The

worst-case time complexity of the
at constraint solver we use (the Simplex algorithm) is ex-

ponential in the number of variables; however, this behavior is apparently exhibited only by

arti�cially constructed examples. On real problems Simplex performs remarkably well. There

are linear programming algorithms whose worst case time is polynomial. Whether such algo-

rithms (Karmarkar's algorithm in particular) are superior in practical use is still a matter of

debate [Karlo� 91].

The cost of solving a particular HCLP(R; ?) query can be broken down into two parts. The

�rst is the cost of �nding some solution considering only the required constraints, i.e. the cost

of solving the corresponding CLP(R) program. (Actually, there is a fair amount of overhead in

storing the non-required constraints and storing solutions in the event of backtracking, but this is

77

also dominated by the cost of calling the
at solver to solve the required constraints.) The second

is the cost of solving the constraint hierarchy. While this is a fairly expensive procedure, it is

only done once per answer because there is no need to solve the hierarchy until we know that a

particular derivation will not fail. Furthermore, because the algorithm in the current interpreter

is incremental, not all of the solution is lost upon backtracking.

Many of the optimizations described above will improve the running time of the interpreter

with respect to the �rst type of cost, i.e. that of �nding a solution to the required constraints.

Using a more e�cient
at solver would improve both the cost of �nding the set S

0

and of solving

the entire hierarchy.

Consider a particular call to �lter, filter(S,C), where S and C are sets of constraints. Let

v denote the number of variables in S and C. Let c denote the number of constraints in C. Let n

be the number of levels used in the HCLP(R; ?) program. Let p be the cost of running the linear

programming algorithm in the average case for v variables and c constraints. The cost of filter

(in the average case) for both weighted-sum-metric-better and worst-case-better is 2vp. The cost

of filter for locally-metric-better is 2cvp. It is often the case that filter will not be called n

times. We already saw how this could be in the case of locally-metric-better, but it will also be

true if a particular derivation does not include constraints at level n, or in the case that a unique

solution is found before processing the constraints at level n. However, assuming that filter is

called n times, then the cost of solving the hierarchy is 2nvp for weighted-sum-metric-better and

worst-case-better, and 2ncvp for locally-metric-better.

Chapter 7

Applications

This chapter presents a number of examples of HCLP programs. The programs here are all

simple, but illustrate the use of constraint hierarchies for a variety of application areas. In the

discussions, the signi�cance of the di�erent possible comparators are emphasized, as well as how

one or another might be most appropriate for a given application. All of the sample programs

in this chapter are written for the domain of the real numbers. (However, implementations of

HCLP languages for other domains are of course possible as well, and would be useful for other

applications. For example, the HCLP language CHAL [Satoh & Aiba 91a, Satoh & Aiba 91b]

includes support for the domain of the booleans, as well as for polynomial equations over algebraic

numbers. See also the discussion of this language in Chapter 8 on related work.)

Regarding the comparator to be used, if it is signi�cant, the program will be referred to as

e.g. an HCLP(R;LPB) one; but if any of various comparators might be appropriate, we will

refer to the code simply as an HCLP(R) program.

An HCLP program can include a list of symbolic names for the strength labels, which in an

implementation are then mapped to the non-negative integers. If the label on a constraint is

omitted, the label defaults to required ; weights default to 1. For brevity, we assume that for all

the program examples in this paper, the following strengths have been de�ned: required, strong,

medium, weak .

79

Figure 7-1: Moving an endpoint of a horizontal line

7.1 Interactive Graphics Examples

The original motivation for the de�nition of constraint hierarchies was to support interactive

graphics in a more declarative manner. The following example is illustrative of a wide class

of such programs. There is a horizontal line displayed on the screen, and we are moving one

endpoint with the mouse (Figure 7-1). There is a required constraint that the line be horizontal,

a medium constraint that one endpoint of the line follow the mouse, and a weak constraint that

the endpoints of the line remain �xed. This weak constraint gives stability to the line as it is

moved, so that, for example, it doesn't suddenly triple in length as we move the endpoint by

some small distance.

The HCLP(R) rule below expresses the desired update behavior. It takes as arguments terms

representing the old and new states of the horizontal line, and a third term that is the x-y

distance by which one endpoint should be moved. Any or all of the terms may contain variables.

However, in typical use in an interactive graphics application, the old state of the line and the

displacement would be ground, while the new state of the line would be a variable, whose value

would be computed as a result of satisfying the constraints.

move_horiz_end2(line_segment(OldX1,OldY1,OldX2,OldY2),

line_segment(NewX1,NewY1,NewX2,NewY2),

delta(DX,DY)) :-

required OldY1 = OldY2, required NewY1 = NewY2,

medium OldX2 + DX = NewX2, medium OldY2 + DY = NewY2,

weak OldX1 = NewX1, weak OldY1 = NewY1,

weak OldX2 = NewX2, weak OldY2 = NewY2.

Suppose now we anchor the other end of the horizontal line, so that this other end becomes

di�cult to move (Figure 7-2). We'll use a strong rather than a required constraint, so that the

anchor could be moved if needed by using an even stronger mouse constraint.

80

Figure 7-2: Moving an endpoint of an anchored horizontal line

move_horiz_end2_anchor_end1(line_segment(OldX1,OldY1,OldX2,OldY2),

line_segment(NewX1,NewY1,NewX2,NewY2),

Displacement) :-

move_horiz_end2(line_segment(OldX1,OldY1,OldX2,OldY2),

line_segment(NewX1,NewY1,NewX2,NewY2),

Displacement),

strong OldX1 = NewX1, strong OldY1 = NewY1.

Since in this version the anchor constraints are stronger than the mouse constraints, now the

line will stretch in the x direction, following the mouse, but its y position will remain constant.

In other words, the mouse constraint on the new x value of end2 will be satis�ed, but the mouse

constraint on the new y value will be overridden by the stronger constraint that it be the same as

the old y value. This is the same behavior as was exhibited by the original ThingLab [Borning 81],

but now produced as a consequence of declaratively represented hard and soft constraints.

In a similar manner, we can (without any hard thinking required) translate all of the ThingLab

examples into HCLP(R). For the more complex examples, the HCLP code becomes tediously

long. However, we envision such code being written automatically by the interactive graphics

application, rather than by a programmer.

If nothing beyond expressing previously implemented interactive graphics examples in HCLP

could be achieved, the current research would not be of great interest. However, since the full

power of logic programming is available, we can do considerably more. For example, �lters are

a powerful metaphor for the declarative construction of user interfaces. In the �lter browser

described in [Ege et al. 87], the screen view of some source object is constructed by passing

the object through a series of �lters to produce the �nal image. Each �lter is represented as a

collection of constraints (some of which may be required and some non-required) relating its input

and output. Thus the view is updated if the source is changed. Further, since the constraints are

bidirectional, we can edit the image to make some change to the source. ThingLab supported

81

such �lter networks for �xed topologies, but it was di�cult to make the shape of the network

depend on the data. Such dynamically con�gured constraint networks are needed, for instance, if

we want to view a tree, applying a sub�lter to each node in the tree to produce its screen image.

Such a tree-viewing �lter is simple to write in HCLP|we write a recursive view tree rule that

sets up a node-viewing �lter for each corresponding node in the source and view trees.

view_tree(Source,Image) :-

view_node(Source,Image),

view_subtrees(Source,Image).

view_subtrees(Source,Image) :-

leaf(Source), leaf(Image).

view_subtrees(Source,Image) :-

left(Source,LS), right(Source,RS).

left(Image,LI), right(Image,RI),

view_tree(LS,LI), view_tree(RS,RI).

view_node(SourceNode,ImageNode) :- ...

As a �nal graphics example, illustrating the interaction between constraint hierarchies and

logic programming, consider the problem of laying out an illustration of a binary tree. Sup-

pose that the tree is represented by terms of the form node(Value,Left,Right,X,Y) and

leaf(Value,X,Y). Value is the value at each node. Left and Right are the children of the

given interior node. Suppose that X and Y are initially unbound; our task is to bind them to

appropriate values for each node. Suppose also that the tree must �t within a window. We will

have a required minimum vertical spacing between levels in the tree, and a minimum horizontal

spacing between the parent and the left and right children; and also somewhat larger preferred

spacings. A recursive layout rule will set up the appropriate constraints on the X and Y variables

in each node: hard constraints that enforce the minimum spacing restrictions and that force the

entire image of the tree to lie within the window, and soft constraints that try to lay out the

nodes using the preferred spacing. The tree will be layed out using the preferred spacing if pos-

sible; otherwise it will be squeezed down as needed to �t in the window. (The most appropriate

82

comparator for this application would be least-squares-better, which would distribute the com-

pression over all the node positions.) And, of course, if the tree cannot be layed out so that the

required constraints are satis�ed, the goal would fail.

layout(node(Value,Left,Right,X,Y),

Window_left,Window_right,Window_top,Window_bottom) :-

/* require that the node lie within the window */

required Window_left <= X, required X <= Window_right,

required Window_top >= Y, required Y >= Window_bottom,

/* get the X and Y positions of the left and right children */

x(Left,LeftX), y(Left,LeftY),

x(Right,RightX), y(Right,RightY),

/* set up required constraints using the minimum spacing (5 units) */

required Y-LeftY >= 5,

required Y-RightY >= 5,

required X-LeftX >= 5,

required RightX-X >= 5,

/* set up default constraints using the preferred spacing (10 units) */

medium Y-LeftY = 10,

medium Y-RightY = 10,

medium X-LeftX = 10,

medium RightX-X = 10,

/* now recursively lay out the positions of the children */

layout(Left,Window_left,Window_right,Window_top,Window_bottom),

layout(Right,Window_left,Window_right,Window_top,Window_bottom).

layout(leaf(Value,X,Y),Window_left,Window_right,Window_top,Window_bottom) :-

/* require that the leaf node lie within the window */

required Window_left <= X, required X <= Window_right,

required Window_top >= Y, required Y >= Window_bottom.

83

/* access rules to get the X and Y parts of an interior node or a leaf */

x(node(Value,Left,Right,X,Y) , X).

y(node(Value,Left,Right,X,Y) , Y).

x(leaf(Value,X,Y) , X).

y(leaf(Value,X,Y) , Y).

7.2 Planning and Scheduling

Here is a sample HCLP(R) program that determines when a group of people can meet and that

will also �nd a meeting room for them.

free(alan,6,8).

free(bjorn,8,9).

free(john,11,12).

free(molly,10,12).

free(conference room,8,10).

room(conference room).

find times([Person|More],Start,End) :-

find time for one(Person,Start,End),

find times(More,Start,End).

find times([],Start,End).

84

find time for one(Person,Start,End) :-

free(Person,Start Free,End Free),

medium Start Free � Start,

medium End Free � End.

find room(Room,Start,End) :-

room(Room),

free(Room,Start Free,End Free),

strong Start Free � Start,

strong End Free � End.

The following query �nds a one hour meeting time for Alan, Bjorn, John, and Molly.

?- find times([alan,bjorn,john,molly],S,E),

find room(Room,S,E),

required E - S = 1.

The program processes the list of participants, accumulating constraints on the start and end

time for each. For each person, medium constraints are added that the person be free during the

meeting time. Also, we need a meeting room; the program looks for a meeting room, and adds a

strong constraint that the room be free during the proposed time. (We didn't make it a required

constraint, since perhaps we can persuade the other users of the room to move their meeting, or

there may be some other constraint on everyone's time that takes priority over the room being

free, such as a �re drill.) The program will succeed in �nding a meeting time regardless of how

solutions are chosen, as none of the con
icting constraints are at the required level.

If we are only considering each constraint individually, as with the local and regional com-

parators, then the program will return as its answer all one-hour intervals between 8:00 and

10:00. (All of these intervals satisfy the required constraint that the meeting last an hour, and

the strong preference that the conference room be free. Since we can't satisfy everyone's personal

preferences regarding the meeting time, in this case we don't try to distinguish further among

the solutions.) For this program, the regional comparators return the same answers as their

local counterparts. However, if we add a weaker constraint, for example one that weakly prefers

meetings close to lunch time, the regional answers may be further re�ned and some of these

85

solutions may be rejected. (For the local comparators, the set of solutions wouldn't be a�ected

by this change.)

Weighted-sum-metric-better also selects all one-hour intervals between 8:00 and 10:00. How-

ever, if we were to add another person to the list of attendants for the meeting, say someone who

was free from 9:00 to 10:00, then weighted-sum-metric-better would select the hour beginning at

9:00. By minimizing the sum of the errors, this comparator attempts to \make the most people

happy."

Weighted-sum-predicate-better yields an 8:00 meeting time as that is the time that satis�es

the most people (one, in this case) while still satisfying the stronger meeting time constraints.

Least-squares-better chooses 8:45 as the desired meeting time. This comparator is similar

to weighted-sum-metric-better in that the total error is being considered in �nding a solution,

but because the errors are being squared, outlying constraints (such as Alan's early meeting

preference) tend to skew the results.

The answer using worst-case-better is 8:30 as this is the time that produces the smallest single

error of any of the times from 8:00 to 10:00. In e�ect, no one person will be too put out by the

results using this comparator.

We can conceive of scenarios where each of these solutions is most desirable. Normally, we

might prefer to use a predicate comparator for scheduling meetings, so that we don't �nd ourselves

meeting at strange times that are no good for anyone. Yet in some situations, such as deciding

what time of year to meet, it is important to take exact error into account.

7.3 Document Formatting

In this example, we want to lay out a table on a page in the most visually satisfying manner.

We achieve this by allowing the white space between rows to be an elastic length. It must be

greater than zero (or else the rows would merge together), yet we strongly prefer that it be less

than 10 (because too much space between rows is visually unappealing). We do not want this

latter constraint to be required, however, since there are some applications that may need this

much blank space between lines of the table. We prefer that the table �t on a single page of

length 30 (units). There is a weak default constraint that the white space be 5, that is if it is

possible without violating any of the other constraints. Finally, there is another weak constraint

specifying the default type size.

86

table(PageLength, TypeSize,NumRow,WhiteSpace):-

required (WhiteSpace + TypeSize) * NumRow = PageLength,

required WhiteSpace > 0,

strong WhiteSpace < 10,

medium PageLength � 30,

weak WhiteSpace = 5,

weak TypeSize = 11.

If we use a predicate comparator, then if the medium constraint cannot be satis�ed and the table

takes up more than one page, the weak constraint will be satis�ed, resulting in WhiteSpace = 5.

However, if we use a metric comparator, spacing between the rows will be as small as possible to

minimize the error in the PageLength constraint at the medium level.

We can avoid this behavior by demoting the medium constraint to a weak one so that the size

of the type, the white space between rows, and the number of pages all interact at the same level

in the hierarchy. Weighted-sum-better will characteristically choose the solution that minimizes

the error for the majority of the constraints, while worst-case-better �nds the middle ground.

As demonstrated by this example, it may not be apparent until some experimentation has

taken place what even constitutes a suitable solution. The user may need to experiment with

using various comparators (or even combining them for di�erent parts of the problem by breaking

a goal into various subgoals and solving them using di�erent comparators), and with di�erent

strengths on given constraints, to determine the desired solution.

7.4 Which Comparator to Use?

There has not yet been enough experience to make any conclusive statements about which com-

parators embedded in an HCLP language are most appropriate for which classes of problems.

However, there is considerable work in related areas that sheds some light on the question. (The

comparators are all derived from previous formalisms, rather than being ad hoc inventions.)

The global comparators weighted-sum-error-better, worst-case-error-better, and least-

squares-error-better are all derived from (and are generalizations of) the standard statistical

measures of deviation L

1

-norm, L

1

-norm, and L

2

-norm respectively. Locally-error-better is de-

rived from the concept of a vector minimum (or pareto-optimal point, or nondominated feasible

solution) in multiobjective linear programming problems [Murty 83]. In operations research, the

87

choice between an L

1

-, L

1

-, or L

2

-approximation seems often to be made on the class of con-

straints (for example, are they linear or nonlinear?) and the consequent di�culty of solving the

resulting problem. The set of vector-minimum solutions is appealing mathematically|the only

solutions that could reasonably be of interest belong to this set|but working with this set of

solutions has not been particularly practical [Murty 83].

Our own work on constraint hierarchies originated as a rational reconstruction of the behavior

of ThingLab and other constraint-based systems. Our recent work on constraint-based systems

for user interface toolkits (ThingLab II [Maloney et al. 89, Maloney 91] and Multi-Garnet [San-

nella & Borning 92]) has used the locally-predicate-better comparator. This choice has been based

primarily on pragmatic rather than aesthetic or theoretical grounds: the existence of e�cient in-

cremental algorithms|DeltaBlue [Freeman-Benson et al. 90] and a derivative algorithm SkyBlue

[Sannella 92]|for �nding LPB solutions. For user interface applications, we do have extensive

experience in the practical use of LPB [Sannella et al. 93]. It also been used by a considerable

number of researchers at other institutions as well. LPB has generally proved quite satisfactory.

However, for precise layout least-squares-better will often yield more aesthetic results. (The

graphical layout system TRIP [Kamada & Kawai 91], for example, uses least-squares-better.)

7.5 Inter-Hierarchy Comparison in HCLP(R)

As discussed in Chapter 3 Section 3.3, it is useful in some applications to compare solutions

arising from several di�erent hierarchies. Let's return to a simple scheduling problem similar to

that given in Section 7.2, but uncomplicated by the choice of a meeting room. That is, we only

wish to select a meeting time for two people and we have a room that is available all day.

free(nate,8,12).

free(nate,18,21).

free(callie,17,21).

free(conference room,8,21).

room(conference room).

In this example, Nate is free at two separate times of the day|once before noon and once

from early evening on. An HCLP(R) program using the weighted-sum-metric-better comparator

would produce two answers for the query

88

?- find times([nate,callie],S,E),

find room(Room,S,E),

required E - S = 1.

The �rst answer, meeting for an hour sometime between noon and 5:00 p.m., stems from the

�rst rule selection for Nate. The second answer, meeting for an hour sometime between 6:00

p.m. and 9:00 p.m., arises from the second rule choice for Nate. In e�ect, two hierarchies are

constructed here|one using the �rst and the other using the second free time for Nate. The

second answer seems to be the \best" in that it completely satis�es both people's preferences. One

way to achieve this answer using the constraint hierarchy theory is to allow a comparison between

the solutions arising from the �rst hierarchy and those arising from the second as discussed in

Chapter 3 Section 3.3.1, where the constraint hierarchy theory was extended to allow for such

comparisons.

Extending the de�nition in this way gives rise to some nonmonotonic properties. These

were originally discussed in [Wilson & Borning 89]. Using the previous program as an example,

consider the answer to the previous query using weighted-sum-metric-better with respect to a

program containing only the �rst rule for Nate, i.e. free(nate,8,12). In this case, the answer

is meeting for an hour sometime between noon and 5:00 p.m. Now consider the answer to the

previous query using the original program and using inter-hierarchy comparison. The answer is

an hour between 6:00 p.m. and 9:00 p.m. | an answer that is no longer a superset of the answer

to the abbreviated program. This property that has been introduced by the use of inter-hierarchy

comparison is called the nonmonotonicity property, as the answers to HCLP programs may no

longer monotonically increase as new clauses are added to them. A comparator is monotonic if

the set of solutions to a set of constraint hierarchies � is a subset of the set of solutions to the

set of constraint hierarchies � [�, where � is any set of constraint hierarchies.

De�nition. Let � and � be sets of constraint hierarchies. Let � be a valuation. Let C be a

comparator. Then C is monotonic i�

8�8�8� if �

H

2 S

�

(C) then �

H

2 S

�[�

(C):

(Note that this de�nition does not apply to the local comparators since the set S

�[�

is not

de�ned for them.) A comparator that is not monotonic is nonmonotonic.

89

Proposition 11 Let D be a nontrivial domain (i.e. a domain with more than one element).

Then any comparator that respects the set of hierarchies is nonmonotonic.

Proof: Let � = ffrequired X = a, weak X = bgg and let � = ffrequired X = bgg,

where a and b are two distinct elements in D. (Both � and � are singleton sets.) Let C be a

comparator that respects the set of hierarchies. S

�

(C) consists of the valuation that maps X

to a and S

�

(C) consists of the valuation that maps X to b. The valuation in S

�

(C) is better

than that in S

�

(C) and the valuation that maps X to a is not in S

�[�

(C): Therefore C is

nonmonotonic.

There are many other examples of programs where inter-hierarchy comparison yields the

most intuitive answers. Aside from the restriction to global comparators discussed in Chapter 3

Section 3.3.1 and the nonmonotonic properties discussed above, there are two other reasons why

an HCLP interpreter restricts its comparisons to single hierarchies. The �rst and most important

reason has to do with e�ciency. Consider the following program fragment:

f(X):- g(X), medium X � 1.

g(1).

g(X):- g(X - 1).

There is nothing in the de�nition of the global comparators that prevents the set of hierarchies

� from being in�nite. In practice, this can occur when rules are recursive, as demonstrated

in the program listed above. In general, an interpreter using inter-hierarchy comparison would

have to construct all the hierarchies arising from alternate rule choices, collect all the valuations

that satisfy the required constraints in those hierarchies, and then compare them to �nd the

solution set. In cases where the set of hierarchies is in�nite, such a procedure will not return

unless judicious pruning of the search tree allows in�nite branches not to be traversed. For

programs such as the one described above, in general there is no way to avoid an in�nite search

for the best solution. (To avoid such a search we would potentially need to solve the halting

problem.) If, however, the medium constraint in the �rst rule were altered to medium X > 0,

then all valuations for X that satis�ed the predicate g would also satisfy all the constraints in

their respective hierarchies. We would want an e�cient implementation to make use of such

information so that answers could be produced one at a time.

The second justi�cation for preferring single hierarchy comparisons is for programs where we

want all possible answers to a query. Consider the following program that attempts to characterize

mealtimes.

90

free(callie,S,E):- strong S � 18.

mealtime(breakfast,S,E):- S � 6, E � 10, E - S = 0.5

mealtime(lunch,S,E):- S � 12, E � 13, E - S = 1.0

mealtime(dinner,S,E):- S � 17, E � 20, E - S = 1.5

eat(Person,S,E):-

mealtime(Meal,S,E),

free(Person,S,E).

The �rst rule states that Callie is free all day, but that she strongly prefers that anything

that is planned occur after 6:00 p.m. This may be reasonable for scheduling a get-together, but if

we use this in conjunction with planning mealtimes, inter-hierarchy comparison will have Callie

skipping breakfast and lunch. Instead, using the more standard intra-hierarchy comparisons,

Callie's preference would have no e�ect on the other mealtimes (using a predicate comparator),

but it would move the dinner hour to after 6:00 p.m.

Chapter 8

Related Work

8.1 Constraint Logic Programming Languages

HCLP builds on the CLP scheme [Cohen 90, Ja�ar & Lassez 87]. Since HCLP is also a general

scheme, it should be possible to implement HCLP languages for any of the domains, such as

booleans, �nite domains, or trees, supported by existing CLP languages (e.g., [Colmerauer 90,

Dincbas et al. 88, Ja�ar & Michaylov 87, Ja�ar et al. 92, Satoh & Aiba 90, Sidebottoms &

Havens 91, Van Hentenryck 89, Walinsky 89]).

1

A number of CLP languages, for example CHIP [Dincbas et al. 88, Van Hentenryck 89],

include a minimize operator. If an a priori lower bound B on the value of Var is known, then a

call to minimize(Var) could be replaced by a soft constraint medium Var = B.

2

However, if an

a priori bound is not known, then this simulation would not work. Reference [Borning et al. 92]

describes how the constraint hierarchy theory can be extended to include objective functions. We

1

Regarding Echidna [Sidebottoms & Havens 91], we should note that some of its constraint

solving techniques make use of a hierarchy, but their meaning is quite di�erent than the one we

use here. In the case of Echidna, a hierarchy refers to a taxonomy, or a structuring of a discrete

domain into subsets with similar properties. This allows the system to use a more e�cient arc

consistency algorithm.

2

Actually, the simulation is not quite precise. Consider the

CHIP goals X>=0, X<=10, minimize(X), minimize(0-X) and X>=0, X<=10, minimize(0-X),

minimize(X). These would give X = 0 and X = 10 respectively. However, the correspond-

ing HCLP goals required X>=0, required X<=10, medium X=0, medium X=10 and required

X>=0, required X<=10, medium X=10, medium X=0 would both yield the same answers: for

example, the two answers X = 0 or X = 10 for locally-predicate-better, and the single answer

X = 5 for worst-case-better and least-squares-better.

92

could similarly extend an HCLP language to include objective functions explicitly, which would

handle minimize directly (modulo the footnoted comment).

It is also useful to consider the relation between soft constraints and objective functions from

the other point of view: of expressing HCLP languages in a CLP language with a minimize

operator. The latter sort of language would be a very convenient one in which to write an HCLP

interpreter. The technique would be similar to that used in our �rst HCLP interpreter, which was

written in CLP(R) (Chapter 6 Section 6.4.1). However, rather than just the locally-predicate-

better comparator, we could implement other comparators as well in such an interpreter. For

example, to implement weighted-sum-better, we would �rst reduce the goal, satisfying the hard

constraints, and accumulating the soft constraints. We would then minimize the value of an

expression that was the weighted sum of the errors of the constraints at the strongest non-

required level (using the minimize operator), then the weighted sum of the errors of the next

level, and so forth.

The cc family of languages [Saraswat et al. 91, Saraswat 89] generalize the CLP scheme to

include such features as concurrency, atomic tell, and blocking ask; up to this point we haven't

dealt with these additional issues in the HCLP framework.

Maher and Stuckey [Maher & Stuckey 89] give a de�nition of constraint hierarchies similar to

the one in this paper. In their de�nition, pre-solutions for hierarchies perform the same function

as the set S

0

does in our formulation. Then rather than using the E and G functions, Maher

and Stuckey de�ne a pre-measure that maps pre-solutions and sets of constraints to some scale.

The resulting sequences can then be compared via a lexicographic ordering.

Satoh [Satoh 90] proposes a theory for constraint hierarchies using a meta-language to spec-

ify an ordering on the interpretations that satisfy the required constraints. The theory is quite

general, and can accommodate all of the comparators described in Chapter 2 Section 2.3. How-

ever, since it is de�ned by second-order formulae, it is not in general computable. In subsequent

work [Satoh & Aiba 91a, Satoh & Aiba 91b], Satoh and Aiba present an alternative theory that

restricts the constraints to a single domain D, so that they can be expressed in a �rst-order

formula. This theory is similar to the one presented here, with the following di�erences: �rst,

only the locally-predicate-better comparator is supported; second, the semantics of constraint

hierarchies (as opposed to the semantics of HCLP) is described model theoretically rather than

set theoretically; and third, the class of constraints is generalized from atomic constraints to

93

disjunctions of conjunctions of atomic constraints, i.e., constraints of the form

(c

11

^ c

12

^ : : :^ c

1n

1

) _ (c

21

^ c

22

^ : : :^ c

2n

2

) _ : : :_ (c

m1

^ c

m2

^ : : :^ c

mn

m

)

Satoh and Aiba embed such constraints in the CLP language CAL [Satoh & Aiba 90], to

yield an HCLP language CHAL [Satoh & Aiba 91a, Satoh & Aiba 91b]. CHAL includes two

constraint solvers: an algebraic constraint solver for multi-variate polynomial equations, which

uses Buchberger's algorithm to calculate Gr�obner bases; and a boolean constraint solver for

propositional boolean equations, which uses an extension of Buchberger's algorithm. Satoh and

Aiba give examples illustrating each of these domains: a meeting scheduling problem and a gear

design problem respectively. In each case both required and soft constraints are used. They

also describe an algorithm for �nding the locally-predicate-better solutions to a hierarchy, which

improves on our algorithm discussed in Chapter 6 Section 6.4.1 by avoiding redundant calls to

the solver. It �nds solutions essentially by computing maximally consistent subsets of the soft

constraints. However, this algorithm is a batch solver, in contrast to the DeltaStar-based

incremental algorithm (Chapter 2 Section 6.4.2), and thus must re-compute its answers from

scratch after every change to the set of constraints caused by an alternate rule choice. Finally,

it should be mentioned that the characterization in [Satoh & Aiba 91a] states the de�nition of

the set of solutions for a given constraint hierarchy in model-theoretic rather than set-theoretic

terms, but doesn't deal with the interactions between rule choice and constraint hierarchies. We

de�ne constraint hierarchies and their solutions using sets, but describe the meaning of HCLP

programs using both a model theory and a proof theory.

Ohwada and Mizoguchi [Ohwada & Mizoguchi 90] discuss the use of logic programming for

building graphical user interfaces. Default constraints are instrumental in this application, since

often only an incomplete speci�cation of an object is given, yet complete information is needed

to display a picture. Defaults provide a mechanism whereby information can be assumed in order

to specify an object fully, yet it can be overridden, if necessary, as further information becomes

known. Rather than a single default level, a hierarchy of default constraints is used to avoid the

multiple extension problem. The hierarchy is implemented using the negation-as-failure rule, i.e.,

if the negation of a constraint is not known to hold, then the constraint can be assumed to be

true. A problem with this approach is that it then becomes necessary to list all possible con
icts

when a rule is being written in order to avoid inconsistencies. In HCLP, the need for consistency

is assumed and there is no need to enumerate speci�cally those constraints that might con
ict

with the goal.

94

8.2 Other Constraint Languages

Outside of logic programming, other programming languages have supported constraints. Steele's

Ph.D. dissertation [Steele 80] is one of the �rst such e�orts; an important characteristic of his sys-

tem is the maintenance of dependency information to support dependency-directed backtracking

and to aid in generating explanations. Leler [Leler 87] describes Bertrand, a constraint lan-

guage based on augmented term rewriting. Freeman-Benson and Borning [Freeman-Benson 90,

Freeman-Benson & Borning 92a, Freeman-Benson & Borning 92b, Freeman-Benson 91] combine

constraints with object-oriented, imperative programming. Kaleidoscope uses the same con-

straint hierarchy theory employed in HCLP to reconcile the assignment operation of imperative

programming with declarative constraints: in Kaleidoscope, an assignment statement x x+5

is semantically a constraint relating states of x at successive times: x

t+1

= x

t

+ 5. In addition,

all variables have very weak equality constraints between their successive states, so that in the

absence of stronger constraints, a variable will retain its value over time.

8.3 Applications

There is a substantial body of related research in the arti�cial intelligence community. Fox

[Fox 87] discusses the problem of constraint-directed reasoning for job-shop scheduling, and allows

the relaxation of constraints when con
icts occur, and context-sensitive selection and weighted

interpretation of constraints. Descotte and Latombe [Descotte & Latombe 85] make compro-

mises by selective backtracking among inconsistent constraints in a planner for manufacturing.

Freuder [Freuder 92] gives a general model for partial constraint satisfaction problems (PCSPs)

for variables ranging over �nite domains, extending the standard CSP model. In Freuder's model,

alternate CSPs are compared with the original problem using a metric on the problem space (as

opposed to a metric on the solution space, as in our work). An optimal solution s to the original

PCSP would be one in which the distance between the original problem and the new problem

(for which s is an exact solution) is minimal. In an earlier CSP extension, Shapiro and Haralick

[Shapiro & Haralick 81] de�ne the concepts of exact and inexact matching of two structural de-

scriptions of objects, and show that inexact matching is a special case of the inexact consistent

labeling problem.

Decision analysis o�ers an approach for representing and quantifying the elements that enter

into making complex decisions. Often these decisions must be made in the presence of uncer-

95

tainty, and frequently there exist multiple con
icting objectives that make the problem even more

di�cult to describe. Reference [von Winterfeldt & Edwards 86] presents methods for structuring

decision-making problems, as well as formal models to solve those problems. One of these meth-

ods, multiple attribute utility theory (MAUT), provides general techniques for representing the

trade-o�s involved when there are multiple con
icting objectives. Although the problem domain

(i.e. decision analysis with uncertainty) di�ers from that of HCLP, the procedures for solving

problems using MAUT can be quite similar to constraint hierarchy techniques. For example,

MAUT procedures look at each potential alternative solution to the decision and evaluate all of

the di�erent attributes that enter into the decision separately for each alternative. Then relative

weights are assigned to each attribute and these weights and the single-attribute evaluations of al-

ternatives are aggregated to produce an evaluation of the whole. One of the standard aggregation

models is the weighted additive model which simply sums the weighted value for each attribute.

In HCLP, on the other hand, a problem is formulated by determining which constraints make

up the problem and what their relative strengths and weights are. Then a comparator is chosen

to aggregate the errors at a given level and compare them. There is a clear relationship between

the weighted additive model in MAUT and the weighted-sum-better comparator.

8.4 Reasoning

In non-monotonic reasoning, there are several related problem areas with di�erent emphases. In

default reasoning one tries to reason in the absence of complete information, making assumptions

about things that are true or false in the absence of knowledge to the contrary. Reference [Gins-

berg 87] is a collection of many of the classic papers in the area. Temporal reasoning [Shoham &

Baker 92] deals with the di�culty of reaching conclusions about things that change over time and

includes the well known frame problem, among others. In knowledge representation, beliefs are

sometimes retracted, while the addition of new beliefs may often invalidate information that was

previously held to be true. In explanation-based reasoning, or hypothetical reasoning, multiple

theories exist to explain an observation, and the accumulation of new facts helps to reduce the

number of acceptable explanations, or theories.

These areas are all related in a broad sense in that they involve reasoning in the presence of

change: either change through time, change in knowledge, or change in observation. (Reference

[del Val & Shoham 92] explores the relationship between temporal reasoning and belief update and

96

shows that the latter can be expressed in terms of the former.) In the case of default reasoning,

new information may involve eliminating false assumptions, just as adding new constraints to a

constraint hierarchy may override weaker constraints. Brewka [Brewka 89] describes an approach

to representing default information with multiple levels of preference. In this framework, there

are many levels of theories, some of which are more preferred than others. A preferred subtheory

is obtained by taking a maximally consistent subset of the strongest level, and then adding as

many formulas as possible from the next strongest level, and so on, without introducing any

inconsistencies.

The problems involved in revising knowledge systems are discussed in [G�ardenfors & Makin-

son 88]. Formally, revision means adding new information. Contraction of a knowledge system

arises when information must be retracted. Revision will often entail contraction as new infor-

mation may invalidate old beliefs. Rationality postulates are used to ensure that contraction and

expansion of the knowledge set is carried out in the best way possible. Intuitively, this means

that the most minimal change is made to the theory while still incorporating the new infor-

mation. This is similar to our own use of comparators and our requirements on the combining

functions. (In fact, one of our motivations for de�ning and using constraint hierarchies arose from

our work in interactive graphics and our desire that updates to the screen involve as little change

as possible.) Revision can be viewed as adding a constraint to the hierarchy: �rst it is necessary

to \contract," i.e. remove all constraints from the solution that are weaker than the one being

added; then it is necessary to \expand," i.e. add all weaker constraints that are consistent with

the revised set. Epistemic entrenchment is used to order the sentences in a knowledge set. Those

sentences that are the most epistemically entrenched are those that are the most important and

should not be removed from the knowledge set before other less entrenched ones. Again, this

is similar to our use of levels in the hierarchy. One di�erence is that the ordering based on

epistemic entrenchment is a natural ordering arising from the theory itself, while the ordering of

the constraint hierarchy is imposed by the user.

Reiter [Reiter 88] describes integrity constraints that are used to ensure certain properties

about the content of a knowledge base. These constraints can be viewed as meta-constraints in

that they refer to what the knowledge base should contain, or \know," rather than to properties

of the domain. Integrity constraints have been used to prefer one explanation, or hypothesis,

over another by considering constraints that are false in the problem domain and false in each of

two theories but which are true in the union of the two theories [Seki & Takeuchi 85]. Thus the

97

theories are mutually incompatible and there exists some \crucial literal" that can be used to

discriminate between them because it is supported in one of the two theories, but not in the other.

Reference [Sattar & Goebel 91] also discusses the use of crucial literals in hypothetical reasoning.

By identifying these crucial literals and querying the user as to the truth of the literal, the number

of explanations for a given set of observations can be minimized. Because of the power of the

theorem solver used in their approach, integrity constraints are merely facts, corresponding to

hard constraints in the constraint hierarchy formalism. Hypotheses can then be interpreted as

soft, or default constraints (there is only one level). Once the truth value of a crucial literal is

determined, then it becomes a fact and invalidates one (or more) of the hypotheses (defaults).

Despite the similarities discussed above, these approaches di�er in their ultimate goal, or

intended purpose. Default and temporal reasoning attempt to discover what will be true in

a given situation, whereas hypothetical reasoning is concerned with explanations for observed

phenomena. Belief revision is concerned with maintaining consistent information in knowledge

sets, or databases. Our work in constraint hierarchies, and HCLP in particular, is focussed on

computing answers to domain speci�c problems, and the soft constraints are used to narrow the

solution space. Poole [Poole 90] characterizes certain types of reasoning based on who is allowed

to choose the assumptions, or hypotheses, and whether the goal is known. Most uses of HCLP

are with an unknown goal, and the assumptions are selected by the programmer (who labels the

constraints), and the comparator (which selects the \best" answer).

Chapter 9

Conclusion

This dissertation describes the Hierarchical Constraint Logic Programming family of languages.

HCLP is based on the marriage of constraint hierarchies and logic programming, two distinct, but

compatible schemes. By integrating these two schemes, it is possible to solve problems originally

formulated for a more imperative programming environment in an elegant and declarative fashion,

as well as to solve new problems that could not be expressed in the CLP framework. Below we

list the major contributions of this research, followed by promising areas of future work.

9.1 Contributions

This dissertation standardizes a great deal of the constraint hierarchy formalism by using the

notion of combining functions and lexicographic ordering. Earlier work on constraint hierarchies

separates the de�nitions for local and global comparators. The current de�nitions illustrate that

the di�erence in these types of comparators lies in the way in which the errors are combined, and

not in the concept of a solution per se. These current de�nitions also allow for the introduction

of the regional comparators, and pave the way for additional comparators to be de�ned.

This dissertation also contributes to constraint hierarchy theory by de�ning the disorderly

property that occurs when non-required constraints are added to a hierarchy, and by bringing

together various propositions on constraint hierarchies in general. Chapter 3 discusses some of the

extensions to constraint hierarchies that show the relationship between hard and soft constraints

and work such as concurrent logic programming and nonmonotonic logic.

As discussed in Chapter 1, the work described in this dissertation can be viewed in two, inter-

99

related ways. Firstly, we can conceive of Hierarchical Constraint Logic Programming as merging

the notion of the constraint hierarchy with standard logic programming. Secondly, we can view

HCLP as an extension of CLP that allows for non-required constraints. Both of these views

capture the contributions of HCLP. Merging hard and soft constraints with logic programming

has allowed us to program with the constraint hierarchy in a way that previous work could not.

Logic programming provides a powerful programming language that can be used to \wire" the

constraints using conditionals, recursion,and other programming constructs. On the other hand,

viewing HCLP as an extension of CLP allows us to place HCLP in a promising language family,

to incorporate many of the CLP techniques for creating e�cient implementations, and to build

on the solid semantics of CLP.

One of the main contributions of this work is the development of a declarative semantics for

HCLP. Many of the di�culties encountered in de�ning such a semantics have been discussed

in Chapter 5. The semantics of constraint hierarchies alone do not have to contend with the

interplay of the logic programming dimension of HCLP. Model theories for logic programming

and constraint logic programming do not have to handle the non-obvious ways that non-required

constraints can a�ect solutions. Yet, it is important to capture the declarative meaning of HCLP

programs, if only to be able to compare them to other, related programming and reasoning

formalisms. The standardized notation introduced in Chapter 2 allows us to see clearly the

relation between the solution to a constraint hierarchy and the declarative meaning of an HCLP

program, as well as the independence of the meaning from the particular comparator used.

Finally, this work includes the implementation of two HCLP interpreters { one for HCLP(R)

using the locally predicate better comparator, and one for HCLP(R) using locally-metric-better,

weighted-sum-metric-better, and worst-case-better. This latter implementation incorporates the

DeltaStar algorithm and shows the e�ectiveness of separating the various components that

comprise an HCLP interpreter. We have also presented various examples of application pro-

grams for HCLP in the domains of interactive graphics, planning and scheduling, and layout and

document formatting.

9.2 Future Research

Future work in HCLP languages generally falls into two categories: improving existing imple-

mentations and extending the power of the languages themselves. In the �rst area there are

100

several ways to increase both the e�ciency and usefulness of the current HCLP(R) interpreter;

some of which are described in Chapter 6 Section 6.4.2. In addition it would be fruitful to ex-

periment with other solvers, including solvers for non-linear equations, and solvers that support

the least-squares-better comparator.

For further work on using HCLP for interactive graphics applications, it would be extremely

useful to expand the current graphical interface. This would also allow further experimentation

with various comparators, and investigation of their usefulness in solving speci�c problems.

In the realm of extending the power of HCLP itself, we could incorporate inter-hierarchy

comparison into HCLP interpreters. As pointed out in Chapter 7 Section 7.5, while this would

extend the usefulness of HCLP, it also has a potentially negative impact on e�ciency. Still it

presents a fruitful area for future research.

Another promising area of future work involves investigating concurrent forms of HCLP lan-

guages, possibly building on the work of the cc family of languages [Saraswat 89]. This would

possibly entail adding the capacity for read-only and write-only annotations to HCLP programs,

as well as �nding methods to work around the disorderly property of constraint hierarchies. For

example, certain non-required constraints could succeed even if all of the other constraints in the

current hierarchy were unknown, if that constraint was logically validated by the known required

constraints in the hierarchy.

A �nal area of future interest involves adding strength labels to predicates, as well as con-

straints. As with inter-hierarchy comparison, having both required and preferred predicates

involves di�culties with both representing and computing a possibly in�nite number of solutions

to a subproblem. However, previous work in default reasoning within standard logic [Brewka 89]

suggests that there is a theoretical basis for adding labels to predicates. In addition, current

research on the Kaleidoscope programming language [Freeman-Benson & Borning 92b, Freeman-

Benson & Borning 92a] indicates that these \soft" predicates could be quite useful, speci�cally

in the case of user-generated constraints.

Bibliography

[Apt et al. 88] Krzysztof R. Apt, Howard R. Blair, and Adrian Walker. Towards a Theory

of Declarative Knowledge. In Jack Minker, editor, Foundations of Deductive

Databases and Logic Programming. Morgan Kaufmann Publishers, Inc., 1988.

[Bill & Lundell 90] Thomas Bill and Bertil Lundell. Using the Simplex Method for Solving Lay-

out Constraints in Scienti�c Diagrams, September 1990. Project report for Mas-

ter's degree in Computer Science and Engineering, School of Computer Science

and Engineering, Royal Institute of Technology, Stockholm, Sweden. Work done

at Departments of Statistics and Computer Science and Engineering, University

of Washington.

[Borning 81] Alan Borning. The Programming Language Aspects of ThingLab, A Constraint-

Oriented Simulation Laboratory. ACM Transactions on Programming Languages

and Systems, 3(4):353{387, October 1981.

[Borning et al. 89] Alan Borning, Michael Maher, Amy Martindale, and Molly Wilson. Con-

straint Hierarchies and Logic Programming. In Proceedings of the Sixth Interna-

tional Conference on Logic Programming, pages 149{164, Lisbon, June 1989.

[Borning et al. 92] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint Hierar-

chies. Lisp and Symbolic Computation, 5(3):223{270, September 1992.

[Brewka 89] Gerhard Brewka. Preferred Subtheories: An Extended Logical Framework for

Default Reasoning. In Proceedings of the Eleventh International Joint Conference

on Arti�cial Intelligence, pages 1043{1048, August 1989.

[Cohen 90] Jacques Cohen. Constraint Logic Programming Languages. Communications of

the ACM, 33(7):52{68, July 1990.

[Colmerauer 90] Alain Colmerauer. An Introduction to Prolog III. Communications of the ACM,

pages 69{90, July 1990.

[del Val & Shoham 92] Alvaro del Val and Yoav Shoham. Deriving Properties of Belief Update

from Theories of Action. In Proceedings of the Tenth National Conference on

Arti�cial Intelligence, pages 584{589, July 1992.

[Descotte & Latombe 85] Yannick Descotte and Jean-Claude Latombe. Making Compromises

among Antagonist Constraints in a Planner. Arti�cial Intelligence, 27(2):183{

217, November 1985.

102

[Dincbas et al. 88] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and

F. Bertheir. The Constraint Logic Programming Language CHIP. In Proceed-

ings Fifth Generation Computer Systems-88, 1988.

[Ege et al. 87] Raimund Ege, David Maier, and Alan Borning. The Filter Browser|De�ning

Interfaces Graphically. In Proceedings of the European Conference on Object-

Oriented Programming, pages 155{165, Paris, June 1987. Association Fran�caise

pour la Cybern�etique

�

Economique et Technique.

[Emden & Kowalksi 76] M.H. Van Emden and R.A. Kowalksi. The Semantics of Predicate Logic

as a Programming Language. Journal of the ACM, 23(4):733{742, October 1976.

[Fox 87] Mark S. Fox. Constraint-Directed Search: A Case Study of Job-Shop Scheduling.

Morgan Kaufmann, Los Altos, California, 1987.

[Freeman-Benson & Borning 92a] Bjorn Freeman-Benson and Alan Borning. Integrating Con-

straints with an Object-Oriented Language. In Proceedings of the 1992 European

Conference on Object-Oriented Languages, June 1992.

[Freeman-Benson & Borning 92b] Bjorn Freeman-Benson and Alan Borning. The Design and

Implementation of Kaleidoscope'90, A Constraint Imperative Programming Lan-

guage. In Proceedings of the IEEE Computer Society International Conference

on Computer Languages, pages 174{180, April 1992.

[Freeman-Benson & Maloney 89] Bjorn Freeman-Benson and John Maloney. The DeltaBlue Al-

gorithm: An Incremental Constraint Hierarchy Solver. In Proceedings of the

Eighth Annual IEEE Phoenix Conference on Computers and Communications,

Scottsdale, Arizona, March 1989. IEEE.

[Freeman-Benson & Wilson 90] Bjorn Freeman-Benson and Molly Wilson. DeltaStar, How I

Wonder What You Are: A General Algorithm for Incremental Satisfaction of

Constraint Hierarchies. Technical Report 90-05-02, Department of Computer

Science and Engineering, University of Washington, May 1990.

[Freeman-Benson 90] Bjorn Freeman-Benson. Kaleidoscope: Mixing Objects, Constraints, and

Imperative Programming. In Proceedings of the 1990 Conference on Object-

Oriented Programming Systems, Languages, and Applications, and European

Conference on Object-Oriented Programming, pages 77{88, Ottawa, Canada, Oc-

tober 1990. ACM.

[Freeman-Benson 91] Bjorn N. Freeman-Benson. Constraint Imperative Programming. PhD the-

sis, University of Washington, Department of Computer Science and Engineering,

July 1991. Published as Department of Computer Science and Engineering Tech-

nical Report 91-07-02.

[Freeman-Benson et al. 89] Bjorn Freeman-Benson, John Maloney, and Alan Borning. The

DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver. Technical

Report 89-08-06, Department of Computer Science and Engineering, University

of Washington, August 1989.

[Freeman-Benson et al. 90] Bjorn Freeman-Benson, John Maloney, and Alan Borning. An In-

cremental Constraint Solver. Communications of the ACM, 33(1):54{63, January

1990.

103

[Freeman-Benson et al. 92] Bjorn Freeman-Benson, Molly Wilson, and Alan Borning. DeltaStar:

A General Algorithm for Incremental Satisfaction of Constraint Hierarchies. In

Proceedings of the Eleventh Annual IEEE Phoenix Conference on Computers and

Communications, Scottsdale, Arizona, March 1992. IEEE.

[Freuder 92] Eugene C. Freuder. Partial constraint satisfaction. Arti�cial Intelligence, 58(1{

3):21 {70, December 1992.

[G�ardenfors & Makinson 88] Peter G�ardenfors and David Makinson. Revisions of Knowledge

Systems Using Epistemic Entrenchment. In Proceedings of the Second Conference

on Theoretical Aspects of Reasoning About Knowledge, pages 83{96, March 1988.

[Gelfond & Lifschitz 88] Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics

for Logic Programming. In Proceedings of the Fifth International Conference on

Logic Programming, pages 1070{1080, Seattle, August 1988.

[Ginsberg 87] Matthew L. Ginsberg, editor. Readings in Nonmonotonic Reasoning. Morgan

Kaufmann, Los Altos, California, 1987.

[Gosling 83] James A. Gosling. Algebraic Constraints. PhD thesis, Carnegie-Mellon Univer-

sity, May 1983. Published as CMU Computer Science Department tech report

CMU-CS-83-132.

[Heintze et al. 91] Nevin Heintze, Joxan Ja�ar, Spiro Michaylov, Peter Stuckey, and Roland

Yap. The CLP(R) Programmer's Manual Version 1.1. Technical report, IBM

T.J. Watson Research Center, November 1991.

[Hill 74] R. Hill. LUSH-Resolution and its Completeness, 1974. DCL Memo 78.

[Ignizio 83] James P. Ignizio. Generalized Goal Programming. Computers and Operations

Research, 10(4):277{290, 1983.

[Ignizio 85] James P. Ignizio. Introduction to Linear Goal Programming. Sage Publications,

Beverly Hills, 1985. Sage University Paper Series on Qualitative Applications in

the Social Sciences, 07-056.

[Ja�ar & Lassez 87] Joxan Ja�ar and Jean-Louis Lassez. Constraint Logic Programming. In

Proceedings of the Fourteenth ACM Principles of Programming Languages Con-

ference, Munich, January 1987.

[Ja�ar & Michaylov 87] Joxan Ja�ar and Spiro Michaylov. Methodology and Implementation of

a CLP System. In Proceedings of the Fourth International Conference on Logic

Programming, pages 196{218, Melbourne, May 1987.

[Ja�ar et al. 92] Joxan Ja�ar, Spiro Michaylov, Peter Stuckey, and Roland Yap. The CLP(R)

Language and System. ACM Transactions on Programming Languages and Sys-

tems, 14(3):339{395, July 1992.

[Kamada & Kawai 91] Tomihisa Kamada and Satoru Kawai. A General Framework for Visualiz-

ing Abstract Objects and Relations. ACM Transactions on Graphics, 10(1):1{39,

January 1991.

[Karlo� 91] Howard Karlo�. Linear Programming. Birk�auser, 1991.

104

[Konopasek & Jayaraman 84] M. Konopasek and S. Jayaraman. The TK!Solver Book.

Osborne/McGraw-Hill, Berkeley, CA, 1984.

[Leler 87] William Leler. Constraint Programming Languages. Addison-Wesley, 1987.

[Lloyd 84] John W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.

[Mackworth 77] Alan K. Mackworth. Consistency in Networks of Relations. Arti�cial Intelli-

gence, 8(1):99{118, 1977.

[Maher & Stuckey 89] Michael J. Maher and Peter J. Stuckey. Expanding Query Power in Con-

straint Logic Programming. In Proceedings of the North American Conference on

Logic Programming, Cleveland, October 1989.

[Maher 87] Michael J. Maher. Logic Semantics for a Class of Committed-choice Programs. In

Proceedings of the Fourth International Conference on Logic Programming, pages

858{876, Melbourne, May 1987.

[Maier & Warren 88] David Maier and David S. Warren. Computing With Logic. The Ben-

jamin/Cummings Publishing Company, Inc., 1988.

[Maloney 91] John Maloney. Using Constraints for User Interface Construction. PhD thesis,

Department of Computer Science and Engineering, University of Washington,

August 1991. Published as Department of Computer Science and Engineering

Technical Report 91-08-12.

[Maloney et al. 89] John Maloney, Alan Borning, and Bjorn Freeman-Benson. Constraint Tech-

nology for User-Interface Construction in ThingLab II. In Proceedings of the

1989 ACM Conference on Object-Oriented Programming Systems, Languages and

Applications, New Orleans, October 1989. ACM.

[Murty 83] Katta G. Murty. Linear Programming. Wiley, 1983.

[Myers et al. 90a] Brad A. Myers, Dario Guise, Roger B. Dannenberg, Brad Vander Zanden,

David Kosbie, Philippe Marchal, Ed Pervin, Andrew Mickish, and John A. Kolo-

jejchick. The Garnet Toolkit Reference Manuals: Support for Highly-Interactive

Graphical User Interfaces in Lisp. Technical Report CMU-CS-90-117, Computer

Science Dept, Carnegie Mellon University, March 1990.

[Myers et al. 90b] Brad A. Myers, Dario Guise, Roger B. Dannenberg, Brad Vander Zanden,

David Kosbie, Philippe Marchal, and Ed Pervin. Comprehensive Support for

Graphical, Highly-Interactive User Interfaces: The Garnet User Interface Devel-

opment Environment. IEEE Computer, 23(11):71{85, November 1990.

[Nelson 85] Greg Nelson. Juno, A Constraint-Based Graphics System. In SIGGRAPH '85

Conference Proceedings, pages 235{243, San Francisco, July 1985. ACM.

[Ohwada & Mizoguchi 90] Hayato Ohwada and Fumio Mizoguchi. A Constraint Logic Program-

ming Approach for Maintaining Consistency in User-Interface Design. In Pro-

ceedings of the 1990 North American Conference on Logic Programming, pages

139{153. MIT Press, October 1990.

105

[Poole 90] David Poole. Hypo-deductive Reasoning for Abduction, Default Reasoning, and

Design. In Proceedings of the AAAI Spring Symposium on Automated Abduction,

1990.

[Press et al. 86] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetter-

ling. Numerical Recipes: The Art of Scienti�c Computing. Cambridge University

Press, 1986.

[Przymusinski 88] Teodor C. Przymusinski. On the Declarative Semantics of Deductive

Databases and Logic Programs. In Jack Minker, editor, Foundations of Deductive

Databases and Logic Programming. Morgan Kaufmann Publishers, Inc., 1988.

[Reiter 88] Raymond Reiter. On Integrity Constraints. In Proceedings of the Second Confer-

ence on Theoretical Aspects of Reasoning About Knowledge, pages 97{112, March

1988.

[Robinson 66] A. Robinson. Non-Standard Analysis. North-Holland Publishing Company, Am-

sterdam, 1966.

[Sannella & Borning 92] Michael Sannella and Alan Borning. Multi-Garnet: Integrating Multi-

Way Constraints with Garnet. Technical Report 92-07-01, Department of Com-

puter Science and Engineering, University of Washington, September 1992.

[Sannella 92] Michael Sannella. The SkyBlue Constraint Solver. Technical Report 92-07-02,

Department of Computer Science and Engineering, University of Washington,

December 1992.

[Sannella et al. 93] Michael Sannella, John Maloney, Bjorn Freeman-Benson, and Alan Borning.

Multi-way versus One-way Constraints in User Interfaces: Experience with the

DeltaBlue Algorithm. Software|Practice and Experience, 1993. In Press.

[Saraswat 85] Vijay A. Saraswat. Problems with Concurrent Prolog. Technical Report CS-86-

100, Carnegie-Mellon University, May 1985. Revised January 1986.

[Saraswat 89] Vijay Anand Saraswat. Concurrent Constraint Programming Languages. PhD

thesis, Carnegie-Mellon University, Computer Science Department, January 1989.

[Saraswat et al. 91] Vijay A. Saraswat, Martin Rinard, and Prakash Panangaden. Semantic

Foundations of Concurrent Constraint Programming. In Proceedings of the Eigh-

teenth Annual Principles of Programming Languages Symposium. ACM, 1991.

[Satoh & Aiba 90] Ken Satoh and Akira Aiba. CAL: A Theoretical Background of Constraint

Logic Programming and its Applications (Revised). Technical Report TR-537,

Institute for New Generation Computer Technology, Tokyo, February 1990.

[Satoh & Aiba 91a] Ken Satoh and Akira Aiba. Computing Soft Constraints by Hierarchical

Constraint Logic Programming. Technical Report TR-610, Institute for New

Generation Computer Technology, Tokyo, January 1991.

[Satoh & Aiba 91b] Ken Satoh and Akira Aiba. The Hierarchical Constraint Logic Language

CHAL. Technical Report TR-592, Institute for New Generation Computer Tech-

nology, Tokyo, September 1991.

106

[Satoh 90] Ken Satoh. Formalizing Soft Constraints by Interpretation Ordering. In Proceed-

ings of the European Conference on Arti�cial Intelligence, 1990.

[Sattar & Goebel 91] Abdul Sattar and Randy Goebel. Using Crucial Literals to Select Better

Theories. Computational Intelligence, 7:11{22, 1991.

[Seki & Takeuchi 85] H. Seki and A. Takeuchi. An Algorithm for Finding a Query Which Dis-

criminates Competing Hypotheses. Technical Report 143, Institute for New Gen-

eration Computer Technology, 1985.

[Shapiro & Haralick 81] Linda Shapiro and Robert Haralick. Structural Descriptions and Inexact

Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence,

PAMI-3(5):504{519, September 1981.

[Shapiro 86] Ehud Shapiro. Concurrent Prolog: A Progress Report. IEEE Computer,

19(8):44{58, August 1986.

[Shoham & Baker 92] Yoav Shoham and Andrew Baker. Nonmonotonic Temporal Reasoning,

1992. To appear in Handbook of Arti�cial Intelligence and Logic Programming,

D. Gabbay, Ed.

[Shoham 88] Yoav Shoham. Reasoning About Change: Time and Causation from the Stand-

point of Arti�cial Intelligence. The MIT Press, 1988.

[Sidebottoms & Havens 91] Greg Sidebottoms and William S. Havens. Hierarchical Arc Consis-

tency Applied to Numeric Processing in Constraint Logic Programming. Techni-

cal Report 91-06, Centre for Systems Science and School of Computing Science,

Simon Fraser University, August 1991.

[Steele 80] Guy L. Steele. The De�nition and Implementation of a Computer Programming

Language Based on Constraints. PhD thesis, MIT, August 1980. Published as

MIT-AI TR 595, August 1980.

[Sterling & Shapiro 86] Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT Press, 1986.

[Sutherland 63] Ivan Sutherland. Sketchpad: A Man-Machine Graphical Communication Sys-

tem. In Proceedings of the Spring Joint Computer Conference. IFIPS, 1963.

[Van Hentenryck 89] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming.

MIT Press, Cambridge, MA, 1989.

[von Winterfeldt & Edwards 86] Detlof von Winterfeldt and Ward Edwards. Decision Analysis

and Behavioral Research. Cambridge University Press, 1986.

[Walinsky 89] Cli�ord Walinsky. CLP(�*): Constraint Logic Programming with Regular Sets.

In Proceedings of the Sixth International Conference on Logic Programming, pages

181{196, Lisbon, June 1989.

[Wilson & Borning 89] Molly Wilson and Alan Borning. Extending Hierarchical Constraint

Logic Programming: Nonmonotonicity and Inter-Hierarchy Comparison. In Pro-

ceedings of the North American Conference on Logic Programming, Cleveland,

October 1989.

107

[Wilson & Borning 93] Molly Wilson and Alan Borning. Hierarchical constraint logic program-

ming, 1993. To appear in the Journal of Logic Programming.

[Wilson 91] Molly Wilson. The Semantics of Hierarchical Constraint Logic Programming.

Technical Report 91-02-04, Department of Computer Science and Engineering,

University of Washington, February 1991.

Appendix A

An Algorithm for Interpreting

HCLP Programs

PROCEDURE Interpret(Goal,Program);

VAR Succeeded : Boolean;

Answer : Set of Constraints;

Untried, Satis�ed, Unsatis�ed : Hierarchy;

C1 : Constraint;

BEGIN

(� Make a call to CLP and get an answer to the predicates and required constraints using the

standard CLP machinery. Also return the hierarchy of non-required constraints in the variable

Untried. The repeat loop causes the CLP engine to backtrack, producing alternate answers. �)

LOOP

CLP(Goal,Program,Succeeded,Answer,Untried);

IF NOT Succeeded THEN

Output \no more answers";

RETURN;

END; (� IF �)

109

FOR each constraint C1 in Untried DO

IF Answer implies C1 is false THEN

add C1 to Unsatis�ed;

remove C1 from Untried;

ELSIF Answer implies C1 THEN

add C1 to Satis�ed;

remove C1 from Untried;

ELSE

(� Answer says nothing about C1. C1 remains in Untried �)

END; (� IF �)

END; (� FOR �)

(� Make the call to the constraint hierarchy solver. If Answer is empty, then the solver will output

the empty set as an answer and then return. �)

Solve(Answer,Satis�ed,Untried,Unsatis�ed);

END; (� LOOP �)

END Interpret.

PROCEDURE Solve(CurrentAnswer : Set of Constraints;

Satis�ed, Untried, Unsatis�ed : Hierarchy);

VAR S : Set of Constraints;

C1, C2 : Constraint;

NewAnswer : Set of Constraints;

NewSatis�ed, NewUntried, NewUnsatis�ed : Hierarchy;

110

BEGIN

(� If all the constraints have been tried, then we have an answer �)

IF Untried is empty THEN

Output CurrentAnswer;

RETURN;

END;

(� Explore all answers starting with the strongest constraints �)

S:= set of all constraints at the strongest level in Untried;

FOR each constraint C1 in S DO

(� Note that C1 is consistent with the current answer since it is not in Unsatis�ed. Call constraint

solver to combine the current answer and C1. We assume that the constraint solver is powerful

enough either to return a new set of constraints or to fail if there are no substitutions that satisfy

the constraints in the CurrentAnswer and C1. �)

NewSatis�ed:= Satis�ed;

NewUntried:= Untried;

NewUnsatis�ed:= Unsatis�ed;

NewAnswer:= ConstraintSolver(CurrentAnswer,C1);

(� Now update Satis�ed and Unsatis�ed lists. Note that C1 will be removed from the list of Untried

constraints and put in the list of Satis�ed constraints. Any constraint that is not satis�ed by the

new answer will be one at a level equal to or weaker than C1, because of the way S is chosen. So

we still have a valid answer. �)

FOR each constraint C2 in Untried DO

IF NewAnswer implies C2 is false THEN

add C2 to NewUnsatis�ed;

remove C2 from NewUntried;

ELSIF NewAnswer implies C2 THEN

add C2 to NewSatis�ed;

remove C2 from NewUntried;

111

ELSE

(� NewAnswer says nothing about C2. C2 remains in NewUntried �)

END;

END; (� FOR �)

(� Make recursive call. This call to Solve creates a new node in the implicit search tree. Each

C2 in Untried can be seen as labeling an edge to a child of the current node. �)

Solve(NewAnswer,NewSatis�ed,NewUntried,NewUnsatis�ed);

(� Re-initialize hierarchies �)

END; (� FOR �)

END Solve.

