
A Periodic Object Model for Real-Time Systems

1

H. Rebecca Callison

Department of Computer Science and Engineering

University of Washington, FR-35

Seattle, WA 98195

callison@cs.washington.edu

Technical Report 93-05-02

May 1993

Abstract

We introduce time-sensitive objects (TSO's), a data-oriented model for real-time systems.

The TSO model imposes time constraints on object values through validity intervals and object

histories. Periodic objects, a class of objects within the TSO model, are described in detail and

compared with more traditional periodic processes. We identify advantages of periodic objects

including greater scheduling independence, more opportunity for concurrency, and tolerance of

timing faults.
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1 Introduction

Timing constraints for real-time systems are typically expressed with respect to processing, for

example, period, release time, and deadline of a task, and delay [12, 16, 17]. These constraints

are often applied in the context of designs based on periodic processing. Working with timing

constraints only for processing, however, complicates some aspects of real-time system design. Data

dependencies between processes with di�erent periods lead to timing interactions that in
uence

the structure of the system and its scheduling 
exibility. Low frequency tasks must execute in

the intervals when data supplied by high frequency tasks is stable. And high frequency tasks may

require �ne tuning to make time for the less frequent tasks to execute.

In addition, design based on time-constrained processing provides no system framework for recog-

nition of and reaction to timing errors, an important consideration for real-time systems. Timing

fault detection is localized to the process in which the error occurs. Timing errors may occur at

any point in the execution of a process, and the process structure provides no inherent assistance

for regaining the consistent state necessary even for local recovery. Notifying other processes of the

timing error takes more time and further complicates the recovery activity.

In this paper we introduce the time-sensitive object (TSO) model, a data-oriented alternative to

real-time systems design based on time-constrained processing. This model takes advantage of the

temporal properties of data, including its periodicity, in addition to the timing characteristics of

processing. We focus on periodic objects, a class of time-sensitive objects, as a basis for comparison

with the traditional periodic processes. These objects provide a framework for reducing deadline

interactions among processing related by data dependencies, increasing concurrency, and improving

tolerance to timing faults.

Following a brief description of the general TSO model, we describe the operational concepts for

periodic objects in some detail. In Section 3 we present bene�ts of designs based on periodic objects

through comparison with a periodic process model. Related work is reviewed in Section 4. Section

5 concludes with a discussion of issues and ongoing work.

2 Time-Sensitive Objects: An Informal Description

A distinguishing feature of many real-time objects is that whatever value the object has at any

point in time, that value will no longer be valid in a few milliseconds or seconds. In short, the value

of these objects is time-sensitive: as time passes the value of the object is expected or even required

to change. Examples of such time-sensitive real-world objects include the positions of aircraft in

an airspace and the temperature in a containment vessel during a nuclear or chemical reaction.

Examination of objects in a variety of real-time applications reveals a range of time-sensitivity shown

in the taxonomy of Figure 1. At the extremes in the classi�cation are single-interval transient and

immutable objects. Single-interval transient objects are created, remain in the system for a short

time, and disappear without changing. A report from a sensor such as a radar is typical of this
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Figure 1: Taxonomy of Time-Sensitivity

class. If it is not recognized and used quickly, its value to the system is lost, often because it has

been superceded by a new report. At the other extreme are immutable objects which persist for

the life of the system execution without changing.

Most objects in real-time systems fall between these two poles. They persist for some �nite length

of time and are allowed to change during this lifetime. The expectation of change is captured by

associating a validity interval with each successive value assumed by the object, so these objects are

called multi-interval objects. A validity interval describes the time at which a value became valid

and the latest time that it will remain valid, i.e., the time by which the object value is expected

to change. Multi-interval objects may be periodic or sporadic. The value of a periodic object is

normally reevaluated at �xed temporal intervals with each new value remaining valid for a �xed

length period. Sporadic objects are allowed and/or expected to change but not at precisely regular

time intervals. For sporadic objects, the absence of change during a validity interval may signal

an error, as in a device malfunction. Or it may signal a non-erroneous change of state, as may

be inferred, for example, by monitoring the duration of mouse button depressions to distinguish

single and double clicks from other actions. A mutable non-real-time object is representable within

this classi�cation hierarchy as a sporadic object whose current value may persist for an unbounded

time.

A model for the description of systems composed of TSOs is detailed in [4], and a semantics for

the interaction of objects within this model is presented. The remainder of this paper is limited to

a discussion of periodic objects as a basis for comparison with periodic process oriented designs.

For simplicity we use the phrase periodic object model to refer to the description and behavior of

periodic objects within the broader TSO model.

2.1 Periodic Objects: Basic Concepts

A periodic object is a multi-interval object encapsulating past, current, and estimated future object

state and exporting operations on these state values. The history of a periodic object comprises

a series of values assigned as object state in successive temporal intervals. Each interval consists

of (1) an internally consistent state value for the object; (2) the time at which the value became

(or is scheduled to become) valid; (3) the time at which the value ceased or will cease to be valid;
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and (4) a quality index denoting the \goodness" or precision of the computation that produced

the value. Current value is described by an interval which includes the current time as indicated

by the system real-time clock. The basic intervals characterizing periodic object value are of equal

length and are referred to as periods. While new values may be produced for the current period

or predicted for future periods, history may not be modi�ed. Time-referenced read operation(s)

provide access to current, historical, and projected future values. The model for periodic objects

also includes three types of operations for modifying object state: periodic update, extrapolate, and

asynchronous update.

A periodic update operation uses new system inputs, evolving system state, and current object

value to project the value of the object into the next (upcoming) period. When the current period

ends, this projection becomes the new current value. The periodic update is the work horse of the

periodic object concept. It is expected to execute in each period to ensure that the time-sensitive

value of the object keeps pace with changes in the system environment.

Every periodic object must also possess an extrapolate operation. This operation characterizes

the expected transformation of the object value over time in the absence of new inputs. The

extrapolate operation projects the value of the object into a new period based solely on its value

in the preceding period(s), i.e., without reference to any system data other than the object's own

history. Extrapolation can be thought of as being purely time-triggered: when no new object value

has been projected as a new period is entered, the extrapolate operation executes, conceptually

instantaneously, to estimate a new current value. In practice, the extrapolate operation could

execute (1) in the current period, producing a value that will be overwritten by any normal periodic

update completing in the period, (2) on a time-triggered basis as a new period is entered, or (3)

asynchronously on demand when an application attempts to access data in a period for which no

value has yet been computed.

Sometimes an object value changes unexpectedly in a way not anticipated by the time-sensitive

operations of periodic update and extrapolate. To capture this behavior, the periodic object exports

a third type of operation for modifying object state, the asynchronous update. This operation

registers an acceptable but unusual and temporally unpredictable change to the object's value.

The new value need not depend in any systematic way on the object history or current value. The

value assigned through asynchronous update becomes e�ective immediately. Its validity interval

ends at the end of the current period. Periodic updates and/or extrapolate then use this new value

to project time-sensitive components into the future.

An implied contract exists between the periodic object and its clients. Each periodic object is

conceptually active, possessing one or more threads of control which are scheduled periodically

to accomplish the desired periodic updates. The periodic object makes a best e�ort attempt to

provide new versions of object value on a speci�c periodic schedule. Further, the object agrees to

notify clients of unexpected (asynchronous) updates should they occur. Normally, this noti�cation

will take the form of a new version of object state appended to the object history and valid until

the end of the current period.

2

The client agrees to use a supplied value only within the constraints
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The TSO model also allows a client object to declare a strong dependency on the object, registering it for imme-
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Figure 2: Periodic Track Object Based

implied by its validity interval. Each client is empowered, however, to continue execution in the

absence of an expected value, if desired, through authorized use of the extrapolate operation to

estimate a new object value.

The use of a periodic object to track the 
ight of an aircraft is illustrated in Figure 2. In this

highly simpli�ed tracking example, the aircraft broadcasts its position at roughly equal intervals.

The broadcast is monitored by the system and represented as a periodic object called a Track, here

composed of x-coordinate, y-coordinate, and quality. Since air tra�c control is interested in where

the aircraft is or is about to be, rather than where it has been, the Track has a periodic update

operation that uses a linear function of the aircraft's position in the two most recent periods to

project the position ahead one period.

3

When incoming reports agree with the projection (periods

diate noti�cation of asynchronous changes to the in
uencing object. The semantics and timing of the propagation of

asynchronous updates to such strongly dependent objects are beyond the scope of this discussion.
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The author does not imply that real world tracking algorithms conform in any meaningful way to this example.
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1, 5, 7, and 8), the projected value persists as current value. When the vehicle initiates a turn,

as shown in periods 2, 3, and 4, the incoming data does not reinforce the estimated position. An

asynchronous update to record the correct reported position is initiated immediately in mid-period.

This new value becomes the basis for projection of vehicle position into the next period. When

no intelligible position report is received in period 6, the omission is masked by extrapolating

unreinforced position data. The quality of the new value informs clients of the reporting failure

and subsequent invocation of extrapolation.

2.2 Concurrency Issues

Periodic objects may exist in systems that employ internal concurrency to accommodate concur-

rency and unpredictable behavior in the system environment. To achieve predictable execution

times, reads to current and historical data should never be delayed, implying that the use of lock-

ing protocols and/or critical sections is inappropriate for concurrency control.

4

Periodic objects

are assumed to be non-blocking and linearizable [10], guaranteeing that (1) some process makes

progress in a �nite number of steps and (2) that the result of each operation becomes visible atom-

ically at some instant in time between its initiation and completion. Linearizability preserves the

order of temporally disjoint operations, but the e�ective order of operations executed concurrently

is nondeterministic. The requirements to maintain access to historical data and to accomplish

updates atomically outside of critical sections precludes in-place updating of object value for two

reasons: (1) the old value must be maintained and (2) no partial updates may be visible. These

characteristics favor an optimistic approach (copy, modify, validate, atomically install new version

on success) that leads naturally to a queue structure for retention of history.

Multiple periodic update operations may be associated with a single object. Any or all of these

periodic updates may execute in period i to project the value of the object into period i + 1.

Each distinct periodic update operation of an object must produce a value of distinct quality

ranking. The highest quality periodic update completed in period i must persist into period i + 1 to

become the new current value. Including quality comparison in the validation step of a projection

ensures this characteristic. The results of a lower quality computation are discarded and the

computation abandoned rather than overwrite a higher quality result. Allowing multiple periodic

updates provides a structure for implementing concepts like imprecise computation [18, 20] and

performance polymorphism [13]. Because quality information is available to the object's clients,

the application can decide if the value read is su�ciently accurate to be of use.

The concurrency available from non-blocking objects can be further exploited by allowing asyn-

chronous updates to execute concurrently with periodic updates. Potential outcomes arising from

executing both a periodic and an asynchronous update on a single object in the same period are

illustrated in Figure 3. An asynchronous update con
icts with a concurrent periodic update if it

changes the value in the current period while the periodic update is using the newly obsolete value

4

Locking protocols and critical sections allow unpredictable delays. These delays may be unbounded in the

presence of deadlock or a failure of a process while holding the lock or inside a critical section.
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to project a new value for the next period. If the asynchronous update takes e�ect after the periodic

update, the asynchronous update will be lost when the next interval becomes current. Coupling

each asynchronous update atomically with an extrapolate operation based on the new value resolves

this con
ict. The quality index is enhanced to re
ect the priority of both the operation producing

the results and the data inputs to the operation. A lower quality operation on \better" data, e.g.,

extrapolation of an asynchronous, inherently high priority update, will supercede results of a higher

quality operation based on \worse" inputs.

A claim for predictable execution of modi�cations under this scheme is based on a stochastic

argument: The type and schedule of operations to be performed routinely are fairly well understood

a priori, and the probability for con
ict between two modifying operations is very low by design.

On the rare occasion when con
ict occurs, the application has the options of retrying or abandoning

the unsuccessful operation. On average the execution time will be predictable. And the periodic

object structure is speci�cally designed to tolerate the rare timing failure which may result from

unexpected con
ict. (See further discussion of timing fault tolerance below.)

To limit the amount of process overhead, periodic objects may be aggregated or composed into

higher level objects. These higher level objects own the threads of control that execute the op-

erations of the simpler composing objects. This capability decouples the granularity of control

(processes) and data (objects) in the system design.

3 Comparing Periodic Objects with Periodic Processes

In Section 1 we postulate that real-time systems based on periodic objects will exhibit more robust

behavior than systems based on periodic processes by reducing deadline interactions, increasing

parallelism, and providing a framework for timing fault tolerance. In order to consider these claims

we need �rst need to introduce simple scheduling models for both periodic processes and periodic

objects.

Periodic Process Model. Each process is characterized by the tuple P

i

= (s

i

; p

i

; r

i

; c

i

; d

i

) where

s

i

= time of beginning of �rst period of execution of P

i

p

i

= period length

r

i

= o�set from beginning of period for release of P

i

c

i

= maximum units of computation consumed by P

i

in each period

d

i

= o�set from beginning of period of deadline of P

i

Assume c

i

; d

i

� p

i

; and c

i

� d

i

� r

i

.

Periodic Object Model Each periodic object is characterized as Obj

i

= (s

i

; p

i

; o

i

) where
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s

i

= start time of initial validity interval of Obj

i

,

p

i

= length of Obj

i

period,

o

i

= non-empty set of periodic operations of Obj

i

; each op

i;j

2 o

i

has characteristics:

q

i;j

= operation quality,

r

i;j

= release time for operation,

d

i;j

= deadline for operation,

)

o�set from object period

c

i;j

= maximum computational units for operation execution.

Assume c

i;j

� d

i;j

� r

i;j

.

The periodic process model describes the frequency, scheduling window, and computational de-

mands of each periodic task. The periodic object model �rst describes the periodicity of the object

value. For generality the model allows for separate description of the timing constraints of each

periodic update operation associated with the object.

5

3.1 Minimizing Timing Constraint Interaction

In the process model, data dependencies between processes with di�erent periods introduce explicit

dependencies in process scheduling constraints. Sometimes these constraints are arti�cial: they

derive solely from the stability intervals of the data rather than from the functional and timing

requirements of the system.

Consider the di�culties encountered in scheduling interactions between two periodic processes P

0

and P

1

. P

1

depends on data supplied by P

0

, and p

0

� p

1

. For simplicity in this example, it is

assumed that s

0

= s

1

and p

1

= np

0

for integer n. Because data consistency is not guaranteed

during P

0

execution, the lower frequency process P

1

must run in the \windows of consistency" in

the schedule of the higher frequency process P

0

. A number of scheduling and/or programming

modi�cations may be necessary to �t the two processes into the system schedule as illustrated in

Figure 4. If P

1

can run to completion between any two executions of P

0

, the constraints on P

1

may

be modi�ed as described by P

0

1

, where the release time and deadline are adjusted to select one of

the available slots in the P

0

schedule:

Case 1. P

0

1

= (s

1

; p

1

; r

0

1

= j � p

0

; d

0

1

= (j + 1) � p

0

; c

1

) for some j, 0 � j � (n� 1)

(Underscoring is used throughout this discussion to highlight interprocess and interobject scheduling

constraints.) The constant j here selects one of every n P

0

periods for execution of P

1

. If this window

is too short for complete execution of P

1

, the speci�cation constraints on P

0

's execution may be

tightened to make room for execution of P

1

as described by P

00

0

:

Case 2. P

00

0

= (s

0

; p

0

; r

0

; d

00

0

; c

0

) where d

00

0

� p

0

� c

1

, d

00

0

< d

0

P

00

1

= (s

1

; p

1

; r

00

1

= j � p

0

; d

00

1

= (j + 1) � p

0

; c

1

) for some j, 0 � j � (n� 1)

5

Early experience with the model indicates that the number of periodic operations per object will usually be small

(two or fewer) and that multiple operations of a single object may have common scheduling constraints.
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Where no simple constraint on P

0

yields a feasible solution, P

1

may be partitioned into a series

of subprocesses fP

1;0

; P

1;1

; : : : ; P

1;n�1

g, each of which can run to completion in one of the P

0

scheduling windows.

6

Now:

Case 3. P

000

0

= (s

0

; p

0

; r

0

; d

000

0

; c

0

) where d

000

0

� p

0
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j
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1;j

)

P
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1

; p

1
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1;j

= j � p

0

; d

1;j

= (j + 1) � p

0

; c

1;j

), 8 j; 0 � j � (n� 1)

Alternatively, if P

1

depends for success on historically consistent rather than most current P

0

data,

P

1

can be partitioned into a data capture step, P

1a

, and a processing step P

1b

. P

1a

must run

between activations of P

0

, but P

1b

is now free of derived constraints except for the precedence

constraint imposed with respect to P

1a

(Case 4 of Figure 4).

This intertwining of scheduling constraints, particularly the interaction between computation time

of one process and deadlines of another, has a negative e�ect on the software design. The parti-

tioning of processes to �t available timing windows is likely to diminish the clarity of the program,

complicating development and future maintenance. Schedule constraints become sensitive to tim-

ing changes in obscurely related processes. The timing dependencies contribute to tightly coupled

system designs which typically require careful tuning throughout the software life cycle.

In the periodic object model, operations synchronize on the availability of desired versions of object

value. Again, consider the simple case of a two object dependency in which Obj

1

depends on Obj

0

.

Both objects are periodic, each possesses a single periodic operation, and p

0

� p

1

. Synchronization

occurs when the desired version of Obj

0

state becomes available without concern for other activity

6

If such partitioning is not possible, a hardware solution may be sought. Moving to a higher performance processor

decreases computation time required while holding all other timing characteristics unchanged.
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Figure 5: Scheduling Constraints for Dependent Objects

that may be undertaken by the thread (process) executing this operation. Because the threads

invoking the two periodic operations may execute concurrently, the deadline of the �rst need not

guarantee execution time for the second. Where correctness of the periodic operation on Obj

1

requires use of Obj

0

current value, Obj

1

operations are explicitly constrained by the periodicity of

Obj

0

data, but not by other execution parameters of Obj

0

's operations:

per op

0

1;1

= (q

1;1

; r

0

1;1

= p

1

� p

0

; d

0

1;1

= p

1

; c

1;1

) for some j, 0 � j � (n� 1).

A variety of temporal semantics for this interaction are depicted in Figure 5. The application may

choose the currently valid value (Case 1) or synchronize on the most timely result by waiting for

Obj

0

's projection into the upcoming period (Case 2). In Case 3 of Figure 5, where Obj

1

depends

on Obj

0

historical data, there is no interaction of scheduling constraints. The data capture step

inserted to avoid scheduling dependencies in Case 4 of the periodic process model is performed

automatically through system retention of historical versions.
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In contrast with the periodic process model, the periodic object model does not use scheduling

constraints to guarantee that operations on dependent objects will complete on time. In Case 2

of Figure 5, where Obj

1

waits for data being produced in the current period by Obj

0

, failure of

the periodic update of Obj

0

to complete on time means that the Obj

1

operation will also fail.

Techniques for achieving tolerance to such errors are discussed in Section 3.3 below.

3.2 Enabling Concurrency

Periodic objects have two advantages over periodic processes in allowing concurrency: (1) Because

context switches have high overhead, the periodic object model allows �ne-grained objects to be

aggregated into higher level objects. Using this mechanism, the multiple threads of control im-

plicitly associated with the conceptually active �ne-grained objects may be aggregated into coarser

control entities (processes). Where data dependencies between large-grained periodic processes

require precedence relationships to guarantee data consistency in the process model, large-grained

threads in systems built from periodic objects can achieve �ne-grained synchronization at the ob-

ject level.

7

Resolution of con
ict at the object level, rather than the process level, creates greater

opportunity for concurrency. (2) Retention of object histories directly enables concurrent execution

of operations that are producing new object values with operations that use only historical data.

In a single processor environment, the primary bene�t of enabling concurrency may be that pro-

grams are simpler to write and understand, because they are free from the subtle dependencies of

process-precedence-based consistency. In a multiprocessor system, the bene�t should include speed

up from parallel execution of decoupled operations.

3.3 Improving Tolerance to Timing Errors

Fault tolerance has four components: (1) fault detection, (2) damage assessment (fault contain-

ment), (3) recovery, and (4) repair and return to service. Timing fault detection has been an active

research issue in real-time systems. Mechanisms for the expression and monitoring of constraints

on program execution time have been widely investigated, e.g., in [5, 12, 16, 17, 21, 23]. These

mechanisms in isolation provide only for timing error detection, and this detection is localized to

the erroneous process where a timing exception is typically raised. No inherent assistance is pro-

vided for damage assessment, recovery, or return to service. Periodic objects extend the capability

for tolerance to timing faults:

Fault detection. Non-faulty system behavior is characterized by the expected succession of peri-

odic object values. Finding a value missing in the current period implies that an error has occurred

in the production of an expected value. The detection mechanism provided by periodic objects is

7

Fine-grained synchronization can certainly be achieved through ad hoc application of a variety of techniques

within the periodic process model. The bene�t of the periodic object model is that this advantage is available

systematically, rather than on an ad hoc basis.
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global. The absence of data can be detected by any client of the object as soon as the validity

interval of the value last recorded expires. There is no delay introduced by the necessity for in-

terprocess communication to notify users of the error. Nor is it necessary for each user to set a

watchdog timer in order to infer the absence of the data.

Damage assessment (fault containment). Periodic objects contribute in two ways to contain-

ment of timing faults. (1) The linearizable characteristic of these non-blocking objects prevents

visibility of partial updates. The visible state of the object is always internally consistent, regardless

of the point at which a timing exception is recognized. (2) Validity intervals coupled with quality

information allow object users to infer the status of object operations. Each user can condition its

own processing, including the distribution of its results, in response to degradation in the quality

of the data it reads. So the structure enables fault containment at the application level.

Recovery. Again, the periodic object mechanisms for direct recovery are two-fold: (1) The extrap-

olate operation permits gaps in periodic data to be bridged. (2) The periodic update characteristic

assures that transient errors will be corrected within a tolerable time, i.e., in the next interval. A

succession of sub-par values indicates a more extensive problem, but at least the periodic object

structure provides enough information for all users to be aware of such problems.

The structure also contributes to successful recovery from more catastrophic failures. Recovery

from loss of a processing node or function is possible through extrapolation from historical versions

stored on durable media.

Repair and return to service. The recovery characteristics described above constitute limited

self-repair. Anticipated extensions to the periodic object model will address replicating objects

in a distributed environment. This extension may include some system capability to recover lost

replicas. It is anticipated, however, that most repair activity will be managed by the application

rather than being integral to the periodic object model.

3.4 An Air Defense Example

In this section we use an air defense system as a concrete example of some of the problems and

resolutions identi�ed earlier. An air defense system is similar to an air tra�c control system: The

position of aircraft within an airspace are monitored by tracking radar returns from the aircraft.

Each aircraft entering the airspace must be identi�ed. When unknown (unidenti�able) or hostile

intruders are detected in the airspace, the system provides guidance information (correct heading,

speed, etc.) to direct the pilots of interceptor aircraft to a rendezvous with the intruders (targets).

Key requirements are presented in Table 1.

Figure 6 presents two alternative designs for the Air Defense system. Figure 6a depicts a tra-

ditional, process-based design. In this design all processes operate on a monolithic database of

track information. A Correlate&Track process runs to completion in each basic cycle. This process

associates incoming radar reports with tracks and calculates new locations for all aircraft. When

Correlate&Track completes, Guide and Identify processes compute updated results based on the
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Table 1: Air Defense System Requirements

Timing Constraint

Functional Requirement Type Seconds

Correlate: Match incoming radar returns with aircraft tracks Period n

Track: Update location, bearing, speed information for each Period n

aircraft

Guide: Calculate heading, speed, direction required for Period 4n

interceptor to reach target

Identify: Establish identity of aircraft entering airspace Sporadic 20n

Deadline

Backup: Save consistent track database on stable store Period 4n

to support recovery from processor/system failure

new (current) track data. The inherently sporadic Identify activity is converted to a periodic pro-

cess running at the same frequency as Correlate&Track to make sure that it does not miss any

critical track position updates. The Backup process must run in isolation to copy a consistent

database to stable storage for possible use in fault recovery.

A design based on periodic objects appears as Figure 6b. The basic object of this design is the

periodic Track. Each Track instance encapsulates identi�cation and position information for a

single aircraft. It has a periodic update operation to project track position based on correlated

radar returns. A GuidancePair describes the connection between an interceptor and its target and

maintains time-sensitive guidance and interceptor mission data. The GuidancePair depends on the

interceptor and target Tracks for current position data. Each Identi�cation instance depends on a

single as yet unidenti�ed track object. The timing constraints of the Identi�cation object are not

dependent on the period of the track object,

8

because all historical track position data required

by Identi�cation is retained in the track history. The Backup object periodically updates stable

storage with a consistent view of Track, GuidancePair, Identi�cation, and other system objects

based on recent history.

Table 2 contrasts the scheduling constraints imposed by applying these two approaches to Air

Defense system design. Precedence relationships dictate scheduling dependencies among all four

types of processes in the design of Figure 6a. Guide processing for the whole system is too time-

consuming to run in a single Track scheduling window. It has been partitioned into four processes

for load balancing across tracking periods. The Correlate&Track deadline is constrained by the

need to open a window for execution of Guide, Identify, and Backup. Guide and Identify have no

interprocess data dependencies and can run concurrently, but each must allow for the scheduling

of Backup.

8

Identi�cation is speci�ed as a time-sensitive sporadic object, rather than as a periodic object. It is created

when a need for track identi�cation is recognized and persists until identi�cation is complete or untilthe deadline for

identi�cation is reached.
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Table 2: Comparison of Scheduling Constraints

In contrast, in the periodic object design the availability of periodic object histories relieves re-

strictive scheduling constraints on long latency operations of Backup and Identi�cation. These

operations may execute concurrently with Track and GuidancePair operations which require cur-

rent data. Scheduling interaction between Track and GuidancePair objects is simpli�ed, because

guidance and track update operations may execute concurrently, synchronizing implicitly when

each GuidancePair �nds the Track updates it needs to compute a new value.

4 Related Work

Time-sensitive objects are related to work in three principal areas:

Models of time-constrained data. Data models which include limited validity intervals for

data values have been proposed for at least two research systems: MARS [14] and CHAOS [2]. The

MARS model requires that all data values be included in messages which have �xed validity times.

For fault tolerance, data values which must persist for multiple intervals are broadcast as a new

message in each validity interval. Fault tolerance is achieved by requiring that every component

of system state be broadcast at some maximum period. Rather than allowing the user to decide if

data quality is su�cient for use, the MARS operating system maintains a list of currently active

(valid) messages which any client may read. The implication is that a new value always overwrites

the old value. Determination of adequate quality is made by the operating system rather than

the user of the data. Archival history exists conceptually in MARS but mechanisms for access to

archival data by real-time applications have not been elaborated.

CHAOS researchers [7] describe the need for multiple, time-constrained value assignments to ob-
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jects, but no mechanisms are published for maintaining or selecting among these versions.

Real-time databases. Periodic objects constitute a multi-version, timestamp-based database.

The research that resulted in the periodic object concept is motivated by problems for which

database concepts provide traditional answers: what techniques can guarantee the recoverability

of consistent data even in the presence of system failures? Our earlier examination of the rela-

tionship between transaction processing, real-time databases, and time-sensitive objects in [3] cites

the following issues with respect to use of transaction processing in real-time: (1) The temporal

unpredictability of traditional concurrency control protocols con
ict with the timing constraints of

real-time systems. And (2) serializability is often too strong a correctness criterion for consistency

in real-time systems. Weaker consistency models are necessary to permit the application to trade o�

timely external consistency with strict internal consistency. Where much work in real-time transac-

tions and databases focuses on maximizing the number and/or value of transactions which complete

by deadline using traditional correctness criteria, for example [1, 8, 9, 11, 24], time-sensitive objects

provide a framework for considering alternative decision rules and correctness criteria.

Distributed Memory. Periodic objects may be viewed alternatively as a shared memory model.

Feeley and Levy [6] have argued that versioned distributed object memory as a programming model

for distributed systems provides the bene�ts of simpli�ed interprocess synchronization, increased

concurrency, and latency hiding. Time-sensitive objects extend these bene�ts to the real-time

domain. Our current model addresses only single-processor systems, but we anticipate extending

it to distributed systems.

5 Conclusions and Ongoing Work

Time-sensitive objects are a system framework that aims to exploit the temporal characteristics

of data as well as processing. The direct inclusion of validity intervals, data quality, and the

extrapolation operation into the object model give the real-time application tools for maintaining

forward progress in the presence of transient errors and recovering operational status in the face of

more serious errors.

Periodic objects should reduce the programming complexity for real-time systems. Synchronization

on versions of object value (1) hides the details of communications from both sender and receiver

of the data; (2) reduces the need for direct process-to-process communication (fewer messages sent

less frequently); and (3) enables clients anywhere in the system to detect missing data and infer

the failure of supporting processing in a timely fashion. There is broad system support for recovery

in the event of timing errors because of (1) atomicity of object operations for backward recovery

to a known, consistent state, and (2) the existence of extrapolate operations for forward recovery,

allowing approximation of current time-sensitive values.

There are fewer secondary factors, such as task partitioning to meet stringent deadlines, for the

programmer to manage due to elimination of arti�cial deadline interactions. The periodic object

structure itself supports direct system maintenance of time-series data. Such data is already useful
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in solving a variety of real-time problems. Easy availability of such data may lead to innovative

solutions to other problems.

Work is ongoing to further evaluate the feasibility of time-sensitive objects as an approach to

design and implementation of real-time systems. An ideal model of time-sensitive objects has been

developed to characterize the desired behavior of TSO's in the context of an environment that is

not uniformly periodic. This model, which describes the desired results of interactions between

objects, is being re�ned to accommodate the limitations of the physical world: computation time,

communication time, processing and communication failures, operation con
icts. The intent of this

re�nement is to (1) formalize a description of expected object and system behavior; (2) formalize

concepts of consistency appropriate for real-time applications, and (3) identify limitations which

must be imposed on objects and their interactions to make implementation feasible. We have

recently developed correctness criteria for the concurrent execution of asynchronous and periodic

updates in a system of time-sensitive objects. These correctness criteria build on the work of Pu

and Le� on epsilon-serializability [22] and Kuo and Mok's application of this work to real-time

systems [15].

A simulation of the model is being built in parallel with model development. The simulation

system is intended as a testbed for evaluating the completeness and e�ectiveness of the model by

demonstrating the capability to describe and simulate signi�cant real-time systems. In the future

this simulation system may evolve into a prototype to be used to examine performance feasibility

issues. A key issue is assessment of the costs in time and space of the recoverability features of

time-sensitive objects.
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