
Performance of Chaos and Oblivious Routers Under

Non-uniform Tra�c

Melanie L. Fulgham

�

mel@cs.washington.edu

Lawrence Snyder

y

snyder@cs.washington.edu

University of Washington

July 23, 1993

Abstract

Chaos router is a nonminimal adaptive packet router that is both deadlock free and prob-

abilistically livelock free [Kon91]. Unlike its predecessors [Nga89], the Chaos router uses ran-

domization to provide an e�cient way to avoid livelock [KS90]. The Chaos router has been

compared in software simulation studies to the state-of-the-art oblivious routers (i.e. dimension

order routers) on the hypercube topology [KS91], and the mesh and torus topologies [BS92].

The results, based on simulations of two di�erent workloads, one uniform and one non-uniform

load, show that in general the Chaos router is superior to the oblivious router. However, two

workloads alone are not representative of the typical types of tra�c encountered in practice. In

this paper �ve additional non-uniform workloads are simulated. Each was chosen to represent

one of the various types of communication encountered in typical programs. The workloads,

compared on both the 256 node torus and hypercube topologies, show considerable variety and

reveal insight on the e�ectiveness of Chaotic adaptive routing on non-uniform loads. Data pre-

sented includes the saturation point of the networks under the various loads, the throughput as

a function of presented load, latency, and total delay of packets through the network. Collec-

tively, this data gives a much clearer and complete characterization of the Chaos and oblivious

routers' behavior on non-uniform tra�c.

Keywords: hypercube, torus, chaos, adaptive routing, simulation, deroute.

�

This work is supported by an NSF Graduate Fellowship and ONR grant N00014-91-J-1007.

y

This work is supported in part by NSF grants MIP-9013274 and MIP-9213469.

1

1 Introduction

The Chaos router is a deadlock free, probabilistically livelock free, nonminimal adaptive packet

router for dynamically injected network tra�c [Kon91]. It was introduced as a practical alternative

to oblivious and priority routers. Unlike its predecessors [Nga89], the Chaos router uses random-

ization to provide an e�cient way to avoid livelock [KS90]. Using a simpli�ed functional design,

the Chaos router has been compared in software simulation studies to the state-of-the-art oblivious

routers (i.e. dimension order routers) on the hypercube topology [KS91], and the mesh and torus

topologies [BS92]. The results demonstrate a general superiority of the Chaos router on the two

workloads simulated. However considered alone, the two workloads are not representative of the

typical tra�c patterns encountered in practice.

One of the workloads considered in the original studies is the uniform random tra�c pat-

tern. Despite its wide use in packet routing studies, it is often criticized (though there are excep-

tions [Per92]) as not being representative of workloads encountered in practice. Typical programs

exhibit locality and although little is understood about the characteristics of practical workloads,

there is no reason to believe accesses occur randomly unless the target machine hashes addresses

randomly. However, even the e�ectiveness of hashing is not understood. The second workload

considered previously, called the 4X hot spots tra�c pattern, is a non-uniform pattern in which ten

randomly selected nodes are four times more likely to be the destination of packets than the other

nodes of the network. Such a load creates delivery hot spots [Kon91] and is intended to represent

situations in which program variables, such as synchronization variables, are frequently referenced.

In this paper �ve new non-uniform workloads are considered. In addition, the 4X hot spots

and the uniform random workload are repeated in order to gather additional data. The workloads,

simulated on 256 node torus and hypercube topologies, display considerable variety and reveal

insight into the e�ectiveness of the Chaos router on non-uniform loads. Data is presented on the

saturation point of the networks under the various loads, the throughput as a function of presented

load, latency, and total delay of packets through the network.

Besides the above mentioned results, this paper is the �rst to present saturation pro�les of any

router. The saturation data demonstrates several unexpected features.

� The oblivious hypercube router saturates at very small loads for all non-uniform tra�c pat-

terns except for the complement. The complement has anomalous behavior and is discussed

in more detail later.

� The di�erence between the normalized saturation load of the oblivious and the Chaos routers

can be enormous; e.g. for the transpose on the hypercube .10 versus .70 respectively.

� The Chaos torus saturates with random tra�c just before the theoretical limiting load. The

router does nearly as well for the more di�cult bit reversal permutation.

� The Chaos router saturates before the oblivious router in only two cases: the complement on

the torus and a few of the hot spot tra�c patterns on the hypercube.

Although saturation is usually not reported, it is very important since once a router is saturated,

the delay through the network becomes in�nitely large and hence unpredictable. The saturation

2

data presented, when combined with the standard throughput and latency measures, produces a

much clearer characterization of routing behavior.

The results in this paper are from simulation rather than from analysis or direct measurement

of hardware. Analysis is precluded by the current intractability of modeling dynamic loads with

non-uniform tra�c patterns. Hardware results will not be available for several years. Simulation is

often (justi�ably) maligned because practitioners produce numbers purported to represent reality,

though on closer inspection the model is oversimpli�ed. Furthermore, the reported numbers can

be of dubious mathematical reliability. The simulations performed for this paper are designed to

overcome these criticisms. The simulations mimic the behavior of the UW chip designs at the level

of the system clock for both of the routers. One time unit in the simulation corresponds to one

clock period in the hardware design. In addition, a theoretically sound simulation methodology has

been followed [Mu~n91]. Con�dence intervals are provided for all the primary data. We believe that

no more accurate data can be produced, short of building four 256 processor parallel computers,

one for each of the two routers and two topologies.

The paper is organized as follows. Section 2 reviews the oblivious and Chaos routers for the

hypercube and torus topologies. The simulation methodology is described in Section 3. Results of

the comparisons between the two routers are presented in Section 4 and, concluding remarks are

in Section 5.

2 Router Review

This section briey describes the various parameters used in this study. The two routers considered

are the oblivious router and the Chaos router, both of which have been studied extensively in the

cited literature.

The routers have d+1 bidirectional channels, where d = 4 for the 256 node torus and d = 8 for

the 256 node hypercube. Although the channels are bidirectional, they are capable of transmitting

in only one direction at a time. The direction may change only at the end of a packet. Each

channel is connected to a pair of bu�ers each capable of holding a single packet. For the d channels

connected to other nodes in the network, the two bu�ers are called the input frame and the output

frame. The remaining channel connects the router to its processor by the injection frame and the

delivery frame. The Chaos router has, in addition to the pairs of frames, a small bu�er called the

multiqueue which is composed of d+ 1 packet frames.

The routers are virtual cut-through [KK79]. Therefore once the header of a packet arrives at a

node, it can be routed immediately (cut-through) to a free channel before the packet has completely

arrived. Packets can also cut-through the Chaos multiqueue frames.

The packets are composed of 20 its, or FLow control unITs. Both routers can send or receive

a it in 1 time unit on each channel. The Chaos router can transmit a it to and/or from each

multiqueue frame in unit time. For the oblivious router 2 time units are charged to process the

header it. The Chaos router processes the header in 3 time units. This implies that the node

latency, the minimum time to transit a node and one channel, is 3 cycles for the oblivious and 4

3

cycles for the Chaos router

1

. These times were calculated assuming that the destination address

�ts in the �rst it. This implies, for these experiments, that a it must transmit at least 8 bits.

If multiple packet headers arrive at a node simultaneously, they are routed one at time. This

simpli�cation is justi�ed [Kon91] because the added complexity of processing packets in parallel

slows the logic. In addition, the frequency with which it is bene�cial to process multiple packets is

small, given 20 it packets and dimension d � 8.

The oblivious router sends packets towards their destinations by \correcting the dimensions" in

order, lowest to highest. If the channel for the lowest dimension needed is unavailable, the packet

must wait. For the torus, packets route to the column matching the x dimension �rst, and then

route to the row speci�ed by the y dimension. Virtual channels are used to prevent deadlock [DS87].

For the hypercube, where the node addresses are represented by binary numbers, the dimensions

of the current location are matched with the dimensions of the destination address from the least

signi�cant bit to the most signi�cant bit. No additional deadlock prevention is needed for dimension

order routing on the hypercube.

Since the Chaos router is adaptive, it is not restricted to dimension order routing. Channels can

either be productive, taking a packet closer to its destination, or nonproductive, taking a packet

farther from its destination. When a packet is sent farther from its destination, it is called a deroute.

The Chaos router processes packets according to the current channel dimension which changes

in a round-robin fashion to the next interesting dimension. A dimension i is interesting if output

frame i is empty and a packet in either the multiqueue or one of the input frames needs dimension i.

If the current output frame is interesting, the router does one of the following in order of precedence:

� Selects the oldest packet in the multiqueue that needs the current dimension output channel.

If such a packet exists, does the following. Moves it to the current output frame, and if the

current dimension input frame is not empty, reads this packet into the multiqueue.

� Randomly selects an input dimension containing a packet that needs the current output

channel. If the selected input dimension is the same as the current output dimension, moves

the selected packet to the current output frame. If the selected input dimension is not the

current dimension, and the current dimension input is not empty, do the following. If the

multiqueue is full, deroute a random packet in the multiqueue by moving it to the current

output frame. Read the current dimension input packet into the multiqueue. If the selected

input dimension is not the current dimension and the current dimension input is empty, move

the selected input packet to the current dimension output frame.

The use of randomness is critical to the operation of the Chaos router [KS90]. First, randomness

is used to select a packet in the multiqueue for derouting. This is essential, since it assures that

the router is probabilistically livelock free. Livelock occurs in nonminimal adaptive routers when

a packet continually circulates in the network. The second use of randomness is optional but is

thought to be e�ective for distributing the load. Randomness is used to select one of the set of input

frames including the injection frame that contain packets that need the current output dimension.

1

Previous comparisons between oblivious and Chaos routers [Kon91, KS90] used a 1:1 ratio rather than a 4:3 ratio,

as well as less precise modeling of internal details, which explains the minor discrepancies in the reported results.

4

Mechanisms incorporated into nonminimal adaptive routers to assure deterministic livelock

freedom typically introduce complexity, signi�cantly slowing the router operation. However by

using randomness the Chaos router incurs only a small routing time penalty with respect to the

simple and fast oblivious router. Though probabilistic livelock freedom is a weaker condition than

the deterministic livelock freedom, it's believed the two are operationally equivalent.

3 Methodology

The results were derived using the Chaos project simulator. The program is written in C and

uses a simulation cycle time corresponding to one time unit which is the time to transmit a it

across a channel. The sources of randomness are provided by the Learmonth-Lewis prime-modulus,

multiplicative congruential generator [LL74] which is considered highly reliable for simulation stud-

ies [LO89].

It is assumed that the system satis�es the Function Central Limit Theorem. This allows the

use of the batch means method [Mu~n91] for computing 95% con�dence intervals. See Glynn and

Iglehart [GI90] for the theoretical justi�cation.

All nodes generate packets with destinations speci�ed by the simulated tra�c pattern. The

rate of packet generation is called the presented load. All loads in this study are normalized to the

maximum theoretical load for uniform random tra�c, de�ned to be the load at which the network

bisection

2

becomes saturated. For the 256 node hypercube and torus with 20 it messages, the

maximum injection rate is one message every 20 and 80 cycles respectively.

The following quantities are measured:

� Throughput, the rate the network delivers packets.

� Source queuing time, the time a packet waits from creation until it is injected into the injection

frame.

� Latency, the time a packet spends in the network, from the time the �rst it enters the

injection frame until the last it enters the delivery frame at the destination.

� Delay, source queuing + latency.

� Saturation, the smallest load at which more packets are created than delivered.

� Hops, number of edges (channels) a packet traverses to reach its destination.

� Shortest path distance, the minimum number of hops required to deliver a packet.

� Total deroutes, (hops - shortest path distance)/2. Every deroute moves a packet one hop

farther from its destination and one hop is needed to correct the deroute.

2

A network bisection is the smallest set of channels crossing a hyperplane separating the network into equal halves.

5

Though this terminology is largely consistent with the literature, variations do occur.

The tra�c patterns considered have been used previously in the literature and are generally

thought to be di�cult, useful or both. Following is a description of the tra�c patterns simulated.

Let the binary representation of the source node be a

n�1

a

n�2

: : : a

0

. Also, let 0 = 1 and 1 = 0.

� Random, all destinations including the source are equally likely.

� 4X Hot Spots, ten randomly selected nodes are distinguished. Destinations are chosen ran-

domly such that the distinguished nodes are four times more likely to be chosen than the

undistinguished nodes.

� Complement, is a permutation where each source node sends packets to a

n�1

a

n�2

: : : a

0

.

� Transpose, is a permutation where each node sends packets to a

n=2�1

a

n=2�2

: : : a

0

a

n�1

a

n�2

: : : a

n=2

.

� Bit Reversal, is a permutation where each node sends packets to a

0

a

1

: : : a

n�1

.

� Shu�e, is a permutation where each node sends packets to a

n�1

a

n=2�1

a

n�2

a

n=2�2

: : : a

n=2

a

0

.

� Random Leveled, each node with i < n=2 bits set to one sends a packet to a randomly selected

node b

n�1

b

n�2

: : : b

0

with i one bits satisfying b

n�1

b

n�2

: : : b

0

j a

n�1

a

n�2

: : :a

0

= 0 where j is

the bitwise AND operator. Nodes with i � n=2 one bits simply choose a random destination

with i one bits.

All nodes generate packets at the rate speci�ed by the presented load. When routing a permutation,

a source node always generates packets with the same destination. The other tra�c patterns

generate a destination for each packet when it is created.

The tra�c patterns illustrate di�erent features. As mentioned earlier the random tra�c is

simply a standard benchmark used in network routing studies. The 4X hot spot tra�c models cases

where references to program data, such as synchronization locks, bias packet destinations towards

a few nodes. The complement is a particularly di�cult permutation since it requires all packets to

cross the network diameter in the hypercube and the network bisection in both topologies. Given

x and y axes through the center of a torus network, the complement destination is the composition

of the x and y axes reection of the source. Transpose and bit reversal are important because

they occur in practical computations and can cause worst case behavior in hypercubic oblivious

routers [Lei92]. The shu�e converts row major indexing to shu�ed row major indexing on the

mesh or torus topologies. This indexing scheme can be used for e�cient sorting [TK77]. Random

leveled tra�c can cause worst case behavior for oblivious hypercubes [VB81].

4 Experimental Results

4.1 Saturation

The �rst set of results simply identi�es the saturation points for the di�erent tra�c patterns. The

saturation point reported is the �rst applied load, using intervals of .05, that saturates the network.

6

Saturation

Hypercube Torus

Tra�c oblivious Chaos oblivious Chaos

Random 0:60 0:70 0:65 0:95

Transpose 0:10 0:70 0:55 0:55

Bit reversal 0:15 0:70 0:40 0:85

Shu�e 0:35 0:75 0:55 0:70

Random level 0:20 0:70 0:50 0:55

Complement 0:50 0:55 0:45 0:35

Figure 1: Minimum load at which saturation is detected.

See Figure 1. Saturation does not necessarily occur at the knee of the throughput, latency, or delay

curves since the e�ects of saturation can alter system behavior before during, or after saturation

depending on the particular conditions.

After saturation some system statistics such as network delay are no longer valid since they do

not have a limiting distribution. The load where the system saturates is an important measure

since after saturation there is no way to predict the delivery time of messages.

The tra�c patterns exhibit considerable diversity in the throughput they are able to sustain. In

all cases on the hypercube except several of the hot spot tra�c patterns which will be discussed later

in more detail, the Chaos router saturates at a higher load than the oblivious router. The Chaos

torus also saturates at an equal or higher load than the oblivious torus for all the tra�c patterns

except for the complement permutation. In both cases the di�erence is modest. The di�erences

between the two routers can be great, as illustrated by the hypercube transpose permutation.

The di�erences can also be indistinguishable as in the torus transpose. This implies that, for

this tra�c pattern, no bene�t is gained from relaxing the requirement of dimension order routing.

The transpose on the torus is a reection of the source about the line y = �x given a coordinate

system through the center of the network. This pattern causes a continuous hot spot along the

diagonal of the network for both the Chaos and oblivious torus routers.

The behavior of the complement permutation is especially interesting. On the oblivious hy-

percube the complement achieves an unusually high throughput when compared to the other non-

uniform tra�c patterns. To understand why this happens note that for the oblivious router,

dimensions are traversed from lowest to highest only. This implies that input frame i has packets

destined for output frame i + 1. At loads close to saturation most of the input frames should be

occupied since the complement packets traverse all dimensions and hence use all channels equally.

Therefore when the oblivious router is selecting a packet to use output channel i, it almost always

�nds a packet; speci�cally, the packet in input frame i � 1. More importantly, no other packet in

the node has a conict with the selected packet because only packets in input frame i need output

frame i+ 1. The complement on the Chaos torus is more complex. Each packet is destined for a

node that is the composition of the x axis and y axis reection of the source in a coordinate system

passing through the center of the network. This causes a hot spot in the center of the network

and about the wrap around links at the ends of each of the axes, (if viewed in 3-D, this would be

7

like having two centrally located hot spots at opposite sides of the network), preventing the Chaos

torus from reaching the maximum possible throughput. However, for the complement the oblivious

torus excels over the Chaos because it has fewer conicts. Each packet su�ers conicts only with

packets being injected in the current direction of travel and at the one node where the packet turns

from correcting the x dimension to the y dimension.

When comparing the complement with the other non-uniform tra�c patterns, for both the

hypercube and torus, the major limiting factor of the complement permutation is the bisection

bandwidth. All the packets in the complement must cross the network bisection; whereas, the

same is not true of the other tra�c patterns. In addition, on the hypercube the complement must

also travel the network diameter.

4.2 Throughput and Latency

In this section the behavior of the two routers is compared by examining expected throughput and

expected latency for the seven tra�c patterns. The graphs display the presented load versus either

throughput or latency. Ninety-�ve percent con�dence intervals for these statistics are shown by

connecting the left endpoints and by connecting the right endpoints of the con�dence intervals for

each load. Con�dence intervals are not visible for measurements with very small error. The �rst

method we use to compare the two routers is to examine their throughputs.

Throughput for the Chaos router is greater than or equal to the oblivious for both topologies

for all tra�c patterns at all loads except for a few of the hot spot tra�c patterns on the hypercube.

However the di�erence is small, less than a few percent of the normalized throughput. See Figures 4

and 5 in the Appendix. A more detailed discussion of hot spot tra�c follows in Section 4.3.

The throughputs for the transpose on the Chaos hypercube and the bit reversal permutation

on the Chaos torus are especially noteworthy. The transpose on the Chaos hypercube saturates

with a normalized throughput of 68%, whereas the oblivious saturates at a throughput of 9%. The

throughput of the oblivious router at the load where the Chaos saturates is only 16%. With the bit

reversal permutation, the throughput of the torus Chaos router at saturation is more than double

the throughput of the oblivious router from about 39% to 82% respectively.

After saturation, the throughput of the Chaos hypercube degrades for the bit reversal, transpose,

shu�e, and random leveled tra�c patterns. However, the throughput still remains higher than the

oblivious router. Additional data not shown here, shows that optimal queue size depends upon

the tra�c pattern and the particular goals of the router. In general a multiqueue of size d + 1

performs well for all the tra�c patterns simulated. Larger multiqueues are able to sustain greater

throughputs, but increase latency and latency variance after saturation. Latency is una�ected

before saturation due to the cut-through feature of the multiqueue.

Throughput on the oblivious hypercube router does not degrade signi�cantly. This is the

primary strength of the oblivious hypercube router. In a saturated oblivious system, messages are

forced to wait for needed channels. We believe the derouting capability of the Chaos router is

no longer bene�cial when the network is saturated and very congested. In this case, waiting for

the desired channels is more e�ective than using bandwidth to deroute messages. The oblivious

torus router does not share this strength. On the torus the oblivious throughput degrades after

8

saturation with the complement, random, shu�e, and random leveled tra�c patterns. This is most

likely due to the asymmetry in the oblivious network introduced by the virtual channels used for

deadlock protection in the torus [Bol92, AV92].

Derouting also a�ects latency. In general the torus latencies have three phases. When the

load is below the neighborhood of the saturating load of the oblivious torus, latency for the Chaos

torus router is slightly greater for all the tra�c patterns. This is due to the higher latency charged

to cross the Chaos node. After the oblivious torus saturates, the Chaos torus experiences lower

latency until it saturates. After saturation the Chaos torus router experiences much greater latency

than the oblivious router due to both the higher throughput of the Chaos and the increased path

lengths of the messages caused by derouting. The one exception is the complement where it is still

more bene�cial to deroute than to wait.

Latency on the Chaos hypercube has two phases. Before the Chaos hypercube saturates, the

Chaos hypercube has a lower or comparable latency than the oblivious hypercube. The greater

adaptivity in the hypercube paths allows the Chaos hypercube to hide the larger latency needed

to cross the Chaos node. After saturation the Chaos hypercube router experiences much greater

latency for the same reasons as the Chaos torus. See Figures 6 and 7 in the Appendix.

Before either of the routers saturate, the delays are comparable to the latencies. Therefore

for the Chaos torus, delays are slightly higher than the oblivious torus. On the hypercube, the

Chaos has equivalent or slightly lower delays than the oblivious router. After either router reaches

saturation, delay comparisons are meaningless.

4.3 Hot Spots

For hot spot tra�c, placement of the hot spots a�ects performance, particularly on the oblivious

routers which cannot route around the hot spots. Simulations were run for six torus and eight

hypercube hot spots arrangements. See the Appendix for the location of the hot spots and for

the arrangement of the hot spots on the torus. The hot spot patterns were chosen to demonstrate

the variety of behavior in hot spot tra�c and are not necessarily representative of a \typical" set

of 8 hot spot patterns which have been generated randomly as speci�ed by the hot spot tra�c

de�nition.

We are primarily interested in the case when all the hot spots are on distinct nodes. In this

case, the oblivious torus does the best when the hot spots are evenly distributed resulting in a peak

of about 60% of the normalized throughput (case 4). However when the hot spots are clustered

throughput degrades slightly (cases 2, 5, 6) and when arranged in a linear fashion, the oblivious

torus throughput degrades signi�cantly, peaking only at 47% (case 3). The lack of adaptivity,

especially for packets that must traverse a row or column of hot spots, is particularly detrimental

to oblivious throughput. The Chaos torus does much better than the oblivious torus reaching

between 85% and 90% of the normalized throughput for all the hot spot cases simulated. See

Figure 10 in the Appendix.

When two of the hot spots are on the same node, the di�erence between the two routers is not

so dramatic (case 1). The Chaos torus does about 5% better than the oblivious torus and reaches

55% of the normalized throughput. In this case, throughput is a�ected by the delivery capacity of

9

the double hot spot node.

For the hypercube, the arrangement of the hot spots is more di�cult to visualize. We consider

two experiments, the �rst with the standard delivery rate and the second with the delivery rate

of each node increased by the hot spot factor. With the standard delivery rate, the hot spot

nodes become a bottleneck since they cannot accept packets destined for them fast enough. In the

Chaos, this causes packets waiting to be delivered to a hot spot to deroute and consume network

bandwidth. The standard delivery rate results in slightly worse throughput than the oblivious

hypercube.

With the faster (quadrupled) delivery rate, the Chaos hypercube peaks at a throughput of

about 50% before degrading slightly below 40% for all the hot spot cases except case 2, which

peaks at about 42%. The oblivious does almost as well for the randomly placed hot spots reaching

throughput between 36% and 38%. However when the hot spots form a tight cluster (case 7) or

are connected in two contiguous paths (case 8), the oblivious router cannot even reach 30% of the

normalized throughput. See Figures 8 and 9 in the Appendix.

When there is more than one hot spot at a hypercube node, the two routers have lower through-

put with similar performance. However the Chaos hypercube does slightly better than the oblivious

with the standard delivery and the oblivious hypercube does better with the quadrupled delivery.

We expect that the Chaos would peak at a higher throughput than the oblivious hypercube if the

delivery rate of the double hot spot were increased to match the expected arrival rate of the packets.

Latencies follow the same general phases as for the other tra�c patterns and will not be discussed

here. See Figures 11, 12, and 13 in the Appendix for more details.

Saturation �gures are as expected. The more di�cult the hot spot arrangement is for the router

the lower the saturation point. The Chaos router saturates later for all the hot spots cases except

three (case 1, 2, and 3) with the standard delivery rates. This inferior performance is a result of

delivery bottlenecks at the hot spot nodes, as explained above. When the delivery rate of each

node is quadrupled (4X d.r.), the Chaos saturates at a higher load than the oblivious in all the hot

spot cases.

4.4 Discussion

For supersaturating loads, the Chaos hypercube bene�ts from a little extra help. We believe the key

to getting good performance, predictable delivery times, and throughput that doesn't degrade is to

prevent the router from overloading the network after saturation has occurred. Overloading results

in many deroutes which increase message latency and reduce the bandwidth available. Improvement

can be achieved in two ways. The easiest, but not the most practical, is to increase the queue size.

This allows the network to handle a larger applied load before too many deroutes occur. A more

practical solution is to throttle the injection of messages so that excess derouting does not occur.

Input throttling can be approximated several ways such as by monitoring local congestion and by

using a global controller to combine the data and inform the nodes of a needed change in the local

injection policies. The Chaos torus does not su�er from throughput degradation problems.

10

Saturation

Hypercube Torus

Tra�c oblivious Chaos oblivious Chaos

1 0:20 0:15 0:55 0:55

1 4X d.r. 0:25 0:35 0:60 0:95

1 8X d.r. 0:25 0:40

2 0:25 0:20 0:50 0:90

2 4X d.r. 0:35 0:50

3 0:25 0:20 0:50 0:90

3 4X d.r. 0:35 0:55

4 0:25 0:25 0:65 0:90

4 4X d.r. 0:40 0:55

5 0:25 0:25 0:55 0:90

5 4X d.r. 0:40 0:60

6 0:25 0:25 0:55 0:90

6 4X d.r. 0:35 0:55

7 0:25 0:25

7 4X d.r. 0:30 0:55

8 0:25 0:25

8 4X d.r. 0:25 0:55

Figure 2: Minimum load at which saturation is detected for various hot spot tra�c.

5 Conclusions and Future Work

We have compared the Chaos router to an oblivious router on a 256 node hypercube and torus

using various tra�c patterns. We do not necessarily expect all of these tra�c patterns to be used

in practice. However, we believe they are representative of the types of tra�c a router encounters.

Routing a variety of tra�c patterns also demonstrates the wide range of behaviors that can be

exhibited by a particular router.

This study shows that the Chaos router performs better than the oblivious router provided that

the Chaos hypercube router is not used for continual supersaturating loads. This is reasonable since

most network tra�c is thought to be bursty and running long periods with a saturated network

makes message delivery unpredictable in any model. The Chaos router saturates at the same or

higher applied load for all the tra�c patterns and topologies except for the complement on the

torus and a few of the hot spot tra�c patterns on the hypercube using the standard delivery rate.

In all the cases the the di�erence is modest. When the delivery rate of each node is increased to

match the arrival rate of the packets, the Chaos hypercube saturates after the oblivious for all the

hot spot tra�c patterns. The Chaos has greater or equal throughput than the oblivious router

for all of the tra�c patterns on both topologies. The only exception is for hot spot tra�c with

the standard delivery rate on the hypercube where the di�erence is less than a few percent of the

normalized throughput. Again, if the delivery rate is increased as above, the Chaos hypercube

throughput is superior to that of the oblivious router.

11

Latency on the Chaos hypercube router is comparable to or better than the latency of the

oblivious router for all cases before saturation approaches on the Chaos. The torus does not have

as much available adaptivity, resulting in lower latency for the oblivious torus before the oblivious

router saturates. After the oblivious torus saturates and before the Chaos saturates, the Chaos

torus has lower latency. After Chaos saturates, the Chaos has higher latency than the oblivious for

all but one of the tra�c patterns on the two topologies. This is due to both the higher throughput

the Chaos maintains and to the cost of the deroutes.

Delays on the routers are comparable to the latencies. Therefore, the Chaos torus has slightly

higher delays than the oblivious router while the Chaos hypercube has comparable or slightly lower

delays than the oblivious hypercube. Note that delay comparisons are valid only before either of

the routers has saturated.

For supersaturating loads, the Chaos hypercube bene�ts from a little extra help. To prevent

network overloading which results in throughput degradation, we recommend either increasing the

queue size or throttling the input.

Besides higher throughput, the Chaos router has the advantage that it is fault tolerant. Unlike

oblivious routers, adaptive routers do not necessarily break in the presence of faults. Work has

already been started to insure that no message can get trapped in a faulty Chaos network [BS91].

Acknowledgements

We thank Smaragda Konstantinidou and Kevin Bolding for writing initial versions of the simulator,

Gerry Shedler for help with the simulation methodology, and Carl Ebeling for many invaluable

discussions.

References

[AV92] Vikram S. Adve and Mary K. Vernon. Performance analysis of multiprocessor mesh inter-

connection networks with wormhole routing. Technical Report 1001a, Univ. of Wisconsin

{ Madison, June 1992.

[Bol92] Kevin Bolding. Non-uniformities introduced by virtual channel deadlock prevention. Tech-

nical Report 92{07{07, University of Washington, Seattle, WA, July 1992.

[BS91] K. Bolding and L. Snyder. Overview of fault handling for the chaos router. In Proc. of

the 1991 IEEE International Workshop on Defect and Fault Tolerance in VLSI Systems,

November 1991.

[BS92] K. Bolding and L. Snyder. Mesh and torus chaotic routing. In Proc. of The Advanced

Research in VLSI and Parallel Systems Conference, March 1992.

[DS87] W. Dally and C. Seitz. Deadlock-free message routing in multiprocessor interconnection

networks. IEEE Transactions on Computers, C-36(5):547{553, May 1987.

12

[GI90] Peter W. Glynn and Donald L. Iglehart. Simulation output analysis using standardized

time series. Mathematics Operations Research, pages 1{16, February 1990.

[KK79] P. Kermani and L. Kleinrock. Virtual cut-through: A new computer communication

switching technique. Computer Networks, 3:267{286, 1979.

[Kon91] Smaragda Konstantinidou. Deterministic and Chaotic Adaptive Routing in Multicomput-

ers. PhD thesis, University of Washington, Seattle, WA, May 1991.

[KS90] S. Konstantinidou and L. Snyder. The chaos router: A practical application of random-

ization in network routing. In Proc. of the 2nd ACM Symp. on Parallel Algorithms and

Architectures, pages 21{30, 1990.

[KS91] S. Konstantinidou and L. Snyder. Chaos router: Architecture and performance. In

Proceedings of the 18th International Symposium on Computer Architecture, pages 212{

221. IEEE, May 1991.

[Lei92] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,

Trees, Hypercubes. Morgan Kaufmann Publishers, 1992.

[LL74] G.P. Learmonth and P.A.W. Lewis. Statistical tests of some widely used and recently

proposed uniform random number generators. In Proc. of the 7th Conf. on Comp. Sci,

and Stats. Interface, 1974.

[LO89] P.A.W. Lewis and E.J. Orav. Uniform Pseudo-Random Variable Generation. Wadsworth

& Brooks/Cole, 1989.

[Mu~n91] David Mu~noz. Multivariate standardized time series in the analysis of simulation output.

Technical Report TR-68, Stanford University, Palo Alto, CA, April 1991.

[Nga89] J. Y. Ngai. A Framework for Adaptive Routing in Multicomputer Networks. PhD thesis,

California Institute of Technology, Pasadena, CA, May 1989.

[Per92] Michael J. Pertel. A critique of adaptive routing. Technical Report CS-TR-92-06, Cali-

fornia Institute of Technology, Pasadena, CA, 1992.

[TK77] C.D. Thompson and H.T. Kung. Sorting on a mesh-connected parallel computer. Com-

munications of the ACM, 20(4):263{271, 1977.

[VB81] L. G. Valiant and G.J. Brebner. Universal schemes for parallel communication. In Pro-

ceedings of the 13th ACM Symposium on Theory of Computing, pages 263{277, 1981.

A Hot Spot Locations

Following are the hot spot nodes for each of the hot spot cases.

1. 146 102 94 51 196 25 107 94 15 224

13

2. 61 12 8 245 5 27 69 28 98 46

3. 3 239 207 83 6 9 89 125 7 255

4. 77 241 105 197 98 126 223 251 163 52

5. 223 251 163 52 74 220 70 179 55 158

6. 210 225 243 73 149 241 136 227 130 88

7. 0 1 2 4 8 16 32 64 128 3

8. 0 1 3 7 15 129 131 135 143 128

Figure 3 shows the arrangment of the hot spot tra�c patterns for the torus with cases 1-6 arranged

left to right, top to bottom.

B Simulation Results

Figures 4 - 13 containing the throughput and latency results for both the oblivious and Chaos

routers on the 256 node hypercube and the 256 node torus. Notice that the scale of the axes may

di�er from graph to graph in order to show the data more clearly. The dashed and dotted lines

represent the upper and lower bounds of the 95% con�dence intervals for the data. If no such

lines are visible, the interval is very small. In the graphs, the tra�c patterns noted in the legends

are abbreviated as follows: r. is random tra�c, b.p. is the bit reversal permutation, c.p. is the

complement permutation, t.p. is the transpose permutation, s.f. is the shu�e permutation, h. is

hot spot tra�c, and r.l. is random leveled tra�c. For the hot spot tra�c the legend 4X DR means

the delivery rate is quadrupled. The graphs are labeled in the Figure captions from left to right,

top to bottom.

C Simulation Data

Figures 14 and greater contain tables with actual simulation data used to plot the graphs. The

midpoint and half length of the 95% con�dence intervals for throughput and latency are reported.

An asterisks following data means the percent error of the 95% con�dence interval exceeds three

percent. The abbreviation xput stands for throughput and h. l. for half length.

14

*
*

*

*
* *

*

*

*

* * *
* *

*
*

*

*

*

* * * *

* *

*

*

*
*

*
*

* *
*

*

*
*

* *

* *
* *

*
*
*

* *

*

*
*

* *
*

*
* *
* *

Figure 3: Torus hot spot locations cases 1, 2, 3, 4, 5, and 6.

15

Expected throughput on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 10

 20

 30

 40

 50

 60

 70

 80
N

or
m

al
iz

ed
 th

ro
ug

hp
ut

b.p. oblivious

b.p. Chaos

left 95% c.i.

right 95% c.i.

Expected throughput on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

c.p. oblivious

c.p. Chaos

left 95% c.i.

right 95% c.i.

Expected throughput on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 10

 20

 30

 40

 50

 60

 70

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

r. oblivious

r. Chaos

left 95% c.i.

right 95% c.i.

Expected throughput on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 0

 10

 20

 30

 40

 50

 60

 70

 80

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
t.p. oblivious

t.p. Chaos

lt 95% c.i.

rt 95% c.i.

Expected throughput on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 10

 20

 30

 40

 50

 60

 70

 80

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

sf. oblivious

sf. Chaos

left 95% c.i.

right 95% c.i.

Expected throughput on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 10

 20

 30

 40

 50

 60

 70

 80

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

r.l. oblivious

r.l. Chaos

left 95% c.i.

right 95% c.i.

Figure 4: Hypercube throughput for bit reversal, complement, random tra�c, transpose, shu�e,

and random leveled tra�c.

16

Expected throughput on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 10

 20

 30

 40

 50

 60

 70

 80
N

or
m

al
iz

ed
 th

ro
ug

hp
ut

b.p. oblivious

b.p. Chaos

left 95% c.i.

right 95% c.i.

Expected throughput on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 10

 15

 20

 25

 30

 35

 40

 45

 50

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

c.p. oblivious

c.p. Chaos

left 95% c.i.

right 95% c.i.

Expected throughput on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

r. oblivious

r. Chaos

left 95% c.i.

right 95% c.i.

Expected throughput on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

t.p. oblivious

t.p. Chaos

left 95% c.i.

right 95% c.i.

Expected throughput on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 10

 20

 30

 40

 50

 60

 70

 80

 90

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

sf. oblivious

sf. Chaos

left 95% c.i.

right 95% c.i.

Expected throughput on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 10

 20

 30

 40

 50

 60

 70

 80

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

r.l. oblivious

r.l. Chaos

left 95% c.i.

right 95% c.i.

Figure 5: Torus throughput for bit reversal, complement, random tra�c, transpose, shu�e, and

random leveled tra�c.

17

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 0

 200

 400

 600

 800

 1000

 1200
Si

m
ul

at
io

n
cy

cl
es

b.p. oblivious

b.p. Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

Si
m

ul
at

io
n

cy
cl

es

c.p. oblivious

c.p. Chaos

lt 95% c.i.

rt 95% c.i.

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 0

 50

 100

 150

 200

 250

 300

 350

Si
m

ul
at

io
n

cy
cl

es

r. oblivious

r. Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Si
m

ul
at

io
n

cy
cl

es
t.p. oblivious

t.p. Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 0

 100

 200

 300

 400

 500

 600

 700

Si
m

ul
at

io
n

cy
cl

es

sf. oblivious

sf. Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 0

 100

 200

 300

 400

 500

 600

 700

Si
m

ul
at

io
n

cy
cl

es

r.l. oblivious

r.l. Chaos

left 95% c.i.

right 95% c.i.

Figure 6: Hypercube latency for bit reversal, complement, random tra�c, transpose, shu�e, and

random leveled tra�c.

18

Expected latency on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 0

 200

 400

 600

 800

 1000

 1200
Si

m
ul

at
io

n
cy

cl
es

b.p. oblivious

b.p. Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Si
m

ul
at

io
n

cy
cl

es

c.p. oblivious

c.p. Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

Si
m

ul
at

io
n

cy
cl

es

r. oblivious

r. Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 0

 200

 400

 600

 800

 1000

 1200

Si
m

ul
at

io
n

cy
cl

es
t.p. oblivious

t.p. Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 0

 100

 200

 300

 400

 500

 600

 700

 800

Si
m

ul
at

io
n

cy
cl

es

sf. oblivious

sf. Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Si
m

ul
at

io
n

cy
cl

es

r.l. oblivious

r.l. Chaos

left 95% c.i.

right 95% c.i.

Figure 7: Torus latency for bit reversal, complement, random tra�c, transpose, shu�e, and random

leveled tra�c.

19

Expected throughput on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30
N

or
m

al
iz

ed
 th

ro
ug

hp
ut

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

Expected throughput on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 10

 15

 20

 25

 30

 35

 40

 45

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

Expected throughput on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 10

 15

 20

 25

 30

 35

 40

 45

 50

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

Expected throughput on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 10

 15

 20

 25

 30

 35

 40

 45

 50

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

Expected throughput on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 10

 15

 20

 25

 30

 35

 40

 45

 50

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

Expected throughput on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 10

 15

 20

 25

 30

 35

 40

 45

 50

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

Figure 8: Hypercube hot spots throughput cases 1, 2, 3, 4, 5, and 6.

20

Expected throughput on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 10

 15

 20

 25

 30

 35

 40

 45

 50

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

Expected throughput on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 10

 15

 20

 25

 30

 35

 40

 45

 50

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

Figure 9: Hypercube hot spots throughput cases 7 and 8.

21

Expected throughput on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60
N

or
m

al
iz

ed
 th

ro
ug

hp
ut

h. oblivious

h. Chaos

left 95% c.i.

right 95% c.i.

Expected throughput on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

h. oblivious

h. Chaos

left 95% c.i.

right 95% c.i.

Expected throughput on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 10

 20

 30

 40

 50

 60

 70

 80

 90

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

h. oblivious

h. Chaos

left 95% c.i.

right 95% c.i.

Expected throughput on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 10

 20

 30

 40

 50

 60

 70

 80

 90

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

h. oblivious

h. Chaos

left 95% c.i.

right 95% c.i.

Expected throughput on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 10

 20

 30

 40

 50

 60

 70

 80

 90

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

h. oblivious

h. Chaos

left 95% c.i.

right 95% c.i.

Expected throughput on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

h. oblivious

h. Chaos

left 95% c.i.

right 95% c.i.

Figure 10: Torus hot spots throughput cases 1, 2, 3, 4, 5, and 6.

22

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600
Si

m
ul

at
io

n
cy

cl
es

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 0

 200

 400

 600

 800

 1000

 1200

 1400

Si
m

ul
at

io
n

cy
cl

es

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 0

 200

 400

 600

 800

 1000

 1200

 1400

Si
m

ul
at

io
n

cy
cl

es

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 0

 200

 400

 600

 800

 1000

 1200

 1400

Si
m

ul
at

io
n

cy
cl

es
h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 0

 200

 400

 600

 800

 1000

 1200

 1400

Si
m

ul
at

io
n

cy
cl

es

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 0

 200

 400

 600

 800

 1000

 1200

 1400

Si
m

ul
at

io
n

cy
cl

es

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

left 95% c.i.

right 95% c.i.

Figure 11: Hypercube hot spots latency cases 1, 2, 3, 4, 5, and 6.

23

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 0

 200

 400

 600

 800

 1000

 1200

 1400

Si
m

ul
at

io
n

cy
cl

es

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node hypercube

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Normalized load

 0

 200

 400

 600

 800

 1000

 1200

 1400

Si
m

ul
at

io
n

cy
cl

es

h. oblivious

h. 4XDR oblivious

h. Chaos

h. 4XDR Chaos

left 95% c.i.

right 95% c.i.

Figure 12: Hot spot latency cases 7 and 8.

24

Expected latency on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 0

 200

 400

 600

 800

 1000

 1200
Si

m
ul

at
io

n
cy

cl
es

h. oblivious

h. Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 0

 100

 200

 300

 400

 500

 600

 700

Si
m

ul
at

io
n

cy
cl

es

h. oblivious

h. Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 0

 100

 200

 300

 400

 500

 600

 700

 800

Si
m

ul
at

io
n

cy
cl

es

h. oblivious

h. Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 0

 100

 200

 300

 400

 500

 600

 700

Si
m

ul
at

io
n

cy
cl

es
h. oblivious

h. Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 0

 100

 200

 300

 400

 500

 600

 700

 800

Si
m

ul
at

io
n

cy
cl

es

h. oblivious

h. Chaos

left 95% c.i.

right 95% c.i.

Expected latency on a 256 node torus

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Normalized load

 0

 100

 200

 300

 400

 500

 600

 700

Si
m

ul
at

io
n

cy
cl

es

h. oblivious

h. Chaos

left 95% c.i.

right 95% c.i.

Figure 13: Torus hot spots latency cases 1, 2, 3, 4, 5, and 6.

25

