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Abstract

Clock skew is often cited as an impediment to designing high-performance synchronous circuits. Clock

skew reduces the performance of a circuit by reducing the time available for computation, and it may

even cause circuit failure by allowing race conditions. In this paper, we show how to use retiming to

reduce the e�ect of clock skew in both edge-clocked and level-clocked circuits. We include both �xed

clock skew, for example skew which results from clock distribution wiring and bu�ering, and variable

clock skew which results from uncontrolled variation in process parameter and operating conditions. By

including �xed skew in the maximum constraint equations retiming can �nd the fastest circuit given

that skew. By including variable skew, retiming can also generate the circuit that tolerates the most

variation in clock skew for a given clock frequency. Clock skew can also be used to speed up circuits

using a technique similar to retiming described by Fishburn [2]. We describe a method for combining

this technique which uses added clock skew with retiming to optimize the performance of edge-clocked

circuits.

1 Introduction

Retiming is a circuit optimization technique well-known to hardware designers which is used to reduce the

clock period of a circuit by relocating registers to maximize the amount of computation done in each clock

period. For example, in order to pipeline a circuit, a designer places the registers to spread computation

out evenly over several cycles, thereby minimizing the cycle period. While retiming has long been an ad hoc

technique used in design, it was not until 1983 that an e�cient algorithm was reported for automatically

retiming circuits [4]. In this work, Leiserson, Rose and Saxe formalized retiming as an optimization technique

that improved the performance of a circuit without changing its external behavior. This early work was

limited to circuits using edge-triggered registers. However, high-performance systems make wide use of level-

sensitive latches to allow computations to borrow time across clock cycle boundaries. Only recently have

e�cient algorithms for retiming been described for these level-clocked circuits [7, 3].

In this paper we extend retiming to handle the problem of clock skew in both edge-clocked and level-

clocked circuits. Clock skew slows down circuits by reducing the time available for computation and in

some cases it may cause race conditions. As circuits become faster, clock skew will become even more of a

problem for synchronous circuit design. Clock skew can be divided into two components: �xed skew, which

is built into the delivery of the clock, and variable skew, which is caused by variations in process parameters,

temperature, power supply voltage and other operating conditions. Fixed skew is that which the designer

controls or at least can measure in the clock distribution tree, while variable skew is the unpredictable

variation in delay that can occur on the clock signal. Including clock skew in the retiming constraints allows

the retiming to �nd faster circuits and also increase tolerance to clock skew variation.

We begin in Section 2 by reviewing the circuit and clock model used by the retiming algorithms. We

then describe how clock skew is added to this model, along with synchronizer

2

delay and setup time.

The remainder of the paper describes four related results. Section 4 �rst describes the relatively straight-

forward extension to retiming that adds clock skew to the edge-triggered circuit model and retiming algo-

rithms developed by [4]. Section 5 then extends our level-clocked retiming algorithms [7] to incorporate clock

skew as well. In neither case does the inclusion of clock skew increase the asymptotic time complexity of the

algorithms. These two sections show that �xed clock skew can be treated as modifying the delay of circuit

elements. Thus retiming can generate the fastest circuit given a �xed skew, which can be faster or slower

than the fastest possible circuit with zero clock skew. Retiming also ensures that the circuit generated will

operate correctly in the presence of variable skew, which always slows down the circuit.

Section 6 describes how level-clocked circuits can be retimed to maximize the tolerance to variation in

clock skew in level-clocked circuits. Although minimizing the clock period is equivalent to maximizing clock

skew tolerance in edge-clocked circuits, this is not always true for level-clocked circuits.

Finally, Section 7 shows how �xed clock skew can be used to actually increase the performance of

an edge-clocked circuit. In a technique closely related to circuit retiming presented by Fishburn in [2],
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We will use the term synchronizer when referring to either registers or latches.
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delay elements are placed in the clock distribution network to intentionally skew the clock and allow longer

computational delay between selected registers at the expense of reduced delay between others. For a �xed

register placement in an edge-triggered circuit, Fishburn presents a Linear Program that solves for the skews

required to produce the minimum possible clock period. We present here our preliminary work on combining

retiming with intentional clock skew to produce faster circuits than can be produced with either technique

used alone.

2 Background

We begin this paper with a review of the circuit and clock models presented in [4, 7] for edge-triggered and

level-clocked circuits. The reader is encouraged to read these earlier papers for full details.

2.1 Circuit Graph Model

A circuit is represented as a graph with a vertex, v, for each functional element and an edge, u

e

! v, for

each interconnecting wire. Each vertex has delay, d(v), the maximum delay of the corresponding functional

element. A unique host vertex v

h

, with d(v

h

) � 0, represents the environment external to the circuit.

Registers and latches are placed on the edges connecting vertices and each edge has a weight, w(e), indicating

the number of registers or latches on the connection.

A path u

p

!! v is a sequence of vertices and edges from u to v. A simple path contains no vertex twice.

The weight w(p) of a path p = v

0

e

0

! v

1

e

1

! � � �

e

n�1

! v

n

is the number of registers or latches placed along it,

that is, the sum of the edge weights: w(p) =

P

n�1

i=0

w(e

i

). We say that registers or latches are adjacent if

the path connecting them has zero weight. The weight of a cycle is the weight of the same sequence of edges

and vertices treated as a path. Similarly, the delay of a path d(p) is the sum of the delays of the vertices

along the path: d(p) =

P

n

i=0

d(v

i

). The delay of a cycle d(c), c = v

0

e

0

! v

1

e

1

! � � �v

n�1

e

n�1

! v

0

, includes the

delay of vertex v

0

only once; hence d(c) =

P

n�1

i=0

d(v

i

).

A circuit G is transformed into a corresponding retimed circuit G

r

through assignment of a retiming (or

lag) value r(v) to each of the vertices in G. This retiming value represents the number of registers (latches)

removed from the output edges of vertex v and added to the input edges. The resulting weight of an edge

u

e

! v in the retimed graph is: w

r

(e) = w(e) + r(v) � r(u).

2.2 Clock Model

For our retiming work we have adopted the clock model of Sakallah, Mudge & Olukotun [8] which provides

a convenient way to describe the resulting timing constraints. A k-phase clock is a set of k periodic signals,

� = f�

1

: : : �

k

g, where �

i

is phase i of the clock �. All �

i

have a common cycle time T

�

. An edge-triggered

circuit has a single clock phase and values are passed through the registers once per cycle on the \clocking"

edge. For level-clocked circuits, each phase divides the clock cycle into two intervals as shown in Figure 1: an

active interval of duration T

�

i

and a passive interval of duration (T

�

�T

�

i

). The latches controlled by a clock

phase are enabled during its active interval and disabled during its passive interval. The clock transitions

into and out of the active interval are called the enabling and latching edges respectively. We refer to the

clock phase controlling latch l as P (l).

Relative to the beginning of its passive interval at time t = 0, the enabling edge of a phase occurs at

t = T

�

�T

�

i

, and its latching edge at T

�

(Figure 1). Sakallah et al. additionally introduce an arbitrary global

time reference and values e

i

denoting the time relative to the global time reference at which phase �

i

ends

for some speci�ed cycle. Phases are ordered relative to the global time reference so that e

1

� e

2

� � � � �

e

k�1

� e

k

and e

k

� T

�

. The phase following �

i

in the clock set is referred to as �

i+1

with phase �

k+1

� �

1

and �

1�1

� �

k

.
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Figure 1: Diagram from Sakallah et al. showing a clock phase �

i

and its local time zone.
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Figure 2: The phase shift operator provides the relative di�erence between times in the local time zones of

di�erent phases.

Finally, a phase shift operator, E

i;j

, is de�ned as:

E

i;j

�

�

(e

j

� e

i

); for i < j

(T

�

+ e

j

� e

i

); for i � j

E

i;j

takes on positive values in the range (0; T

�

]. When subtracted from a time point in the current period of

�

i

, it changes the frame of reference to the next period of �

j

, taking into account a possible cycle boundary

crossing (Figure 2). Because the period of each phase is identical and e

i

� e

i�1

, the sum of the shifts between

k successive phases is T

�

:

k

X

i=1

E

i;i+1

= T

�

: (1)

A symmetric level-clocked schedule is one in which all active phase periods T

�

i

are equal and all phase shifts

E

i;i+1

=

T

�

k

.

The latest arrival time of a signal at latch l is denoted by A

l

and the latest departure time by D

l

, both

in terms of the local time zone.

Note that this clock model does not provide for clock phases with di�ering periods nor for gated clock

signals. For simplicity, we assume that the delay characteristics of synchronizers do not vary as they are

moved across combinational logic.

2.3 Correct Operation, Valid Schedules and Well-formed Circuits

We de�ne a circuit to be correctly timed if for any pair of adjacent synchronizers the signal leaving the

�rst arrives at the second during the next clock period in edge-triggered circuits or the next clock phase in

level-clocked ones. Thus the de�nition of correctness for a level-clocked circuit is a straightforward extension

of the de�nition of correct operation commonly used for edge-clocked circuits. Timing correctness can be

summarized as a pair of timing constraints for each case (illustrated for level-clocked circuits in Figure 3).

For any two adjacent registers r and s in an edge-clocked circuit:

E1. Maximum Delay: A

s

= d(p) � T

�

E2. Non-interference: A

s

= d(p) > t

hold
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Figure 3: Graphical representation of the constraints on the clock phases that are required for correct operation

of a well-formed level-clocked circuit. Latches l and m are any pair connected by a zero-weight path beginning

from l.

For any two adjacent latches l and m in a level-clocked circuit:

L1. Maximum Delay: A

m

= D

l

+ d(p)�E

P (l);P (m)

� T

�

L2. Non-interference: A

m

= D

l

+ d(p)� E

P (l);P (m)

> t

hold

These constraints assume that clock skew, synchronizer propagation delay and setup time are all zero.

These parameters will be added later in this paper.

The retiming techniques in [7] restrict the type of clocks and circuits that can be retimed. Clock schedules

must be \valid" so that only maximum delay constraints need to be satis�ed for correct operation. Valid

clock schedules do not allow races to occur even if all circuit delays are zero. This is guaranteed if for any

two latches l and m connected by a zero-weight path l!!m, E

P (m);P (l)

> T

�

l

. In general, the class of valid

clocks includes schedules with phase overlap, underlap, or both; however, two-phase clocks are required to

be non-overlapping and no single phase schedules are allowed.

In addition, level-clocked circuits must be \well-formed," that is, latches must occur in phase order

along every path.

3

Retiming is always free to move latches across vertices in well-formed circuit graphs and

well-formed circuits remain well-formed following retiming. Furthermore, the minimum number of registers

required on a path can be computed solely from the path delay and the phase of the �rst latch.

Since this work extends our previous work, these restrictions on clock schedules and level-clocked circuits

also apply to this paper. Although the designer is constrained to work within this model, it applies to most

circuits commonly used in practice.

3 Clock Skew Parameters

We use two parameters to model the �xed clock skew: �

r

(l) and �

f

(l), the �xed skew of the rising and

falling edge respectively of the clock at latch l.

4

In edge-triggered circuits only one clock edge is of interest,

thus �(r) is used to represent the skew of that edge at register r. If skew is positive the clock arrives late

relative to the reference clock and if negative it arrives early. For an edge e, �

r

(e) and �

f

(e) are the �xed

skew of a clock at the physical circuit location of the wire represented by the edge. Adding to the clock skew

e�ectively moves an equivalent amount of delay from the fanins of the synchronizer to the fanouts.

Variable skew occurs due to variations in circuit fabrication and operating conditions. The maximum

amount by which these variations may shift clock edges in either direction away from the �xed skew is

modeled by the parameter �

�

. Thus a rising edge may arrive as late as �

r

(l) + �

�

and as early as �

r

(l)� �

�

.

In this work we assume that variable skew is the same across the circuit, although our techniques can easily

be extended to make the variable skew depend on physical location.

In order for us to be able to use the e�cient algorithms we have already developed for retiming circuits,

we must make the following restriction on clock skew. The relative clock skew between the input and output

edges of a vertex, that is the di�erence in the clock skew between the synchronizers on these edges, must

3

A simple exception to this rule allows input and output signals at the host node to occur on di�erent phases as long as

timing constraints across the host are not imposed.

4

Properly these parameters should refer to the enabling and latching edges rather than rising and falling, however, the letters

e and l are commonly used elsewhere in the text to refer to edges and latches. We assume that the enabling edge is the rising

edge and the falling edge is the latching one.
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be no greater than the maximum delay of the vertex. We call this the skew monotonicity constraint and

it ensures that we need not consider the case where increasing the length of a path reduces the number of

synchronizers required. It is easy to see that this constraint is met by practical circuits. Note that this

does not impose a minimum on the combinational delay. If the actual delay is less than the skew, a more

conservative circuit than necessary will be generated by the algorithms. Formally, the requirement is stated

as:

� For every vertex v and pair of edges e 2 fanin(u) and �e 2 fanout(u):

SR: �

r

(�e)� �

r

(e) � d(u)

SF: �

f

(�e)� �

f

(e) � d(u)

In addition to parameters for clock skew, it is straightforward to add register or latch propagation delay,

P , and required setup time, S, into our model. We make the simplifying assumption that P and S are

the same for all synchronizers in the circuit. Algorithms for asymmetric level-clocked circuits in [7, 3]

could be extended to solve problems in which propagation delays and setup requirements vary with physical

placement of synchronizers, with the exception of propagation delay in level-clocked circuits, a limitation

discussed in Section 5.

4 Clock Skew in Edge-Triggered Circuits

This section incorporates the parameters of clock skew, register propagation delay and setup time into the

edge-triggered timing algorithms developed in [4]. While this is a relatively simple extension of the previous

work, it provides the necessary �rst step towards algorithms which combine retiming and intentional clock

skew (Section 7) and a basis of understanding for the e�ects of skew on level-clocked circuits.

Register propagation delay and setup time directly reduce the maximum delay allowed on a zero-weight

path. Propagation delay causes the signal at the beginning of the path to be delayed from the clocking edge

by P , while setup time requires that signals arrive S time prior to the next clocking edge. Thus the time

available for computation is reduced by both P and S.

Clock skew increases the maximum delay allowed on a path between two registers if the clocking edges

occur farther apart and decreases it if they occur closer together. The latest possible arrival of a clocking

edge at register r is �(r) + �

�

and the earliest at s is �(s) � �

�

. Thus the maximum delay allowed from r to

s is increased by �(s) � �(r) � 2�

�

. Thus the maximum delay constraint for each pair of adjacent registers

r and s in an edge-clocked circuit becomes:

E1'. Maximum Delay: A

s

= d(p) � T

�

� S � P + �(s) � �(r)� 2�

�

Clock skew can also cause edge-triggered circuits to fail by causing race conditions due to short paths.

The delay of the path is increased by the register propagation delay P , but the relative skew between the

two clocks decreases the e�ective hold time of the register s. Thus the minimum delay constraint becomes:

E2'. Non-interference: A

s

= P + d(p) > t

hold

+ �(s) � �(r) + 2�

�

We can enforce these constraints with a static check that ensures that E2' holds independently for each

vertex in the circuit. This can be done because the �xed skew is associated with edges, not registers which

may be moved by the retiming. If this constraint holds for all vertices, then it holds for all longer paths.

Thus E2' holds for all retimings of the circuit and minimum delay retiming constraints are not required.

To retime a circuit to satisfy the delay constraint E1', the value of r(u)�r(v) is constrained so that there

is at least one register on each path u

p

!! v whose delay exceeds that given by E1'. That is, for each path

u

p

!! v and pair of edges e 2 fanin(u) and �e 2 fanout(v), if:

d(p) > T

�

� P � S + (�(�e) � �(e)) � 2�

�

; (2)
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then a constraint of the form r(u)� r(v) � w(p)� 1 is imposed to insure that the path contains at least one

register. If registers are not actually placed on edges e and �e the skew of those edges will not impact the

clock period; however, the clock skew monotonicity constraint prevents the possibility that placing registers

farther apart will reduce skew more than the path delay is increased. Thus it is only possible to satisfy the

circuit timing constraints by placing registers closer together, i.e. by requiring the weight of the path in the

retimed circuit to be at least one.

Clearly a potentially exponential number of path constraints exist; however, because each constraint is

of the form:

r(u)� r(v) � C(u

p

!! v);

where C(u

p

!! v) is the constant w(p)� 1, it is possible to identify critical paths which result in a minimum

value of C(u

p

!! v). Satisfaction of the smallest value of C(u

p

!! v) implies that all other constraints on the

same pair of variables are satis�ed as well. Because propagation delay, setup and skew are una�ected by

selection of the path joining u and v, a critical path p remains one with maximum delay of all paths with

minimum weight as identi�ed in [4]. W (u; v) and D(u; v) are de�ned as the weight and delay of critical

paths. The critical fanin and fanout edges are those for which:

�

max

(u) = maxf�(e) : e 2 fanin(u)g

�

min

(v) = minf�(e) : e 2 fanout(v)g:

Thus the following theorem allows identi�cation of a retiming R which satis�es all circuit timing con-

straints in the presence of register propagation delay, setup time and clock skew.

Theorem 1: An edge-triggered circuit G under retiming R is correctly timed i�:

1) For all vertices u and v connected by a path in G such that

D(u; v) > T

�

� P � S + (�

min

(v) � �

max

(u))� 2�

�

;

r(u)� r(v) �W (p) � 1;

and 2) For all edges u

e

! v 2 G: r(u)� r(v) � w(e):

Proof Sketch: Satisfying the critical path constraints guarantees that the timing constraints in Eqn. 2

are satis�ed. Alternatively, if a critical path constraint is not satis�ed, skew monotonicity guarantees that

some timing constraint from Eqn. 2 is also unsatis�ed. The edge constraints prevent negative weight edges

which are physically meaningless.

The retiming constraints presented in Theorem 1 are in the form of an Integer Linear Program (ILP)

and may be solved directly using the Bellman-Ford technique or translated to a form solvable using the

Mixed-ILP or Feas algorithms presented in [5]. Because the clock period is determined by some timing

constraint relationship expressed in Eqn. 2 exactly met by the circuit, the minimum possible clock period

exists in the set:

T

�

opt

2 fD(u; v) + P + S � (�

min

(v) � �

max

(u)) + 2�

�

g for u and v 2 V .

A binary search over this set identi�es the optimum clock period. The minimum period and a retiming to it

may be found in O(jV j

2

log jV j) time by using the simple Feas algorithm from [5] for constraint solution.

Figure 4 shows a correlator circuit in which two edges have early arriving clocks modeled by a �xed skew

of � = �1. All other edges have �xed skew of 0 and �

�

= 0. Unlike the original circuit from [4], cross-host

timing constraints are prevented by assuming that a pair of registers are hidden inside the host vertex. Thus

the circuit is acyclic. At the optimal clock period of T

�

= 9, the early arrival of the clock at v

3

! v

4

prevents

the placement of a register on that edge from satisfying the delay constraint on path v

1

!!v

3

. On the other

hand, the early arrival at v

2

! v

3

allows path v

3

!!v

5

with delay d(v

3

!!v

5

) = 10 to have zero weight.
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Figure 4: The edge-triggered correlator from [4] with �xed skew in clock signals delivered to edges v

2

! v

3

and v

3

! v

4

.

5 Level-Clocked Circuits and Synchronization Parameters

As in edge-triggered circuits, timing constraints in level-clocked designs are derived from the time span

between clock edges, from the rising edge enabling the �rst latch on the path to the falling edge latching the

�nal latch. Latch propagation delay and setup time again directly reduce the time available for computation

along circuit paths, while clock skew changes the time span between the relevant edges (see Figure 5).

l1 l2 l3 l4 l5

latch propagation delays

maximum path delay

l5 setup time

Figure 5: The propagation delay of each latch placed along the path must be counted against the maximum

path delay. Only the setup time of the �nal latch placed along the path is counted against the maximum delay.

Unlike edge-triggered timing constraints, level-clocked timing constraints extend across paths with mul-

tiple latches. Signals are still required to arrive at the �nal latch of a path S time prior to the arrival of the

falling edge; however, the constraints must account for the propagation delay of all intermediate latches as

well as the initial one (see Figure 5). Since retiming constraints are stated in terms of the retiming values

r(u) and r(v) of the vertices at the beginning and end of a path and they can refer only to the weight of

the path, not the location of latches on the path. Thus it is not possible to vary the latch propagation delay

based on latch location.

With skew, the departure time of a signal from a latch l is given by:

D

l

= max

�

A

l

; T

�

� T

P (l)

+ �

r

(l) + �

�

	

+ P; (3)

and the arrival time at a subsequent latch m connected by a zero-weight path is:

A

m

= D

l

+ d(p)�E

P (l);P (m)

: (4)

Correct timing requires that signals arrive at latch m prior to S time before the earliest occurrence of its

falling edge at T

�

��

f

(m)��

�

(see Figure 6). Thus the maximum delay constraint for each pair of adjacent

latches l and m in a level-clocked circuits becomes:

L1'. Maximum Delay: A

m

= D

l

+ d(p)�E

P (l);P (m)

� T

�

� S � �

f

(m) � �

�
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maximum path delay based on reference clock

latest time of enabling edge earliest time of latching edge

l m

reference clock at m

actual clock at m

u v

latch propagation delay

required setup time

maximum actual path delay

reference clock at l

actual clock l

Figure 6: Late arrival of a signal at latches l early arrival at m reduces the maximum allowable delay of path

u to v and may require a latch to be placed on the path.

L2'. Non-interference: A

m

= D

l

+ d(p)� E

P (l);P (m)

> t

hold

+ �

f

(m) + �

�

We �rst address the L2' constraint which constrains the minimum delay in the circuit. By combining this

constraint with the earliest possible departure time of a signal from latch l which is T

�

�T

P (l)

+P+�

r

(l)��

�

,

we get a minimum delay constraint of:

d(p) > t

hold

� P + �

f

(m) � �

r

(l) + 2�

�

� T

�

+ T

P (l)

+ E

P (l);P (m)

where the term T

�

� T

P (l)

�E

P (l);P (m)

is the amount of underlap between the two clock phases. In our

previous work we have ignored short paths by relying on valid clock schedules to avoid races even when the

minimum delay is zero. If the latch hold, propagation delay, and clock skew are all zero as we assumed in

previous work, then this reduces to a constraint that the path delay be greater than the phase overlap (the

amount of negative underlap). Allowing minimum delays to be zero then leads to the de�nition of a valid

clock schedule, which for the case of 2-phase clocks forbids phase overlap. We can weaken the valid clock

schedule constraint somewhat by following the same approach we took for edge-clocked circuits, ensuring

via a static check that the minimum delay constraint will be satis�ed regardless of retiming. We do this by

checking that the minimum delay constraint L2' holds for each vertex independently. This allows retiming

the freedom to place latches on any edge without violating the minimum delay constraint. Note that in the

case of level-clocked circuits, the underlap value used in the static check must be the smallest over all pairs

of successive phases, since the latches assigned to the edges may use any pair.

5.1 Maximum Path Delay Constraints

By combining the earliest possible departure time of a signal from l, T

�

� T

P (l)

+ �

r

(l) + �

�

+ P ), and the

latest permissible arrival at each successive latch on a path in turn, we can compute the maximum allowable

delay along a signal path of any weight. The next theorem uses the de�nition of correct circuit timing to

identify the latching clock edge for each latch. Since latches occur in phase order along paths of well-formed

circuits, the available computation time is computed by summing successive phase shifts. An important

aspect of this result is that only the skew of the initial rising and �nal falling edges appears in the maximum

path delay constraint. Although each internal latch along the path may be a�ected by skew, the skew is

added to the time on one side of the latch and subtracted from the time on the other side, thus canceling out.

Thus clock skew can vary with latch location since the skew appearing in the maximum delay constraints

can be associated with speci�c edges.
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Theorem 2: A multi-phase, level-clocked graph using a valid clock schedule is correctly timed only if

the delay of any simple path l

0

p

!! l

n+1

is bounded by:

d(p) � T

�

l

0

+

w(p)

X

i=0

�

E

P (l

i

);P (l

i+1

)

� P

�

� �

r

(l

0

) + �

f

(l

n+1

)� 2�

�

� S:

Proof sketch. Through induction on the path weight, and substitution of D

l

= T

�

�T

P (l)

+�

r

(l)+�

�

+P

for the earliest possible departure time of a signal from latch l and A

l

n+1

= T

�

� �

f

(l

n+1

) � �

�

for the

maximum permissible arrival time at latch m, Eqn. 4 becomes:

d(p) � T

�

l

0

� �

r

(l

0

) � �

�

+ �

f

(l

0

)� �

�

� S +

w(p)

X

i=0

�

E

P (l

i

);P (l

i+1

)

+ (�

f

(l

i+1

) + �

�

� �

f

(l

i

) � �

�

)

�

�

w(p)

X

i=0

P:

This equation simpli�es to the desired result.

5.2 Critical Cycles

Because the latch at the start of the cycle is the same as the one at the end, the maximum delay allowed

around a complete cycle in the circuit is una�ected by clock skew or setup time; however, it is reduced by

the total latch propagation delay. This amount is �xed since propagation delay is constant and the number

of latches on a cycle is unchanged by retiming. The lower bound on possible clock periods caused by circuit

cycles may again be found using the max-ratio-cycle algorithm.

Theorem 3: A multi-phase, level-clock graph using a valid clock schedule is correctly timed only if the

delay of any cycle l

0

c

!! l

n+1

is bounded by:

d(c) �

w(c)�1

X

i=0

�

E

P (l

i

);P (l

i+1

)

� P

�

Proof omitted.

Corollary 4: A well-formed graph using a k-phase clock schedule is correctly timed if and only if:

8 cycles c 2 G : T

�

� k

�

d(c)

w(c)

+ P

�

:

Proof sketch: In a well formed graph each cycle must contain some multiple of k latches, therefore the

value

P

w(c)�1

i=0

�

E

P (l

i

);P (l

i+1

)

� P

�

reduces to

w(c)

k

T

�

� w(c)P . If cycle constraints are satis�ed and the

previous departure time of a signal was prior to the setup period (which must be guaranteed independently

by path constraints), then the signal's arrival after traversing the cycle will be prior to the setup period as

well. Thus required setup time S does not appear as a parameter in cycle constraints.

Using a maximum-ratio-cycle algorithm such as the one in [1] we solve for the maximum value of

d(c)

w(c)

over all circuit cycles. This in turn identi�es the critical cycle bound, or the minimum possible value of T

�

to which the circuit can be retimed. To identify the minimum period possible through retiming, a search is

performed at and above this bound for the minimum period at which a retiming satisfying path constraints

can be found.
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5.3 Critical Paths

As in edge-triggered retiming, identifying the critical paths in the circuit graph instead of enumerating the

constraints for all paths is crucial to �nding a polynomial time bound on the algorithm. Lemma 5 provides a

characteristic of critical paths which allows them to be identi�ed using an all-pairs-shortest-paths algorithm.

Lemma 5: (modi�ed from Lemma 5.5 [7]) A path u

p

!! v in a well-formed circuit is a critical path

i�:

fw(p)

�

T

�

k

� P

�

� d(p)g � fw(q)

�

T

�

k

� P

�

� d(q)g for all u

q

!! v:

Proof sketch. Clock skew and setup time reduce the slack equally along all paths between two vertices,

and thus do not a�ect which path is critical.

The weight and delay of critical paths are again de�ned as W (u; v) and D(u; v) respectively. The critical

fanin and fanout edges are again those for which:

�

rmax

(u) = maxf�

r

(e) : e 2 fanin(u)g

�

fmin

(v) = minf�

f

(e) : e 2 fanout(v)g:

Substitution of these values into Theorem 2 and combining that result with Theorem 3 leads to Corol-

lary 6, which de�nes all timing requirements which must be satis�ed for correct timing of a symmetric-phase,

level-clocked circuit:

Corollary 6: A well-formed, level-clocked circuit graph G, using a symmetric, k-phase clock schedule

is correctly timed if and only if the weights W (u; v) of all critical path are bounded by:

W (u; v) �

 

D(u; v) � T

�

+ �

rmax

(u)� �

fmin

(v) + 2�

�

+ S

T

�

k

� P

!

� 1:

and, for all cycles c:

T

�

� k

�

d(c)

w(c)

+ P

�

:

Proof omitted.

For simplicity, several parameters from Corollary 6 can be combined into a single value which represents

the e�ective delay of a path:


(u; v) = D(u; v) + �

rmax

(u) � �

fmin

(v) + S: (5)

Using 
, the path constraints of Corollary 6 can be written as:

W (u; v) �

 


(u; v) � T

�

T

�

k

� P

!

� 1: (6)

The ceiling of this value is the minimum number of latches required along the critical path between

vertices u and v and is referred to as L(u; v). ILP constraints are now formed as

r(u)� r(v) � W (u; v)� L(u; v):

Mixed-ILP constraints may also be formed and the more e�cient solution technique (O(jV j

2

log jV j)) for

them used [3]. The formulation may also be extended for unequal phase schedules as shown in [7] and solved

using extensions to the Bellman-Ford algorithm in O(k � jV j

3

) time.
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6 Making Circuits Robust to Parameter Variations

Retiming is usually cast as a way to �nd the minimum clock period for a circuit, but often the problem is

to meet some goal clock period rather than �nd the minimum period. In this section, we show that we can

use extra freedom in the clock period to make a circuit robust with respect to clock skew variations.

Tolerance to parameter variation is de�ned as the maximum amount by which the actual parameter

values can vary without a resulting constraint violation. Operating a particular circuit at a faster clock

period naturally implies less tolerance to parameter variation. Determining a circuit's tolerance to variation

in a particular parameter involves enumerating the path and cycle maximum delay constraints that depend

on that parameter. The tolerance is the amount of \slack" in the most constraining of these constraints.

The advantages of identifying the most robust circuit retiming are clear; each of the parameters used in

the circuit model, including critical path delay D(u; v), clock skew values �

r

(u) and �

f

(v), latch setup S,

and propagation delay P , may vary from the expected value either due to poor estimates or variations in

the implemented circuit. If a timing constraint is violated in the actual circuit because a delay exceeds the

modeled values used in its retiming, the circuit will fail to operate correctly.

Retiming cannot increase the tolerance in parameters involved in cycle constraints in level-clocked circuits

because it cannot change the number of latches on a cycle. Thus tolerance of a cycle constraint to parameter

variation is simply

w(c)T

�

k

�d(p). Similarly an edge-clocked circuit most tolerant of parameter error is found

by retiming to the minimum cycle period and then operating at a higher speed. However, retiming level-

clocked circuits can increase the slack in path constraints by increasing the number of latches on the path.

Moreover, as shown in Theorem 3 and Corollary 4, clock skew is not involved in cycle constraints but is

included in path constraints. Thus, tolerance to variation in clock skew can be improved by retiming paths

even if the tolerance to delay variation is limited by cycle delays.

6.1 An Algorithm to Generate Robust Circuits

To improve circuit tolerance to clock skew variations we add a tolerance, � , to the e�ective path delay de�ned

in Eqn. 5. Using � , the required path weight in Eqn. 6 is written:

W (u; v) �

 


(u; v) + � � T

�

T

�

k

� P

!

� 1:

An increase in � increases e�ective path delay as would be caused by an increase in variable clock skew,

an increase in the relative skew between rising and falling edges, or an increase in the setup time. For a

given clock period, if a circuit is retimed with a value of � , then that circuit can tolerate variations in these

parameters summing to � .

A circuit retimed with some value of � can also tolerate increases in path and latch propagation delays;

however, changing either of these delay parameters may also change which paths are critical. Thus a retiming

using � does not necessarily guarantee a circuit that can tolerate this much variation in element delays.

To �nd a circuit retiming that tolerates the most clock skew variation, we �x T

�

to the desired clock

period and search over increasing values of � for the maximum one at which a retiming can be found. Finding

the maximum value of � is equivalent to �nding the minimum clock period unless a critical cycle bound limits

the minimum clock period. Further decreases of T

�

are prevented because negative weight cycles appear in

the slack graph on which a shortest path algorithm is used to identify critical paths. Thus it may be possible

to increase � further but not to further decrease T

�

. In other words, retiming to the fastest clock possible and

then running with a slower clock does not give the most robust circuit when the cycle constraints determine

the optimal clock period.

Increased circuit tolerance is illustrated in Figure 7. Using the clock schedule shown with increasing values

of � causes the initial circuit in (A) to be retimed to the one in (B). Even though the circuit in (B) cannot run

faster because some other constraint de�nes the clock period, it can tolerate a signi�cantly greater amount

of clock skew than the one in (A). Because there are no changes in critical paths, the increased tolerance to

error in vertex delay estimates is also clear.

12



1

1

0.51 1 0.5

Result must arrive before here

Total delay error tolerance = 0.5

Result must arrive before here.

Total delay error tolerance = 1.0B)

A)

1

1

Figure 7: A simple example showing the tolerance gain from optimizing circuit paths. Each circuit operates

correctly under the given schedule; however the circuit in A) can only tolerant a total of 0.5 units of delay

estimation error in the two nodes while B) can tolerate 0.5 units error in each of the nodes. (The clock

period shown here is determined by some other cycle in the circuit.)

7 Retiming with Forced Clock-Skew

This section presents preliminary results of an algorithm which combines retiming via register movement

with retiming via intentional added clock skew. Retiming using clock skew allows the \virtual" movement

of registers on a �ner grain than the usual retiming [2]. Using the two techniques together allows the

greatest 
exibility in synchronizer placement and potentially faster circuit designs. Particularly interesting

is the resulting ability of edge-triggered circuits to achieve speeds comparable to level-clocked designs. We

describe here an algorithm for combined retiming of edge-triggered circuits. We are currently extending these

techniques to level-clocked circuits as well. For simplicity, we remove the synchronizer parameters from our

maximum delay constraint and return to the original requirement on edge-triggered circuits that depends

only on the delay of functional units. That is, the delay between two adjacent registers must be less than the

clock period. This requirement may be satis�ed either by moving registers closer together by retiming, or by

skewing the clock signals to the registers to lengthen the clock period for just that pair (see Figure 8). The

smallest amount by which retiming can increase the available time for a delay path is one full clock period

by adding one register to the path. But clock skew can be used to increase the available time by amounts up

to one clock period. Thus the two techniques are complementary, with small amounts of time being added

by skewing the clock signals and larger amounts of time added by moving registers.

u v

sr

delay clock so register s appears to be inside vertex

move register s across vertex to input edge

Figure 8: The delay between registers r and s may be reduced by moving s across the vertex physically with

retiming or virtually by delaying its clock signal.

We assign a value �(e) to each edge, where T

�

� �(e) is the amount by which the clock signal to the

�rst register placed on the edge, starting from the edge input, is skewed. Because there is no delay between
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registers on an edge, no subsequent register on the same edge requires a skewed clock to prevent late

signal arrival. Furthermore, skewing a subsequent register unnecessarily shortens the time available to paths

following it. �(e) is limited in value to the range 0 � �(e) < 1. Thus clock signals are delayed relative to the

base clock by an amount up to the clock period. In addition, we require that for each edge e 2 fanout(e),

�(e) = �(v) so that we can associate the skew value �(v) with vertices and not edges. Skewing all the

registers following a vertex by the same amount has the e�ect of virtually moving the registers inside the

vertex. Note, however, that not all edges following a vertex are required to have a register.

The di�erence in added clock skew at two successive registers determines how much extra time is available

to the vertices between them. We �rst extend maximum delay constraints to included intentional skew,

omitting here the other synchronization parameters:

Theorem 7: An edge-triggered circuit G is correctly timed i�, for all paths u

p

!! v such that w(p) = 0

and edges e 2 fanin(u) and �e 2 fanout(v), d(p) is bounded by:

d(p) � T

�

(1� �(e)� �(�e))

Proof Omitted.

We now have circuit paths u

p

!! v with retiming variables r(u), r(v) and skew �(v) � T

�

assigned to each

edge in the fanout of v. For each path p and edge e 2 fanin(u), a constraint is written:

(r(u)� �(e))� (r(v) + �(v)) � W (u; v) �

D(u; v)

T

�

(7)

Our algorithm uses an extension of the reversed Bellman-Ford (RevBF) relaxation technique [6] to solve

constraint sets of the form in Eqn. 7. The RevBF method satis�es di�erence of two variable constraints, such

as r(u)�r(v) � C(u; v), by setting the value of r(v) = r(u)�C(u; v) (instead of setting r(u) = C(u; v)�r(u)

as in the standard Bellman-Ford approach). The RevBF algorithm was developed in our work on retiming

unequal-phase level-clocked circuits which used constraint weights dependent on one of the two constrained

variables because timing constraints dependent on r(u) could be expressed with greater ease than those

depending on r(v). For constraints of the Eqn. 7, we adjust register placement by assigning a new value to

r(v) which satis�es the integral part of (r(u) � �(e)) � (W (u; v) �

D(u;v)

T

�

) and then adjust the clock skew

by setting �(v) to satisfy the real part. Thus all edges in the fanout of each vertex have the same value of �

while edges in its fanin may have di�ering values.

To show that races cannot occur because of short paths, we must show that the E2' minimum delay

constraint will not be violated following an assignment of intentional skew to circuit edges and any retiming

of registers. In particular, we show that the constraints on values of �(e) ensure that E2' is not violated.

��

��

v

--

e

0

e

sr

Figure 9: A vertex with surrounding latches.

If two registers r and s are placed across any vertex in the circuit as shown in Figure 9 (a placement

possible under retiming), constraint E2' requires:

E2

0

: A

s

= d(v) + P > t

hold

+ �(e

0

) � �(e) + �

�

: (8)

Intentional skew produces a circuit in which �(e) = �(e)T

�

for each edge. Thus Eqn. 8 requires:

d(v) + P > t

hold

+ �(e

0

)T

�

� �(e)T

�

+ �

�

:
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In the worst case, �(e) = 0, resulting in a bound on �(e

0

) of:

�(e

0

) <

d(v) + P � t

hold

� 2�

�

T

�

;

in addition to the existing requirement that �(e

0

) < 1. A value of �(e

0

) greater than

d(v)

T

�

is never assigned

by our algorithm because it exceeds the amount of time necessary to satisfy the vertex delay. That is, any

greater constraint would instead move the register across the vertex by setting r(v) = 1. Note that the worst

case for races occurs when the maximum value is assigned to �(e

0

) =

d(v)

T

�

and the constraint reduces to

P > t

hold

+2�

�

, which is the familiar skew constraint for edge-clocked circuits. Note that this also describes

the case where two or more registers appear on an edge, that is when d(v) = 0 and �(e

0

) = 0.

Figures 10 and 11 provide two correlator circuit examples of edge-triggered circuits with intentional clock

skew. In Figure 10 includes timing constraint across the host vertex resulting in cycles which limit the

minimum clock period to 10. Level-clocked circuits are able to achieve this bound [7], while edge-triggered

retimings without delayed clock signals are have a minimum period of T

�

= 13 [4]. By using delayed clock

signals the circuit in Figure 10 has a minimum period of T

�

= 10, equal to the cycle imposed lower bound.
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Figure 10: An edge-triggered correlator retiming with intentional clock skew. Cross host timing constraints

are imposed. The optimal period is T

�

= 10.

In Figure 11, no timing constraints across the external environment are imposed and thus there are no

circuit cycles. This may be thought of as the inclusion of a register inside the host vertex controlled by

a clock signal which cannot be delayed. Without intentionally skewed clocks, the minimum edge-triggered

period is T

�

= 9 while the minimum symmetric, level-clocked period is T

�

= 8. The edge-triggered example

in Figure 11 achieves a minimum period of T

�

= 7:5 though the use of skewed clock arrival time.

As in the standard Bellman-Ford algorithm, we conjecture that the relaxation routine still has O(1)

time complexity and that it must be applied jV j times to each ILP constraint. Each of the O(jV j

2

) critical

paths has an average of

jEj

jV j

fanin edges and a single constraint must exist for each fanin edge and critical

path. Thus the overall number of constraints is O(jV j

2

jEj

jV j

). Real circuit graphs are typically sparse and

jEj

jV j

= O(1), resulting in a linear increase in the expected running time of the algorithm. The Mixed-ILP

and Feas algorithms presented in [5] may also be modi�ed to solve these problems with a linear increase in

expected running time.

8 Summary

We have presented in this paper techniques for including clock skew parameters in the retiming algorithms

for both edge-clocked and level-clocked circuits. While this allows us to handle clock skew in many situations,

there is still much work left to be done. We have described how to satisfy minimum delay constraints using
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Figure 11: An edge-triggered correlator retiming with intentional clock skew. Cross-host timing constraints

are prevented by assuming that a pair of registers are hidden inside the host vertex. The optimal period is

T

�

= 7:5.

a static analysis, but a more general approach would incorporate minimum delay constraints in the retiming

algorithm itself. Perhaps the most interesting problem is extending the combined intentional skew and

retiming algorithm to level-clocked circuits. We conjecture that such an algorithm in conjunction with a

reasonable approach to minimum delays will allow us to retime circuits to achieve the same performance in

the presence of variable skew as in the case when the clock skew is zero.
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