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Abstract

AI planning agents are goal-directed: success is measured in terms of whether or

not an input goal is satis�ed, and the agent's computational processes are driven by

those goals. A decision-theoretic agent, on the other hand, has no explicit goals|

success is measured in terms of its preferences or a utility function that respects those

preferences.

The two approaches have complementary strengths and weaknesses. Symbolic plan-

ning provides a computational theory of plan generation, but under unrealistic assump-

tions: perfect information about and control over the world and a restrictive model of

actions and goals. Decision theory provides a normative model of choice under uncer-

tainty, but o�ers no guidance as to how the planning options are to be generated. This

paper uni�es the two approaches to planning by describing utility models that support

rational decision making while retaining the goal information needed to support plan

generation.

We develop an extended model of goals that involves temporal deadlines and main-

tenance intervals, and allows partial satisfaction of the goal's temporal and atemporal

�
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components. We then incorporate that goal information into a utility model for the

agent. Goal information can be used to establish whether one plan has higher expected

utility than another, but without computing the expected utility values directly; we

present a variety of results showing how plans can be compared rationally, but using

information only about the probability that they will satisfy goal-related propositions.

We then demonstrate how this model can be exploited in the generation and re�nement

of plans.
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1 Introduction

Reasoning about and planning for an uncertain world raises both representational and algo-

rithmic problems: we need to represent change, uncertainty, and value or utility, and to use

those concepts to represent various plans of action. And given such a representation for the

world and for plans that might be executed in the world, we further need an e�cient way

to generate plausible plans, anticipate their results, improve their performance, and choose

the best option from among them.

Decision theory addresses the representational problem, providing a rational basis for

choice under uncertainty. The framework starts with the agent's preferences over an abstract

set of possible outcomes, and guarantees the existence of probability and utility functions

such that acting to maximize expected utility is rational in the sense that it respects those

preferences. (The planner need not explicitly perform the decision-theoretic analysis|it

su�ces that the planner act according to the recommendations that such an analysis would

make.)

Decision theory does not, however, constitute a theory of reasoning about plans. The the-

ory does not provide a vocabulary for describing planning problems, a method for generating

options, or a computational model for choosing among plan alternatives. It merely dictates

a rational choice given such a capability. Decision analysis|the study of applying decision-

theoretic framework|addresses these limitations, but in a subjective and non-algorithmic

fashion.

The capabilities provided by symbolic planning and decision theory are therefore com-

plementary: the former provides methods for representing planning problems and generating

alternative plans in response to externally supplied goals (but under restrictive conditions

that don't include uncertainty); the latter provides a method for choosing among alterna-

tives and a language that allows reasoning with uncertainty, but provides (1) no guidance in

structuring planning knowledge, (2) no way of generating alternatives, and more generally,

(3) no computational model. The �rst step toward integrating these two methodologies is

to reconcile the two representations.

Planning problems are described in terms of

� a set of operators that e�ect change in the world,

� a description of some initial world state (usually expressed in some logical or quasi-

logical language), and

� a goal state description.

Decision-theoretic problems, on the other hand, are stated in terms of

� a probability distribution over possible outcomes, and

� preferences over those outcomes.
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The relationship between the probabilistic model of the world and the operators and

initial state has been studied as a problem of probabilistic temporal inference,

[

Haddawy,

1991b

]

,

[

Hanks and McDermott, 1993

]

,

[

Hanks, 1993

]

. The relationship between the goal

state description and the agent's utility model has received less attention, and is the topic

of this paper.

1.1 Contributions

This paper presents a utility model for goal-directed agents that allows rational choice among

planning alternatives but that also can be exploited by a plan-generation algorithm to guide

the process of building e�ective plans. It therefore directly addresses the gap between AI

and decision-theoretic planners, providing a richer representation language for the former

and a computational framework for the latter.

The main contributions of the paper are:

1. A detailed analysis and taxonomy of goal forms. We break a goal into atemporal and

temporal components: what is to be true and when it is to be true. We consider two

main forms of temporal constraints: deadline goals and maintenance goals, and various

forms of atemporal constraints, including symbolic and numeric goals.

2. A model of partial satisfaction that allows reasoning about partial satisfaction of a

goal's atemporal component, temporal component or both. Partial satisfaction infor-

mation for a goal is supplied in terms of

� A function DSA measuring the extent to which the goal's atemporal component

is satis�ed at a point in time.

� A function measuring the extent to which the goal's temporal component is sat-

is�ed:

{ For deadline goals, a function CT that measures the extent to which a time

point meets the deadline.

{ For maintenance goals, a function CP that measures the extent to which a

time interval satis�es the maintenance constraint.

We develop a method for combining these two pieces of information into a coherent

assessment of the goal's level of satisfaction.

3. A utility model for an agent that allows reasoning about trading o� (partial) success

in achieving one goal against (partial) success in achieving another, and trading o�

success in achieving goals with resource consumption.

4. E�ective methods for comparing two plans: relationships that imply that one plan has

higher expected utility than another, but that do not require computing the expected

utilities directly.
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5. An example of how the model can be exploited by a planning algorithm to prune the

space of partial plans explicitly considered.

1.2 Outline

Section 2 begins by de�ning a goal-directed agent, and pointing out the limitations of a

planning strategy guided only by conjunctive goal expressions. Section 3 de�nes an extended

utility model for goal-directed agents, which includes a richer notion of goal than the one

typically used by classical planners. Section 4 confronts the problem of specifying preferences

over partially satis�ed goals, and Section 5 de�nes a model that allows partial satisfaction

of a goal's temporal and atemporal components simultaneously.

Sections 6 and 7 address the question of how the goal-based utility model can be ex-

ploited in comparing and building plans. Section 6 presents a variety of results describing

circumstances under which deciding that one plan is preferable to another amounts to estab-

lishing a relationship between probabilities involving the respective goal expressions. Section

7 discusses how the model might be used in generating plans, exploring extensions to the

classical partial-order generation algorithm and the idea of planning by re�nement. Section

8 summarizes and discusses related work.

2 Classical Goal-Directed Agents

Before we proceed with a formal analysis of goals and utilities we need to de�ne more

precisely what role these concepts will play in a planning system. Goals play three roles in

automated planning systems:

� Goals act as a device for communicating information about the planning problem. In

particular they provide a concise de�nition of what constitutes a successful plan.

� Goals act as a means of limiting inference in the planning process by allowing the

planner to backchain over goal propositions. In that sense they de�ne exactly what is

relevant to the planning problem.

� Goals limit the temporal scope of the planning problem, imposing a temporal \hori-

zon," beyond which planning is irrelevant.

In the �rst case goals can be communicated more easily than utility functions, and in the

second and third cases the goals' symbolic content can aid the search for good plans.

Figure 1 makes the relationship more clear: let us assume some manager, who has a

utility function over outcome states. He is designing an agent, and has a model of the

agent's capabilities. The manager wants to communicate information to the agent that will

cause it to act so as to increase the manager's utility; he uses goal expressions to communicate

that information to the agent. The agent uses this goal information|along with information

like the anticipated state of the world at execution time and the cost of various resources

|to produce a utility function that serves to guide its actions.

3



Manager’s
Utility 
Function

Agent’s
Utility
Function

Domain model
(resource costs)

Action
Utility / Goal
Information

Figure 1: Goals as a means of communication

This model applies classical goal-directed agents as well as decision-theoretic agents. The

question is what language the manager should use to convey the utility/goal information, and

how that information restricts the possible behaviors available to the agent. The classical

planning model restricts this information to a conjunction of goal propositions, which are

supposed to hold at the end of plan execution. We will show that restricting the form of

utility information to goal conjunctions of this form places severe restrictions on the agent's

problem-solving abilities, then develop more expressive forms of goal expressions that still

allow the agent to be an e�ective problem solver.

2.1 Limitation of goal-directed behavior

Suppose the manager communicates only symbolic goal expressions to the agent|he tells

the agent to achieve some goal G, a conjunction g

1

^ g

2

: : : g

n

, and the agent builds a plan

that maximizes the probability that satisfying G will be true at the end of executing the

plan. (This is the probabilistic analogue of logical goal-directed planning, in which the agent

constructs a plan that provably achieves G.) What limits does this model place on the agent's

preference struture? In other words, under what circumstances is planning to maximize

expected utility equivalent to planning to maximize the probability of goal satisfaction?

We start by introducing some notation. We will talk about time points t, and can talk

about a proposition � being true over an interval of time [t

1

; t

2

] by saying HOLDS (�; t

1

; t

2

)

(see Section 3.1.1 for more details).

A plan P can be viewed as de�ning a probability distribution over chronicles, where a

chronicle is a set of time points representing one possible course of execution for the plan.

We can therefore talk about the probability P(cjP).

1

We will generally be interested in

the time point representing the moment the plan �nishes executing; we will use end(c) to

represent this point. The probability of success in the classical paradigm is the probability

that the goal conjunction will hold when the plan �nishes executing:

P(P succeeds) � P(GjP) �

X

c:HOLDS (G;end(c);end(c))

P(cjP) (1)

1

[

McDermott, 1982

]

de�nes chronicles in terms of a temporal logic, and

[

Hanks, 1990

]

and

[

Haddawy,

1991b

]

extend the notion to a probabilistic framework.
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and the planner will try to �nd the plan maximizing that value.

A decision-theoretic planner has the same probabilistic model as the probabilistic planner,

but it has an explicit utility function over chronicles, a function U(c) that maps chronicles

into real values. The expected utility of a plan is de�ned to be

EU(P) �

X

c

U(c) �P(cjP) (2)

and the decision-theoretic planner will try to �nd the plan maximizing that value.

The question arises as to under what circumstances the two models are equivalent: for

what utility models (de�nitions of U(c)) is it the case that the plan that maximizes the prob-

ability of goal achievement (Equation (1)) will always be the plan that maximizes expected

utility (Equation (2))?

The answer is that this relationship holds only for simple step utility functions, functions

for which utility is a constant low value UG for chronicles in which the goal does not hold

at the end of plan execution and a constant high value UG for chronicles in which it does.

Figure 2 shows such a function|utility is represented along the vertical axis and the space

of chronicles along the horizontal axis. G and G designate the set of all chronicles in which

the goal holds and does not hold, respectively.

Previous work,

[

Haddawy and Hanks, 1990

]

, demonstrates the correspondence between

these two policies, showing that the simple class of step functions pictured in Figure 2 is the

only class of utility functions for which

P(GjP

1

) > P(GjP

2

)) EU(P

1

) > EU(P

2

) (3)

holds for any plans P

1

and P

2

. In other words, describing the desired state of the world in

terms of a goal conjunction restricts a problem-solver's preference structure to those that

can be characterized by a simple step function. (

[

Haddawy and Hanks, 1990

]

explores the

relationship between goal satisfaction and probability maximization for other situations,

e.g. cases in which goal expressions are combined with some preference information about

resource consumption.)

The analysis points out four obvious limitations to the endeavor of planning to achieve

a goal conjunction:

1. Temporal extent

De�ning plan success in terms of what is true at the end of execution|de�ning a

successful chronicle only in terms of whether the goal holds at end(c))|rules out goals

like deadlines (have g

1

true by noon and g

2

true by midnight), maintenance (keep g

true continuously between noon and midnight), and prevention (make g

1

true, but

without allowing g

2

to become true in the meantime). (The last is a combination of

deadline and maintenance goals.) It is important not only what is accomplished, but

also when or for how long.

2. Tradeo�s among the goals

The classical model dictates that the satisfaction of all goal conjuncts is necessary and

5



chronicles (c)

U(c)

GG

UG

UG

Figure 2: Step utility function

su�cient for success. More realistic is the view that satisfying some of the conjuncts is

preferable to satisfying none, motivating the idea that success in achieving one conjunct

could be traded o� against success in achieving others.

3. Partial satisfaction

Symbolic goals imply an all-or-nothing success criterion, either the goal form holds at

the end of execution or it does not. This criterion is reected in the step function:

utility is either at a constant high value or at a constant low value. A realistic repre-

sentation should allow the manager to communicate the fact that satisfying G is most

preferred, but satisfying G partially is better than not satisfying it at all.

4. Incidental costs and bene�ts

Symbolic goals imply that the goal attributes are the only aspects of an outcome that

are relevant to assessing utility, which rules out the possibility that plan P

1

is preferable

to P

2

because it is as e�ective at achieving the goal as P

2

, but does so more cheaply.

Symbolic goals provide no way to specify the \more cheaply" part, nor do they provide

the language to express the tradeo� between e�ectiveness in achieving the goal and

the cost involved in doing so.

The analysis in this section demonstrates the steps necessary to unify goal-directed and

decision-theoretic plan evaluation:

� The language of goals needs to be extended to represent partial goal satisfaction and

resource-related utility.

� In order to e�ectively use these extended goal forms (more complicated utility func-

tions) in planning we need to establish relationships like Equation 3: circumstances

under which planning to maximize the probability of goal satisfaction ensures rational

behavior in the decision-theoretic sense.

� We need to exploit these relationships as we build or re�ne plans.

6



This paper will have four concerns:

� Presenting a framework for analyzing a goal-directed agent's utility function, which

includes goal and resource components.

� De�ning a language for goals that provides for expressing preferences among situations

involving partial satisfaction of the goals.

� Developing relationships that allow the agent to build plans based on the symbolic

content of its goals, while simultaneously guaranteeing that following those plans will

cause it to act so as to maximize expected utility.

� Demonstrating how those relationships can be exploited by a planning algorithm.

3 Utility Models for Goal-Directed Agents

This section de�nes a utility model for a goal-directed agent by describing the form of the

function U(c) mentioned in the previous section. The task is simple for the simple goal

model in the previous section:

U(c) =

(

1 if HOLDS(G,end(c),end(c))

0 otherwise

(4)

But we want our model to capture the fact that goal satisfaction can be measured at other

time points and over intervals, that goals can be partially satis�ed, that (partial) satisfaction

of one goal can be traded o� against (partial) satisfaction of other goals, and that resource

costs a�ect the extent to which a plan succeeds as well.

In that case what can we say about a goal's role in the utility function? There are two

main properties we want to capture:

1. That satisfying a goal to a greater extent is preferable to satisfying it to a lesser extent,

all other things being equal

2

.

2. That success in satisfying one goal component can be traded o� against success in

satisfying another goal, or against consuming resources.

We begin by de�ning a goal-oriented agent in terms of its top-level utility function:

De�nition 1 A goal-directed agent is a decision maker whose preferences correspond to the

following utility function:

U(c) = �

n

i=1

k

i

UG

i

(c) + k

r

UR(c) (5)

2

See

[

Wellman and Doyle, 1991

]

for a more general interpretation of this criterion.
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The utility function is de�ned in terms of n subutility functions UG

i

associated with

the agent's n explicit goals. Each of these functions maps the chronicle into a real number

between 0 and 1, where 0 represents the situation in which the goal is satis�ed not at all in

the chronicle and 1 indicates that the chronicle satis�es the goal fully.

The function UR (for \residual" or \resource" attributes) also maps a chronicle into [0; 1],

and measures the extent to which the chronicle produces or consumes non-goal attributes,

e.g. time, fuel, wear and tear on equipment, money lost or gained. A value of 1 indicates the

best possible use of non-goal attributes; a value of 0 indicates that resources were consumed

at the theoretical maximum.

The model is also de�ned in terms of n+ 1 numeric parameters: k

1

; k

2

; : : : k

n

; k

r

. These

parameters make explicit the tradeo�s among the component goals and between the goals

and resource consumption. The ratio of any two of these numbers indicates the amount

the agent is willing to sacri�ce in satisfaction of one goal in order to satisfy another, or

the amount of satisfaction in resource consumption he is willing to \spend" in order to

accomplish an increase in satisfaction for a goal. We return to these tradeo�s in Section 7.

Equation (5) also implies that the agent's preferences over the component goals are

additive independent: preferences over lotteries on the goals depend only on the marginal

probability distributions for the goals and not on their joint probability distribution

[

Keeney

and Rai�a, 1976, Sect 6.2

]

. In other words we assume that preference for a particular level of

satisfaction for one goal does not depend on the extent to which the other goals are satis�ed.

The function furthermore implies that goal satisfaction is additive independent in resource

consumption: the agent's preferences over patterns of resource consumption are the same

regardless of the extent to which the top-level goals are satis�ed.

The power of the independence assumption is that it allows us to reason easily about the

tradeo� between levels of the various goals, and also about how much additional resource we

would be willing to expend to improve the chances of satisfying a goal or to satisfy it more

fully (see Section 7).

The independence restriction on top-level goals seems troubling on the surface, since AI

planning research has focused mainly on interactions among the goals, and our assumption

seems to rule out those interactions. In particular the assumption runs counter to the analysis

of conjunctive-goal planning we presented in the previous section. Equation (5) means, for

example, that we cannot represent conjunctive goals like \have the truck fueled and loaded

by 7AM" as two separate top-level goals, since presumably satisfying either one without the

other a�ords low utility but their conjunction a�ords high utility. This is indeed the case,

and our argument is that these two statements do not involve two goals, but rather two

components of a single goal. Section 4.1.1 addresses the problem of dealing with interactions

among symbolic interacting components that comprise a goal|that section demonstrate how

to represent traditional goals of the form \G is satis�ed only if its components g

1

: : :g

n

are

all satis�ed."

We should also note that the assumption of utility independence does not imply that

that goals are probabilistically independent. One might object that two goals, say \have the

truck at the depot by noon" and \have the truck clean," interact strongly if the only road

8



to the depot is muddy and there's no way to wash the truck once at the depot. In particular

there's no plan that might make them both true. But this is not a violation of probabilistic

independence, not utility independence. The assumption of additive utility independence

implies only that the utility derived from satisfying one top-level goal does not depend on

the extent to which the other goals are achieved; it does not comment on the likelihood

of achieving either in isolation or both simultaneously. In this example there might be no

chronicle in which both propositions are true, in which case the likelihood of achieving the

goal, and presumably the expected utility of any plan, will be low. But this interaction is

properly reected in the probabilistic model of the domain and the operators|it does not

involve the agent's preferences.

The main implication of the additive independence is that the decision maker has to

structure his preferences, identifying those that are utility independent and those that are

not. The former are divided into separate goals and the latter become components of indi-

vidual goals. Subsequent sections provide methods for describing interactions among goal

components.

We now turn to the question of how the goal information|the UG

i

(c) functions|is

expressed. We will temporarily ignore the top-level utility function U(c) as well as the residual

utility function UR(c), and concentrate on how to build utility functions for individual goals.

3.1 Syntactic forms for goals

Goals in classical planning algorithms consist of a symbolic expression to be achieved. We

want to extend the idea in several directions:

� Goals should have a temporal extent|a time at which or an interval over which the

proposition is to be achieved. The classical goal representation has the planner achieve

the goal by the end of plan execution.

� Goals should be partially satis�able|if the goal is to produce 10 widgets it might be

better to produce 5 than none at all. Partial satisfaction can extend to the temporal

component as well: if the deadline is noon, �nishing by 12:05 might be better than

�nishing the next morning.

3.1.1 The language L

tca

In order to talk about temporally quali�ed sentences in a probabilistic setting, we need a

logic that can represent both time and probability. The logic of time, chance, and action

L

tca

is well suited to our purposes. A simpli�ed version of the logic is described in

[

Haddawy,

1991a

]

and the full logic is described in

[

Haddawy, 1991b

]

. We describe here just that portion

of the language relevant to this paper. We will use the single predicate HOLDS to associate

facts with temporal intervals. The sentence HOLDS (FA; t

1

; t

2

) is true if fact FA holds over

the time interval t

1

to t

2

. We impose the constraint that if a fact holds over an interval it

holds over any subinterval.

9



Probability is treated as a sentential operator so it can be combined freely with other

logical operators. We write P

t

(�) to denote the probability of a formula � at time t. The

probability of a formula is de�ned as the probability of the set of chronicles in which the

formula is satis�ed. Although the language can represent the dynamics of probability over

time by allowing the probability operator to be indexed by any time point, in this paper we

will only index it by the current time (now) and sometimes will omit the index altogether:

P(�) understood to mean P

now

(�).

3.1.2 Goal expressions

We begin by breaking a goal into atemporal and temporal components. The former indicates

what is to be achieved, the latter when it is to be achieved.

We de�ne two types of temporal goals: deadline goals and maintenance goals. A deadline

goal is a function of the deadline time point t

d

, and its atemporal component is just a formula

� containing only the HOLDS predicate with only temporal parameter t

d

. For shorhand we

will notate a formula � that contains only temporal parameters t; t

0

as �(t; t

0

). A deadline

goal says only that � should hold at the deadline point, but we will discuss below ways of

expressing preferences over making � \partially true" at t

d

or making � true \shortly after"

t

d

, or both. Two examples of deadline goals are:

� Have block A on block B on block C by noon.

HOLDS (on(A,B);noon;noon) ^ HOLDS (on(B,C);noon;noon)

� Have two tons of rocks to the depot by 2:00 this afternoon.

HOLDS (=(tons-delivered-to-depot,2); 2PM ; 2PM )

A maintenance goal represents a desire to keep a proposition true over an interval of

time. It is a formula containing only the HOLDS predicate with temporal arguments t

b

and

t

e

, the begin and end points of the maintenance interval. An example of a maintenance goal

would be \keep the temperature between 65 and 75 degrees from 9am until 5pm:

HOLDS (� (temp, 65); 9am; 5pm) ^ HOLDS (� (temp, 75); 9am; 5pm)

3.1.3 Utility function for individual goals

The i

th

individual goal appears in the top-level utility function as a function UG

i

(c) of a

chronicle. Above we made the distinction between a goal's temporal and atemporal com-

ponents, and that distinction is reected in the UG

i

function as well. We will explore this

function in more detail below, but begin by dividing it into two components:

� A function DSA

i

(t) which is a measure of the extent to which the atemporal component

of the i

th

goal is satis�ed at time t (where t is implicitly a member of some chronicle

c). DSA stands for \degree of satisfaction of the atemporal component."

10



� A function that de�nes the extent to which the goal's temporal component is satis�ed,

which depends on the form of the temporal component. For deadline goals we de�ne a

temporal coe�cient CT

i

(t), measuring the extent to which the deadline is satis�ed at

time t. For maintenance goals we de�ne a persistence coe�cient CP

i

(t; t

0

) measuring

the extent to which the maintenance condition is satis�ed over the interval t; t

0

.

Subsequent analysis addresses how the DSA, CT, and CP functions are speci�ed and exactly

how they are combined to form the utility function for the i

th

goal, UG

i

(c).

We next address the problems associated with specifying and reasoning with preferences

over partial satisfaction of goal forms.

4 Partial Goal Satisfaction

So far we have de�ned the syntactic goal expressions in terms of an atemporal formula

and a temporal parameter (time point or interval). We still need a language for expressing

preferences over partial satisfaction of both. Partial satisfaction of the atemporal component

might be possible by satisfying most but not all of the members of a conjunctive goal or by

almost satisfying a numerical equality or inequality constraint. Partial satisfaction of the

temporal component might be possible by achieving the atemporal component at a time

soon after the deadline point, or keeping it true through most of the maintenance interval.

We start by considering in turn partial satisfaction of the atemporal component of the

goal and partial satisfaction of the temporal (deadline or maintenance) component.

4.1 Partial satisfaction of the atemporal component

In the next sections we show how to specify partial satisfaction of two types of atemporal

components:

� symbolic attributes|a conjunction of symbolic propositions like \a big red cylinder on

the table," and

� quantitative attributes|the value of a real- or integer-valued quantity like the truck's

fuel level or the number of items in a box.

In focusing on the atemporal goal component we are addressing the question of what

form the goal's atemporal component, DSA

i

(t), should take.

4.1.1 Goals with symbolic attributes

Here we consider how to de�ne a function specifying partial satisfaction of symbolic-attribute

goals. A symbolic attribute is any logical formula containing only the HOLDS predicate.

For example, the (deadline) goal of having block A on top of a red block by noon would be

represented as

9xHOLDS (On(A;x);noon;noon) ^ HOLDS (Red(x);noon;noon)

11



We want to represent situations like one in which it is important to have A on an object,

but perhaps less important that the object be red.

The degree of satisfaction (DSA) function for a symbolic-attribute goal is de�ned in

terms of an application-supplied sequence S of mutually exclusive and exhaustive formulas

(�

1

; �

2

; :::; �

n

) such that

� �

n

is the actual atemporal component of the goal (thus representing complete satisfac-

tion), and

� �

i

represents a greater degree of satisfaction than �

j

if i > j.

The application also provides a function dsa(�) that associates a degree of satisfaction

value with each �

i

. The function must have the property that dsa(�

1

) = 0 and dsa(�

n

) = 1.

For the above example S might be

i �

i

dsa(�

i

)

1 :9xHOLDS (On(A;x); t; t) 0.0

2 9xHOLDS (On(A;x); t; t)^ :HOLDS (Red(x); t; t) 0.7

3 9xHOLDS (On(A;x); t; t)^ HOLDS (Red(x); t; t) 1.0

(Note that t is a free variable in these expressions; it is not the deadline point. We will

discuss below the matter of what times the function should be evaluated at.)

The simplest such function would be one that admits no partial satisfaction of the goal.

Recall the example from Section 3, to have the truck loaded and fueled by 7AM, where

accomplishing one without the other yields no utility. The dsa function would be

i �

i

dsa(�

i

)

1 :(HOLDS (truck-loaded; t; t) ^ HOLDS (truck-fueled; t; t)) 0.0

2 HOLDS (truck-loaded; t; t) ^ HOLDS (truck-fueled; t; t) 1.0

Note that as we suggested, some partial satisfaction is accrued from making the ON

relationship true even without the RED, but no satisfaction is accrued if RED is true without

ON.

To be clear about the notation: the function DSA

i

for the i

th

goal is a function of

a time point. It is de�ned in terms of a function dsa

i

which is a function of the goal's

atemporal component, e.g. a symbolic goal component. We integrate the two by taking

DSA

i

(t) = dsa

i

(�), where � is the (unique) formula among the �

i

that is true at time t.

There must be a unique such formula since the �

i

are mutually exclusive and exhaustive.

For some specialized types of symbolic goal structures the degree of satisfaction function

can be de�ned more succinctly than by supplying the full table of �

i

and dsa values. For

example, if the atemporal component is a conjunction of atomic formulas not sharing any

variables, and if preferences over changes in the degree of satisfaction associated with each

of the conjuncts are additive independent, then we can de�ne the degree of satisfaction for

each conjunct individually, and the utility associated with a time point is the sum of the

utilities taken over all the conjuncts.

12



4.1.2 Goals with quantitative attributes

A quantitative attribute is a special kind of symbolic attribute: a logical formula containing

only the HOLDS predicate in which the �rst argument expresses equality or inequality be-

tween a term and a numeric quantity. An example of a quantitative-attribute deadline goal

is to have two tons of rocks at the depot by noon:

HOLDS (= (tons-rocks-delivered-to-depot 2);noon;noon)

The dsa function for such a goal could in principle be de�ned in the same way as we did

for symbolic attributes above, but such a de�nition would be unmanageably large. Since

the degree of satisfaction for quantitative attributes is simply a function of the quantity's

magnitude, we can de�ne the dsa function directly in terms of that magnitude. The degree of

satisfaction for the goal to deliver a ton of rocks would simply be a function of the quantity

of rocks delivered, e.g. dsa(r) = 1�

2000�r

2000

where r is the weight of rocks delivered, measured

in pounds. We again de�ne DSA(t) = dsa(r), where r is the number of rocks delivered at

time t.

4.1.3 Conjunctive quantitative attributes

Things get a little more complicated when a goal's temporal component consists of a con-

junction of quantitative attributes. Suppose we have the goal of delivering 12,000 pounds of

polystyrene, 480 pounds of colorant, and 120 pounds of UV stabilizer to a plastics manufac-

turing plant by time t

2

:

HOLDS (= (poly-delivered 12,000); t

2

; t

2

) ^

HOLDS (= (colorant-delivered 480); t

2

; t

2

) ^

HOLDS (= (UV-delivered 120); t

2

; t

2

)

These quantities were not chosen arbitrarily; they represent the quantities of materials

needed to manufacture 2000 units of a particular product. They need to be present at the

plant in a particular proportion in order to be useful. That is to say, only that quantity

that is present in the right proportion can be used. This is a common characteristic of

conjunctive quantitative attributes. Consequently, degree of satisfaction will be a function

of the maximumamount of the materials that have been delivered in the required proportion.

In this case, the necessary proportion is 100:4:1. So to derive the degree of satisfaction of a

time in a chronicle, we let

q = min(x=100; y=4; z)

where x,y, and z are the quantities of polystyrene, colorant, and UV stabilizer, respectively.

Then if we require 6 pounds of polystyrene to manufacture one unit, the degree of satisfaction

would be some nondecreasing function of b100q=6c, normalized to range between 0 and 1.
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4.1.4 Summary

We have de�ned the atemporal part of a goal's component in the utility function, for sym-

bolic, quantitative, and conjunctive quantitative goals. This representation applies both to

deadline and maintenance goals. The function DSA

i

(t) measures the extent to which the

atemporal component is satis�ed at a particular time point (implicitly within a particular

chronicle). In each case DSA(t) is de�ned in terms of an application-supplied function dsa(�),

where � is speci�c to the goal's atemporal form: for symbolic goals the programmer supplies

a dsa function in the form of a table with entries for various combinations of the symbolic

components, along with a partial-satisfaction number for each. For quantitative attributes

he supplies a dsa function directly in terms of the quantity's value.

4.2 Partial satisfaction of the temporal component

Each goal's utility function also contains a weighting coe�cient, CT

i

for deadlines and CP

i

for

maintenance intervals, measuring the extent to which the deadline or maintenance interval

was respected. CT

i

is a function of a time point within a chronicle and measures the extent

to which that time point meets the deadline. CP

i

is a function of two time points, and

measures the extent to which the maintenance interval was respected. These coe�cients are

speci�ed independent of the goals' atemporal components. We now consider in turn partial

satisfaction of deadline and maintenance constraints.

4.2.1 Deadlines

We �rst have to be precise about what is meant by a goal involving a deadline, for example

\have the report on my desk by 10 tomorrow morning." We interpret the goal as a transfer

of control over a resource, in this case the report. The deadline is the earliest time at which

the transfer has value to the agent; in other words I am saying that I will be able to use the

report at 10, but no earlier. So there is no utility associated directly with making the goal

true before the deadline; there might or might not be utility associated with making it true

after the deadline.

The word \directly" refers to the fact that there is obviously some advantage to delivering

the report early. But that advantage is indirectly accrued: planning to have the report

delivered an hour early makes it more likely that it will indeed be available at the deadline;

in most cases the more slack built into the plan, the more likely the plan is to meet the

deadline, even if things get behind schedule.

Of course there are also circumstances in which it is best to accomplish the goal as close

to the deadline as possible. Perhaps the report is likely to be stolen if it is delivered early,

or perhaps it has to be stored between the time it is delivered and the deadline, and storage

incurs a cost. Both of these e�ects are indirect too, however, and should not be a part of

the goal-related utility measure. Suppose that the probability of theft increases with the

amount of time the report is delivered before the deadline. In that case projecting the plan

will generate a chronicle in which the report is stolen and chronicles in which it is not. The

14



1

0

t dt d

(a) (b)

CT(t) CT(t)

t t

Figure 3: Two partial-satisfaction functions for deadlines

chronicle in which the report is stolen will not satisfy the goal at all, thus will have low

utility. The chronicle in which it is not stolen will satisfy the goal fully (since the report

will be available at the deadline) and will have high utility. Delivering the report earlier will

increase the probability of the chronicle in which the report is stolen, thus will lower the

expected utility of the plan, all else being equal.

In the second case the cost of storing the report is a resource, which is measured in the UR

utility function. The earlier it is delivered the more storage cost is incurred, again lowering

the utility of the plan.

To summarize: the deadline represents the earliest point at which satisfying the goal has

any direct value. At the deadline point itself the temporal component is fully satis�ed. There

might or might not be utility in satisfying the goal after the deadline|that will depend on

the goal itself.

The coe�cient CT

i

(t) measure the degree to which the deadline is considered to be

satis�ed at time t. Our analysis requires that for a goal i with a deadline point t

d

,

� CT

i

(t) = 0 for all t < t

d

.

� CT

i

(t

d

) = 1

� CT

i

(t) is a nonincreasing function of t for all t � t

d

.

If the deadline is absolute, then CT

i

(t) will be 0 for all points t 6= t

d

. CT

i

need not be strictly

decreasing. A at region on the curve over some time interval after the deadline represents

indi�erence about which time in that region the goal is satis�ed.

Figure 3 shows two examples: the �rst (a) shows a situation in which full satisfaction is

guaranteed for some period of time after the deadline, then decreases thereafter. The second

(b) shows an absolute deadline: satisfying the goal is useful at the deadline point but at no

others.
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Figure 4: Two partial-satisfaction functions for maintenance goals

4.2.2 Maintenance intervals

A maintenance goal speci�es that a condition must hold throughout an interval, t

b

; t

e

. The

analogue to the temporal weighting coe�cient CT for a deadline goal (evaluated at a time

point) is a function CP

i

(t; t

0

) over subintervals of (t

b

, t

e

) that de�nes to what extent the

interval satis�es the maintenance condition. We consider only the case in which CP

i

is a

function of the width of the interval, and require it to range between 0 and 1. Two analogous

situations to Figure 3 would be (a) one in which satisfaction of the maintenance restriction

declines gradually with the percentage of the interval covered, and (b) one in which any

violation of the atemporal component renders the goal totally unsatis�ed. Figure 4 shows

these two cases.

4.2.3 Summary

At this point we have described the additional information the application must provide to

de�ne partial goal satisfaction for individual deadline and maintenance goals. For each goal

i we require:

1. For the goal's atemporal component, a function DSA

i

(t) that de�nes the extent to which

the goal's symbolic component is satis�ed at that point in time. DSA

i

(t) = 0 indicates

no satisfaction of the goal formula at t; a value of 1 indicates complete satisfaction.

DSA in turn is de�ned in terms of an application-supplied function dsa speci�c to the

goal's atemporal content. For symbols this information will take the form of a table

associating a number between 0 and 1 for formulas that represent partial satisfaction

of the goal formula. For quantitative attributes the dsa function can be de�ned directly

in terms of the attribute itself.

2. For the temporal component, either
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� a function CT

i

(t) that speci�es the extent to which time t satis�es the deadline,

or

� a function CP

i

(t; t

0

) that speci�es the extent to which the interval (t; t

0

) satis�es

the maintenance requirement.

The utility function UG

i

for an individual goal is a combination of these two functions,

and the next section confronts the problem of how and when to combine them.

5 Utility Functions for Individual Goals

We have now supplied functional forms for describing satisfaction of a goal's atemporal and

temporal component. The former is supplied in the form of a function DSA

i

(t), de�ned in

terms of the atemporal attribute. The DSA function varies between 0.0 and 1.0, representing

respectively no satisfaction and complete satisfaction. The latter is supplied in terms of a

weighting coe�cient, either CT

i

(t) or CP

i

(t

1

; t

2

) depending on whether the goal is a deadline

or a maintenance interval.

5.1 Combining the temporal coe�cient and the atemporal de-

gree of satisfaction

Both of the partial-satisfaction functions are functions of time points, whereas the goal's con-

tribution to the utility function (the UG

i

function) is de�ned in terms of an entire chronicle.

To form the utility function for a deadline goal we need to evaluate and combine DSA and

CT values at selected time points within the chronicle and to form the utility function for a

maintenance goal we need to evaluate and combine the DSA

i

and CP

i

values over selected

intervals within the chronicle.

The real problem therefore is when to evaluate the functions, and this is a di�cult question

only when partial satisfaction is allowed both in the atemporal and temporal components.

Take a deadline goal, for example|if we were to allow partial satisfaction of the atemporal

component but not the temporal component, we could just evaluate the atemporal goal ex-

pression DSA at the deadline point. Likewise, if we allow partial satisfaction of the temporal

component but not the atemporal component then we could just evaluate the CT component

at the earliest time point (at or after the deadline) at which the atemporal component is

fully satis�ed. But suppose that we allow partial satisfaction in both components|at what

time point(s) should we evaluate and combine the DSA function and the CT coe�cient?

5.1.1 Deadline goals

We motivate our solution with an example. Suppose we are employing a delivery agent

whose task it is to deliver two tons of rocks to the depot by 2PM. Several trips might be

required. Abstractly we can think about how to structure payments to the driver so that if

he acts rationally he will act so as to maximize our utility.

17



A reasonable way to reward the driver is to pay him in proportion to each quantity of

rocks he delivers on each trip, up to a total of two tons. The pay for each delivery would be

discounted by an amount proportional to the amount of time by which each delivery misses

the deadline. The amount the driver gets paid is then the sum of the rewards for all the

deliveries he makes up to two tons. If the driver acts to maximize his expected pay, we will

also be maximizing our utility relative to the goal.

Even though the deadline goal is stated in terms of the level of a quantity, it is important

to note that it is proper to reward the driver for the quantities delivered, and not for the level

attained. Otherwise the driver would be penalized if rocks were removed. But we also have to

make sure that there is no incentive for the driver to remove rocks then immediately deliver

them. So the proper reward structure is to pay for deliveries that increase the attribute's

level of satisfaction. A delivery is analogous to an increase in the dsa value of the atemporal

component, not directly to a dsa value.

We also make the following assumptions about changes in atemporal utility:

� All preferences for lotteries over changes in dsa at any time t are the same as preferences

for lotteries at any other time t

0

.

� There are a countable number of changes in the dsa over the course of a chronicle.

Under these assumptions the appropriate reward structure for the agent|and by analogy

the proper expression for the goal's utility|is an additive utility function:

UG

i

(c) = DSA

i

(t

d

) + (6)

X

ft>t

D

: :9t

0

(t

D

�t

0

<t)^DSA

i

(t

0

)�DSA

i

(t)g

(DSA

i

(t)�max

t

D

�

^

t<t

DSA

i

(

^

t)) � CT

i

(t)

where t

d

is the time of the deadline. The intuition is that we accrue utility for the level of

satisfaction that is true at the deadline point (thus rewarding early satisfaction), and also for

every time the DSA function increases over a previous value. The amount of utility accrued

for a change is the increase in atemporal utility over the previous maximum, weighted by

the CT function that discounts the change according to how well it satis�es the deadline.

The basic form of this utility function is similar to that presented by Meyer

[

Keeney and

Rai�a, 1976, Sect. 9.3.2

]

for the utility of a consumption stream. The only di�erence is that

Meyer's formulation de�nes utility directly in terms of consumption|which is the change in

the agent's wealth|while our DSA functions specify this change in utility indirectly. Another

minor di�erence is that Meyer's formulation allows consumption to be negative, indicating

a loss of wealth, whereas we are only interested in positive changes in degree of satisfaction.

Consider, for example, the goal to have two tons of rocks at the depot by noon. We can

use one of two trucks. The big truck carries two tons in one load but is slow: it will get

all two tons to the depot by 2pm. The small truck carries only one ton but is fast: it will

get one ton there by 1pm and two tons there by 2pm. Which plan a�ords higher utility?

The answer depends, of course, on the utility decay associated with missing the deadline

compared to the utility decay associated with missing some rocks. Suppose that the degree
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of satisfaction of zero tons is 0.0, the degree of satisfaction of one ton is 0.5 and the degree

of satisfaction of two tons is 1.0. Suppose further that the temporal coe�cient is a linearly

decreasing function that goes from 1.0 at noon to 0.0 at 3pm. So CT(t) = 1 � t=3, where

t is the number of hours past noon. Based on these values, the utility of the chronicle that

results from using the big truck is (1)(1/3) = 1/3 and the utility of the chronicle that results

from using the small truck is (1/2)(2/3)+(1/2)(1/3) = 1/2. Hence we prefer to use the small

truck over the big truck. This preference �ts our intuition since based on the speci�cations

of the atemporal utility function and the temporal coe�cient, we associate some bene�t with

having some portion of the two tons of rocks at the depot earlier.

This example is an instance of a general probabilistic dominance relation that holds for

deadline goal utility functions as de�ned above. If

8i; t; n:P(fc : DSA

i

(t) � ngjP

1

) < P(fc : DSA

i

(t) � ngjP

2

);

where i ranges over all goals and fc : DSA

i

(t) � ng denotes the set of chronicles in which

DSA

i

(t) � n, then P

1

has higher expected utility than P

2

and is thus preferred.

5.1.2 Maintenance goals

A maintenance goal states that a condition should be maintained over an interval of time.

Partial atemporal satisfaction of a maintenance goal is expressed (as in deadline goals) in

terms of the degree of satisfaction of the atemporal component. Partial temporal satisfaction

is expressed in terms of the length of the interval or intervals over which the atemporal

component is partially satis�ed. Partial temporal satisfaction can be a non-linear function

of interval length. For example, we may wish to keep a machine running from 9:00 until

5:00 and if it has a production cycle time of 30 minutes, we may not accrue any reward for

having it running for intervals shorter than 30 minutes. So we de�ne a persistence coe�cient

function CP that maps a temporal interval into a number between zero and one.

The question again is how to combine the atemporal and temporal satisfaction into a

utility function for the maintenance goal. We need to measure how long the atemporal

component persists at each level of partial satisfaction. Since we are measuring the amount

of time over which a quantity persists, we need to �x the quantity and �nd the intervals

over which the quantity is at that level. If we have a DSA function that is only either 0

or 1, we simply sum the CP values of the intervals over which the atemporal component is

satis�ed. If the DSA can have intermediate value the procedure is roughly to integrate over

all possible DSA values and �nd intervals over which DSA is maintained at a given level.

Notice that if the satisfaction level is low over some interval and higher over a second

interval then the atemporal component was at least at that low level of satisfaction over both

intervals. For example, suppose that the DSA is above some high level, say 0.8, throughout

the interval of interest but that it uctuates above that level at some high frequency. Suppose

further that our CP function assigns zero satisfaction to any interval shorter than half of the

interval of interest. If we measure the utility in terms of the intervals over which the DSA is

at a given level, we would wind up assigning zero utility to this chronicle even though the
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DSA is above 0.8 for the entire interval. So the following expression assigns utility in terms

of the intervals over which the DSA is maintained above each possible value.

UG

i

(c) =

Z

1

0

X

fI: 8t2I DSA

i

(t)�x ^ :9I

0

�I 8t2I

0

DSA

i

(t)�xg

CP

i

(I) dx (7)

where I and I

0

denote temporal intervals. Notice the symmetry between the above expres-

sion and that for deadline goals. To compute the utility of a deadline goal, we sum changes

in DSA over time. For maintenance goals, we sum time over DSA i.e., we sum the CP of

intervals over which DSA exceeds a given value over all values of DSA.

5.2 Summary

This section completes the de�nition of utility functions for individual goals, providing a

de�nition for the UG

i

functions. The main problem we solved is how to combine partial

satisfaction of a goal's temporal component with partial satisfaction of a goals' atemporal

component.

For deadline goals the problem amounts to deciding when to evaluate the DSA function|

the degree of satisfaction of the goal's atemporal component. The main idea is to evaluate

the DSA function once at the deadline point, and then at every time point at which the DSA

function increases. At every such point the increase in atemporal satisfaction is weighted by

the temporal coe�cient CT

i

.

For maintenance goals combining the temporal and atemporal components involves iden-

tifying the intervals of DSA over which to evaluate CP. The main idea is to evaluate the CP

of the longest continuous intervals over which the DSA exceeds each possible value.

Now that we have the basic form of the agent's top-level utility function we turn to the

problem of how to use that function to establish qualitative di�erences in the quality of

alternative plans.

6 Using the Utility Functions to Rank Plans

One of the main goals of the present work is to use information in the utility function's sym-

bolic structure to guide the building of good plans, which generally will involve demonstrating

that one plan is preferable to another. At worst establishing this relationship involves com-

puting the expected utility of both plans, a process that requires generating and evaluating

all possible chronicles for each.

By exploiting the structure of the utility functions we can establish the same relation-

ships without performing the full expected-utility calculation. We do so by establishing

relationships among the individual goals' symbolic components that indicate corresponding

relationships among the corresponding utility functions. Here is an abstract characterization

of the sorts of relationships we will establish:
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Suppose that one of the agent's goals is g and that there are two formulas �

and  that bear some relation to g. More particularly, the truth of � indicates

a high goal-related utility (DSA) whereas the truth of  indicates a low DSA

value. Further suppose that there are two alternative plans, P

1

and P

2

. If the

probability that � is true by some time t

1

given P

1

is at least �, and if the

probability that  is true at all times before t

2

given P

2

is at least �, and if �

exceeds some function of �, dsa(�), dsa( ), t

1

, and t

2

, then P

1

's expected utility

is guaranteed to be greater than P

2

's.

Having established a relationship of that form the planner need only establish two proba-

bility bounds associated with propositions � and  in order to eliminate P

2

from further

consideration.

Two advantages accrue from this technique:

1. it reduces the general problem of expected-utility calculations to the more speci�c task

of deciding whether a particular probability exceeds a particular threshold, and

2. it allows us to perform the expected-utility analysis incrementally|at each stage of

the planning process we can eliminate some plans from consideration, again limiting

the amount of inference needed to choose a good course of action.

We will demonstrate these advantages in Section 7, but �rst establish relationships for the

goal types we de�ned in the previous section.

6.1 Deadline goals

We �rst derive results for deadline goals, attacking symbolic atemporal attributes, then

quantitative atemporal attributes.

6.1.1 Bounds for symbolic attributes

We are comparing two plans on the basis of their performance on a goal whose temporal

component is a deadline t

d

and whose atemporal component is symbolic. We have a formula

� that indicates a high level of goal satisfaction (dsa value) and a formula  with a low dsa

value. Consider the case in which P

1

is likely to achieve � at some time at or close to the

deadline, and P

2

is likely to achieve at best  only some time well after the deadline. Under

what circumstances can we say that P

1

has higher expected utility than P

2

?

Suppose that the goal's atemporal component is

HOLDS (On(A,B); t

d

; t

d

) ^ HOLDS (On(B,C); t

d

; t

d

)

and we de�ne the dsa function as follows:

i �

i

dsa(�

i

)

1 :On(B;C) 0.0

2 :On(A;B) ^ On(B;C) 0.5

3 On(A;B) ^ On(B;C) 1.0
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In other words we accrue partial satisfaction by achieving On(B,C) alone, but no partial

satisfaction by achieving On(A,B) alone. In that case the two formulas might be

� = HOLDS (On(B;C); t; t

0

)

 = :HOLDS (On(B;C); t; t

0

):

Now suppose that for plan P

1

we can �nd some time point t

1

� t

d

such that

P(�(t

1

; t

1

)jP

1

) � �

and for plan P

2

we can �nd some time point t

2

� t

d

such that

P(8t; t

0

(t

d

� t � t

0

< t

2

)!  (t; t

0

)jP

2

) � �

.

Under what conditions can we say that plan P

1

is preferable to plan P

2

? We must

determine the lowest value of EU(P

1

) and the highest value of EU(P

2

) consistent with these

two constraints. Let �

�

be the formula of lowest dsa consistent with � (in the example

�

�

= �

3

). We are guaranteed the existence of such a formula since the �

i

are exhaustive.

The expected utility of plan P

1

is minimized if

1. with probability �, �

�

is achieved at time t

1

and the goal is not partially achieved at

any time earlier than t

1

, and

2. with probability 1 � � the goal is completely unsatis�ed.

So by Equation 6 we have

EU(P

1

) � � � dsa(�

�

) � CT(t

1

) + (1� �) � 0

Now let �

 

be the formula of highest dsa consistent with conjunct  (�

 

= �

2

). The

expected utility of plan P

2

is highest if

1. with probability �, �

 

is achieved by the deadline and the goal is completely achieved

immediately after time t

2

, and

2. with probability 1 � � the goal is completely satis�ed at the deadline.

Again by Equation 6:

EU(P

2

) � �[dsa(�

 

) + (1� dsa(�

 

))CT(t

2

)] + (1 � �) � 1

And we therefore know that P

1

's expected utility is higher than P

2

's if

� >

�[dsa(�

 

) + (1� dsa(�

 

))CT(t

2

)] + (1� �)

dsa(�

�

) � CT(t

1

)

(8)

The values for �

�

and �

 

and the times t

1

and t

2

will determine how useful our probability

bounds are. A t

1

close to the deadline and a � that is inconsistent with low-utility �

i

values

will give us a high lower bound on EU(P

1

). Similarly, a t

2

well after the deadline and a  

inconsistent with high utility �

i

values will give us a low upper bound on EU(P

2

).
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6.1.2 Bounds for quantitative attributes

Now suppose that our deadline goal is stated in terms of some quantity Q. Assume that the

dsa is a monotonically increasing function of the quantitative attribute

3

. Suppose we can

establish that P

1

will achieve some high level of Q by some time close to the deadline, and

that P

2

can not establish more than some low level of Q until well after the deadline. What

do the levels and times have to be in order to conclude that P

1

dominates P

2

?

Suppose we know that for plan P

1

we �nd a time point t

1

� t

d

and some attribute value

k

1

for which

P(HOLDS (� (Q; k

1

); t

1

; t

1

)jP

1

) � �

and for plan P

2

we �nd a time point t

2

� t

d

and a value k

2

such that

P(8t; t

0

(t

d

� t � t

0

< t

2

)! HOLDS (� (Q; k

2

); t; t

0

)jP

2

) � �

Under what conditions can we say that P

1

dominates plan P

2

? The expected utility of P

1

is lowest if

1. with probability �, we achieve a level k

1

for Q at time t

1

and Q has value zero at all

times prior to t

1

, and

2. with probability (1 � �), Q has its minimum value at all times.

Under those circumstances we know that

EU(P

1

) � � � dsa(k

1

) � CT(t

1

)

The expected utility of plan P

2

is highest if

1. with probability �, Q attains level k

2

at the deadline and the maximum possible value

of Q is attained immediately after t

2

, and

2. with probability 1 � � the maximum possible value of Q is attained by the deadline.

Then we know that

EU(P

2

) � � � [dsa(k

2

) + (1� dsa(k

2

)) � CT(t

2

)] + (1 � �);

and P

1

is preferred to P

2

if

� >

� � [dsa(k

2

) + (1� dsa(k

2

)) � CT(t

2

)] + (1� �)

dsa(k

1

) � CT(t

1

)

(9)

3

A symmetric analysis can be performed for monotonically decreasing atemporal utility.
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6.1.3 Bounds for strictly ordered atemporal attributes

Additional structure in the atemporal component can make dominance relationships easier

to come by. In this section we will consider a common atemporal component that has an

additional structural feature: a ordered conjunction of expressions in which each conjunct

dominates subsequent conjunct|any chronicle that satis�es g

1

is preferable to every chron-

icle that does not satisfy g

1

, even it satis�es all the others. For example, if our conjuncts

are g

1

, g

2

, and g

3

our strictly ordered atemporal utility function would satisfy the constraint

that satisfying g

1

is preferable to not satisfying it, regardless of whether g

2

or g

3

are satis�ed:

dsa(g

1

^ g

2

^ g

3

) > dsa(:g

1

^ g

2

^ g

3

)

dsa(g

1

^ :g

2

^ g

3

) > dsa(:g

1

^ g

2

^ g

3

)

dsa(g

1

^ g

2

^ :g

3

) > dsa(:g

1

^ g

2

^ g

3

)

dsa(g

1

^ :g

2

^ :g

3

) > dsa(:g

1

^ g

2

^ g

3

)

dsa(g

1

^ g

2

^ g

3

) > dsa(:g

1

^ :g

2

^ g

3

)

dsa(g

1

^ :g

2

^ g

3

) > dsa(:g

1

^ :g

2

^ g

3

)

.

.

.

dsa(g

1

^ :g

2

^ :g

3

) > dsa(:g

1

^ :g

2

^ :g

3

)

and likewise, given that g

1

is true, it's always preferable to satisfy g

2

regardless of g

3

's state:

dsa(g

1

^ g

2

^ g

3

) > dsa(g

1

^ :g

2

^ g

3

)

dsa(g

1

^ g

2

^ :g

3

) > dsa(g

1

^ :g

2

^ g

3

)

dsa(g

1

^ g

2

^ g

3

) > dsa(g

1

^ :g

2

^ :g

3

)

dsa(g

1

^ g

2

^ :g

3

) > dsa(g

1

^ :g

2

^ :g

3

)

Finally we note that if g

1

and g

2

are both true then g

3

is preferable to its negation:

dsa(g

1

^ g

2

^ g

3

) > dsa(g

1

^ g

2

^ :g

3

)

Notice that we did not specify that g

2

dominates g

3

in cases where g

1

is false. The reason

is that we will often assign zero utility to all states in which the most important goal is not

satis�ed. For example, given the goal to have the truck fueled and clean by noon, it might

do us no good to have it clean if it is not fueled.

The structure of a utility function of this form allows us to prune away suboptimal plans

by considering each conjunct individually in the priority order dictated by the dsa values.

As above suppose that we have a time t

1

at which P

1

is likely to achieve g

1

, but for P

2

g

1

is liable to be false until at least t

2

:

P(g

1

(t

1

; t

1

)jP

1

) � �

P(8t; t

0

(t

d

� t � t

0

< t

2

)! :g

1

(t; t

0

)jP

2

) � �
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Under what conditions can we say that plan P

1

is preferable to plan P

2

? We have no

information about the probabilities of the atemporal component's other conjuncts, so a lower

bound on the expected utility of P

1

is

EU(P

1

) � � � dsa(g

1

^

i

:g

i

) � CT(t

1

)

and an upper bound on the expected utility of plan P

2

is

EU(P

2

) � � � [dsa(:g

1

^

i

g

i

) + (1� dsa(:g

1

^

i

g

i

))CT(t

2

)] + (1� �):

So plan P

1

is preferred to plan P

2

if

� >

�[dsa(:g

1

^

i

g

i

) + (1� dsa(:g

1

^

i

g

i

))CT(t

2

)] + (1� �)

dsa(g

1

^

i

:g

i

)CT(t

1

)

(10)

In this case we can eliminate some suboptimal plans using based only on their ability

to satisfy the �rst goal conjunct. Having done so we can then compare the probability of

satisfying the �rst and second conjuncts to the probability of satisfying the �rst conjunct

but not the second, and so forth. We continue until we have incorporated all the conjuncts,

at which point we can compute the expected utility of any remaining plans.

This ability to consider the conjuncts sequentially has important consequences for the

projection process.

[

Hanks, 1993

]

presents a probabilistic projection algorithm demonstrating

that:

� it can be much cheaper to project a plan with respect to a single proposition (like one

of our goal conjuncts) than it is to reason about all of the plan's e�ects,

� it can be much cheaper to determine whether the probability of a proposition exceeds

a speci�c threshold than it is to compute the exact value of that probability.

6.1.4 Example

Let's consider a speci�c example of how these relationships can be used to compare plans.

Suppose our goal is to be home by 6:00 with some Thai food and some beer:

HOLDS (Loc(me,home); 6:00; 6:00) ^

HOLDS (Possess(me,thai-food); 6:00; 6:00) ^

HOLDS (Possess(me,beer); 6:00; 6:00)

Assume that these propositions persist: any of the goals I achieve before the deadline will

be true at the deadline.

Suppose we have the dsa function appearing in Figure 5, and that the temporal coe�cient

function falls o� linearly from 1.0 at 6:00pm to 0.0 at 10:00pm, so CT(t) = 1� t=4, where t is

measured in hours past 6:00pm. Now consider two plans P

1

and P

2

such that for plan P

1

we

have established a time t

1

prior to which the formula � = Loc(me,home) is likely to be true,

25



i �

i

dsa(�

i

)

1 :Loc(me,home) 0.0

2 Loc(me,home) ^ :Possess(me,thai-food) ^ :Possess(me,beer) 0.4

3 Loc(me,home) ^ :Possess(me,thai-food) ^ Possess(me,beer) 0.5

4 Loc(me,home) ^ Possess(me,thai-food) ^ :Possess(me,beer) 0.8

5 Loc(me,home) ^ Possess(me,thai-food) ^ Possess(me,beer) 1.0

Figure 5: Example atemporal utility function

and for plan P

2

we have established that will likely not get home ( = :Loc(me,home))

before t

2

= 9:00. The precise formulas are:

P(HOLDS (Loc(me,home); t

1

; t

1

)jP

1

) � �

P(8t; t

0

(6:00 � t � t

0

< 9:00) ! :HOLDS (Loc(me,home); t; t

0

)jP

2

) � �

In this case we can apply Equation (8) directly to establish that P

1

dominates P

2

if

� >

1� :75�

:4

So if � = :9 then for any � greater than .8125 plan P

1

will dominate P

2

, and plan P

2

can

be eliminated from consideration.

6.2 Maintenance goals

Now we consider a similar analysis for maintenance goals|those in which the temporal

component requires that the atemporal component hold over an interval. The general rela-

tionship we will establish is between a plan P

1

that is likely to keep a proposition � true

over a long subinterval of the maintenance interval, and � has a high dsa value. About P

2

we have established that some low-dsa formula  is likely to hold over all subintervals (i.e.

 is the best that P

2

is likely to achieve). In that case, if � is su�ciently good compared to

 , and if the interval over which � is maintained is su�ciently long, and if P

1

is su�ciently

likely to actually achieve �, then we can prove that P

1

dominates P

2

.

6.2.1 Bounds for symbolic attributes

For symbolic attributes we once again measure degree of satisfaction on the basis of formulas

related to the goal, and their associated dsa values. For maintenance goals we are supposed

to make the formulas true over an interval [t

b

; t

e

]. Suppose that for plan P

1

we have constants

t

1

; t

0

1

such that (t

b

� t

1

� t

0

1

� t

e

) for which we can establish that

P(�(t

1

; t

0

1

)jP

1

) � �
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(P

1

is likely to make � true over a subinterval [t

1

; t

0

1

] of the maintenance interval [t

b

; t

e

]), and

for plan P

2

we have constants t

2

; t

0

2

such that (t

B

� t

2

� t

0

2

� t

E

) for which we can establish

that

P( (t

2

; t

0

2

)jP

2

) � �

(P

2

is likely to make  hold over subinterval [t

2

; t

0

2

] of the maintenance interval [t

b

; t

e

].)

Under what conditions can we say that P

1

dominates P

2

? Again we must determine the

lowest value of EU(P

1

) and the highest value of EU(P

2

) consistent with these two constraints.

Let �

�

be the formula of lowest dsa consistent with �. The expected utility of plan P

1

is

lowest if

1. with probability �, �

�

holds throughout t

1

; t

0

1

and the atemporal component is not

partially satis�ed at any time outside of [t

1

; t

0

1

], and

2. with probability 1� � the atemporal component is completely unsatis�ed throughout

[t

b

; t

e

].

So by Equation (7) we have

EU(P

1

) � � �

Z

dsa(�

�

)

0

CP(t

1

; t

0

1

) dx

= � � CP(t

1

; t

0

1

) � dsa(�

�

)

Now let �

 

be the formula of highest dsa consistent with  . The expected utility of plan

P

2

is highest if

1. with probability �, �

 

holds throughout [t

2

; t

0

2

] and the atemporal component is com-

pletely satis�ed at all time outside [t

2

; t

0

2

], and

2. with probability 1�� the atemporal component is completely satis�ed throughout the

interval [t

b

; t

e

].

Again by Equation (7):

EU(P

2

) � � �

"

Z

dsa(�

 

)

0

CP(t

B

; t

E

) dx +

Z

1

dsa(�

 

)

CP(t

B

; t

2

) + CP(t

0

2

; t

E

) dx

#

+ (1 � �)(1)

= �[dsa(�

 

) + (CP(t

B

; t

2

) + CP(t

0

2

; t

E

)) � (1 � dsa(�

 

))� 1] + 1

and then P

1

dominates P

2

if

� >

�[dsa(�

 

) + (CP(t

B

; t

2

) + CP(t

0

2

; t

E

)) � (1� dsa(�

 

))� 1] + 1

CP(t

1

; t

0

1

) � dsa(�

�

)

(11)
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6.2.2 Bounds for quantitative attributes

In this case our atemporal goal is stated in terms of some quantity Q, and the dsa function

associated with Q is monotonically increasing. We discover that P

1

is likely to achieve a

level of Q at least equal to k

1

throughout some subinterval [t

1

; t

0

1

] of the maintenance interval

[t

b

; t

e

]; P

2

is likely to achieve a level of Q at most k

2

throughout some subinterval [t

2

; t

0

2

] of

[t

b

; t

e

]. The two equations are:

P(HOLDS (� (Q; k

1

); t

1

; t

0

1

)jP

1

) � �

P(HOLDS (� (Q; k

2

); t

2

; t

0

2

)jP

2

) � �

Under what conditions can we say that P

1

's expected utility is greater than P

2

's? The

expected utility of P

1

is lowest if

1. with probability �, a level k

1

for Q is maintained throughout the interval [t

1

; t

0

1

] and

Q has the value corresponding to a dsa of zero at all times outside of [t

1

; t

0

1

], and

2. with probability (1 � �) Q has the value corresponding to a dsa of zero at all times

during [t

b

; t

e

].

Under those circumstances we know that

EU(P

1

) � � � CP(t

1

; t

0

1

) � dsa(k

1

)

The expected utility of plan P

2

is highest if

1. with probability �, Q maintains a level of k

2

throughout the interval t

2

; t

0

2

and Q

maintains the value corresponding to complete satisfaction at all times outside t

2

; t

0

2

,

and

2. with probability 1 � � Q maintains the value corresponding to complete satisfaction

throughout the interval t

B

; t

E

.

Then we know that

EU(P

2

) � �[dsa(k

2

) + (CP(t

B

; t

2

) + CP(t

0

2

; t

E

)) � (1� dsa(k

2

))� 1] + 1

and then P

1

is preferred to P

2

if

� >

�[dsa(k

2

) + (CP(t

B

; t

2

) + CP(t

0

2

; t

E

)) � (1� dsa(k

2

))� 1] + 1

CP(t

1

; t

0

1

) � dsa(k

1

)

(12)
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6.2.3 Bounds for strictly ordered atemporal attributes

Finally we reconsider the case of Section 6.1.3, where the atemporal component consists of a

conjunction of formulas that can be ordered such that each conjunct dominates those later

in the sequence. This time we establish that P

1

is likely to make the dominant attribute g

1

true over some subinterval [t

1

; t

0

1

], and P

2

is likely to make that same attribute false over the

subinterval [t

2

; t

0

2

]:

P(g

1

(t

1

; t

0

1

)jP

1

) � �

P(:g

1

(t

2

; t

0

2

)jP

2

) � �

Under what conditions can we say that plan P

1

is preferable to plan P

2

? This is just a

special case of an atemporal attribute, where the formula of lowest dsa consistent with g

1

is

�

�

� g

1

^

i

:g

i

and the formula of highest dsa consistent with :g

1

is �

 

� :g

1

^

i

g

i

. So by

the results of section 6.2.1 plan P

1

is preferred to plan P

2

if

� >

�[dsa(:g

1

^

i

g

i

) + (CP(t

B

; t

2

) + CP(t

0

2

; t

E

)) � (1� dsa(:g

1

^

i

g

i

))� 1] + 1

CP(t

1

; t

0

1

) � dsa(g

1

^

i

:g

i

)

(13)

6.3 Summary

The main point of this section was to establish circumstances under which the question of

whether one plan is preferable to another (in the sense of having higher expected utility) could

be answered by determining bounds on the probabilities of goal-related propositions. The

general procedure for determining that a plan P

1

dominates a plan P

2

is to �nd a proposition

� associated with high (atemporal) satisfaction that P

1

is likely to achieve and a proposition

 associated with low atemporal satisfaction that P

2

is likely to achieve. We then compare

the worst case for P

1

(that it establishes � with low probability, and otherwise provides

no atemporal goal satisfaction) agains the best case for P

2

(that it establishes  with low

probability, and the rest of the time provides complete goal satisfaction). This analysis leads

to an inequality involving the probabilities of � and  , indicating circumstances under which

P

1

dominates P

2

. We provided equations for symbolic, numeric, and ordered conjunctive

atemporal attributes, �rst for deadline goals (Equations (8), (9), and (10)) and analogously

for maintenance goals (Equations (11), (12), and (13)).

The analysis in this section studies a single goal in isolation; we next consider a multi-goal

utility model, and how it can be exploited in the process of generating plans.

7 Multiple Goals, Residual Utility, and Computational

Issues

The previous sections established bounds on the probabilities of outcomes that could be used

to determine whether one plan is preferable to another. These analyses were performed on
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the utility functions for individual goals, implicitly assuming that utility for other goals and

for resource consumption were the same.

The assumption that global utility is linear additive in the goal utilities (Section 3)

makes explicit the tradeo� between satisfying the top-level goals, and between satisfying a

goal and consuming resources. The assumption that resource consumption (counted in the

residual utility term) is independent of the goal utilities means that we can regard resource

consumption as a goal as well. Take the two-goal case, for example, for which we can write

the equation for the expected utility of a plan P as follows:

EU(P) = k

1

EU

1

(P) + k

2

EU

2

(P) + k

r

EU

r

(P) (14)

where

EU

i

(P) = �

c

UG

i

(c)P(cjP):

Now suppose that we have already generated a plan P

1

and we know its expected utility

EU(P

1

) = u

1

.

Further suppose that we have begun generating an alternative plan P

2

, in particular we

have generated a subplan that achieves the �rst goal. From this subplan we can compute

1. an upper bound on the utility associated with �rst goal, EU

1

(P

2

) � u

12

, and

2. a minimum level of resource consumption which provides us with an upper bound on

residual utility, EU

r

(P

2

) � u

r2

.

We can then calculate that for P

2

to be preferred to P

1

it must at least satisfy goal two to

the degree

EU

2

(P

2

) �

u

1

� k

1

u

12

� k

r

u

r2

k

2

which represents the required utility level for the second goal assuming no additional resource

consumption. Examining the symbolic structure of the second goal may indicate exactly

what propositions must be made true or what quantity level must be attained, and by when,

in order to attain that level of utility. The ratio between k

r

and k

2

along with the residual

utility function indicates how e�ciently the second goal must be satis�ed as well.

7.1 Plan generation and re�nement

The results in previous sections all involved comparing two complete plans; the relationships

we provided reduced the question of which was preferable in the sense of maximizing utility

to one of establishing a relationship between probabilities over the symbolic attributes that

comprise one of the goal expressions. The algorithm in

[

Hanks, 1993

]

exploits both the sym-

bolic content of the relationship and the numeric threshold to limit inference in establishing

whether or not this relationship holds. Therefore deciding which of two partial plans is

preferable might be considerably cheaper than computing the expected utility of each.
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The result earlier in this section demonstrates that given one complete plan and a partial

plan we can characterize the interesting possible completions of the partial plan|the ones

that satisfy the remaining goals with a certain probability and with a certain e�ectiveness if

the second plan is to be preferred to the �rst. Therefore deciding if a partial plan is worth

pursuing can be considerably cheaper than examining all of its completions.

The question arises in general, however, as to what extent these relationships can aid the

planning process. What can we say about the relationship between two partial plans? The

next two sections discuss how our model might be applied to two plan-generation paradigms:

partial-order planning and re�nement planning.

7.1.1 Partial-order planning and search control

The buridan planner

[

Kushmerick et al., 1993

]

is an extension to classical nonlinear planners

that allows uncertainty in the initial world state and in the e�ects of operators. The buridan

algorithm takes as input a problem description (a goal formula and a probability distribution

over initial world states) and a probability threshold, and produces a plan that satis�es

the goal with probability at least equal to the threshold. The analysis in this paper is

complementary: it is a theory of how to generate the threshold values, but does not suggest

an algorithm for exploiting them.

Two problems (at least) complicate the problem of applying our theory of utility to a

probabilistic planner like buridan. The �rst is that the buridan algorithm generates a

lower bound on the probability that the current plan or its completions satisfy the goal, and

generally the lower the threshold the less work buridan need do to generate an appropriate

plan. A lower bound is of limited use in and of itself, however: you generally can't prove

one plan superior to another without a lower bound on the performance of one and an upper

bound on the other. The problem with a generative or transformational planner is that it is

can be impossible to establish the point at which the plan cannot be further improved.

The second limitation in applying our theory to buridan is that its notion of a goal is

limited to propositional formulas, so concepts of partial satisfaction, deadlines, and resources

are di�cult to represent. Ongoing work is directed toward enhancing buridan's represen-

tation language so it can naturally represent the concepts developed in this paper, and

also to explore how this framework can be used to provide the planner with search-control

information.

7.1.2 Re�nement planning

One special case of partial planning that is amenable to our analysis is that in which the

planner's only operation is to re�ne its current plan, which amounts to replacing an abstract

action in the plan with a more speci�c version of that action. More precisely a re�nement

operator can never increase the set of possible outcomes consistent with the plan's execution,

and thus tends to resolve uncertainty about its quality. An abstract plan's outcomes are sets

of outcomes of more concrete plans. Since di�erent probability and utility values may be

associated with each speci�c outcome, in general a probability range and a utility range will

31



be associated with each abstract outcome. Thus the expected utility of an abstract plan is

represented by an interval, which includes the expected utilities of all possible instantiations

of that abstract plan. Re�ning the plan, i.e. choosing an instantiation, tends to narrow the

interval. Comparing two abstract plans can stop as soon as their expected-utility intervals

no longer overlap

4

.

The type of abstraction we use has been formalized by Tenenberg

[

1991

]

within the frame-

work of the STRIPS representation and termed inheritance abstraction. He contrasts this to

the type of abstraction used in ABSTRIPS

[

Sacerdoti, 1974

]

, which Tenenberg calls relaxed

model abstraction. For examples of the use of inheritance abstraction in plan generation

in a deterministic setting see

[

Nau, 1987, Anderson and Farley, 1988

]

. The present work

generalizes the notion of inheritance abstraction by introducing time, probability, and utility

into the representation.

We illustrate the planning technique with an example. Consider the following problem

of planning a delivery task. We wish to generate the best plan for delivering two tons of

tomatoes from a farm to a warehouse within 85 minutes. The utility of a plan outcome is a

function of the deadline goal and the residual utility, which is determined by the amount of

fuel consumed. The components of the utility function are shown in Figure 7. The overall

utility is

U(c) = UG(c) + (:02)UR(c)

The delivery plan will consist of driving a truck from the depot to the farm, loading the

truck, and driving the loaded truck to the warehouse. Planning is the process of generating

this plan as well as choosing among the various ways this plan can be realized in such a

way that expected utility is maximized. The descriptions of the available actions are shown

in Figure 6. The action descriptions are similar to those in

[

Hanks, 1990

]

. Actions have

conditional e�ects, and are represented by a tree with conditions labeling the branches. The

leaves of the tree are labeled with the outcomes of the action. Deterministic actions are

labeled with a single outcome. The probability of an outcome is the probability conditioned

on the action and the conjunction of all conditions on all branches leading to the outcome.

Outcomes are described in terms of a duration, as well as any changes in attribute values.

Attributes are represented as functions of time. The variable t represents the beginning time

of the action, making the action descriptions temporally indexical.

There are two possible routes we can take from the depot to the farm: road A and road

B. Road A is longer but has no delays, while travel along road B might be delayed due to

construction. The probability that construction is taking place is 0.2. These options are

represented by the �rst two action descriptions in the Figure 6.

Once at the farm we must load the truck. We have two trucks at the depot to choose

from: an open truck and a closed, cushioned truck. The open truck is easy to load, while

the closed truck can be loaded easily if a special quick-loading device is available. There is

4

Or when the intervals narrow to the point where the distinction between the two does not warrant

further attention, as

[

Russell and Wefald, 1991b

]

point out.
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Go to farm
on road A

dur1 = 30
fuel(t+dur1) = fuel(t)–1

Go to farm
on road B

dur2 = 15
fuel(t+dur2) = fuel(t)–1/2

dur2 = 45
fuel(t+dur2) = fuel(t)–1/2

P(¬construction)=.8

P(construction)=.2

Load open
truck

Load closed
truck

dur3 = 15
tons–in–truck(t+dur3) = 2

P(quick–loader)=.8

P(¬quick–loader)=.2

dur4 = 10
tons–in–truck(t+dur4) = 2

dur4 = 25
tons–in–truck(t+dur4) = 2

Drive open truck
on mountain road

Drive open truck
on valley road

dur5 = 60
fuel(t+dur5) = fuel(t)–2
tons–delivered(t+dur5) = (.8) tons–in–truck(t)

dur6 = 90
fuel(t+dur6) = fuel(t)–3
tons–delivered(t+dur6) = (.9) tons–in–truck(t)

dur6 = 90
fuel(t+dur6) = fuel(t)–3
tons–delivered(t+dur6) = tons–in–truck(t)

P(sunny) = .7

P(cloudy) = .3

Drive closed truck
on mountain road

Drive closed truck
on valley road

dur7 = 60
fuel(t+dur7) = fuel(t)–2
tons–delivered(t+dur7) = tons–in–truck(t)

dur7 = 90
fuel(t+dur7) = fuel(t)–3
tons–delivered(t+dur7) = tons–in–truck(t)

Figure 6: Action descriptions
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Figure 7: Speci�cation of delivery utility function.

34



an 80% chance this device will be available. The next two diagrams in the Figure 6 depict

these two actions.

Once the truck is loaded we must drive it to the warehouse. We have two routes to choose

from: the mountain road and the valley road. The mountain road is shorter but bumpy.

If we drive the open truck on the mountain road, the bottom 20% of the tomatoes will be

crushed. If we drive the open truck on the valley road and the sun is shining, the top 10%

of the tomatoes will be spoiled by the sun. This combination of options results in the last

four action descriptions in the Figure 6.

In order to perform the re�nement type planning described, we organize the planning

knowledge in an abstraction/decomposition network, shown in Figure 8. Solid links show

decompositions

[

Charniak and McDermott, 1985, Ch9

]

, while dashed links show possible

re�nements. For example the task \deliver tomatoes" is decomposed into the sequence of

the two actions \go to farm" and \load & drive truck". The arrow between the actions

signi�es temporal succession. The abstract action \go to farm" can be realized by driving on

road A or road B. Since both elements of a decomposition must be realized, decomposition

links are AND links and since either element of an instantiation may be used, instantiation

links are OR links. So this network forms an AND/OR tree.

Descriptions of the abstract actions are shown in Figure 9. A set of actions is abstracted

by grouping together their outcomes into abstract outcomes which represent the range of

possible outcomes of the instantiations. Care must be taken to group together similar out-

comes. For example, the \drive open truck" action is an abstraction of \drive open truck on

mountain road" and \drive open truck on valley road." Since the single outcome of \drive

open truck on mountain road" is more similar to the outcome of the upper branch of \drive

open truck on valley road" than to the outcome of the lower branch, it is grouped with

the former. While similarity is fairly clear in this case, determining similarity of outcomes

with multiple attributes may not be straightforward in general. (In fact, one may wish to

produce more than one abstraction based on di�erent similarity measures and try each one

on a given problem. One would use the hierarchy that resulted in the most pruning for the

given problem.) The outcomes of the abstract action are now speci�ed simply as the range

of outcomes grouped together. Once the outcomes have been abstracted, probabilities must

be assigned to them. This is done by taking the range of probabilities of the outcomes in the

group. So for the \drive open truck" action, the range on the upper branch is [min(P(sunny),

1) max(P(sunny), 1)], which is just [P(sunny) 1].

Given this representation of the planning problem, we evaluate plans at the abstract level

and prune suboptimal plans before re�ning candidate plans further. There are eight possible

plans implicitly encoded in the abstraction/decomposition network, and we want to choose

the one that maximizes expected utility.

According to the network, the task of delivering tomatoes is �rst decomposed into going

to the farm and loading, then driving the truck. We can �rst choose either which road to

take to the farm or which truck to load and drive. Suppose we make the latter choice �rst.

Because the utility function is a function over chronicles, the value of a particular action in a

plan depends on when in the plan it occurs, so options can only be evaluated in the context
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deliver tomatoes

go to farm load & drive truck

road A road B load & drive
open truck

load & drive
closed truck

load open 
truck

drive open truck
to warehouse

load closed
truck

drive closed truck
to warehouse

drive open on
mountain road

drive open on
valley road

drive closed on
mountain road

drive closed on 
valley road

Figure 8: Abstraction/decomposition network
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Go to farm

dur8 = [15  30]
fuel(t+dur8) = fuel(t)–[1/2  1]

dur8 = 45
fuel(t+dur8) = fuel(t)–1/2

[P(¬construction)  1]

[0  P(construction)]

Drive open truck

dur9 = [60 90]
fuel(t+dur9) = fuel(t)–[2 3]
tons–delivered(t+dur9) = [.8 .9] tons–in–truck(t)

dur9 = 90
fuel(t+dur9) = fuel(t)–3
tons–delivered(t+dur9) = tons–in–truck(t)

[P(sunny)  1]

[0  P(cloudy)]

Drive closed truck
dur10 = [60 90]
fuel(t+dur10) = fuel(t)–[2 3]
tons–delivered(t+dur7) = tons–in–truck(t)

Figure 9: Abstract action descriptions
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P

1

: Go to farm �! Load & drive open truck

chronicle time fuel tons U(chronicle) probability

c

1

[90 135] [2.5 4] [1.6 1.8] [.005 .02] [.56 1]

c

2

[120 135] [3.5 4] 2 [.380 .5725] [0 .3]

c

3

[120 150] [2.5 3.5] [1.6 1.8] [.01 .02] [0 .2]

c

4

150 3.5 2 .1975 [0 .06]

P

2

: Go to farm �! Load & drive closed truck

chronicle time fuel tons U(chronicle) probability

c

1

[85 130] [2.5 4] 2 [.4425 1.02] [.64 .8]

c

2

[100 145] [2.5 4] 2 [.255 .8325] [.16 .2]

c

3

[115 145] [2.5 3.5] 2 [.255 .635] [0 .16]

c

4

[130 160] [2.5 3.5] 2 [.0675 .4475] [0 .04]

Table 1: Highest level abstract plan outcomes.

of an overall plan. Consequently, we combine the \load & drive open truck" and the \load

& drive closed truck" actions with the \go to farm" action to obtain a complete abstract

plan that can be evaluated.

Each abstract plan results in four chronicles (Table 1). For example, for plan P

1

we

obtain these chronicles by concatenating the \go to farm," \load open truck," and \drive

open truck" action descriptions. Doing so results in four chronicles, since \go to farm" and

\drive open truck" each have two branches. Rather than showing the complete chronicles,

the relevant attributes of the resulting chronicles are summarized in Table 1, which shows

for each chronicle the range of times, fuel consumption, and tons of tomatos delivered. The

time refers to the time that the delivery is made. We assume that the plan begins execution

at time zero and we take the beginning time of an action to be the beginning time of the

previous action plus its duration. So for example the fuel consumption for chronicle c

1

is

computed according to

fuel(dur

8

) = fuel(0)� [:5 1]

fuel(dur

8

+ dur

9

) = fuel(dur

8

)� [2 3]

so

fuel(dur

8

+ dur

9

) = fuel(0)� [2:5 4]

We illustrate how the utility range is computed by showing the computation for chronicle

c

2

of plan P

1

; the computation for the other chronicles is similar. Let UG

min

and UG

max

be the lower and upper bounds on the goal utility, respectively, and let UR

min

and UR

max

be the lower and upper bounds on residual utility, respectively. Since we are computing the

utility of a deadline goal, we can minimize the utility of the abstract chronicle by choosing
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the latest delivery times and the smallest delivery amounts, we can maximize the utility by

choosing the earliest delivery times and the largest amounts. So

UG

max

(c

2

) = dsa(2) � ct(120) = 0:5625

UG

min

(c

2

) = dsa(2) � ct(135) = 0:375

UR

min

(c

2

) = 0:25

UR

max

(c

2

) = 0:5

Since our global utility function is U(c) = UG(c) + (0:02)UR(c), we have U(c

2

) = [0.380

0.5725].

Using the utility and probability information in the table we can compute the expected

utility bounds for each plan. Computing a bound for a plan involves choosing the probabili-

ties within the given ranges that minimize and maximize the expected utility. We can do so

by solving a small linear programming problem in which the objective function is the expres-

sion for the expected utility and the constraints are the probability bounds. For example,

the upper bound for plan P

1

can be computed by maximizing the objective function

:02p

1

+ :5725p

2

+ :02p

3

+ :1975p

4

subject to the constraints

:56 � p

1

� 1

0 � p

2

� :3

0 � p

3

� :2

0 � p

4

� :06

p

1

+ p

2

+ p

3

+ p

4

= 1

The maximizing probabilities are

p

1

= .56

p

2

= .3

p

3

= .08

p

4

= .06

So the upper bound on expected utility is

(:56)(:02) + (:3)(:5725) + (:08)(:02) + (:06)(:1975) = :1964

So for plan P

1

and P

2

we obtain the expected utility ranges
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P

2:1

: Go to farm �! Load closed truck �! Drive closed on mountain road

chronicle time fuel tons U(chronicle) probability

c

1

[85 100] [2.5 3] 2 [.8275 1.02] [.64 .8]

c

2

[100 115] [2.5 3] 2 [.64 .8325] [.16 .2]

c

3

115 2.5 2 .645 [0 .16]

c

4

130 2.5 2 .4575 [0 .04]

P

2:2

: Go to farm �! Load closed truck �! Drive closed on valley road

chronicle time fuel tons U(chronicle) probability

c

1

[115 130] [3.5 4] 2 [.4425 .635] [.64 .8]

c

2

[130 145] [3.5 4] 2 [.255 .4475] [.16 .2]

c

3

145 3.5 2 .26 [0 .16]

c

4

160 3.5 2 .0725 [0 .04]

Table 2: Intermediate level abstract plan outcomes.

EU(P

1

) = [.005 .1964]

EU(P

2

) = [.3673 .9825].

Since the lower bound for P

2

is greater than the upper bound for P

1

, we can eliminate

from consideration all possible re�nements of P

1

and concentrate on re�ning P

2

. So at this

point we have chosen the option of using the closed truck. By making this choice, we have

pruned away the left-hand subnetwork underneath the \load & drive truck" node in Figure

8, resulting in pruning half the space of possible plans from consideration.

We are left with two more actions to re�ne: \go to farm" and \drive closed truck to

warehouse." Suppose we next choose to re�ne the \drive" action. Again the instantiations

involving the mountain road and the valley road must be evaluated in the context of a

complete plan. So we compose the descriptions of the concrete actions \drive closed on

mountain road" and \drive closed on valley road" with the descriptions of the concrete

action \load closed truck" and the abstract action \go to farm." Table 2 summarizes the

outcomes for the two alternative plans. We use this information to compute expected-utility

bounds for the two alternatives:

EU(P

2:1

) = [.7533 .9825]

EU(P

2:2

) = [.3683 .5975].

Notice that the EU intervals for the two plans are contained in the EU interval for the

abstract plan of which they are a re�nement. Since the lower bound for plan P

2:1

is greater

than the upper bound for plan P

2:2

, we can eliminate P

2:2

from consideration, pruning away

two more possible concrete plans. By eliminating plan P

2:2

, we have chosen to take the

mountain road.

Finally we re�ne plan P

2:1

. Our two options are taking either road A or road B to the

farm. The outcomes of the plans incorporating these options are summarized in table 3.
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P

2:1:1

: Go to farm on road A �! Load closed truck �! Drive closed on mountain road

chronicle time fuel tons U(chronicle) probability

c

1

100 3 2 .8275 .8

c

2

115 3 2 .64 .2

P

2:1:2

: Go to farm on road B �! Load closed truck �! Drive closed on valley road

chronicle time fuel tons U(chronicle) probability

c

1

85 2.5 2 1.02 .64

c

2

100 2.5 2 .8325 .16

c

3

115 2.5 2 .645 .16

c

4

130 2.5 2 .4575 .04

Table 3: Concrete plan outcomes.

Since the plans now include only concrete actions, the attribute, probability, and utility

values are now point values. The expected utilites of the two remaining plans are

EU(P

2:1:1

) = .79

EU(P

2:1:2

) = .9075

so we choose plan P

2:1:2

. Since this is a complete concrete plan, we have generated the plan

that maximizes expected utility and are �nished.

Although it is probably unrealistic to expect any planner to employ only re�nement

operators, the idea of modeling an execution system using a hierarchy of abstract actions is

consistent with Firby's

[

1989

]

RAP system, and the architecture for planning and execution

proposed in

[

Hanks and Firby, 1990

]

.

8 Summary and Related Work

Our goal in this work was to take the concept of goals as they have been used in symbolic

planning systems and simultaneously extend their functionality and recast the intuitions in

a form that can be exploited by a decision-theoretic planning algorithm.

Our framework involves building a utility model �rst by identifying the agent's top-

level goals plus the residual attributes that measure resource consumption and production

in service of those goals. The assumption of utility independence among these attributes

means that their interactions can be summarized by n+ 1 numeric parameters representing

the relative weights for the n goals and residual attributes.

We then extended the notion of a goal to one that involves both a temporal component

(deadline or maintenance interval) and an atemporal component (a formula to be achieved

subject to the temporal constraint). We discussed various forms for the atemporal goal com-

ponent: symbolic and numeric attributes, conjunctions of numeric attributes, and ordered

conjunctions.
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For each of the goals the user supplies two components that describe preferences over

partial-satisfaction scenarios: the atemporal degree of satisfaction function and the tempo-

ral weighting coe�cient. The former de�nes what it means to satisfy the goal's atemporal

component, either partially or fully. The latter indicates how utility declines as a function

of missing the deadline or violating the maintenance interval. We described how to com-

bine those functions to produce a utility function for the entire goal. The problem was how

to combine partial satisfaction of both the atemporal and the temporal components simul-

taneously, and we developed model in which utility is accrued each time the value of the

atemporal component increases over the interval de�ned by the temporal coe�cient.

We then showed how the model's information, both numeric and symbolic, could be

exploited to compare plans: to decide whether one plan's expected utility was greater than

another and to generate bounds on the quality of a partial plan in order that it should be

chosen over an alternative. The general form of these relationships was to consider a plan P

1

that was likely to achieve at worst a high level of satisfaction, and a plan P

2

that was likely

to achieve at best a low level of satisfaction. The result was a function of the respective

formulas, their likelihoods, and their times, ensuring that P

1

's expected utility was greater

than P

2

's, regardless of the two plans' other e�ects.

Finally we demonstrated how these relationships could be exploited by two existing plan-

ning techniques, particularly in the area of re�nement planning.

8.1 Related work

A discussion of related work should begin with a mention of multiattribute decision theory,

especially

[

Keeney and Rai�a, 1976

]

. What we have done is built a multiattribute utility

model for goal-oriented planning problems that feature partial goal satisfaction and dead-

lines.

Our discussion of strictly ordered goals was motivated by the work in goal program-

ming

[

Schniederjans, 1984

]

a mathematical optimization technique that deals with ordered

conicting goals.

8.1.1 Goals and utility models

In the AI literature the work closest to our own is byWellman and Doyle

[

1991

]

,

[

Wellman and

Doyle, 1992

]

, which also analyzes the relationship between goals and preference structures.

Their work confronts the question of what it means to say that an agent has some goal. The

most fundamental di�erence between their work and ours is that they begin by examining

an agent's preference structure directly and produce a de�nition of what it means to say

that an agent has a goal . In contrast, we adopt various intuitive notions about goals at

the outset (e.g. that they are utility independent at the top level), and structure the agent's

utility function (and therefore his preferences) to accommodate those ideas. Our work is

mainly oriented toward using the resulting structure to build and exploit representations

for concepts like partial satisfaction and temporal deadlines in the process of building and

comparing plans.
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A few e�orts have been made in the classical planning literature to extend the form of

goal expressions:

[

Drummond, 1989

]

introduces a crudeform of maintenance goals, allowing

the constraint that a proposition remain true throughout the execution of a plan.

[

Vere,

1983

]

implements a concept related to deadline goals: a temporal window or interval within

which an action must be executed, and

[

Dean et al., 1988

]

handles deadlines and actions

with duration. None of these e�orts incorporate uncertainty or partial satisfaction into the

representation, nor do they consider partial satisfaction of the goal's atemporal component.

8.1.2 Decision-theoretic planning and control

Decision-theoretic techniques have been applied both to the planning problem

[

Koenig, 1992

]

,

[

Feldman and Sproull, 1975

]

,

[

Dean and Kanazawa, 1989

]

and to the problem of control-

ling reasoning|choosing among computational actions as well as those that make physical

changes to the world

[

Russell and Wefald, 1991a

]

,

[

Boddy, 1991

]

,

[

Etzioni, 1991

]

,

[

Horvitz et

al., 1989

]

.

Most of these works use some variant of the utility model common to Markov decision

processes

[

Howard, 1960

]

: there is a reward function associated with certain states and a

cost function associated with actions. The value of a plan is the value associated with the

end state less the cost of the actions (e.g. the time they consume) that comprise the plan.

This model implies a number of assumptions about the agent's preference structure.

First it assumes that the value and cost attributes are measured in units that are directly

comparable. Second the idea that reward is accrued as a result of arriving at a \goal" state

means that any value or cost associated with achieving the goal must be captured in the

cost attribute. There is no obvious way to capture maintenance and deadline goals, and no

model of partial goal satisfaction, either temporal or atemporal.

Etzioni's

[

1991

]

model is more similar to ours: admitting both partial satisfaction of the

goals and also the idea that the value of achieving the goal will tend to change over time.

Both of these elements are supplied directly to the model, in the form of three functions:

� a function i(g) measuring the \intrinsic value" of goal g,

� a function d(s; g) measuring the extent to which goal g is satis�ed in state s, and

� a function F (i(g)d(s; g); s) measuring the extent to which the bene�t of goal g should

be realized in state s.

The �rst two functions correspond roughly to our atemporal component, the third to our

temporal weighting coe�cient. There is no analogue in his model to our discussion of main-

tenance goals. He makes the same assumption we do about the utility independence of

top-level goals.

These e�orts are basically complementary to ours: they make simplifying assumptions

about the utility model and concentrate on algorithms to solve the planning problem; we

develop a richer utility model but provide no algorithm, only relationships implied by the

model that might guide a planning algorithm. The challenge will be to integrate our model

and the relationships it implies into these algorithms.
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8.1.3 Fuzzy decision theory

The notion of partially satis�ed goals and their role in the decision-making process appears

prominently in the literature on fuzzy mathematics and decision analysis. In particular our

notion of a degree of satisfaction function bears close resemblance to a fuzzy-set membership

function. The seminal paper in this area is

[

Bellman and Zadeh, 1980

]

; also see the papers

in

[

Zimmerman et al., 1984

]

, of which the most relevant to this paper is

[

Dubois and Prade,

1984

]

. They discuss the role of aggregation operators in the decision-making process. In the

language of fuzzy-set theory a goal may be expressed as a fuzzy set, a plan's membership

function with respect to that set indicates the extent to which the plan satis�es that goal. An

aggregation operator combines membership functions for individual goals into an aggregate

membership function which is an indicator of global success|this is called the decision set.

A decision maker then selects an alternative that is \strongly" a member of the decision set.

Dubois and Prade categorize and analyze various aggregation functions.

So our analysis is similar to the e�orts in fuzzy decision making in that it emphasizes

the representation problems associated with expressing partial satisfaction of goals. Fuzzy

sets may be a more appropriate representation than degree of satisfaction when the latter

(a numeric function) cannot reasonably be assessed. If we can only assess vague satisfaction

measures like \reasonably well satis�ed," \utter failure," and \complete success," the fuzzy-

set methodology provides a way to incorporate these measures into a precise analysis. As

such it is essentially complementary to our analysis.

8.2 Future work

The formal model can be extended to cover more types of goals. The representation in this

paper covers only goals that mention facts but goals can refer to events as well. An example

might be \ip the switch at noon." Goals mentioning events would be restricted to deadline

goals since it does not make sense to maintain an event over an interval of time. Deadline

goals involving events could be represented in a way similar the representation of goals with

a symbolic atemporal component. But the current de�nition could not be used unchanged

since we have de�ned DSA in terms of formulas that hold at time points, while events occur

over time intervals.

Deadline goals will often have a maintenance component to them: we want to achieve a

given state by a time and once achieved we want it to persist for a given period of time. The

expressions for deadline and maintenance goals could be combined to represent such goals.

We would perform a maintenance goal computation at each time that a term for deadline

goal utility is calculated, i.e., at each time that DSA changes to a value higher than any

previous value. At each of these times, we would perform a maintenance goal computation.

The most important area of future work is to incorporate our model into decision-theoretic

planning algorithms. We have mentioned several candidates above: the state-space planners

based on Markov decision processes, and two symbolic algorithms|probabilistic nonlinear

planning and re�nment planning. We are currently working on an implementation of the

re�nement planning algorithm. But to handle a realistic range of problems, the algorithm
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needs to be extended in several ways. In the example, actions have only discrete outcomes but

more realistically some actions would be described in terms of a continuous distribution over

outcomes, e.g. a normal distribution over durations. Representing such distributions is not

di�cult but we need to �nd ways of grouping such distributions to describe the outcomes of

abstract actions. Our network decomposed actions into totally ordered sequences of actions.

We need to incorporate other decompositions such as partial orders. Our example included

no interacting actions. We need to develop mechanisms to handle interactions such as the

e�ects of one action depending on the choice of a previous action. This particular interaction

can be handled by an application of abstraction. It is probably unrealistic to expect that

a planner will explicitly store all possible action decompositions, so we need to integrate

the re�nement algorithm with a nonlinear planner to generate the decompositions on the

y. Finally we need to test the e�ectiveness of both the representation and the planning

algorithm on some large problems.
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