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Abstract

Many advances have been made recently in the theory of circuit retiming, especially for

circuits that use level-sensitive latches. In spite of this, automatic retiming tools have seen

relatively little use in practice. One reason for this is the lack of good speedup results when

retiming has been applied to real circuits. Another reason is that retiming has used a rather

simple circuit model which reduces its utility in practice. This paper addresses both of these

issues. We suggest that the reason for the poor results reported for retiming is that retiming

has been applied too late in the design process when there is little exibility for performance

improvement. We give an example of using retiming early in the design process to achieve better

performance while at the same time simplifying the design process itself. We then describe an

extension to the retiming circuit model that includes clock skew as well as latch propagation

delay, setup and hold parameters. Including these parameters allows retiming to generate the

fastest circuit subject to a given amount of clock skew, or generate the most robust circuit

with respect to skew for a given clock frequency. This gives level-clocked circuits yet another

advantage over edge-clocked circuits since edge-clocked circuits require margin for clock skew

while level-clocked circuits can be retimed to be inherently skew-tolerant. We illustrate these

techniques using a serial-parallel multiplier circuit.

1 Introduction

Recently there has been a resurgence of interest in the technique of circuit retiming, largely be-

cause of the development of e�cient retiming algorithms for latch-based circuits and the emphasis

placed by modern high-performance systems such as the Alpha processor [2] on this type of circuit.

Retiming is the process of moving the synchronizers within a circuit to reduce the clock period. In

essence, retiming repositions synchronizers to utilize the clock period as fully as possible. The most

familiar application of retiming is pipelining, where synchronizers added to the inputs or outputs of

a circuit are spread throughout the circuit to reduce the amount of computation performed during

a single clock cycle. Note that retiming is di�erent from timing veri�cation, which is concerned

only with demonstrating that a given circuit is correctly timed and does not attempt to modify it.

An e�cient algorithm for retiming circuits using edge-triggered registers, known as edge-clocked

circuits, was �rst described by Leiserson, Rose and Saxe in 1983 [5]. Circuits that use level-sensitive

latches, known as level-clocked circuits, allow more exibility in the scheduling of a computation in

the circuit. For this reason, they are generally faster but more di�cult to analyze in terms of timing

behavior. Only recently has retiming been extended to circuits that use level-clocked circuits [7, 4].

These new algorithms make it possible to design circuits as if they used registers, convert them to

level-clocked circuits and then optimize them using retiming.

In spite of these advances in the theory of retiming, there has been relatively little application

of retiming in practice, for either edge-clocked or level-clocked circuits. We address two of the

reasons for this in this paper. The �rst reason is that the few results that have been reported on

retiming benchmark circuits have not been encouraging [8, 10]. One reason for this has been the

choice of circuits such as FSMs for which retiming has little or no bene�t. Even more important, we

believe, is the use of retiming at the very end of the design process. That is, by the time retiming

is applied, most decisions have been made and little exibility remains in the implementation. We

address this in Section 2 where we argue that retiming should be used earlier in the design process

as part of a system design methodology that transforms a high-level architecture speci�cation into

a high-performance implementation. We use the example of a RISC processor to illustrate this

methodology.
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The second criticism of retiming is that the circuit model used is overly simplistic in that it

ignores important practical parameters like clock skew and latch propagation delay, and setup and

hold times. In Section 4 we show how these parameters can be included in the circuit model without

increasing the complexity of the retiming algorithms and we describe the modi�cations needed to do

this. The most important parameter is clock skew which can be divided into two components: �xed

skew, which is built into the delivery of the clock, and variable skew, which is caused by variations

in process parameters, temperature, power supply voltage and other operating conditions. Fixed

skew is that which the designer controls or at least can measure in the clock distribution tree,

while variable skew is the unpredictable variation in delay that can occur on the clock signal. By

including these parameters, retiming can generate the fastest circuit given a �xed skew, which can

be faster or slower than the fastest possible circuit with zero clock skew. Retiming also ensures that

the circuit generated will operate correctly in the presence of variable skew, which always slows

down the circuit.

In Section 6, we describe how level-clocked circuits can be retimed to maximize tolerance to

variation in clock skew in level-clocked circuits. Although minimizing the clock period is equivalent

to maximizing clock skew tolerance in edge-clocked circuits, this is not always true for level-clocked

circuits. This means that the skew margin for edge-clocked circuits is just the di�erence between

the operating clock period and the minimum clock period while level-clocked circuits can have skew

margin even when operating at the minimum clock period.

In the �nal section, we present the results of using retiming with clock skew on a parallel-serial

multiplier circuit. We show that including �xed clock skew when retiming can generate faster

circuits. We also show how this circuit can be made more robust to variable skew.

2 The Role of Retiming in Designing High Performance Circuits

Retiming is generally thought of as an optimization method to be used as the �nal step of the design

process. However, retiming a circuit that has been carefully designed for performance is not likely

to result in much improvement. This is not the fault of retiming itself but of the inappropriate use

of retiming. By the time retiming is applied, too many decisions have been made and retiming can

do little to improve the circuit. Figure 1 describes our view of the design of a high-performance

system. The starting point is some architectural speci�cation of the system which should be easy for

the designer to describe and understand. Unfortunately, it may be very di�cult or even impossible

to synthesize a high-performance design directly from a straightforward architectural speci�cation.

Slow
Implementation Retiming Fast Implementation

Architectural Specification

?

Figure 1: Retiming as a part of the iterative design process of a high-performance system.

Retiming o�ers the possibility of an alternate design methodology. First an implementation

is derived directly from the speci�cation which is likely to be too slow to meet the performance

goal. Next, this implementation is optimized via retiming to yield a faster implementation. The
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(d)

Figure 2: A simple RISC processor example. Numbers inside vertices are combinational logic delays.

a) The initial circuit. b) An optimal edge-triggered retiming of the initial circuit. c) An improved

architecture with a single delayed branch register added. d) An optimal retiming of the architecture

with a single delayed branch.

retiming process may not achieve the performance goal either, but it will determine the critical

paths in the circuit which limit its performance. The designer can use this information to improve

the architectural description to allow a better result to be produced by retiming. Note that the

designer does not improve the �nal implementation, whose functionality is probably obscured by

the retiming, but instead improves the underlying architecture to remove the bottlenecks uncovered

during retiming.

Figure 2 gives an example of this design process for a simple RISC processor design. This

processor is a simple Von Neuman computer which performs an instruction fetch, decode, operand

read, ALU operation and operand write to execute each instruction. The �gure shows the straight-

forward implementation of this processor. The register �le is modeled as a simple register for the

purpose of the timing analysis and but is constrained to be �xed in place. That is, moving the

register �le is not an option that makes architectural sense. The register leading to the IF unit

stores information from the ALU used to determine the address of the next instruction in the case

of a branch.

The cycle time for this naive implementation, shown in Figure 2a, is 71 ns. and retiming can
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(d)

Figure 3: a) The RISC processor modi�ed to have two delayed branch registers, decoupled register

�le read/write and a register bypass. b) An optimal retiming of the edge-triggered architecture. c)

The conversion of circuit (a) to a level-clocked circuit. d) An optimal retiming of the level-clocked

circuit.

reduce this only to 59 ns. (Figure 2b). However, the designer can now use the information from

the retiming to improve the architecture by introducing a delayed branch. This can be speci�ed

simply as an extra delay between the ALU and the IF unit as shown in Figure 2c. The designer

does not need to �gure out exactly the best way to implement this modi�cation, but instead can

rely on retiming to produce the fastest implementation. Figure 2d shows the improvement achieved

by this change. The �nal architectural description, shown in Figure 3a, includes two branch delays,

decouples the operand read from the write back of the result and includes a register bypass to avoid

ALU stalls. The key point is that the designer is able to make the changes to the architecture in

a straightforward way, relying on retiming to generate a high-performance design. This retiming,

shown in Figure 3b yields a clock cycle of 27 ns.

To illustrate the performance improvement, and increase in complexity, that results from using

level-sensitive latches, Figure 3c shows the same architecture as Figure 3a where each register

has been replaced by a pair of latches. Retiming, assuming equal clock phases with no underlap,

yields the circuit of Figure 3d, which reduces the clock period to 21.2 ns. (If we use a clock

with 10% underlap to avoid problems with clock skew, then retiming yields a clock period of 21.6
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ns.) It is even more important here that the designer is shielded from the timing complexities of

the level-clocked circuit. In fact, the signals in the implementation can be mapped in time to the

corresponding signals in the speci�cation so that when simulating the resulting implementation, the

designer interacts with the original description and is thus freed from understanding the complex

timing relationship of all the control and data signals in the implementation.

While this example is necessarily simpli�ed to demonstrate the key points of the proposed design

methodology, the underlying concepts of this methodology extend to larger and more complex

designs where the bene�ts of retiming should yield even more advantages.

3 Background

We next turn our attention to extending the circuit model used by retiming to include clock skew

as well as latch propagation delay and setup and hold times. Before describing this extension, we

review the circuit and clock models used in [5, 7] for level-clocked circuits. The reader is encouraged

to read these earlier papers for full details.

3.1 Circuit Graph Model

A circuit is represented as a graph with a vertex, v, for each functional element and an edge, u

e

! v,

for each interconnecting wire. Each vertex has delay, d(v), the maximum delay of the corresponding

functional element. A unique host vertex v

h

, with d(v

h

) � 0, represents the environment external

to the circuit. Registers and latches are placed on the edges connecting vertices and each edge has

a weight, w(e), indicating the number of registers or latches on the connection.

A path u

p

!! v is a sequence of vertices and edges from u to v. A simple path contains no vertex

twice. The weight w(p) of a path p = v

0

e

0

! v

1

e

1

! � � �

e

n�1

! v

n

is the number of registers or latches

placed along it, that is, the sum of the edge weights: w(p) =

P

n�1

i=0

w(e

i

). We say that registers or

latches are adjacent if the path connecting them has zero weight. The weight of a cycle is the weight

of the same sequence of edges and vertices treated as a path. Similarly, the delay of a path d(p) is

the sum of the delays of the vertices along the path: d(p) =

P

n

i=0

d(v

i

). The delay of a cycle d(c),

c = v

0

e

0

! v

1

e

1

! � � �v

n�1

e

n�1

! v

0

, includes the delay of vertex v

0

only once; hence d(c) =

P

n�1

i=0

d(v

i

).

A circuit G is transformed into a corresponding retimed circuit G

r

through assignment of a

retiming (or lag) value r(v) to each of the vertices in G. This retiming value represents the number

of registers (latches) removed from the output edges of vertex v and added to the input edges. The

resulting weight of an edge u

e

! v in the retimed graph is: w

r

(e) = w(e) + r(v)� r(u).

3.2 Clock Model

For our retiming work we have adopted the clock model of Sakallah, Mudge & Olukotun [9] which

provides a convenient way to describe the resulting timing constraints. A k-phase clock is a set

of k periodic signals, � = f�

1

: : :�

k

g, where �

i

is phase i of the clock �. All �

i

have a common

cycle time T

�

. An edge-triggered circuit has a single clock phase and values are passed through

the registers once per cycle on the \clocking" edge. For level-clocked circuits, each phase divides

the clock cycle into two intervals as shown in Figure 4: an active interval of duration T

�

i

and a

passive interval of duration (T

�

� T

�

i

). The latches controlled by a clock phase are enabled during

its active interval and disabled during its passive interval. The clock transitions into and out of the
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active interval are called the enabling and latching edges respectively. We refer to the clock phase

controlling latch l as P (l).

Passive Interval

� -

Active Interval

� -

-

0

(T

�

� T

�

i

)
T

�

�

i

@

@R

Enabling Edge

�

�	

Latching Edge

Figure 4: Diagram from Sakallah et al. showing a clock phase �

i

and its local time zone.

Relative to the beginning of its passive interval at time t = 0, the enabling edge of a phase occurs

at t = T

�

� T

�

i

, and its latching edge at T

�

(Figure 4). Sakallah et al. additionally introduce an

arbitrary global time reference and values e

i

denoting the time relative to the global time reference

at which phase �

i

ends for some speci�ed cycle. Phases are ordered relative to the global time

reference so that e

1

� e

2

� � � � � e

k�1

� e

k

and e

k

� T

�

. The phase following �

i

in the clock set

is referred to as �

i+1

with phase �

k+1

� �

1

and �

1�1

� �

k

.

Finally, a phase shift operator, E

i;j

, is de�ned as:

E

i;j

�

(

(e

j

� e

i

); for i < j

(T

�

+ e

j

� e

i

); for i � j

E

i;j

takes on positive values in the range (0; T

�

]. When subtracted from a time point in the current

period of �

i

, it changes the frame of reference to the next period of �

j

, taking into account a possible

cycle boundary crossing (Figure 5). Because the period of each phase is identical and e

i

� e

i�1

,

the sum of the shifts between k successive phases is T

�

:

k

X

i=1

E

i;i+1

= T

�

: (1)

A symmetric level-clocked schedule is one in which all active phase periods T

�

i

are equal and all

phase shifts E

i;i+1

=

T

�

k

.

The latest arrival time of a signal at latch l is denoted by A

l

and the latest departure time by

D

l

, both in terms of the local time zone.

Note that this clock model does not provide for clock phases with di�ering periods nor for gated

clock signals. For simplicity, we assume that the delay characteristics of latches do not vary as they

are moved across combinational logic.

�

i

e

i

T

�

i

� -

�

j

e

j

T

�

j

� -

E

i;j

� -

Figure 5: The phase shift operator provides the relative di�erence between times in the local time

zones of di�erent phases.
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P (l)

P (m)

�



-

a

�

	

�

b

Figure 6: Constraints on clock phases required for valid schedules. Latches l and m are any pair

connected by a zero-weight path l!!m.

3.3 Correct Operation, Valid Schedules and Well-formed Circuits

We de�ne a circuit to be correctly timed if for any pair of adjacent latches, the signal leaving

the �rst arrives at the second during the next clock period in edge-triggered circuits or the next

clock phase in level-clocked ones. Thus the de�nition of correctness for a level-clocked circuit is

a straightforward extension of the de�nition of correct operation commonly used for edge-clocked

circuits. Timing correctness can be summarized as a pair of timing constraints for each case.

For any two adjacent latches l and m in a level-clocked circuit:

L1. Maximum Delay: A

m

= D

l

+ d(p)�E

P (l);P (m)

� T

�

L2. Non-interference: A

m

= D

l

+ d(p)�E

P (l);P (m)

> t

hold

These constraints assume that clock skew, latch propagation delay and setup time are all zero.

These parameters will be added later in this paper.

The retiming techniques in [7] restrict the type of clocks and circuits that can be retimed. Clock

schedules must be \valid" so that only maximum delay constraints need to be satis�ed for correct

operation. Valid clock schedules do not allow races to occur even if all circuit delays are zero. This

is guaranteed if for any two latches l and m connected by a zero-weight path l!!m, E

P (l);P (m)

> 0

(true by de�nition and illustrated by constraint a in Figure 6) and E

P (m);P (l)

> T

�

l

(constraint b

in Figure 6). In general, the class of valid clocks includes schedules with phase overlap, underlap, or

both; however, two-phase clocks are required to be non-overlapping and no single phase schedules

are allowed.

In addition, level-clocked circuits must be \well-formed," that is, latches must occur in phase

order along every path.

2

Retiming is always free to move latches across vertices in well-formed

circuit graphs and well-formed circuits remain well-formed following retiming. Furthermore, the

minimum number of registers required on a path can be computed solely from the path delay and

the phase of the �rst latch.

Since this work extends our previous work, these restrictions on clock schedules and level-clocked

circuits also apply to this paper. Although the designer is constrained to work within this model,

it applies to most circuits commonly used in practice.

4 Clock Skew Parameters

Clock skew can be divided into two parts, the �xed clock skew and the variable clock skew. Fixed

clock skew refers to the skew which is known to be in the path to a latch. Fixed skew results from

delays in the clock distribution network which is controlled, or at least can be measured, by the

2

A simple exception to this rule allows input and output signals at the host node to occur on di�erent phases as

long as timing constraints across the host are not imposed.

8



designer. We use two parameters to model the �xed clock skew: �

e

(l) and �

l

(l), the �xed skew

of the enabling and latching edge respectively of the clock at latch l. If skew is positive the clock

arrives late relative to the reference clock and, if negative, it arrives early. For an edge e, �

e

(e) and

�

l

(e) are the �xed skew of a clock at the physical circuit location of the wire represented by the

edge. Adding to the clock skew e�ectively moves an equivalent amount of delay from the fanins of

the latches to the fanouts.

Variable clock skew is the remaining, unpredictable clock skew which results from variations in

fabrication parameters and operating conditions. The maximum amount by which these variations

may shift clock edges in either direction away from the �xed skew is modeled by the parameter �

�

.

Thus an enabling edge may arrive as late as �

e

(l) + �

�

and as early as �

e

(l) � �

�

. In this work

we assume that variable skew is the same across the circuit, although our techniques can easily be

extended to make the variable skew depend on physical location.

In order for us to be able to use the e�cient algorithms we have already developed for retiming

circuits, we must make the following restriction on clock skew. The relative clock skew between

the input and output edges of a vertex, that is the di�erence in the clock skew between the latches

on these edges, must be no greater than the maximum delay of the vertex. We call this the skew

monotonicity constraint and it ensures that we need not consider the case where increasing the

length of a path reduces the number of latches required. It is easy to see that this constraint is met

by practical circuits. Note that this does not impose a minimum on the combinational delay. If

the actual delay is less than the skew, a more conservative circuit than necessary will be generated

by the algorithms. Formally, the requirement is stated as:

� For every vertex v and pair of edges e 2 fanin(u) and �e 2 fanout(u):

SR: �

e

(�e)� �

e

(e) � d(u)

SF: �

l

(�e)� �

l

(e) � d(u)

In addition to parameters for clock skew, it is straightforward to add register or latch propa-

gation delay, P , and required setup time, S, into our model. We make the simplifying assumption

that P and S are the same for all latches in the circuit. Algorithms for asymmetric level-clocked

circuits in [7, 4] could be extended to solve problems in which latch setup time varies with the phys-

ical placement of latches. However, since retiming constraints are stated in terms of the retiming

values r(u) and r(v) of the vertices at the beginning and end of a path, they can refer only to the

weight of the path, not the location of latches on the path. Thus it is not possible to vary the latch

propagation delay based on latch location.

5 Level-Clocked Circuits and Synchronization Parameters

The timing constraints in level-clocked designs are derived from the time span between two clock

edges, from the edge enabling the �rst latch on a path to the edge latching the �nal latch. Latch

propagation delay and setup time directly reduce the time available for computation along circuit

paths, while clock skew changes the time span between the relevant edges (see Figure 7).

Unlike edge-triggered timing constraints, level-clocked timing constraints extend across paths

with multiple latches. Signals are required to arrive at the �nal latch of a path S time prior

to the arrival of the falling edge. The constraints must account for the propagation delay of all

intermediate latches, however, as well as the initial one (see Figure 7).
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Figure 7: The propagation delay of each latch must be counted against the maximum path delay;

however, only the �nal latch's setup time is counted.

With skew, the departure time of a signal from a latch l is given by:

D

l

= max

n

A

l

; T

�

� T

P (l)

+ �

e

(l) + �

�

o

+ P; (2)

and the arrival time at a subsequent latch m connected by a zero-weight path is:

A

m

= D

l

+ d(p)�E

P (l);P (m)

: (3)

-

��

��

u

- - -

��

��

v

-

l

m

reference clock for l reference clock for m

� -

� -

max path delay...

based on ref. clock

based on actual clock

actual clock at l actual clock at m

�

e

(l) + �

�

�-

�

l

(m)� �

�

�-

Figure 8: Late arrival of a signal at latch l or early arrival at m reduces the maximum allowable

delay of u!!v and may require a latch to be placed on the path.

Correct timing requires that signals arrive at latchm S time before the earliest occurrence of its

falling edge at T

�

� �

l

(m)� �

�

(see Figure 8). Thus the delay constraints for each pair of adjacent

latches l and m in a level-clocked circuits become:

L1'. Maximum Delay: A

m

= D

l

+ d(p)�E

P (l);P (m)

� T

�

� S � �

l

(m)� �

�

L2'. Non-interference: A

m

= D

l

+ d(p)�E

P (l);P (m)

> t

hold

+ �

l

(m) + �

�

We �rst address the L2' constraint which constrains the minimum delay in the circuit. By

combining this constraint with the earliest possible departure time of a signal from latch l which

is T

�

� T

P (l)

+ P + �

e

(l)� �

�

, we get a minimum delay constraint of:

d(p) > t

hold

� P + �

l

(m)� �

e

(l) + 2�

�

� T

�

+ T

P (l)

+E

P (l);P (m)

(4)

where the term T

�

�T

P (l)

�E

P (l);P (m)

is the amount of underlap between the two clock phases. In

our previous work we have ignored short paths by relying on valid clock schedules to avoid races
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even when the minimum delay is zero. If the latch hold, propagation delay, and clock skew are

all zero as we assumed in previous work, then this reduces to a constraint that the path delay

be greater than the phase overlap (which corresponds to negative underlap). Allowing minimum

delays to be zero then leads to the de�nition of a valid clock schedule, which for the case of 2-phase

clocks forbids any phase overlap.

We can weaken the valid clock schedule constraint somewhat by ensuring via a static check

that the minimum delay constraint will be satis�ed regardless of retiming. We do this by checking

that the constraint given in Eqn. 4 is satis�ed by each path consisting of zero or one vertex in the

circuit graph. Since all longer paths are composed of subpaths with zero or one vertex then it can

be shown that any retiming will satisfy L2' if each of these subpaths satis�es Eqn. 4. Note that

the underlap value used in the static check must be the smallest over all pairs of successive phases,

since the latches assigned to the edges may use any pair.

Theorem 1: For a level-clocked circuit graph G, if constraint Eqn. 4 is satis�ed for every path

with zero or one vertex, then constraint E2' is satis�ed for any retiming of G.

Proof Omitted

5.1 Maximum Path Delay Constraints

By combining the earliest possible departure time of a signal from l, T

�

� T

P (l)

+ �

e

(l) + �

�

+ P ),

and the latest permissible arrival at each successive latch on a path in turn, we can compute the

maximum allowable delay along a signal path of any weight. The next theorem uses the de�nition

of correct circuit timing to identify the latching clock edge for each latch. Since latches occur in

phase order along paths of well-formed circuits, the available computation time is computed by

summing successive phase shifts. An important aspect of this result is that only the skew of the

initial enabling and �nal latching edges appears in the maximum path delay constraint. Although

each internal latch along the path may be a�ected by skew, the skew is added to the time on one

side of the latch and subtracted from the time on the other side, thus canceling out. Thus clock

skew can vary with latch location since the skew appearing in the maximum delay constraints can

be associated with speci�c edges.

Theorem 2: A multi-phase, level-clocked graph using a valid clock schedule is correctly timed

only if the delay of any simple path l

0

p

!! l

n+1

is bounded by:

d(p) � T

�

l

0

+

w(p)

X

i=0

�

E

P (l

i

);P (l

i+1

)

� P

�

� �

e

(l

0

) + �

l

(l

n+1

)� 2�

�

� S:

Proof sketch. Through induction on the path weight, and substitution ofD

l

= T

�

�T

P (l)

+�

e

(l)+

�

�

+P for the earliest possible departure time of a signal from latch l and A

l

n+1

= T

�

��

l

(l

n+1

)��

�

for the maximum permissible arrival time at latch m, Eqn. 3 becomes:

d(p) � T

�

l

0

� �

e

(l

0

)� �

�

+ �

l

(l

0

)� �

�

� S +

w(p)

X

i=0

�

E

P (l

i

);P (l

i+1

)

+ (�

l

(l

i+1

) + �

�

� �

l

(l

i

)� �

�

)

�

�

w(p)

X

i=0

P:

This equation simpli�es to the desired result.
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5.2 Critical Cycles

Because the latch at the start of the cycle is the same as the one at the end, the maximum delay

allowed around a complete cycle in the circuit is una�ected by clock skew or setup time. It is,

however, reduced by the total latch propagation delay. This amount is �xed since propagation

delay is constant and the number of latches on a cycle is unchanged by retiming. The lower bound

on possible clock periods caused by circuit cycles may again be found using the max-ratio-cycle

algorithm.

Theorem 3: A multi-phase, level-clock graph using a valid clock schedule is correctly timed

only if the delay of any cycle l

0

c

!! l

n+1

is bounded by:

d(c) �

w(c)�1

X

i=0

�

E

P (l

i

);P (l

i+1

)

� P

�

Proof omitted.

Corollary 4: A well-formed graph using a k-phase clock schedule is correctly timed if and only

if:

8 cycles c 2 G : T

�

� k

�

d(c)

w(c)

+ P

�

:

Proof sketch: In a well formed graph each cycle must contain some multiple of k latches,

therefore the value

P

w(c)�1

i=0

�

E

P (l

i

);P (l

i+1

)

� P

�

reduces to

w(c)

k

T

�

�w(c)P . If cycle constraints are

satis�ed and the previous departure time of a signal was prior to the setup period (which must be

guaranteed independently by path constraints), then the signal's arrival after traversing the cycle

will be prior to the setup period as well. Thus required setup time S does not appear as a parameter

in cycle constraints.

Using a maximum-ratio-cycle algorithm such as the one in [1] we solve for the maximum value

of

d(c)

w(c)

over all circuit cycles. This in turn identi�es the critical cycle bound, or the minimum

possible value of T

�

to which the circuit can be retimed. To identify the minimum period possible

through retiming, a search is performed at and above this bound for the minimum period at which

a retiming satisfying path constraints can be found.

5.3 Critical Paths

Being able to identify the critical paths in the circuit graph instead of enumerating the constraints

for all paths is crucial to �nding a polynomial time bound on the retiming algorithm. Lemma 5

provides a characteristic of critical paths which allows them to be identi�ed using an all-pairs-

shortest-paths algorithm.

Lemma 5: (modi�ed from Lemma 5.5 [7]) A path u

p

!! v in a well-formed circuit is a

critical path i�:

fw(p)

�

T

�

k

� P

�

� d(p)g � fw(q)

�

T

�

k

� P

�

� d(q)g for all u

q

!! v:

Proof sketch. Clock skew and setup time reduce the slack equally along all paths between two

vertices, and thus do not a�ect which path is critical.

12



The weight and delay of critical paths are again de�ned as W (u; v) and D(u; v) respectively.

The critical fanin and fanout edges are again those for which:

�

rmax

(u) = maxf�

e

(e) : e 2 fanin(u)g

�

fmin

(v) = minf�

l

(e) : e 2 fanout(v)g:

Substitution of these values into Theorem 2 and combining that result with Theorem 3 leads

to Corollary 6, which de�nes all timing requirements which must be satis�ed for correct timing of

a symmetric-phase, level-clocked circuit:

Corollary 6: A well-formed, level-clocked circuit graph G, using a symmetric, k-phase clock

schedule is correctly timed if and only if the weights W (u; v) of all critical path are bounded by:

W (u; v) �

 

D(u; v)� T

�

+ �

rmax

(u)� �

fmin

(v) + 2�

�

+ S

T

�

k

� P

!

� 1:

and, for all cycles c:

T

�

� k

�

d(c)

w(c)

+ P

�

:

Proof omitted.

For simplicity, several parameters from Corollary 6 can be combined into a single value which

represents the e�ective delay of a path:

(u; v) = D(u; v) + �

rmax

(u)� �

fmin

(v) + S: (5)

Using , the path constraints of Corollary 6 can be written as:

W (u; v) �

 

(u; v)� T

�

T

�

k

� P

!

� 1: (6)

The ceiling of this value is the minimum number of latches required along the critical path

between vertices u and v and is referred to as L(u; v). ILP constraints are now formed as

r(u)� r(v) � W (u; v)� L(u; v)

which may be solved using the Bellman-Ford algorithm. Mixed-ILP constraints may also be formed

and the more e�cient solution technique (O(jV j

2

log jV j)) for them used [4]. The formulation may

also be extended for unequal phase schedules as shown in [7] and solved using extensions to the

Bellman-Ford algorithm in O(k � jV j

3

) time. In summary, incorporating these additional parameters

into the retiming model does not change the form of the constraints and thus the same algorithms

described in the previous papers [7, 4] can still be used.

6 Making Circuits Robust to Parameter Variations

Retiming is usually cast as a way to �nd the minimum clock period for a circuit, but often the

problem is to meet some goal clock period rather than �nd the minimum period. In this section,
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we show that we can use extra freedom in the clock period to make a circuit robust with respect

to clock skew variations.

Tolerance to parameter variation is de�ned as the maximum amount by which the actual pa-

rameter values can vary without a resulting constraint violation. Operating a particular circuit at a

faster clock period naturally implies less tolerance to parameter variation. Determining a circuit's

tolerance to variation in a particular parameter involves enumerating the path and cycle maximum

delay constraints that depend on that parameter. The tolerance is the amount of \slack" in the

most constraining of these constraints.

The advantages of identifying the most robust circuit retiming are clear; each of the parameters

used in the circuit model, including critical path delay D(u; v), clock skew values �

e

(u) and �

l

(v),

latch setup S, and propagation delay P , may vary from the expected value either due to poor

estimates or variations in the implemented circuit. If a timing constraint is violated in the actual

circuit because a delay exceeds the modeled values used in its retiming, the circuit will fail to

operate correctly.

Retiming cannot increase the tolerance in parameters involved in cycle constraints in level-

clocked circuits because it cannot change the number of latches on a cycle. Thus tolerance of a

cycle constraint to parameter variation is simply

w(c)T

�

k

� d(p). Similarly an edge-clocked circuit

most tolerant of parameter error is found by retiming to the minimum cycle period and then

operating at a higher speed. By increasing the number of latches on the path, however, retiming

of level-clocked circuits can further increase the slack in path constraints. Moreover, as shown

in Theorem 3 and Corollary 4, clock skew is not involved in cycle constraints but is included in

path constraints. Thus, tolerance to variation in clock skew can be improved by retiming paths

even if the tolerance to delay variation is limited by cycle delays.

6.1 An Algorithm to Generate Robust Circuits

To improve circuit tolerance to clock skew variations we add a tolerance, � , to the e�ective path

delay de�ned in Eqn. 5. Using � , the required path weight in Eqn. 6 is written:

W (u; v) �

 

(u; v) + � � T

�

T

�

k

� P

!

� 1:

An increase in � increases e�ective path delay as would be caused by an increase in variable

clock skew, an increase in the relative skew between enabling and latching edges, or an increase in

the setup time. For a given clock period, if a circuit is retimed with a value of � , then that circuit

can tolerate variations in these parameters summing to � .

A circuit retimed with some value of � can also tolerate increases in path and latch propagation

delays. Changing either of these delay parameters, however, may also change which paths are

critical. Thus a retiming using � does not necessarily guarantee a circuit that can tolerate this

much variation in element delays.

To �nd a circuit retiming that tolerates the most clock skew variation, we �x T

�

to the desired

clock period and search over increasing values of � for the maximum one at which a retiming can be

found. Finding the maximum value of � is equivalent to �nding the minimum clock period unless

a critical cycle bound limits the minimum clock period. Further decreases of T

�

are prevented

because negative weight cycles appear in the slack graph on which a shortest path algorithm is

used to identify critical paths. Thus it may be possible to increase � further but not to further
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1

Figure 9: A simple example showing the tolerance gain from optimizing circuit paths. Each circuit

operates correctly under the given schedule. The circuit in A), however, can only tolerate a total

of 0.5 units of delay estimation error in the two nodes while the one in B) can tolerate 0.5 units

error in each of the nodes. (The clock period shown here is determined by some other cycle in the

circuit.)

decrease T

�

. In other words, retiming to the fastest clock possible and then running with a slower

clock does not give the most robust circuit when the cycle constraints determine the optimal clock

period.

Increased circuit tolerance is illustrated in Figure 9. Using the clock schedule shown with

increasing values of � causes the initial circuit in (A) to be retimed to the one in (B). Even though

the circuit in (B) cannot run faster because some other constraint de�nes the clock period, it can

tolerate a signi�cantly greater amount of clock skew than the one in (A). Because there are no

changes in critical paths, the increased tolerance to error in vertex delay estimates is also clear.

7 Circuit Examples and Results

In this section we illustrate using retiming with clock skew to achieve better performance and

improved tolerance. These examples have been generated using a retiming tool we have developed

at the University of Washington. The tool is implemented as a library of routines implemented

in C and has been interfaced to the SIS sequential synthesis tools as well as the xdp drawing

program. The tool is capable of edge-triggered [6] and symmetric or asymmetric level-clocked

circuit retiming [7, 4]. It incorporates the techniques of retiming with skew discussed in this paper

and can optimize circuits for greatest skew tolerance.

The serial-parallel multiplier circuit of Figure 10 [3] provides a good example where clock skew

is a factor. The vertices v

1

through v

4

are summand-adders used to perform the multiplication

operation. One operand is fed in parallel across the top and a second operand fed serially on

the broadcast path through the bottom vertices v

5

through v

8

. The broadcast incurs signi�cant

delay which increases the circuit cycle time linearly with the width of the operands. No timing

constraints are included across the host vertex v

h

, since the inputs to the multiplier do not depend

on the outputs.

The circuit as presented in Figure 10 can operate with a clock period of 6. Retiming this edge-

clocked circuit produces a new circuit which can operate with a clock period of 3. Transforming
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Figure 10: A simple, edge-triggered serial/parallel multiplier circuit. No timing constraints across

the host vertex are used.

T

�

= 0:5T

�

T

�

= 0:4T

�

Skew min min min min

mult period period period period

factor w/o skew w/skew w/o skew w/skew

0.0 2.67 2.67 2.86 2.86

1.0 3.0 2.67 3.21 2.86

2.0 3.33 2.8 3.57 2.92

3.0 3.67 2.9 3.93 3.16

4.0 4.0 3.0 4.28 3.33

Table 1: Circuit speed improvements resulting from accounting for skew when retiming the se-

rial/parallel multiplier in Figure 11. Column 1 is an adjustment factor by which all skew values

in the circuit are multiplied. Columns 2 is the clock period resulting if skew is not accounted for

in retiming, while column 3 gives the period if skew is accounted for. Similarly, Columns 4 and 5

show results for an underlapped clock where T

�

= 0:4T

�

.

the circuit into a level-clocked circuit by converting each register into a pair of �

1

=�

2

latches and

then retiming using a symmetric clock schedule with no underlap yields the circuit in Figure 11

with a clock period of 2

2

3

.

We next illustrate the e�ect of clock skew on the circuit. The �xed skew shown in the circuit

corresponds to the skew as it might be caused by the clock distribution. To run our fastest level-

clocked circuit with this much skew, we must increase the clock period to 3. By including the clock

skew in the retiming, however, we can generate the new circuit of Figure 12 which can still run

with the clock period of 2

2

3

. Table 1 shows that including clock skew when retiming can mean a

signi�cant di�erence in the clock speed, especially when the skew is large with respect to the clock

period.

We next show how retiming can be used to make circuits more robust to variable clock skew.

Figure 13 gives a slightly modi�ed version of the serial-multiplier circuit whose feedback delay

through the nodes v

9

-v

12

has been increased to 2. This changes the most constraining timing
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Figure 11: The multiplier retimed without accounting for clock skew. The numbers on the edges

represent the skew of both enabling and latching edges. The single number inside the small loops

(i.e. v

1

! v

9

! v

1

), is the skew for both edges in the loop.
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Figure 12: The multiplier circuit retimed taking into account the clock skew.
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Figure 13: The modi�ed serial/parallel multiplier with d(v
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Figure 14: The modi�ed multiplier retimed for tolerance to increased clock skew. Although now

the circuit is no faster than the edge-triggered one due to the critical cycle limits, it now tolerates

variable skew up to 0.875 (less skew is tolerated at the latches adjacent to vertices v

7

and v

8

due

to minimum delay constraints).
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constraint from a path constraint to a cycle constraint. Thus the fastest either the edge-triggered

or level-clocked circuit can be retimed to is a clock period of 4. This is the kind of circuit often

used as an example why edge-clocked circuits can do as well as level-clocked circuits. However,

the edge-clocked circuit can tolerate no skew whatsoever and so some margin for skew must be

left in the clock. By contrast, the level-clocked circuit in this example, when retimed to maximize

tolerance to clock skew, can accommodate variable clock skew up to 0.875! That is, the level-

clocked circuit requires no margin for clock skew and is thus substantially faster in practice than

the edge-clocked circuit. Note also that the retiming accounts for �xed skew while maximizing

variable skew tolerance. The �nal circuit is shown in Figure 14.

8 Concluding Remarks

We believe that retiming will become an increasingly important tool for the synthesis of high-

performance circuits, especially in the area of level-clocked circuits. Retiming can have a large

impact on the synthesis process if it is applied su�ciently early in the design cycle as we illustrated

in the design of a simple RISC processor.

Retiming will also become more important as a means to control the e�ect of clock skew, which

will become more of a factor in high-performance circuits. Edge-triggered circuits have no built-in

tolerance for clock skew and thus the clock must be slowed down to create a margin for skew.

Level-clocked circuits on the other hand, can often be retimed to include built-in skew tolerance

without slowing down the clock as illustrated in the serial-parallel multiplier example. Level-clocked

circuits are thus inherently faster than edge-clocked circuits and retiming can be used to exploit

this advantage.
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