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Abstract

Abstraction reduces the apparent complexity of an

implementation by hiding all but \the most relevant"

details. However, no interface is suitable for all the

users of the implementation for exactly the same rea-

son: each user has a slightly di�erent view of what

is \most relevant." Thus, although abstractions can

reduce complexity, working around their limitations

can introduce other complexities. Some abstractions

are designed to minimize the added complexity. This

paper examines �ve common abstraction models and

uses common examples to contrast the tradeo�s pre-

sented by each model.

1 Introduction

\You can have any two: fast, clean,

robust." { Programmer's Adage

Abstraction reduces the apparent complexity of an

implementation by hiding all but \the most relevant"

details. However, no interface is suitable for all the

users of the implementation for exactly the same rea-

son: each user has a slightly di�erent view of what

is \most relevant". Thus, although abstractions can

reduce complexity, working around their limitations

can introduce other complexities.

This paper presents interfaces and implementa-

tions as a spectrum choices. Several interfaces are se-

lected as idealized models; the paper illustrates each

model using examples of existing systems. It then dis-

cusses some of the needs that led to each abstraction,

and also considers some limitations of each approach.
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In this paper, an interface is an abstraction or

model of a service that performs useful work. A client

is a piece of code that calls upon the service to per-

form some part of the client's task.

An interface has three jobs. The �rst is to present

behavior that the client can use to solve its prob-

lem. The second is to hide enough details that

the client �nds it easier to use the service than to

solve the problem directly; that is, the \goodness" of

an interface is the extent to which it simpli�es the

client [Par79]. The third is to hide details that are

likely to change [Par72].

Designing interfaces is tricky because of con
icting

demands: The abstraction should be speci�c enough

that it is simple, but also general enough that many

clients can use it. An ideal interface hides all imple-

mentation details, so the client can focus on getting

the job done instead of worrying about how it gets

done. Yet the underlying implementation should suit

all clients, and each client can place di�erent demands

on each feature of the service.

Thus, while abstractions can simplify clients, they

can also induce complexity by forcing clients to

worry about certain details. Some details of this

abstraction-induced complexity are discussed below.

1.1 Abstraction-Induced Complexity

The interface and implementation should ideally pro-

vide good performance, conceptual cleanliness, ro-

bustness, and portability. Typically, however, sys-

tems that are clear and general have inadequate per-

formance [Lam84]. Although system designers are ul-

timately interested in solving a broad range of prob-

lems, performance is often improved at the expense

of generality. The emphasis in this paper is inter-

face designs that achieve good performance without

sacri�cing generality.

1



1 INTRODUCTION 2

Since di�erent clients have di�ering demands, per-

formance problems cannot generally be solved by sim-

ple tuning: optimizations for one client are typically

pessimizations for some other client. Thus, perfor-

mance problems are often dealt with using one of

three strategies [Kic92]:

� Fixed: The service provides a good interface

and an implementation that is tuned for some

subset of the clients. Clients that su�er bad

performance are forced to work around the per-

formance restrictions of the service. These

workarounds complicate the client by forcing it

to reimplement major parts of the service, or

force it to take advantage of nonportable imple-

mentation details.

� Prolific: The service attempts to solve perfor-

mance problems by supplying many interfaces,

each specialized for particular client needs. For

example, programming languages can provide

many kinds of arrays: dense, sparse, integer-

indexed, and so on; operating systems can try

to support many kinds of scheduling.

However, this approach bloats both the inter-

face and the implementation. Programmers have

trouble �rst in understanding the verbose inter-

face, and then in deciding which parts of the in-

terface they should use. Service implementors

have problems writing and debugging the im-

plementation. Essentially, complexity arises be-

cause the service is promising many �xed imple-

mentations, one to solve each problem.

Another di�culty is that supplying many

special-purpose interfaces still doesn't solve the

general problem. Ultimately, some client needs

to use the service in a way for which there is

no special interface. The service can be updated

each time the need arises, but at great cost to

both the service maintainer and the program-

mer writing the client. Alternatively, the service

can supply an additional general-purpose inter-

face, and clients that can't use the special inter-

faces can fall back on the general interface. Yet

it is problems with the general-purpose interface

that led to the plethora of special interfaces. Al-

though some clients use the general code only

rarely, other clients surely have it as a common

case, and those clients su�er for it. Likewise,

since the general interface is used only rarely, it

is typically poorly-tuned and unreliable [Fat85].

� Meta-Control: A third strategy uses two in-

terfaces. Usually the client is concerned with the

primary interface that performs operations for

the client. Sometimes the client also makes use

of a meta-control interface that leaves the pri-

mary interface unchanged but changes the way

the service operations are implemented.

Using a meta-control interface helps separate the

implementation issues from the interface issues.

Instead of using many special-purpose interfaces,

one for each implementation, there are just two:

the primary interface, which is the same for all

clients, plus the meta-control interface, which al-

lows each client to pass information to the service

in order to get the desired implementation.

In general, clients supply some code to perform

tuning; thus meta-control interfaces introduce

some complexity. Di�erent meta-control inter-

faces provide di�erent capabilities, and, there-

fore, introduce di�erent kinds of complexity.

Abstractions can reduce the complexity of a client,

yet the same abstractions can introduce complexities

of their own, with di�erent abstractions introducing

di�erent complexities. Proli�c interfaces are complex

and provide generality through a low-performance in-

terface, so this paper focuses on tradeo�s among �xed

and meta-control designs.

1.2 Outline

The paper introduces and compares �ve interface

models, and shows tradeo�s among them. The mod-

els are presented as points in a spectrum of choices,

with each model solving some problems but creat-

ing others. The goal is to help service designers un-

derstand particular tradeo�s involved in developing

clean, robust and portable interfaces that meet the

performance demands of a wide variety of clients.

Although this paper examines common interface

models, there are several important issues that are

not addressed: First, the paper does not provide ex-

act rules for choosing an interface model to solve a

particular problem. Second, the paper does not dis-

cuss higher-order interfaces; for example, it may be

possible to partially-evaluate [Par91] richer interfaces

in various ways in order to produce each of the in-

terfaces discussed here. Third, this paper discusses

performance tuning but does not explore alternative

ways of improving the service's performance, such as
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using approximate or probabalistically correct algo-

rithms. Finally, this paper does not address the evo-

lution of interfaces as new features are needed.

The remainder of this paper is organized is follows:

Section 2 brie
y introduces each model. Section 3

gives concrete examples of each model and discusses

tradeo�s between them. Section 4 discusses related

issues, such as interfaces that use hybrid models, pro-

tection, and composition of services. Finally, Sec-

tion 5 summarizes the important features of each in-

terface.

2 Models

This paper presents �ve interface models, all in com-

mon use. The goal of this paper is to compare them

and see how the abstractions overlap, and to exam-

ine how each does and doesn't solve certain kinds of

problems. The models, brie
y, are:

� Fixed: the abstraction promises it will solve cer-

tain problems, but makes no promises about how

it will do it. The programmer generally assumes

a single implementation for all uses. Alterna-

tively, the abstraction promises key implementa-

tion features will be the same across all imple-

mentations of the service.

� Adaptive: The abstraction promises that it will

�gure out how to use a \good" implementation,

even if di�ering client demands imply drastically

di�erent implementations of the interface.

� Adjustable: The abstraction includes a meta-

control \tuning knob" by which the client can

pass usage hints to the services.

� Open: The abstraction includes a re
ec-

tive [Smi84] mechanism by which the client \in-

jects" new code in to the implementation [Kic92].

The injected code reimplements key details of the

service so they are optimized for the client.

� Incomplete: The meta-control and primary in-

terfaces are merged. The service provides only a

part of the implementation. The client provides

both tuning and missing parts of the service.

Each of these designs is similar to that of its neigh-

bors. Thus, each tends to solve problems in ways that

are similar to its neighbors, and each tends to have

limitations similar to those of its neighbors. The re-

mainder of this section examines some of the typical

ways in which the interfaces di�er.

The adaptive model di�ers from the �xed model in

that the adaptive system promises to examine partic-

ular circumstances and select a good implementation,

even if there is no single good implementation for all

circumstances. In a sense, a �xed model is a degen-

erate adaptive model that refuses to adapt.

An adjustable system allows the client to give

the service hints about what implementation is best.

Typically, hints are either selected from a �xed set of

choices or are represented by a value along an axis of

tuning.

Open systems are like adjustable ones, as both use

a meta-control interface to tune the implementation.

An open interface exposes parts of the implementa-

tion and the client uses a general-purpose program-

ming language to perform tuning. Tuning is accom-

plished by reimplementing core operations to best

suit the client. Note that adjustable systems export

interfaces that tune only part of the implementation;

in much the same way, open systems export only some

of the implementation details.

Incomplete systems take openness a step further:

they embed the meta-control interface in the primary

interface. Thus, they require the client to implement

core operations. The service implements parts of op-

erations that are suitable for all clients, and the client

supplies whatever the service cannot do well. The

programmer's model is strongly di�erent from the

open model, because core operations are viewed as

parts of the client code instead of being seen as addi-

tions to the service. However, in another sense, the

client-supplied core operations exist soley to satisfy

the particular service and thus are not distinct from

operations that are \injected" into an open system.

Although the interfaces above are presented as a

continuum, they are perhaps best viewed as a spiral,

where an incomplete implementation is adjacent to a

�xed implementation. The part of the incomplete im-

plementation that is provided is usually �xed. How-

ever, the incomplete implementation provides a sim-

pler (less complete) set of primitive operations than

are provided by a higher-level �xed interface.

3 Common Examples

All of the above interfaces are in common use. This

section provides examples of each and describes some
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of the problems that they solve well and some that

they solve poorly.

This section uses �ve example services from three

areas: arrays and procedure calls from programming

languages; virtual memory and thread scheduling

from operating systems; and machine branch instruc-

tions.

The remainder of this section has one subsection for

each interface model. Each subsection is organized

as follows: First, the subsection brie
y describes the

subsection's model. Next, the model is elaborated

with each of the �ve example services. Then, the

characteristics of the model are discussed: what prob-

lems it solves well, and what are some of the limita-

tions of the approach. Finally, each subsection ends

with a comparison to the model presented in the pre-

ceding subsection.

3.1 Fixed

Fixed interfaces provide the same abstraction to all

clients. To the extent that the implementation is

\good enough", �xed interfaces work well because the

interface is simple and consistent.

Programming languages often provide a single �xed

abstraction for arrays and procedures. For example,

C provides arrays that are indexed by small integer

values and that are space e�cient if the array is used

densely [KR88]. Clients that want e.g., sparse arrays

either su�er poor space e�ciency or must build sparse

arrays using other language constructs. Straightfor-

ward implementations of procedure call and return

are simple and e�ective, but small procedures su�er

a substantial procedure call overhead.

Operating systems generally provide abstractions

for memory and threads of control. For example, vir-

tual memory (VM) can be viewed as being resident

in physical memory over the lifetime of (one invoca-

tion of) the client, even though it may occasionally

be copied out to secondary storage and later copied

back. Thread abstractions provide a way of start-

ing and stopping units of parallel execution. Fixed

implementations such as FIFO (�rst in, �rst out)

page replacement and thread scheduling work well as

long as the client makes sparse use of the abstraction:

where memory is used modestly or when rescheduling

is rare. They work poorly, however, when a processes'

VM approaches the physical memory size, or when

the application is sensitive to scheduling policies.

Architectures provide an abstract interface on top

of the underlying machine's state. Fixed abstrac-

tions allow clients to perform branches without wor-

rying about implementation details of how the pro-

cessor pipeline is updated. Performance is typically

good if branches are rare or the pipeline is short, but

performance su�ers with deep pipelines and frequent

branches [YP92].

Fixed abstractions are generally simple to imple-

ment and use. They also provide control over just

the operations that the client wants performed. Fixed

implementation are also e�cient when the implemen-

tation is a good match to the client's use of the ser-

vice. However, �xed abstractions usually fail either

by limiting the operations to those with a consistently

good implementation, or by hiding important perfor-

mance details [Kic92].

3.2 Adaptive

Adaptive systems choose an implementation based

on the way the client uses the service. That is, di�er-

ent clients make di�erent kinds of requests, and the

kinds of requests communicate implicit information

that a service can use to perform tuning. Adaptive

and �xed interfaces generally have the same program

interface, but have a di�erent programmer interface

because some of the self-tuning (or self-modifying)

nature of the implementation is discussed in the doc-

umentation. The distinction is important because the

programmer may perform certain operations as im-

plicit hints to the service or may avoid certain oper-

ations because the programmer interface warns that

it may be unable to adapt to them.

Programming languages often provide adaptive in-

terfaces by allowing a programmer to use �xed ab-

stractions for arrays and procedures, while promis-

ing that the translator can perform optimizations

that yield e�cient implementations. Most pro-

gramming language implementations discover opti-

mizations statically [ASU88], but some systems col-

lect information based on runtime use of the con-

structs [DB77, GW78, DS84, CW86, CU91].

Operating systems provide VM and thread abstrac-

tions that, at some level, promise to divide machine

resources between various parts of a client in a way

that re
ects the current needs of the client. The usual

VM abstraction, for instance, promises �xed-sized

pages and promises that if memory is used sparsely,

only the pages that are used will count towards the

client's use of memory [Sun90]. Most thread abstrac-

tions provided by OS kernels adapt to the thread's

use of resources, e.g., boosting CPU priority if the
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thread is mostly I/O bound [PS83].

Architectures provide adaptive branch prediction,

where the hardware keeps information about each

branch instruction. When a given instruction is exe-

cuted, the predictor attempts to update pipeline state

in a way that re
ects common use of the branch in-

struction [HP90, YP92].

Adaptive systems generally perform well to the ex-

tent that they can deduce the needs of the client.

However, adaptive systems are only as good as the

tuning information that they deduce, and they can

lag behind when they rely on past behavior to pre-

dict future needs. An adaptive system that adapts

poorly may perform worse than a �xed implementa-

tion. Adaptive systems can also perform poorly when

the cost of adaptation is more than the overhead cost

of using a simpler �xed implementation [KEH91].

3.3 Adjustable

Adjustable systems are like adaptive ones that have

the tuning mechanism exposed in a meta-control in-

terface. Where the adaptive system deduces and pre-

dicts client behavior, an adjustable system simply lets

the client tell it what is going to happen.

Programming languages often provide tuning

knobs e.g., to trade between implementations that

are complex but space-e�cient and those that are al-

gorithmically e�cient but waste space. These pro-

grammer directives are supplied because the pro-

grammer may have information the compiler can-

not deduce about whether arrays are full or sparse

or whether certain procedure calls are common or

rare. Tuning is often performed using command

line 
ags (-finline-functions), using magic com-

ments (#pragma

1

inline), or using reserved key-

words (inline) [Sta89].

Operating systems have tuning and scheduling

knobs, again because the programmer may have in-

formation the OS cannot deduce. For example,

the programmer may indicate one memory region is

used sequentially, while another is used randomly,

while yet a third is used in bursts (e.g., madvise

and vadvise [Sun90]). Or, a programmer may

know either that the client is composed of nearly-

independent tasks, or that tasks cooperate closely

and thus bene�t from gang scheduling.

1

The word \pragma" is derived from \pragmatic". The

usual use is as an allowance for cases where the service performs

the desired operation but where performance, storage layout,

or other such \pragmatic" concerns require the implementation

to be adjusted some way.

Architectures often reserve branch opcode bits that

the programmer or compiler can use to tell the

architecture whether or not a branch is typically

taken [HP90, Sit93]. The compiler or programmer

may have that information when the branch is gener-

ated because a certain branch corresponds either to

a part of a test for an unusual (e.g., error) case or a

part of a test for termination of a loop.

Adjustable systems can improve over adaptive sys-

tems because the client often knows things that are

hard for the adaptive system to infer. Adjustable sys-

tems are particularly successful where there are a few

good choices that cover most of the cases (e.g., branch

is or isn't usually taken) or where important informa-

tion can be summarized with a few values (e.g., ar-

rays usually have 1,000 elements and only about 10

elements are used).

Adjustable systems, however, can su�er compared

to adaptive systems for a variety of reasons. First,

the adjustable system forces the client to compute

and communicate tuning information in a timely way;

the adaptive one simply deduces information when it

is needed. Clients of adjustable systems may be pun-

ished with bad implementations if they lie or fail to be

diligent in providing good tuning information. Sec-

ond, adaptive systems can deduce implementation-

level information, where clients manipulate abstrac-

tions and thus necessarily pass abstracted informa-

tion. Third, tuning information is selected from a

�xed set of choices, which limits what information

the client can provide. If better tuning information

is needed, an adaptive service can be changed trans-

parently, but an adjustable system may require client

changes. Finally, it may be di�cult to develop a

simple interface that can identify particular circum-

stances, e.g., that the �rst 9 elements of an array are

almost always used and that only one of the succeed-

ing 991 is typically used. Conversely, it may be easy

to develop an interface for any single situation, but

hard to develop one that is both general and simpler

than the (pre-existing and familiar) general-purpose

programming language used by an open system.

3.4 Open

Where an adjustable system is tuned with 
ags and

scalar values, an open system is tuned using code that

is \injected" in to the service to achieve the desired

behavior. Thus, where an adjustable system allows

a client to communicate only limited tuning informa-

tion, an open system allows more general control by
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performing tuning with a general-purpose program-

ming language.

An open translator for a program has a default

implementation for, say, dense arrays indexed by

small integers. A client wanting sparse arrays uses

the meta-control interface to modify the compiler

to implement sparse array allocation and index-

ing [KdRB82, Kic92]. In a like way, the translator

can be augmented with code that examines proce-

dure calls to check for application-speci�c informa-

tion that indicates how each procedure call should be

implemented [Rod91].

Open VM systems are rare because it is hard to

safely migrate code from the user space in to the ker-

nel; the issues are discussed further in Section 4.2.

An open threads package can provide a primary in-

terface to create, schedule, and run threads [BLL88],

with a meta-control interface that e.g., lets the

client reimplement synchronization objects in order

to change the way in which threads behave when they

block [BLLW88].

Even architectures can support an open interface,

by allowing either user-programmable microcode

or dynamically-con�gurable hardware [JF91, Sut91,

AS93]. Branch predication can then use application

state such as values in general processor registers, sur-

rounding instructions, etc.

Open systems are most successful where it is hard

to infer good behavior or de�ne a simple language

for tuning. An open system can take advantage of

an existing general-purpose programming language

2

to specify how a close-but-not-quite implementation

can be made \just right." Further, a good meta-

control interface is designed so that \injected" code

only needs to worry about the most relevant details.

For example, the client of a translator can control

array allocation and the mapping from indicies to

storage locations, but can ignore details such as the

internal parser representation.

Open systems, however, can su�er some of the

same problems as adjustable systems: Tuning infor-

mation is expressed in terms of the abstractions visi-

ble to the client instead of implementation-level infor-

mation. Further, adjustable and open systems that

fail to export the \right" tuning controls are e�ec-

tively as rigid as �xed systems.

Open systems also su�er some additional problems

compared to adjustable systems: First, the injected

code speci�es not only what is to be done, but also

2

Open systems can thus be sub-classi�ed as declaratively or

imperitively open, depending on the tuning language.

how. Second, tuning is restricted by the client's view:

the client's view may be restricted by protection and

security constraints [PS83] or because some infor-

mation is unavailable e.g., when the client is com-

piled [KEH91]. Second, the client provides code that

is speci�c to the service's implementation, which can

cause portability problems. Third, since arbitrary

code can be injected in to the service, it can have

arbitrary side-e�ects. Although this problem exists

with other models, open systems increase the num-

ber of ways the client can interact with the service

and, therefore, the number of ways that problems can

be introduced. Finally, an open system must restrict

how much internal detail is exposed. If all details are

exposed, manipulating the meta-control interface is

both as 
exible and as complex as changing source

code.

3.5 Incomplete

The incomplete model recognizes that a given ser-

vice cannot perform the desired operations e�ectively

and, in e�ect, instead provides \tools" with which the

client builds the desired service. In a sense, the client

executes on behalf of the service. Incomplete services

often either split one operation into several, so the

client can run code between the service operations, or

provide a callback mechanism so the service can call

user code when it needs. An incomplete implemen-

tation is similar to an open system, but the meta-

control is merged with the primary interface. The

programmer's view is that the client-supplied code

remains client code and is not \injected" in to the

service.

Incomplete array and procedure implementations

could be implemented by having the client register

callback procedures that are called when the transla-

tor tries to process arrays or procedures. Or, the pro-

gramming language provides lower-level operations

such as pointers, pointer arithmetic and jumps, and

the programmer implements the various kinds of ar-

rays and procedure calls by hand.

User-level VM pagers can be implemented by hav-

ing the application register a callback routine that is

invoked when the program needs to reduce its work-

ing set size. Alternatively, the application can per-

form memory management and I/O explicitly. An

incomplete threads package implementation can pro-

vide just the basic operations to initialize threads and

switch between them, leaving allocation and schedul-

ing to the client [Kep93].
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Architectures use branch delay slots to expose un-

derlying pipeline state. On a branch, the hardware

updates the program counter, but the client is re-

sponsible for updating the pipeline state [HP90].

An incomplete service provides \ultimate" 
exibil-

ity. It does so by providing a simple interface

3

and

then both allowing and forcing the client to imple-

ment things the service doesn't do well. Incomplete

services are particularly successful when only a small

part of the service is heavily dependent on the client,

and when there is a small (conceptual and perfor-

mance) cost for executing client code on behalf of the

service. Incomplete systems improve over open inter-

faces by including tuning information cleanly in the

primary interface. Merging the interfaces helps for

two reasons: First, the interface never exposes im-

plementation details, so client-supplied code cannot

have e�ects that reach back in to the service. Sec-

ond, all implementations use the same external inter-

face, so implementation-dependent meta-control code

is avoided.

Incomplete systems su�er several disadvantages

compared to open systems. First, the client must

always deal with tuning issues. Moreover, the tuning

and primary interfaces are merged, which makes it

hard to separate and change just one. Second, execut-

ing client code on behalf of the service may require the

use of some awkward mechanism. In the worst case,

it is simpler for the client to simply reimplement the

service. Finally, the client always pays because the

incomplete system o�ers a lower-level service exactly

because it gets its utility by failing to provide part of

the service the client desired. In short, an incomplete

implementation solves interface problems by provid-

ing implementations only for operations that it can

do well.

4 Other Issues

4.1 Client/Service Contracts

Tuning interfaces give the client a way to change

some part of the runtime behavior (e.g., performance)

while leaving other parts of the interface unchanged

(e.g., indexing in to an array accesses the same val-

ues, whatever the implementation). Generally, then,

primary interfaces provides a service and the tun-

ing interface maintains the same primary abstraction

3

The interface may itself be �xed, adaptive, adjustable,

open, or incomplete.

while providing an implementation that provides the

service e�ciently [Kic92].

The implementation can, in fact, be tuned to such

a degree that it no longer works for arbitrary inputs.

However, any client that tunes a service to that de-

gree is making an implicit contract that it will not

take advantage of the changes. For example, a client

may specialize an array implementation so that it

works only for indicies that are small integers. The

client is then promising that it will not try to use

strings, 
oating point numbers, and so on as indices.

A related issue is that di�erent interfaces on a given

service may actually provide di�erent services. For

example, a VM implementation that signals the client

on page faults can be used to implement various kinds

of page-based operations such as distributed shared

VM [AL91]. These operations are not always avail-

able with other VM interfaces.

4.2 Protection and Security Bound-

aries

Operating system kernels are a particularly tricky

area for open systems because the client cannot in-

ject arbitrary code to run e.g., at full kernel privilege.

The problem is that arbitrary code could compromise

security. Checking arbitrary code to ensure it is safe

requires a solution to the halting problem [Hop79],

and is thus impossible for general-purpose program-

ming languages.

One solution is to provide a limited language that

can be checked easily. For example, a client can pass

the kernel a limited program that tells just the types

of values to be moved across a communication chan-

nel [TL93]. A simpler language is easier to check but

less expressive. The simplest languages are simply

tuning parameters.

A second solution is to cross protection boundaries

each time the injected code is invoked. However, this

limits the ways that injected code can a�ect the ser-

vice; �ne-grained changes require frequent protection

boundary crossings. Thus, the service and the in-

jected code cannot be �nely intermingled.

A more common approach is to use the incom-

plete implementation technique to push operations

out of the kernel and into client space. However, the

service must ensure that system security remains in-

tact. Once an operation has been pushed out of the

kernel, any of the interface structuring techniques

can be applied safely. For example, to handle pag-

ing [MA90, HC92] or scheduling [MVZ91, ABLL91].
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4.3 Hybrid Interfaces

The interfaces presented in Section 2 can be combined

in various ways to create hybrid interfaces. For exam-

ple, many systems are both adaptive and adjustable:

Compilers may inline functions using both internal

heuristics and programmer directives [Sta89]; VM

systems often respond both to dynamic system be-

havior and to hints provided by applications [Sun90];

architectures often perform branch prediction using

both adaptive hardware and tuning bits embedded

in the opcodes [Sit93].

4.4 Level of Representation

A problem with meta-control interfaces is that they

communicate incomplete information. One issue is

that the client deals in abstractions and presents tun-

ing information in terms of those abstractions. For

example, the client may communicate tuning hints to

the VM system, telling it that two arrays (abstrac-

tions) are used in di�erent ways, without being aware

that the implementation uses overlapped storage for

the arrays.

A second issue is that the client presents informa-

tion that represents a limited view of the world. The

client can provide good information about behavior

that has a detailed representation in the client (al-

though extracting a summary may be hard). How-

ever, the client has a poor view of the rest of the

system. For example, the client may have good in-

formation about its own VM behavior, but can have

trouble cooperating with other applications because

the client does not naturally deal with information

about other applications. Clients can gather better

information about the rest of the system, but in do-

ing so must perform extra work that does not con-

tribute directly to solving the problem at hand. Fi-

nally, information about e.g., another task's VM be-

havior may be protected information that is available

to the kernel but not to applications.

An important but somewhat subtle point is that

although adaptive systems sometimes have worse in-

formation than adjustable systems, they sometimes

have better information than is available to the pro-

grammer. This is because adaptive systems may be

able to see details that are invisible to the program-

mer | because abstractions hide them or because

they are not nominally things that the client needs

to be concerned with. For example, a compiler may

be able to perform inlining on a call-site by call-site

basis, even when the programmer cannot; an operat-

ing system can adapt both to an individual program

and to the implicit interaction with other programs

in the system; an adaptive branch prediction scheme

can take advantage of both dynamic program behav-

ior and of details of the processor implementation.

4.5 Layered Interfaces

Abstractions make it easy to build systems by layer-

ing together components. However, the same abstrac-

tions that lead to easy layering may also ultimately

lead to problems. Each layer encodes some decisions,

so many layers encode many decisions. If any single

layer makes a decision that is bad for some client,

then the whole layered abstraction will fail for that

client. Similarly, if each layer makes some compro-

mises, the compromises can add up, leaving a system

that is useless to the client.

The tradeo� is usually one of generality vs. ef-

�ciency [Lam84]. If each layer compromises some

performance, the �nal system has many performance

compromises. If each layer compromises some gener-

ality, the �nal system has limited usefulness.

Tunable interfaces can help, but care is needed.

If the top layer of the abstraction is responsible for

tuning all layers below it, then the top-level tuning

interface is the union of all tuning features provided

by lower-level layers. Alternatively, the top-level in-

terface can provide an abstraction of the lower-level

tuning interfaces, but with a corresponding loss of

expressiveness when the client communicates through

the abstracted top-level tuning interface to the lower-

level implementations.

Alternatively, the client can tune individual low-

level components and then instantiate the high-level

service with the pre-tuned components. This ap-

proach can be e�ective because tuning is associated

directly with the component being tuned. However,

the client now must manipulate services it does not

use directly, and the client does not always know how

higher-level services use the lower-level components,

and, thus, the client cannot always tune components

appropriately.

4.6 Binding Times

Another aspect of interfaces is the time at which tun-

ing is performed. Generally, tuning proceeds in three

distinct steps: First, tuning information is bound in

to the client. Second, the client passes tuning infor-
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mation to the service. Finally, the service performs

tuning.

For example, a client may always use some memory

region in a certain way, and VM tuning information

for that region is compiled in to the client when it

is built. When the client starts executing, it passes

hints to the VM system. Later, as the client makes

use of the memory region, the VM system uses the

tuning information to tune the VM behavior for that

region.

In general, tuning information can be derived, com-

municated, and used at nearly any time. For ex-

ample, adaptive systems need not wait until pro-

gram runtime to take advantage of tuning informa-

tion. Adaptation can take place before program run-

time because code can be executed incrementally as

information becomes available [Par91]. For exam-

ple, arrays are a service. Array indexing must gen-

erally be delayed until runtime. However, if the

compiler can deduce information about array indi-

cies, it can perform adaptive tuning and produce

optimized code at compile time. However, if ba-

sic array behavior depends on runtime data values,

basic tuning information is best collected at run-

time [DB77, GW78, CW86, CU91, KEH91].

Implementation details may also a�ect binding

times. For example, it isn't generally possible to stat-

ically tune between a client and a dynamically-linked

service, since di�erent invocations of the client may

use di�erent implementations of the service. Like-

wise, VM services can use static information from

the client, but they must also respond to dynamic

interactions with other system processes.

4.7 Con
icts of Interest

When several clients share a service, or when one

client uses a service several ways, the service may be

presented with several con
icting tuning demands.

There are three general ways of dealing with con-


icts: provide a single compromised service, provide

several duplicates of the service, each with a special-

ized implementation, or progressively transform the

service to use an implementation that best suits the

way it is being used at any given moment.

A compromised service can still improve over a

�xed service, since there may be improvements that

can be shared by all clients or all distinct uses within

a single client.

Multiple implementations may cost space, and may

also introduce implicit client/service contracts (x4.1)

that require a client to invoke the right instance of a

service, since each instance may be too specialized to

deal with a generic invocation.

Progressive transformation can eliminate some

client/service contracts, since there is only one in-

stance of the service at any time. However, recon-

�guration costs both the update of the service itself,

and also of any auxiliary structures associated with

the service.

5 Summary

Abstractions are good because they hide all but \the

most important details" of a service. Yet interfaces

are hard to design because each client has a di�erent

view of what is \most important." An abstraction

that fails to export the right details can require clients

to work around the abstraction, introducing complex-

ities that exist soley because of the abstraction. This

paper presents �ve models of interfaces and imple-

mentations: �xed, adaptive, adjustable, open, and

incomplete. The models are presented as a contin-

uum of choices, with no single model best; each has

advantages, and each has problems. The contribution

of this paper is to introduce and compare the models,

showing tradeo�s between them.

Fixed systems are typically simple and are e�cient

if the client and service are well-matched. Adaptive

systems improve over �xed ones by keeping a sim-

ple interface and also allowing for a variety of imple-

mentations. However, adaptive systems may adapt

poorly and the adaptation mechanism may be expen-

sive. Adjustable systems can eliminate the guesswork

and some of the overhead of adaptive systems, but

push the tuning burden on to the client, with tun-

ing only as good as the information provided by the

client. Open systems give the client a better tuning

language, so good information can be communicated

e�ectively. However, client tuning errors may have

pervasive and subtle e�ects, and implementation de-

tails of the service are exposed in the client. Incom-

plete systems maintain client and service separation

by moving tuning information into the primary inter-

face. However, the merging can force clients to im-

plement parts of the very operations that the library

was supposed to provide.
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