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Abstract

The methodological underpinnings of AI are slowly changing. Benchmarks, testbeds,

and controlled experimentation are becoming more common. While we are optimistic

that this change can solidify the science of AI, we also recognize a set of di�cult issues

concerning the appropriate use of this methodology. We discuss these issues as they

relate to research on agent design. We survey existing testbeds for agents, and argue

for appropriate caution in their use. We end with a debate on the proper role of

experimental methodology in the design and validation of planning agents.
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1 Introduction

In recent years, increasing numbers of AI research projects have involved controlled experi-

mentation, in which a researcher varies the features of a system or the environment in which

it is embedded, and measures the e�ects of those variations on aspects of system perfor-

mance. At the same time, two research tools have gained currency: benchmarks, precisely

de�ned, standardized tasks; and testbeds, challenging environments in which AI programs

can be studied. In our view, the move toward more principled experimental methods is

uncontroversially a good thing; indeed, we are optimistic that it will solidify the science of

AI. However, we also recognize some issues concerning the appropriate use of these methods.

First, benchmarks and testbeds no more guarantee important results than, say, microscopes

and bunsen burners. They are simply part of the apparatus of empirical AI. It is up to

the researcher to discriminate between uninteresting and important phenomena, and to fol-

low up reports of experiments with thorough explanations of their results. Second, there

is little agreement about what is a representative benchmark or testbed problem. A third

and related concern is that results obtained with benchmarks and testbeds often are not

general. Fourth, because benchmarks and testbeds are attractive to program managers and

others who provide funding, there is a real danger that researchers will aim for the prescribed

benchmark target when funding is perceived to be the reward. In sum, we are concerned that

benchmarks and testbeds, if not carefully used, will provide only a comfortable illusion of sci-

enti�c progress|controlled experimentation with reproducible problems and environments,

and objective performance measures|but no generalizable, signi�cant results.

Benchmarks and testbeds serve at least two di�erent purposes. One is to provide metrics

for comparing competing systems. Comparison metrics are valuable for some purposes, but

performance comparisons do not constitute scienti�c progress unless they suggest or provide

evidence for explanatory theories of performance di�erences. The scienti�c value of well-

crafted benchmarks and testbeds is their power to highlight interesting aspects of system

performance, but this value is realized only if the researcher can adequately explain why his

or her system behaves the way it does.

The experimental control that can be achieved with testbeds can help us explain why sys-

tems behave as they do. AI systems are intended to be deployed in large, extremely complex

environments, and testbeds serve as simpli�ed, simulated versions of those environments,

in which the experimenter has access to particular aspects of the environment, and other
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aspects are allowed to vary randomly. The experimental process consists in the researcher

varying the features of the testbed environment, the benchmark task, or the embedded sys-

tem, and measuring the resulting e�ects on system performance. A fundamental question

exists, however, about the viability of this approach. The concern grows out of the tension

between realism and the possibility of experimental control. On the one hand, controlled

experiments seem at least currently to be feasible only for simpli�ed systems operating in

highly idealized environments. On the other hand, our ultimate interest is not simpli�ed

systems and environments but, rather, \real-world" systems deployed in complex environ-

ments. It is not always obvious whether the lessons learned from the simpli�ed systems

are generally applicable, but neither is it obvious how to perform systematic experiments

without the simpli�cations.

Researchers disagree about how best to proceed in light of this tension. One approach is

to maintain systematicity in experiments while looking for ways to translate the results of the

experiments into general principles that apply to more complex systems and environments.

The alternative is to focus on more realistic systems and environments and try to conduct

systematic experiments on them directly. Much of this paper will focus on a comparison of

these approaches.

Although benchmarks, testbeds, and controlled experimentation are increasingly impor-

tant in a number of subareas of AI, including, for example, natural-language understanding

and machine learning, we will focus our discussion on its role in agent design. We begin,

in the next section, by describing some of the criteria for good benchmarks and testbeds,

and discussing some of the potential di�culties encountered in their design. In Section 3,

we discuss the range of features that a testbed for agent design might have. In Section 4,

we survey existing testbeds for agent design with these features in mind. Finally, in Section

5, we return to the general issue of experimental methodology in agent design, and discuss

some unresolved questions concerning its use. Our points will become increasingly more

controversial as the paper proceeds, and, indeed, by the end of the paper we will no longer

speak with one voice.

2 Benchmarks and Testbeds

Benchmarks are a common tool in computer science. In the design of CPUs, for example,

matrix multiplication is a good benchmark task because it is representative of an important

class of numerical processing problems, which in turn is representative of a wider class of
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computational problems|those that do not involve signi�cant amounts of I/O. The matrix

multiplication problem can be described precisely and rigorously. Moreover, matrix multi-

plication is illuminating: it tells the CPU designer something interesting about the CPU,

namely, its processing speed. In other words, if we are interested in processing speed as a

measure of performance, then matrix multiplication is a good benchmark: good performance

on matrix multiplication problems predicts good performance on the large class of numerical

tasks for which the processor is being designed.

An early benchmark task for AI planning programs was the Sussman anomaly (the \Three

Block Problem") [Sussman 1975]. The Sussman anomaly helped many researchers elucidate

how their planners worked. It was popular because, like matrix multiplication, it was repre-

sentative of an important class of problems, those involving interactions among conjunctive

subgoals, and it was very easy to describe.

A benchmark is illuminating to the degree that it tells us something we want to know

about the behavior of a program. Our goals as scientists, engineers, and consumers dictate

what we want to know. Sometimes we are most interested in the system's raw performance:

in buying a workstation we may be impressed with the rate at which a particular machine

performs matrix multiplication. Likewise, as the potential user of an AI search algorithm

we may be impressed with the performance of the min-con
icts heuristic algorithm on the

Million Queens problem [Minton et al. 1990]. As scientists and engineers, however, our

interests are di�erent. In these roles, we want to understand why a system behaves the

way it does. What is it about the Cray architecture that allows high-performance matrix

multiplication? Why does the min-con
icts heuristic algorithms solve increasingly di�cult

N Queens problems in roughly constant time?

Understanding a system's behavior on a benchmark task requires a model of that task,

so our goals as scientists and engineers will often be served only by benchmark tasks that

we understand well enough to model precisely. This is especially true for cases in which we

expect a program to \pass" the benchmark test. Without a model of the task it is di�cult to

see what has been accomplished: we risk �nding ourselves in the position of knowing simply

that our system produced the successful behavior|passing the benchmark.

Models are also important when we design benchmarks to be failed, but in this case we

need a model of the factors that make the benchmark di�cult. For example, we learn more

about articulation by asking a human to say \black back brake block" repeatedly than we do

from the equally unpronounceable sentence \alckb bcak raebk lbcko." Both are extremely
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di�cult but the former is more illuminating because we have models of phonetics that explain

why it is di�cult. Experiments can tell us which design choices lead to good performance on

benchmark tasks, but we need good models of these tasks to explain why this is so. On the

other hand, building a good model tends to require a simple problem, and there is always

the danger that a simple problem will not be especially illuminating.

Benchmarks ideally are problems that are both amenable to precise analysis and repre-

sentative of a more complex and sophisticated reality. Unfortunately, the current state of

the �eld often elevates these problems to a new status: they become interesting for their own

sake rather than as an aid in understanding a system's behavior on larger, more interesting

tasks. Cohen's [1991] survey of papers in the 1990 found that 63% of the papers focused on

benchmark problems such as N Queens, the Yale Shooting Problem, and Sussman's Anomaly.

Yet very few of these papers made explicit the connection between the benchmark problems

and any other task. Without this additional analysis it is di�cult to say whether these

problems are representative of others we presumably care about, and therefore exactly why

the reported solutions are themselves interesting.

As AI begins to focus less on component technologies and more on complete, integrated

systems, these traditional benchmarks may reveal their limitations. For example, although

we might use N Queens to test the capability and speed of a constraint-satisfaction algorithm

embedded in, say, a factory scheduler, this benchmark will not tell us whether the quality of

a schedule is appropriate given time constraints and other goals of the program. However,

it is far from obvious that any benchmark can be devised for such a case. Benchmarks

are problems that everyone can try to solve with their own system, so the de�nition of a

benchmark cannot depend on any system-speci�c details, nor can the scoring criteria. What

a researcher learns about a system from performance on a benchmark is liable to be inversely

proportional to the size, complexity and speci�city of the system.

Thus the conscientious researcher, intent on evaluating her system, faces an uncom-

fortable choice. The behaviors of the system's components can be evaluated individu-

ally on benchmark tasks, or the system's behaviors|not necessarily those of individual

components|can be evaluated by task-speci�c criteria. On the one hand, the researcher

learns, say, that her constraint-satisfaction algorithm is extremely slow and won't scale up;

on the other, she learns that her system nonetheless produces robust, timely schedules for

the particular job-shop she has modeled. Neither result is likely to evoke interest outside

the researcher's own laboratory. Why should the rest of us care that an ine�cient algorithm
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su�ces to solve an applied problem that doesn't concern us? The di�culty is that as our

attention turns to integrated programs, benchmark scores for component processes might be

at variance with, or predict poorly, task-speci�c measures.

The potential mismatch between benchmark scores and performance on real tasks is also

a concern for researchers who are developing testbeds. While some testbeds are no more than

an interface to specify parameters of a benchmark problem and instrumentation to measure

performance, those described in this article provide rich environments that present a wide

range of challenges to planners and related AI programs. You can design a lot of tasks for

your planning system in Tileworld, Phoenix, and the other testbeds discussed below. You

can study a lot of phenomena|real-time satis�cing, graceful degradation under resource

restrictions, path planning and navigation, sensor fusion, various kinds of learning, and so

on. But each of these general behaviors will be implemented in a particular way depending

on the speci�c testbed and system being developed. \Graceful degradation" in a simpli�ed

Tileworld agent might have little in common with what we call graceful degradation in a

complex system deployed to perform a real task; just as \aggressive behavior" in seagulls

has little in common with aggressive behavior in teenage boys. McDermott's [1981] wishful

mnemonic problem has not gone away: two testbed researchers might each claim to have

achieved graceful degradation under resource restrictions, but it is more accurate to say that

each has achieved something that he or she calls graceful degradation. Testbeds make it

easier to build programs that exhibit diverse behaviors, but researchers have to face the

problem of understanding what like-named behaviors have in common.

Benchmarks and testbeds do not currently bridge the gap between general and speci�c

problems and solutions. A gap exists between the benchmarkN Queens problem and another,

domain-speci�c problem that you care about. A gap exists between the testbed problem of

having too few bulldozers to �ght �res in the Phoenix simulation and a general resource-

limited planning problem. Those of us who build and work with testbeds appreciate the

opportunities they provide to study many phenomena, but we also recognize the di�culties

involved in �nding testbed-speci�c problems that satisfy the criteria of benchmarks: that

are simultaneously representative of larger, more interesting problems, easy to describe, and

illuminating.

5



3 Current Issues in Agent Design

Despite the di�culties in designing testbeds, and perhaps because of the promise associated

with testbed-based experimentation, a number of testbed systems for studying agent design

have been developed to date. Section 4 surveys some of them. This section motivates the

survey by describing some signi�cant research issues in agent design and noting corresponding

features that testbeds should exhibit. Much current research in agent design builds on the

the classical planning paradigm that characterized the �eld for several years, so our section

begins with a short explanation of that paradigm.

The classical planning paradigm assumes an environment that is both controlled and

simple. The planning agent is generally assumed to have complete control over the environ-

ment, which means that its intended actions are the only events that can change the world's

state and furthermore that the e�ects of its actions are fully known, both to the agent and

to the system designer. The agent is usually assumed to possess complete and error-free

information about the state of the world when it begins planning. Since it knows the initial

state of the world, knows what actions it intends to carry out, and knows what the e�ects of

those actions will be, it can at least in principle predict exactly what the state of the world

will be when it �nishes acting. In other words, it knows ahead of time whether a particular

plan will or will not achieve its goal.

Classical planners embody strong simplifying assumptions both in the sense that their

capabilities (the class of problems they can solve) tend to be quite limited, and also in the

sense that the worlds in which they operate tend to be small|exhibiting few features and

a limited physics. Planners are generally tested in domains with few planning operators, on

goals with few conjuncts, and on models of the world in which few features are explicitly

modeled. Performance tends to degrade when the number of operators, goal conjuncts or

environmental features increase. Just as control means that the planner can in principle

prove that its plan will work, the simplifying assumptions mean that the planner can as a

practical matter generate that proof. Control and simplifying assumptions therefore allow

the planner the luxury of generating provably correct plans prior to execution time.

Most current work on agent architectures aims toward relaxing these assumptions. Re-

active systems, for example, deal with the problem that the world can change unpredictably

between plan time and execution time by deciding what to do at execution time instead of

generating a plan prior to execution. Case-based planners confront the simplicity problem
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by storing only the essential details of a solution, allowing the planner to concentrate on the

relevant features of a new problem.

Below we describe some speci�c issues that have recently attracted the attention of

planning researchers, and therefore guide decisions about what features a planning testbed

might exhibit.

Exogenous Events Perhaps the most limiting assumption of the classical planning worlds

(most notably the Blocksworld) is that no exogenous, or unplanned, events can occur.

Relaxing this assumption makes the process of predicting the e�ects of plans more

di�cult [Hanks 1990b] and also introduces the need to react to unplanned events as

they occur at execution time [Agre and Chapman 1987], [Firby 1989]. The time cost

of planning becomes important in a world that allows unplanned changes: the longer

the agent takes to plan, the more likely it is that the world has changed signi�cantly

between the time the plan was generated and the time it is executed [Bratman et al.

1988], [Russell and Wefald 1991], [Dean and Boddy 1988].

Complexity of the World A realistic world has many features. Even a simple block has

color, mass, texture, smell, and so on, although many of these features will be irrelevant

to many tasks. A realistic world also has a complex causal structure: changes in

one aspect of the world may change many other aspects, even though most of those

changes may again be irrelevant to any particular problem. Reasoning about more

realistic models of the world requires the ability to represent and make predictions

about complex mechanisms [Weld and de Kleer 1989], as well as the ability to recognize

and focus attention on those aspects of the world relevant to the problem at hand

[Hanks 1990a]. A testbed for exploring realistically complex planning problems should

itself provide a complexity and diversity of features.

Quality and Cost of Sensing and E�ecting Sensing and e�ecting, generally ignored by

the classical planners, are neither perfect nor cost free. An agent must therefore incor-

porate incorrect and noisy sensor reports into its predictive model of the world [Hanks

and McDermott 1993] and must plan sensing actions to improve its state of informa-

tion, taking into account both the bene�t of that information and the cost of acquiring

it [Chrisman and Simmons 1991]. Thus a testbed for studying agent design might

be populated with agents having imperfect sensors and e�ectors. The testbed needs
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to make a clean distinction between the agent and the simulated world, the agent's

sensing and e�ecting capabilities de�ning the interface.

Measures of Plan Quality Classical planners are provided with a goal state to achieve,

and they stop when their plans can achieve that state. But simple achievement of a

goal state is an inadequate measure of success: it does not take into account the cost of

achieving the goal, and it also does not admit the possibility of partial goal satisfaction.

[Haddawy and Hanks 1993] and [Wellman and Doyle 1991] explore the relationship

between goal expressions and utility functions. A testbed for exploring richer notions

of success and failure should allow the designer to pose problems involving partial

satisfaction of desired states, forcing the planner to trade the bene�ts of achieving the

goal against the cost of achieving it. The problem of balancing cost against solution

quality becomes more di�cult when the agent is actually planning for a sequence of

problems over time, some of which may not even have been made explicit when it

begins to plan.

Multiple Agents Allowing multiple agents to act in the world introduces new problems:

how to coordinate behaviors, how the agents should communicate, how the e�ects of si-

multaneous actions di�er from the e�ects of those actions performed serially. Multiple-

agent planning is an active research area [Bond and Gasser 1988] and a testbed for

exploring these research issues must allow coordinated behavior and communication

among the agents that inhabit it.

In addition to the functionality required to make the testbed challenging, we will also

identify some design issues that will tend to make a testbed more useful to prospective users:

A Clean Interface It is important to maintain a clear distinction between the agent and

the world in which the agent is operating. The natural separation is through the

agent's sensors and e�ectors, so that interface should be clean, well de�ned, and well

documented. A designer must be able to determine easily what actions are available

to the agent, how the actions are executed by the testbed, and how information about

the world is communicated back to the agent.

A Well De�ned Model of Time Testbeds must present a reasonable model of passing

time in order to simulate exogenous events and simultaneous action, and to de�ne
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clearly the time cost of reasoning and acting. (This is a general problem in simulation

and modeling. See [Law and Kelton 1981], for example.) On the other hand the

testbed must somehow be able to communicate how much \simulated time" has elapsed.

Making sense of experimental results requires a way to reconcile the testbed's measure

of time with that used by the agent.

Supporting experimentation Testing an agent architecture amounts to assessing its per-

formance over a variety of sample problems and conditions. Controlled experiments

require problems and environmental conditions be varied in a controlled fashion. A

testbed should therefore provide a convenient way for the experimenter to vary the

behavior of the worlds in which the agent is to be tested.

The experimenter must also be able to monitor the agent's behavior in the testbed

world [Langley and Drummond 1990]. While it is far from clear at this point what

statistics should be used in such an assessment, the testbed must allow performance

statistics to be gathered. It is also useful for the data to be formatted automatically

for analysis using statistical software packages.

4 Testbed Implementations

Previous sections provided the motivations for simulated testbed worlds and discussed some

of kinds of problems that might be explored in them. This section surveys several of the

simulated worlds available to the community. Our survey is not exhaustive nor is our selection

of testbeds meant to imply that they are the \best" available. For each testbed, we describe

the sort of world the testbed is supposed to simulate and the research problems it was

designed to test; we discuss the interface between the agent and the world and that between

the researcher and the system (agent plus world); and we summarize the main methodological

commitments associated with the testbed.

4.1 Grid worlds

Several testbed worlds have been organized around the theme that the agent is situated in a

rectangular two-dimensional grid and its main task is to push tiles around the grid. We will

�rst discuss the Tileworld of Pollack and Ringuette [1990], then the independently developed

NASA Tileworld (NTW) [Philips and Bresina 1991], and the MICE simulator [Montgomery

et al. 1992]
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[Pollack and Ringuette 1990] reports on the Tileworld testbed|a system designed to sup-

port controlled experiments with agent architectures situated in dynamic and unpredictable

environments. The world consists of a rectangular grid, on which can be placed the agent,

some tiles, some obstacles, and some holes. Each object occupies one cell of the grid. The

agent can move up, down, left, and right, unless doing so would cause it to run into the

world's boundaries or an obstacle. When a tile is in a cell adjacent to the agent, the agent

can push the tile by moving in its direction. The agent's goal is to �ll holes with tiles. Each

hole has a capacity C and a score S. When the agent pushes C tiles into a hole, that hole

disappears and the trial's score increases by S. Each trial has a time limit, and the agent's

performance is measured by the trial's score at its completion.

1

The Tileworld environment includes exogenous events: objects in the world can appear

and disappear during a simulation. The experimenter can control the rate at which these

objects appear and disappear, as well as certain characteristics (capacity and score) of the

newly created objects. The ability to control these parameters is an important feature of

the Tileworld, because it allows systematic exploration of worlds with various characteristics

(e.g., worlds that change relatively quickly or slowly). The goal of such exploration is to �nd

systematic relationships between world characteristics and corresponding characteristics of

the embedded agent. The Tileworld system is distributed with a basic agent design, which

is also parameterized to allow manipulation by the experimenter (see the discussion below).

The interface between the agent and the world allows the agent, at any time, to take

one of four primitive actions: move left, right, up, and down. Some or all of the primitive

actions may be infeasible at a given time; for example, if an obstacle is blocking the way.

The e�ects of each action are predetermined and deterministic: the agent will always move

to the appropriate adjacent cell if it chooses to do so and the move is feasible. It will never

end up in a di�erent cell \by accident." Tiles and obstacles are characterized by their types

and by their location on the grid. Each takes up exactly one cell. Holes, which may occupy

one or more cells, are characterized by location, capacity, and score.

Holes, obstacles, and tiles appear and disappear probabilistically, according to parameter

settings established by the researcher prior to any trial. The probabilities are independent of

one another: a single probability governs the appearance of tiles, and it is the same regardless

1

The scoring metric in Tileworld was later revised to make it easier to compare trials of varying length:

raw score is replaced with a normalized value called e�ciency [Kinny and George� 1991]. A number of

changes have been made to the Tileworld system since 1990, some of which are discussed in Section 5.2;

see also [Pollack et al. 1993]. Code and documenation for the Tileworld is available by sending mail to

tileworld-request@cs.pitt.edu.
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of the time, of the location, or of any other parameter in the game.

The Tileworld has no explicit sensing operators. The agent is provided with a data

structure that describes the world's state in complete detail and with complete accuracy.

The use of this information is left up to the designer of the embedded agent; for example,

he or she can design mechanisms that distort the information to introduce inaccuracy.

The researcher describes a world by specifying the size of the grid, the duration of the

game, and the probability parameters governing the appearance and disappearance rates of

tiles, obstacles, and holes, and the distribution of hole scores and capacities. The experi-

menter can control additional environmental characteristics: for example, the experimenter

can decide whether hole scores remain constant until the hole disappears or whether the

score decreases over time. To facilitate experimentation, the system provides mechanisms

for specifying suites of experiments, which can then be run without intervention, and for

recording performance data.

Three related qualities characterize the Tileworld: its abstract nature, its simplicity, and

its \parameterizability." The Tileworld is not an attempt to model any particular planning

domain; instead the world might be used to pose paradigmatic planning problems in the

abstract. It is a very simple world which presents the agent with only a few possibilities for

action; objects have few attributes, and the occurrence and e�ects of exogenous events are

not complex. The world's simplicity means that a few parameters de�ne a world instance

completely, and these parameters can be varied as experiments are performed.

The Tileworld was originally developed to investigate a particular agent architecture

(IRMA [Bratman et al. 1988]), and, in fact, is distributed to the research community with

an embedded IRMA agent. IRMA actually speci�es a space of agent architectures; in other

words, there is a range of agent architectures within the IRMA framework. The embedded

Tileworld agent is parameterized to allow exploration of the design choices consistent with

the IRMA speci�cations.

The interface between a Tileworld agent and its environment works as follows: when the

agent wants to perform some action, it calls the simulator as a subroutine, specifying the

action it wants to perform, along with an indication of the amount of time that elapsed since

its last call (representing the amount of time it spent reasoning about what to do). The

simulator then updates the world, both to re
ect exogenous events that took place during

that period and to re
ect the agent's new actions. The resulting world is then passed back

to the agent (in a data structure called the world).
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This approach to agent/environment interface places the responsibility for specifying

sensing and e�ecting conditions on the agent designer. If the agent uses the world data

structure directly, it will always have a complete and correct model. Incomplete or noisy

sensing can be achieved by manipulating this data before the agent is allowed to use it.

Similarly, imprecision in e�ecting change has to be speci�ed within the agent itself.

The NASA Tileworld NTW [Philips and Bresina 1991], [Philips et al. 1991] is an in-

dependently developed testbed also organized around the theme of a two-dimensional grid

with tiles. Exogenous events in the NTW consist of winds that can blow tiles across the

grid. NTW has no obstacles or holes.

Two features distinguish the two simulators. First, the NTW simulator has no built-in

measure of success analogous to the notion of a score. What the agent is supposed to do, and

what constitutes success, is left entirely to the experimenter. The second is the nature of the

interface between the agent and its environment: the Tileworld agent called the simulator

as a subroutine and passed information back and forth using a shared data structure. The

NTW agent and the world simulator run asynchronously: the agent posts commands to the

world, which are put on a queue and eventually executed. Operators can be programmed to

\fail" probabilistically: a grasp operation might not result in the agent holding the tile, a

move might result in the agent being displaced to an adjacent location other than the one

intended. The agent is given no indication of whether an operator has succeeded or failed,

and must explicitly sense the world in order to ascertain the e�ects of its actions.

MICE [Montgomery and Durfee 1990], [Montgomery et al. 1992] is another grid-oriented

simulator, designed to support research into coordinating the problem-solving behavior of

multiple autonomous agents. The basic layout of MICE consists only of a grid and various

agents, though agents can be used to simulate objects like tiles and forest �res.

The basic MICE operator is MOVE, moving the agent from one grid cell to an adjacent

cell. The LINK command is an abstract version of a \grasp" operator: the agent uses it to

pick up objects. The world is populated only with agents, but they can be quite diverse.

MICE has no explicit provision for exogenous events, though they can be simulated to some

extent by implementing agents that have the desired e�ects on the world (making a grid cell

wet and slippery to simulate rain, for example)

The main di�erence between MICE and the Tileworlds is that MICE makes even less of a

commitment to a \world physics"| the experimenter de�nes an agent's sensing and e�ecting

capabilities, and also the e�ect of actions taken simultaneously by the agents. MICE might
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be viewed more as a framework for building testbeds rather than a simulator in and of itself.

(The MICE designers have built versions of Tileworld and of Phoenix using this platform.

See [Montgomery and Durfee 1990], for example.)

4.2 The Phoenix testbed

Phoenix [Hart and Cohen 1990] [Greenberg and Westbrook 1990] is a framework for imple-

menting and testing multiple autonomous agents in a complex environment. The scenario is

�re �ghting: the world consists of a map with varying terrain, elevations, and weather. Fires

can start at any location and will spread depending on the surrounding terrain. Agents are

�re-�ghting units (commonly bulldozers) that change the terrain to control the �res.

It is helpful to distinguish the Phoenix simulator from the Phoenix environment and

Phoenix agents. The simulator has three main functions: to maintain and update the map,

to synchronize the activities of the environment and the agents, which are implemented as

independent tasks, and to gather data. The Phoenix environment includes a representation

of Yellowstone National Park (from Defense Mapping Agency data) and the tasks that

implement �res. Phoenix agents generate tasks that simulate a �reboss, several bulldozers,

watchtowers, helicopters, fuel tankers and so on. Agent tasks include moving across the

map, cutting �reline, predicting the course of �res, planning how several bulldozers should

attack �res, monitoring progress and detecting failures in expectations, and failure recovery.

Tasks insert themselves (by sending messages) onto a timeline maintained by the Phoenix

simulation. Tasks run intermittently and sometimes periodically.

Phoenix agents sense and change the Phoenix environment by sending messages to the

object managing the map, but the simulator makes no attempt to control the form of the

messages. Thus Phoenix agents have no predetermined set of operators. The Phoenix

environment contains only two kinds of objects, agents and �res. However, each cell of the

map of the environment contains information that agents and �res use to determine their

behavior. For example, bulldozers travel more quickly on cells that are designated \blacktop

road" and �res burn more quickly in the direction designated \uphill." Exogenous events are

also implemented as tasks, and in
uence other tasks indirectly. For example, wind causes

�res to burn more quickly.

Tasks make their e�ects known by sending messages to the simulator. The form of these

messages is not restricted: any task may in principle �nd out anything about the world and

e�ect any change. The simulator enforces no model of sensing. It provides information about

13



the world (the characteristics of a cell in the map, for example) by responding to messages,

but does not restrict its answers. However, the Phoenix agents have limited sensory and

physical abilities; for example, bulldozers have a 200 meter radius of view (although the

view is not a�ected by elevation) and they move and cut �reline at rates codi�ed by the U.S.

Forestry Service.

De�ning an environment consists of de�ning a map|the topographical features for a land

area, including ground cover, elevation, roads, rivers, and buildings|and processes within

the environment such as �res and wind. De�ning an agent is generally more complicated

because it involves designing sensors, e�ectors, a planner, a reactive component, internal

maps of the environment, and so on.

Phoenix includes an experiment-running facility that includes a language for specifying

scripts for changes in weather, �res starting, and other events. It also allows for agents'

behavior to be monitored, producing data �les that can be read by data-manipulation and

statistical packages. The design of the Phoenix system is modular and other testbeds have

been developed rapidly by swapping out the Yellowstone map and the Phoenix agent def-

initions, and swapping in, for instance, a world of shipping lanes, ports, docks, ships and

roads.

Phoenix di�ers from the previous simulators in that tries to provide a realistic simulation

of a single domain rather than implement an abstract domain-independent task environment.

Apart from that di�erence, however, it is quite similar to the MICE simulator in that it

enforces few constraints on how agents and exogenous events can sense or change the world.

The simulator maintains the map and schedules activities, but, like MICE, much of the

domain's physics lies in de�nitions of the individual tasks.

4.3 The Truckworld

The Truckworld [Firby and Hanks 1987] [Hanks et al. 1992] is a multiagent testbed designed

to test theories of reactive execution [Firby 1989] and to provide motivating examples for

a theory of reasoning about dynamic and uncertain worlds [Hanks and McDermott 1993],

[Hanks and McDermott 1992]. The main commitment is to provide a realistic world for its

agents, but without physical sensors or e�ectors

2

.

An agent is a truck consisting of two arms, two cargo bays, several sensors, and various

2

Truckworld code and documentation is available by sending mail to

truckworld-users-request@cs.washington.edu

14



other components like a fuel tank, a set of tires, and direction and speed controllers. It

operates in a world consisting of roads and locations. Roads connect the locations, which

are populated with objects. The simulator itself places few restrictions on the behavior of

objects, which can be quite complex. The Truckworld can model objects like fuel drums,

which the truck can use to increase its fuel level, tire chains, which help it drive safely down

slippery roads, vending machines, which require money and produce a product, and bombs,

which tend to break unprotected objects in their immediate vicinity.

Exogenous events like rainstorms occur periodically in the world. A rainstorm makes all

roads in its vicinity wet, and dirt roads become muddy for a while. The truck runs the risk

of getting stuck in the mud if it travels on a muddy road without proper tires. Objects in

the vicinity of a rainstorm get wet too, and that might a�ect their behavior (a match might

not ignite any more, a plant might start growing). The occurrence of events can depend

both on random chance and on characteristics of the world (rainstorms might be more likely

at certain locations or at certain times of day).

The Truckworld provides a wide variety of (simulated) sensors: cameras report visual

features of objects, sonars report whether there is an object at a location, scales report an

object's weight, and X-ray machines report on objects within a closed container. Sensors

typically have noise parameters: a camera sometimes reports an incorrect but \close" color

for an object, and this is more likely at night than during the day. A scale reports the object's

true weight distorted according to a user-supplied noise distribution; a sonar occasionally

incorrectly reports that an object is present.

A variety of communication devices are available: radios allow connection among agents;

loudspeakers produce sounds that can be detected by microphones in the vicinity. Motion

detectors notice when objects appear or disappear from their immediate vicinity. Tape

recorders are activated when a sound is produced, and an agent can retrieve the recorded

message later.

Communication between an agent and the simulator is tightly controlled: each agent and

the simulator itself run as separate processes, communicating over two channels. The agent

performs actions and gets sensor reports over the command channel, and uses the control

channel to manipulate the simulator's internal state (e.g. to connect or disconnect from the

simulator, to advance the simulator's clock, or to collect statistics about the world). Multiple

agents communicate using only the communication devices the world provides for them.

We had two main goals in designing the Truckworld: (1) to provide a testbed that gen-
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erates interesting problems both in deliberative and reactive reasoning, but without com-

mitting to a particular problem domain, and (2) to provide signi�cant constraints on the

agent's e�ecting and sensing capabilities and on the causal structure of the world, but still

allow the system to be extended to meet the designer's needs.

The Truckworld occupies a position between simple abstract simulators like the Tile-

worlds, a domain-speci�c simulator like Phoenix, and a testbed-building platform like MICE.

The Truckworld implements a speci�c set of operators for the agent (unlike MICE), but pro-

vides fewer constraints than do Tileworld or Phoenix on the nature of the other objects in

the world and on the interaction between the agent and those objects.

4.4 Summary

We have looked at �ve systems for implementing planning testbeds: the parameterizable

Tileworlds, the multi-agent MICE platform, the Phoenix �re�ghting simulation, and the

Truckworld simulator. Although there are many di�erences as to what features each system

o�ers and what design decisions each makes, we can identify three main areas in which the

systems di�er:

� Domain dependence

Phoenix strives for a realistic depiction of a single domain, the Tileworlds and MICE

try to describe abstract worlds and operators that a�ect the world. There is an obvious

tradeo� in this decision: a researcher using a domain-dependent simulator may be able

to demonstrate that her program is an e�ective problem solver in that domain, but

may have di�culty going on to conclude that the architecture is e�ective for dealing

with other domains. A researcher using an abstract simulator may be able to build a

system based on what he or she judges to be \general problem-solving principles," but

then the di�culty is in establishing that those principles apply to any realistic domain.

� De�nition of sensors and e�ectors

The question arises as to whether or to what extent the simulator should de�ne the

agent's sensing and e�ecting capabilities. On one extreme we have the Phoenix simu-

lation, which does not itself impose any constraints on environment dynamics or what

agents can �nd out about their environment. All such constraints are speci�ed in the

agent de�nitions and are merely enforced by the simulator. MICE and NTW represent

the other extreme: the simulator de�nes an agent as well as a world physics, supplying
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a set of sensing and e�ecting operations as part of the world. Truckworld partially

de�nes the truck's e�ecting capabilities: it de�nes a set of primitive commands, but

the exact e�ect of these commands depends on the objects being manipulated. Ob-

jects and their interactions are de�ned by the experimenter. The Truckworld does not,

on the other hand, de�ne a set of sensing operations. Sensors are objects de�ned by

the experimenter that happen to send sensory information back over the command

channel.

� Parameterizability

The Tileworlds have a built-in set of parameters that characterize the behavior of a

world. These parameters facilitate experimentation: by varying the world's parame-

ters systematically and matching them against various agent designs one may be able

to come up with \agent types" that perform well for particular \world types." The

price one pays for this ability to perform experiments is in simplicity and in control.

A world that is fully characterized by a small number of parameters must be simple,

and furthermore the parameters must characterize completely the nature of the agent's

behavior in that world. Phoenix allows the experimenter to specify values for parame-

ters such as wind speed, and also to write scripts for how parameters change over time

during an experiment. Phoenix also provides a mechanism called \alligator clips" for

recording the values of parameters during experiments.

So we are again faced with a tradeo�: in the Tileworlds and Phoenix one may be

able to demonstrate a systematic relationship between a world's characteristics and

an agent's performance. Such demonstrations, however, must be supplemented with

convincing arguments that these will be valid in a more realistic world|and it is far

from easy to make such arguments. In the Truckworld one can demonstrate that the

agent performs well on more complex problems, but it may be di�cult to demonstrate

precisely the reasons for that success and to apply those reasons to other domains.

5 Discussion

The discussion to this point has touched on mainly uncontroversial points: the need for in-

troducing more rigorous empirical methods into planning research and the roles that testbed

environments and benchmark tasks might play. The question of what the ultimate goal

of these research e�orts is, and how it might best be pursued, is the subject of some dis-
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agreement among the authors. The following three sections re
ect this disagreement, and

represent the authors' personal opinions. In the �rst Hanks argues against a program of con-

trolled experimentation in small, arti�cially simple worlds. Pollack defends such a program

in the second section. In the third Cohen addresses the problem of generalizing results from

testbed experiments.

5.1 The danger of \experimentation in the small" (Steve Hanks)

The planning community has been pushed (or has pushed itself) in two directions recently,

and these directions seem at odds. We see pressure to apply our representations and al-

gorithms to more realistic domains, and at the same time we feel the need to evaluate our

systems more rigorously than by announcing a system's ability to solve a few small, care-

fully chosen problems. The problem is that programs that operate in more realistic domains

tend to be bigger and more complicated, and big complicated programs are more di�cult to

understand and evaluate.

In writing this paper we agreed on the following two points: (1) that our primary objec-

tives as researchers in planning are to build systems that extend the functionality of existing

systems|that solve larger or more complicated problems or solve existing problems better;

and, (2) to understand how and why these systems work, and further that running exper-

iments is a good way (though not the only way) to accomplish the goal of understanding

the systems we build. We tended to disagree, however, on the best way to achieve these

objectives, and in particular on the issue of what form an experimental methodology should

take and what role it should play in the system-building process.

This section will discuss a particular methodological approach, which I will call \ex-

perimentation in the small." [Langley and Drummond 1990] advocate this position in the

abstract. [Pollack and Ringuette 1990] and [Kinny and George� 1991] explore it concretely

using an implemented testbed and suite of experiments. I take the methodological commit-

ments of this approach to be the following:

1. The researcher conducts her experiments in a testbed world signi�cantly simpler than

the world in which the agent is ultimately to be deployed. In particular the world is

supposed to exhibit particular interesting characteristics, but will be arti�cially simple

in other aspects.

2. The testbed provides a set of parameters that govern the world's behavior. Experimen-
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tation is a process of matching characteristics of the agent's problem-solving methods

with the world's parameter values; the goal of experimentation is to discover relation-

ships between these two sets of characteristics that predict good (or bad) performance.

The main point of this section will be that experimentation in small, controlled worlds

is not, in and of itself, an e�ective way to establish meaningful relationships between agents

and their environments. We will see below that the nature of the relationships established

by these experiments is inherently connected with the implementation details both of the

agent and of the testbed worlds. The hard part remains: generalizing beyond the particulars

of the world or even arguing that a particular testbed world is appropriate for studying a

particular agent architecture. The experiments themselves do not provide guidance in this

task, and may even tend to hinder it.

I will use the Tileworld testbed and experiments from [Pollack and Ringuette 1990] and

[Kinny and George� 1991] to make these points. My goal in doing so is not to single out

this particular work for criticism. I do so �rst because it's important to discuss the concrete

results that can be expected from these experimental endeavors, and these two pieces of work

are rare examples of systematic experimentation with agent architectures in small, controlled

worlds.

5.1.1 The original tileworld experiments

The planning agent studied in [Pollack and Ringuette 1990] is an implementation of the

IRMA architecture [Bratman et al. 1988]. One of the key ideas advanced in that paper is that

one way for agents to cope with a changing environment is to �lter out (avoid considering)

options that con
ict with their current intentions (this is the \�ltering" mechanism) unless

the option is especially promising (this is the \�lter override" mechanism). IRMA also

suggests that the agent separate what to do (\deliberation") from how to do it (\planning").

The Tileworld agent thus chooses its actions in two phases: the deliberation phase chooses

a hole to �ll (we will call this the \current hole"), then the planning phase plans a sequence

of moves that will �ll the current hole. The agent's �lter/override mechanisms govern when

the agent will abandon the current hole in favor of a new alternative.

The Tileworld agent has three components:

1. The �lter-override mechanism|a test applied to a newly appeared hole that determines

whether the task of �lling the current hole should be reconsidered in light of the new
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option(s)

3

. Only one �lter-override mechanism was implemented: a threshold v such

that a new hole would be considered as an alternative to the current hole just in case

its score exceeded the score of the current hole by at least v points.

2. The deliberator|a procedure that chooses the next hole to work on. Two alternatives

were implemented. The simpler (highest score or HS) deliberator always chooses the

hole with the highest score. The more complicated (likely value or LV) deliberator

divides the hole's score by an estimate of the cost of �lling it: the sum of the distances

of the n closest tiles, where n is the hole's capacity.

3. The path planner|given a hole to �ll, the path planner uses breadth-�rst search to

generate the optimal sequence of moves to �ll it with tiles. The choice of a path

planner was not among the agent parameters varied experimentally|only the optimal

path planner was implemented.

The experiments show the following results:

1. An agent that acts \in parallel with reasoning" performs slightly better than an agent

that \acts and reasons serially."

2. The more sophisticated LV deliberator (the one that ranks a hole by dividing its score

by the sum of the hole's distance to the n closest tiles) performs somewhat better than

the simpler HS deliberator (that ranks a hole on the basis of its score alone).

3. The �lter-override mechanism at best has no e�ect on the agent's performance, and in

some cases makes it perform worse.

[Hanks and Badr 1991] analyzes these experiments in detail; here I want to discuss some issues

relevant to the question of what this experimental paradigm can be expected to accomplish.

In particular I want to stress the need for caution in interpreting these results, since there

is a large gap between the e�ort's larger goal, of establishing general relationships between

agent designs and environmental conditions, and what is actually presented in the paper. I

don't see this as a fault of the paper|which presents preliminary work|but it is important

to keep the results in perspective.

3

The �ltering mechanism in the original Tileworld agent is trivial: when the agent is working on �lling a

hole, the �lter rejects all other holes; when the agent does not have a current hole the �lter accepts all holes.

20



The connection between a general architecture for problem solving (in this case IRMA)

and the particular results reported must be interpreted taking into account many design and

implementation decisions, among them:

1. the way in which the IRMA architecture was realized in the Tileworld agent (e.g.

equating \deliberation" with choosing which hole to �ll, \planning" with generating a

sequence of moves to �ll that hole)

2. the implementation of these modules in the Tileworld agent (e.g. the speci�c algorithms

for deliberation and path planning, and how they interact)

3. the implementation of the Tileworld simulator (e.g. the choice of what enviornmental

parameters can be varied, the interaction among the di�erent parameters and between

the agent and the simulator, and the simplifying assumptions built into the world

itself).

Consider the �rst result, for example, and what broader conclusions we might be able to

draw from it. The Tileworld uses a simulated notion of \serial" and \parallel" reasoning.

In fact the act cycle and reasoning cycle run sequentially, but they are constrained to take

the same amount of time. Is this implementation detail important to assess \the bene�t of

acting in parallel with reasoning?" I'm not sure. In the current implementation the agent

cannot be interrupted in the middle of its reasoning cycle by changes to the world that

occur during the concurrent act cycle, which strikes me as a signi�cant deviation from truly

parallel reasoning and acting. In any event the speedup result must be interpreted with an

understanding of the particular implementation, and cannot be interpreted more broadly

without further analysis.

The second result, suggesting that the LV deliberator performs better than the HS delib-

erator, must also be interpreted in the context of the particular implementation. We note in

[Hanks and Badr 1991] that one part of the Tileworld agent is the path-planning algorithm

that (1) solves the problem optimally, (2) is not subject to experimental variation, and (3) is

written in C, presumably for e�ciency reasons. To what extent do the experimental results

depend on the ability to solve the path-planning subproblem quickly and optimally? [Hanks

and Badr 1991] shows that the fast path planner has much more of an e�ect on the system's

performance than does variation in the deliberator (which was one of the parameters varied

experimentally). Given this fact we should be cautious about interpreting the experimental
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result too broadly: would an agent actually bene�t from a more sophisticated deliberator if

it were unable to solve the path-planning subproblem quickly and optimally? That question

would have to be answered in order to apply the result beyond the speci�c implementation

and experimental setting examined.

The �nal result, that the �lter-override mechanism does not generally improve the agent's

performance, strikes me as the one most closely related to the speci�c agent and environment

implementations. The authors recognize the problem that the environment did not \chal-

lenge" the deliberator, thus rendering a fast preliminary �ltering mechanism unnecessary.

They propose making the environment more challenging, speci�cally by making the world

change more quickly (i.e. by changing the parameters that govern the world's behavior).

Another interpretation of the same result is that the Tileworld is inherently not a good

test of an IRMA-like �ltering mechanism. The justi�cation for a �ltering and override

mechanism is that the �lter/override bene�ts the problem solver when deliberation is complex

and di�cult, but at the same time when deliberation at least potentially bene�ts the planner

signi�cantly.

Put another way, deliberation is really a matter of predicting the future state of the world

and choosing one's actions so as to maximize utility given the predicted future. The problem

with Tileworld is that there is very little to predict. Tiles appear and disappear randomly,

and with no pattern. The e�ects of the agent's actions are localized. On balance there is

little to be gained from thinking hard about the world, which we demonstrate in [Hanks and

Badr 1991] by demonstrating that there is little bene�t to be had even by implementing a

deliberator that computes the agent's optimal course of action given present information.

If deliberation is either easy to do or doesn't bene�t the agent signi�cantly, then there is

no need for a surrogate for deliberation like the �lter/override. The authors mention the

possibility of making the deliberation process more expensive, but not the possibility of

changing the world (e.g. by giving it more causal structure or by making the agent's reward

structure more complex) so as to give more potential payo� to the deliberation process.

The point of this discussion is to demonstrate the di�culty of interpreting experimen-

tal results such as those reported in [Pollack and Ringuette 1990], or more speci�cally the

di�culty associated with applying the results to any circumstances other than those under

which the experiments were conducted. Below I will discuss the implications to the gen-

eral paradigm of experimentation in the small, but �rst I want to discuss some follow-up

experiments in the Tileworld environment.
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5.1.2 Subsequent tileworld experiments

The experiments in [Pollack and Ringuette 1990] tried to establish a relationship between

the agent's commitment to its current plan|its willingness to abandon its current goal to

consider a new option, or \boldness" as it was called|and the rate at which the world

changes. [Kinny and George� 1991] try to make this relationship precise and provide addi-

tional empirical support. They begin their experimental inquiry by further simplifying the

testbed world:

[The Tileworld] was considered too rich for the investigative experiments we

had planned. Therefore, to reduce the complexity of the object-level reasoning

required of our agent, we employed a simpli�ed Tileworld with no tiles. [Kinny

and George� 1991, p. 83]

The agent's task in this simpli�ed Tileworld is to move itself to a hole on the board, at

which point it is awarded the hole's score. The agent is provided with perfect, immediate,

and cost-free information about the world's present state.

Once again the planning agent is con�gured around the tasks of deciding which hole to

pursue, decide which path to take to the chosen path, and deciding whether or not to pursue

a new hole that appears during execution.

The agent always chooses the hole with the highest ratio of score to distance. It will adopt

a new hole according to its \�lter override" policy, also called its \degree of commitment"

or \degree of boldness." Degree of boldness is a number b|the agent will automatically

reconsider its choice of hole after executing b steps of its path toward the hole it is currently

pursuing. A \bold" agent will therefore tend to make a choice and stick with it. A \cautious"

agent will tend to reconsider more often, and will be more likely to abandon its old choice

of hole in favor of a new one.

Another agent parameter is its \planning time," a number p set by the experimenter.

The path planner produces an optimal path to the current hole, and the \planning time"

parameter dictates that it took p time units to do so. It is important to point out two

things. First of all, the number p bears no necessary relationship to the amount of time that

it actually took to generate the plan. \Planning time" is a constant set by the experimenter

and does not depend on the time it takes to build a plan for the current path. Second,

increasing or decreasing p has no e�ect on solution quality. The authors are not exploring

the tradeo� between planning time and plan quality. The path planner always returns an
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optimal path; the planning-time parameter makes it seem like it took p time units to do so.

A single parameter causes variation in the world: 
, which is the ratio of the agent's

\clock rate" to the rate at which the world changes. Large values of 
 indicate that the

world changes frequently relative to the amount of time it takes the agent to act. The

agent's \e�ectiveness" was measured by dividing the number of points the agent actually

scored by the sum of the scores for all the holes that appeared during the game.

The experiments showed various relationships between e�ectiveness, rate of world change,

commitment, and planning time:

� E�ectiveness decreased as the rate of world change (
) increased.

� As planning time approached 0, an agent that reconsidered its options (choice of hole)

after every step performed better than an agent that never reconsidered.

� As 
 increased, an agent that reconsidered often tended to perform better than an

agent that reconsidered infrequently, planning time held constant.

� When the cost of planning is high, an agent that reconsidered infrequently tended to

perform better than one that did so frequently, rate of world change held constant.

The experiments above used an agent that reconsidered its current hole after a �xed number

of steps b. If the agent instead reconsidered its choice of path either after b steps or when

the target hole disappeared then the bold agent outperformed the cautious agent, regardless

of the values of p and 
. Performance was improved further by reconsidering the choice of

target when a hole appeared closer to the agent than the current target.

4

Once again I want to point out the di�culty in applying these results to situations other

than the speci�c experimental environment. Doing so requires evaluating the simpli�cations

to the Tileworld and how they a�ect the complexity of the deliberation task, evaluating how

well the de�nitions of \boldness" and \planning time" apply to di�erent domains, and so

on. To what extent does the last result, for example, depend on the fact that the agent was

provided with complete, instantaneous, correct, and cost-free information about changes to

the world?

4

In both experiments the agent was automatically and immediately noti�ed of the appearance and dis-

appearance of holes.
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5.1.3 Analysis

How do these experiments advance the cause of building intelligent agents? I think it's clear

that the agents presented in these papers do not in and of themselves constitute signi�cant

progress. Both operate in extremely simple domains, and the actual planning algorithm

consists of using a shallow estimate of a hole's value to focus the agent's attention, then

applying an optimal algorithm to plan a path to the chosen hole. This strategy is feasible

only because the testbed is so simple: the agent has at most four possible primitive actions,

it doesn't have to reason about the indirect e�ects of its actions, it has complete, perfect,

and cost-free information about the world, its goals are all of the same form and do not

interact strongly, and so on.

The argument must therefore be advanced that these experimental results will somehow

inform or constrain the design of a more interesting agent. Such an argument will ultimately

require translating these results into general relationships that apply to signi�cantly di�erent

domains and agents, and I pointed out how tricky it will be to establish any applicability

beyond the experimental testbed itself. A crucial part of this extensibility argument will be

that certain aspects of the world|those that the testbed was designed to simulate more or

less realistically|can be considered in isolation, that is, that studying certain aspects of the

world in isolation can lead to constraints and principles that still apply when the architecture

is deployed in a world in which the testbed's simplifying assumptions are relaxed.

The nature of experimental relationships Finding a general and useful interpretation

for experimental results is a crucial part of the process of controlled experimentation. One

immediately faces the tradeo� between stating the relationships in such a way that is not so

general as to be uninformative, but at the same time not so speci�c that they don't generalize

outside the particular agent and world in which the experiments were conducted.

Both Tileworld papers discuss the di�erence between a \bold" and a \cautious" agent,

for example. These general terms are supposed to suggest an agent's willingness to reassess

its plan commitments as it executes its plans: a \bold" agent rarely reconsiders its plans, a

\cautious" agent does so frequently.

5

The two main results from [Kinny and George� 1991] can be stated as follows: First, that

it's a good policy for an agent to be more cautious as the world changes more rapidly. Or in

5

The terms can be de�ned precisely within the IRMA framework|they describe the sensitivity of the

agent's �lter-override mechanism|but presumably the terms and the associated relationships are intended

to be applied to agents other than implementations of IRMA.
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other words, planning ahead doesn't do as much good when the world changes a lot before

or while the plan is being executed. Second, it's a good policy for an agent to rethink its

commitment to a goal when the goal disappears, or when a goal appears that super�cially

looks more promising than its current goal. Both results turns out to be quite robust, holding

as various other parameters both of the agent and of the world are varied. Stated this way

the relationships seem pretty straightforward|I would be surprised to hear about an agent

that did not adopt these policies, either explicitly or implicitly. The question is, therefore,

whether the relationships stated in these very general terms provide signi�cant guidance to

those that build other agents.

Of course the �rst relationship can be restated much more speci�cally, mentioning the

agent's goals (to move to holes), its problem-solving strategy (to choose a hole using a

heuristic, then plan a path optimally to that hole, using exactly p units of time to do so),

its de�nition of \boldness" (the number of operators it executes before replanning), and the

nature of \world change" parameter (the rate at which holes randomly appear). Interpreted

in this light the result is much less obvious|it does provides signi�cant guidance to somebody

who wants to design an agent using the architecture so described, to act e�ectively in a world

so described, given problems of the sort so described. But nobody really wants to do that.

So the problem is how to interpret this more speci�c relationship in a broader context. What

if the agent doesn't have immediate, perfect, and cost-free information about the appearance

of holes? What if the designer does not have an optimal and e�cient path planner at his

disposal? What if the appearance of holes is not truly random, but operates according to

some richer causal structure? Do the same relationships still hold; for that matter, are the

same relationships even meaningful?

The main point here is that experimentation will not provide us automatically with

meaningful relationships between agents and environments. Claiming that a speci�c experi-

mental relationship establishes a connection between \boldness" and \rate of world change"

constitutes a form of wishful thinking

6

. It translates a very speci�c relationship between

a particular implemented agent and a particular simulated world into terms that are very

intuitive, very broad, and very imprecise. Giving intuitive names to these characteristics

and to their relationship does not make them meaningful or broadly applicable. The real

contribution of such an analysis would be to come up with the right way of characterizing

the agent, the world, and their relationship|in terms that are not so speci�c as to be ap-

6

Cf. [McDermott 1981]
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plicable only to the experimental domain but not so vague as to be vacuously true. So far

the experimental work has not focused on this question; in fact it's worth asking whether

running experiments in arti�cially small simple worlds is the right place to start looking for

these relationships at all.

5.1.4 Examining environmental features in isolation

We turn now to the second assumption underlying experimentation in the small: that a

particular characteristic of a realistic world can be studied in isolation, and good solutions

to the restricted problem will lead to good solutions in the realistic world. The Tileworld, for

example, focuses on unplanned change in the form of random appearance and disappearance

of tiles and holes (or just holes in the case of the simpli�ed Tileworld), but simpli�es away

other aspects of the world.

This \scaling" assumption is absolutely crucial to the whole experimental paradigm,

and I have not seen it defended in the literature. In fact the only explicit mention of the

assumption I have found appears in [Philips et al. 1991]:

We are not suggesting that studies of these attributes in isolation are su�cient

to guarantee the obvious goals of good methodology, brilliant architectures, or

�rst-class results; however, we are suggesting that such isolation facilitates the

achievement of such goals. Working on a real-world problem has obvious bene�ts,

but to understand the systems that we build we must isolate attributes and carry

out systematic experimentation.

My own work leads me to believe that it will be quite di�cult to isolate particular

aspects of a large planning problem. [Hanks 1990b], for example, confronts the problem

of reasoning about plans in an uncertain world. Unplanned, random change|like tiles

and holes appearing and disappearing|is one source of uncertainty, but there are others:

the agent can have incomplete or incorrect information about the world's initial state, an

incomplete model of its own actions, and may not have enough to time to consider explicitly

every outcome of its plan. I see no way to separate one of these factors from the others in

any principled way, therefore I see no way that studying the simpli�ed problem of a world

in which all uncertainty is due to unplanned, random change will shed light on the larger

problem of reasoning about plans in an uncertain world.
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It's not even clear whether the problem that the Tileworld papers claim to be investigating|

the decision of when it is advantageous to act as opposed to deliberate|can be considered in

a context in which all exogenous change is random. The decision about whether to plan or

act depends both on the world and on the agent's ability to predict the world: the better it

is at reasoning about the e�ects of its actions, the more bene�t can be derived from thinking

ahead.

The Tileworld trivializes the prediction process by making the world essentially unpre-

dictable: tiles and holes appear and disappear randomly, without a regular pattern. The

agent therefore has no incentive to reason about what tiles might appear or disappear or

where they might appear, which greatly simpli�es the question of whether it should deliber-

ate or act. Can we therefore apply the experimental results established in the Tileworld to

worlds in which prediction is a di�cult problem?

7

Experimentation in the small depends on the ability to study particular aspects of a

realistic world in isolation and apply solutions to the small problems to a more realistic

world. We have seen no indication that this can in fact be done; in fact neither Tileworld

paper argues that random unplanned change is a reasonable feature for isolated study. An

experimenter using these worlds therefore runs the risk of solving problems in a way that

cannot be extended to more realistic worlds, and at the same time making his job arti�cially

di�cult for having studied the problem in isolation. [Kinny and George� 1991, p. 82] states

that

\[Simulated worlds] should ideally capture the essential features of real-world

domains while permitting 
exible, accurate, and reproducible control of the

world's characteristics."

An appealing proposition, but the fact is we don't know what it means to \capture the

essential features of real-world domains," much less whether it is possible to do so in a system

that allows \reproducible control of the world's characteristics." Conducting experiments in

small, controlled worlds carries with it the responsibility of considering the implications of

the simpli�cations that were made to allow the experimentation in the �rst place.

But at this point we must remind ourselves of our ultimate goals: to build systems that

solve interesting problems and to understand why they do so. Research decisions must be

oriented toward solving problems, not toward satisfying methodological goals. The ultimate

7

[Chapman 1990] advances an even stronger view: that randomness without structure actually makes

planning more di�cult.
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danger of experimentation in the small is that it entices us into solving problems that we

understand rather than ones that are interesting. At best it gives the mistaken impression

that we are making progress toward our real goal. At worst, over time it confounds us to

the point that we believe that our real goal is the solution of the small, controlled problems.

5.1.5 Conclusion

In no way should this section taken to be an argument against using experimental methods

to validate theories or programs. In fact I think the need for experimentation is manifest: we

need to understand why and how well our ideas and our architectures work, and we will not

always be able to do so using analytic methods. Neither am I opposed to conducting these

experiments in controlled, overly simpli�ed worlds. I can imagine, for example, a researcher

implementing some idea in a system then building a small world that isolates the essence of

that idea, then using the small world to explore the idea further. I object, however, when

attention turns to the experimentation process itself instead of to the ideas that are to be

tested, and when the assumptions inherent in the small world are adopted without regard

to the relationships the world is supposed to demonstrate.

The ultimate value|arguably the only value|of experimentation is to constrain or oth-

erwise inform the designer of a system that solves interesting problems. In order to do so

the experimenter must demonstrate three things:

1. that her results|the relationships she demonstrates between agent characteristics and

world characteristics|extend beyond the particular agent, world, and problem speci-

�cation she studied,

2. that the solution to the problem area she studied in isolation will be applicable when

that same problem area is encountered in a larger, more complex world, and

3. that the relationship demonstrated experimentally actually constrains or somehow

guides the design of a larger more realistic agent.

The experimental work I have seen has addressed none of these questions.

I originally stated our two objectives as researchers as (1) building interesting systems and

(2) understanding why they work. It seems to me that experimentation in the small adopts

the position that these goals should be tackled in reverse order|that you can understand

how an interesting system must be built without actually building one. I don't believe that is
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the case; rather we should be building systems and then applying analytic and experimental

tools to understand why they did (or did not) work.

5.2 The promise of experimentation (Martha Pollack)

My co-author (SH) believes that experimentation \in the small" is a dangerous enterprise. I

believe that, to the contrary, controlled experimentation|\small", \medium", or \large"|

promises to help AI achieve the scienti�c maturity it has so long sought. In these comments

I shall try to defend that belief.

SH begins by stating that the primary objectives of those studying agent design are \(1)

to build systems that extend the functionality of existing systems : : :and (2) to understand

how and why these systems work." (p. 18, emphasis mine.) I would put the second point

somewhat di�erently and claim that we aim to understand \how and why such systems can

work." This is not a minor matter of wording, but rather a fundamental disagreement about

research methodology. SH believes that complex-system building must precede experimental

analysis, while I believe that these two activities can and should proceed in parallel. SH

does not object to all experimentation, but only to experimentation \in the small," i.e.,

experimentation using simpli�ed systems and environments. I claim not only that such

experimentation can be informative, but that, given our current state of knowledge about

system design, controlled experimentation often requires such simpli�cations. Thus, in my

view, SH's position is tantamount to an injunction against all experimentation in AI|in

other words, it is a call for the maintenance of the status quo in AI methodology.

It is important to be clear about what would constitute an understanding of how and

why certain autonomous agents work. In my view, this will consist in a theory that explains

how alternative design choices a�ect agent behavior in alternative environments, i.e., it will

largely be made up of claims having the form: \A system with some identi�able properties

S, when situated in an environment with identi�able properties E, will exhibit behavior with

identi�able properties B."

8

The goal of experimentation in AI (and arguably, a primary goal of the science of AI

taken as a whole) is to elucidate the relationships between sets of properties S, E, and B,

as de�ned above. I will argue that for experimentation to succeed in meeting this goal, two

8

For similar statements of this research paradigm, see [Chrisman et al. 1991,Cohen et al. 1990,Rosenschein

et al. 1990,Pollack and Ringuette 1990,Langley and Drummond 1990]. Some researchers also split out the

properties of the agent's task; in these comments, I will consider the task speci�cation to be part of the

environment, but my argument does not depend on this.
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types of simpli�cation must be made. The �rst is inherent in the very notion of experimental

design. Experimentation necessarily involves selective attention to and manipulation of

certain characteristics of the phenomena being investigated. Such selectivity and control

constitutes a type of \simpli�cation" of the phenomena. The second type of simpli�cation

that is currently needed arises from our existing abilities to build complex AI systems. Large,

complex systems that tackle interesting problems are generally not principled enough to allow

the experimenter to meaningfully probe the design choices underlying them. Moreover,

they are designed for environments in which it may be di�cult or impossible to isolate,

manipulate, and measure particular characteristics. Finally, they do not generally include

instrumentation to measure their performance, although it is conceivable that in many cases

this could be added in a fairly straightforward way. Thus these systems do not allow the

experimenter su�cient access at least to S and E, and possibly also to B; they are, in short,

ill-suited for controlled experimentation. In contrast, the kinds of simpli�ed systems we

described in Section 4, i.e., testbeds such as the Tileworlds, Truckworld, and Phoenix, along

with their embedded agents, are designed speci�cally to provide the control needed by the

experimenter.

SH correctly notes that the simpli�cations required for experimentation introduce method-

ological challenges. In particular, he points out the issue of generalizability: how can a

researcher guarantee that the simpli�cations made in the design of an experiment do not in-

validate the generality of the results obtained? I believe that this is a serious issue, one that

poses a signi�cant challenge to AI researchers. Moreover, I agree with SH that by and large

the controlled experimentation that has been performed to date in agent design| including

my own work|has not adequately met this challenge. That, however, is due to the fact that

so far there has been painfully little controlled experimentation conducted in AI: as SH notes,

the Tileworld experiments represent relatively \rare examples of systematic experimentation

with agent architectures" (p. 19).

9

It is extremely di�cult, and often impossible, to have

con�dence in the generality of the results obtained from a very few experiments. The desire

for robust, generalizable results should lead us to do more, not less, experimentation.

The problem of generalizability is not unique to AI: it is inherent in the experimen-

tal methodology, a methodology that has been tremendously successful in, and, indeed is

the cornerstone of many other sciences. I see nothing in AI's research agenda that would

9

Although I believe the situation is changing; recent conference proceedings appear to include an increas-

ing number of experimental papers on agent design, and, in some other sub�elds of AI, notably machine

learning and text understanding, there are many such papers.
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preclude its also bene�ting from controlled experimentation. Of course, adopting the exper-

imental method entails adapting it to the particulars of the AI research program. In my

comments below, I will give some necessarily sketchy suggestions about how we might adapt

the methodology, and, in particular, how the challenge of generalizability can be met in AI.

Following SH, I will use the Tileworld as an example.

5.2.1 Simpli�cation in experimentation

\Simpli�cation, paring back the variables, far from invalidating results, is

indeed required by the foundations of empirical design. The success of reduc-

tionism depends on measuring and reporting only that bit of cloth that can be

understood and tested piecemeal. [Powers 1991, p.355]."

Experimentation mandates simpli�cation. In investigating a complex phenomenon, the

experimenter selectively attends to some aspects of it, namely, those that she believes are

relevant to her hypotheses. She exerts control over those aspects of the phenomenon, manip-

ulating them as necessary to test her hypotheses. At the same time, she holds constant those

in
uences she believes are extraneous to her hypotheses, and allows or even forces random

variation in those in
uences that she believes are \noise." This selective attention to and

intentional manipulation of certain aspects of the phenomenon is the \paring back [of] the

variables" noted in the quotation above.

Does SH object to simpli�cation per se, i.e., does he believe that, to be useful, a hypothesis

about agent design cannot make reference only to some aspects of an agent's architecture

or environment? Although he appears to be inclined toward this conclusion when he asserts

his belief that \it will be quite di�cult to isolate particular aspects of a large planning

problem," (p. 27), this is not his primary objection. Rather, what he views as dangerous is a

particular way of achieving simpli�cation in research on agent design, namely, by conducting

experiments using highly simpli�ed agents operating in highly simpli�ed environments. This

is what he terms \experimentation in the small." SH's introductory comments mention

only objections to the use of simpli�ed environments, but his criticisms of the Tileworld

experiments show that also objects to the use of highly simpli�ed agents.

I alluded earlier to my belief that it is necessary to make signi�cant simpli�cations in

the agents and environments we use in conducting experimentation. Large, realistic systems

have generally been built without the bene�t of a principled understanding of agent design|

precisely what experimentation (supplemented with theorizing) aims at. As a result, it
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is extraordinarily di�cult to determine which mechanisms of these complex systems are

responsible for which aspects of their behavior|in other words, to isolate the key properties

of S and B. It is di�cult to determine what in the system is essential to the observed

behavior, and what is instead an artifact of the way the system happened to be implemented.

In addition, when these systems are deployed in real environments, there is not a ready way

to isolate and control key feature of those environments, i.e., to get a handle on E.

The testbeds that we surveyed in Section 4 are designed speci�cally to provide the re-

searcher with the control needed to conduct experimentation|to enable her to control and

monitor the conditions of the environment and to measure the behavior of a system embed-

ded in that environment. In other words, a useful testbed will give the researcher a handle

on B and on E.

To give the researcher a way to measure B, the testbed designer speci�es what counts as

successful behavior in the testbed environment, and provides instrumentation that measures

success. To give the researcher a way to control and monitor E, the testbed designer selects

some set of environmental features, and provides instrumentation that allows the researcher

to control these. One potential objection is that the testbed designer thereby in
uences the

experiments that can be conducted using the testbed; researchers may want to study other

characteristics of B and E than those identi�ed by the testbed designer. This, however, is

only a problem if researchers are mandated to use particular testbeds. The problem disap-

pears if we leave the decision about which testbed to use to individual researchers. A testbed

is just a tool, and it is up to the researcher to determine the best tool for her current task.

Indeed, in some cases, researchers may need to build their own tools to pursue the questions

of interest to them. It is worth noting, though, that some testbeds may be more 
exible

than others|i.e., may more readily suggest ways to model a variety of environmental fea-

tures and/or behavioral aspects, and thus be more amenable to modi�cation by the testbed

users. I will suggest below that 
exibility is one of the strengths of the Tileworld system.

So far, I have focused on how a testbed allows control of B and E. It is, of course, also

necessary for the researcher to have control of the system features, S. One way to achieve this

is to use the same kind of parameterization in an agent embedded in a testbed environment

as is used in the environment itself. One of the more useful features of the Tileworld system

is precisely that it provides the experimenter with control over the embedded system as well

as over the environment.

SH does not dispute the claim that simpli�cation of the kind provided by testbed envi-
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ronments and agents provides experimental control. What worries him is that the price we

may pay for this control is too high. His main argument is that the very simpli�cations that

provide the needed control also make it impossible to produce results that are in any sense

\real" or generalizable, i.e., that can be shown to be applicable to larger AI applications.

All three of the authors of this paper agree that that this problem, often called \realism," is

the most di�cult challenge facing researchers on agent design who adopt the experimental

methodology we have discussed in this paper. However, we disagree about whether this

di�culty in insurmountable.

5.2.2 Towards realism

The problem of realism is a challenge for experimentalists|for all experimentalists, not just

those in AI. To achieve the experimental control they need, scientists in many disciplines

have made use of simpli�ed systems, and have thus had to address the question of how the

lessons they learn using those systems may be applied to more complex phenomena. Yet the

history of science is full of examples in which this challenge has been successfully met. To

give just a few examples:

� Biologists have used the very simple organisms drosophila and e.coli in numerous exper-

iments aimed at understanding the fundamental mechanisms of genetics. The results

of these experiments have had tremendous signi�cance for the theory of inheritance in

all organisms, including humans.

� Neurobiologists have used aplysia, animals with only a few neurons, to conduct ex-

periments investigating neuroplasticity. Again, the results have been generalized to

theories about the ways in which human brains function.

� Engineers have built systems to simulate natural phenomena|wind tunnels and wave

machines, for example. These simulations abstract away from much of the complexity

of \real" environments. Nonetheless, experiments conducted using them have provided

many valuable lessons about the e�ects of the modeled phenomena on engineered

artifacts such as airplanes.

Of course, merely pointing out that many other sciences have been able to meet the

challenge of realism is not, in and of itself, enough to demonstrate that AI researchers

concerned with agent design will be able to do so. What is needed is a closer look at how

34



this challenge has been met. A widely used, introductory textbook on statistics describes

the process of achieving realism as follows:

\Most experimenters want to generalize their conclusions to some setting

wider than that of the actual experiment. Statistical analysis of the original

experiment cannot tell us how far the results will generalize. Rather the exper-

imenter must argue based on an understanding of psychology or chemical engi-

neering or education that the experimental results do describe the wider world.

Other psychologists or engineers or educators may disagree. This is one reason

why a single experiment is rarely completely convincing, despite the compelling

logic of experimental design. The true scope of a new �nding must usually be

explored by a number of experiments in various settings.

A convincing case that an experiment is su�ciently realistic to produce useful

information is based not on statistics, but on the experimenter's knowledge of

the subject-matter of the experiment.[Moore and McCabe 1989, p.270].

The key to achieving realism lies in the researcher's \knowledge of the subject-matter";

the researcher must provide an argument, based on her understanding of the subject matter,

that in fact the results of her experiments do \describe the wider world." For such arguments

to be satisfying, they must be informed by a rich theory of the phenomena in question. For

the experimental program to succeed in AI, AI researchers will need to be more scrupulous

about careful theory development; as I have claimed elsewhere [Pollack 1992], our �eld has

not always valued theory development as an integral part of our work.

Research into agent design begins with a theory. Of course, the theory, in whole or in part,

may be informed by the theorist's previous experiences building large, interesting systems.

An experimental research program on agent design includes the following components (cf.

Cohen's \MAD" methodology [Cohen 1991]).

� A theory T , describing some aspect(s) of agent design and the purported e�ect of those

design aspects on agent behavior in certain environments, particularly describing the

the agent's architecture, the environment, and the agent's behavior.

10

� An implemented testbed environment E, and a description of the characteristics of

that environment.

10

A general question exists about the appropriate language for the researcher to use in articulating her

theory: sometimes it will be the language of mathematics, other times a natural language, clearly used, may

su�ce.
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� An implemented agent A, who will operate in the testbed environment, and a descrip-

tion of that agent's architecture, as implemented.

� Mappings describing the relationship between the \real" phenomena described by the

theory to their intended analogues in the testbed environment, the relationship between

the agent architecture described in the theory and its realization in the implemented

agent, and the relationship between the agent's design and its performance in the

testbed world.

A typical set of experiments will then evolve from some hypothesis, typically asserting

that, under the some given environment conditions, some speci�ed behavior will be observed

in agents having some given architectural characteristics. Experiments can then be designed

using the implemented (or, operationalized) analogue of this hypothesis, relating conditions

in the testbed to observed behavior in the implemented agent. Such experiments can have

several di�erent types of results. They may con�rm, deny, or suggest modi�cations to the

hypotheses in the underlying theory. They may suggest needed changes to the testbed

system and/or to the mappings between the actual and simulated environment. Experimen-

tation may reveal 
aws in the way the environment was modeled. They may suggest needed

changes to the simpli�ed agent and/or the mappings between the actual and simulated agent.

Experimentation may reveal 
aws in the way the agent was modeled, or its behavior mea-

sured. Perhaps most importantly, they may suggest additional experimentation that should

be performed, either using the same testbed and agent or some other testbed and agent.

This last type of result is critical: experimentation is an iterative process. Part of the

experimental program is to re�ne the mapping between a theory and its realization in im-

plemented systems. And part of the experimental program is to iteratively re�ne the exper-

iments themselves. As Moore and McCabe put it, \a single experiment is rarely completely

convincing : : :The true scope of a new �nding must usually be explored by a number of

experiments in various settings." For this to happen in research on agent design, great care

must be given to the way in which theories are stated, and to the way in which those theories

are operationalized in experimental settings. Testbeds and simpli�ed agents make it possible

to meet this latter requirement.
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5.2.3 The Tileworld experience

To make this discussion more concrete, I want to describe brie
y some of the experiences

we have had in conducting experiments using the Tileworld system. I will focus on the

Tileworld because it is the experimental work with which I am most familiar, and because

SH addresses it in his comments. I do not mean to suggest that the Tileworld is the ultimate

testbed or one that all researchers should use in their work. On the contrary, for reasons I

have already discussed, it is essential that AI researchers use a variety of testbed systems

in their experimentation. Moreover, the Tileworld is an early, prototype testbed system,

and, in using it, we have not only learned about agent design, but have also learned a great

deal about the testbed design. These lessons have led us to make a number of changes and

extensions to the oritinal system reported on in [Pollack and Ringuette 1990], some of which

I will mention below.

Our initial goal in building the Tileworld was to study a particular, well-developed the-

ory of resource-limited reasoning, called IRMA (the Intelligent Resource-Limited Machine

Architecture), that we had previously developed [Bratman et al. 1988,Bratman 1987,Pol-

lack 1991]. This theory built on a detailed philosophical analysis of the role of intention in

managing reasoning; our aim was to investigate certain underspeci�ed aspects of this model.

In particular, we began with a theoretically motivated strategy for coping with changing

environments|the strategy of commitment-based �ltering. Roughly speaking, this strategy

involves committing to certain plans and tending to ignore options for action that are deemed

incompatible with those plans. Filtering can be more or less strict, and we wanted to de-

termine the environmental conditions under which stricter �ltering was more advantageous.

In addition, there are various ways to realize the notion of \strictness," and we wanted to

explore the e�ects of these alternatives on agent behavior in di�erent environmental condi-

tions. The environmental condition that we suspected would be most important was average

rate of change in the environment. Details are be found in [Pollack and Ringuette 1990];

this brief sketch is meant to highlight the fact that, underlying our attempt to relate S (in

this case, conditions on �ltering), E (average rate of change), and B (the agent's overall

performance), was a larger theory about the role of intentions in resource-limited reasoning.

The experiments that we conducted, as well as those performed by others using the

Tileworld [Kinny 1990,Kinny and George� 1991,Oh 1991,Hendler and Kinny 1992], led to

each of the kinds of results I described above:
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� They provided preliminary con�rmation of some parts of the theory. Experimentation

showed that strict �ltering of incompatible options, coupled with an appropriate over-

riding mechanism, is viable at least under some circumstances [Kinny and George�

1991,Kinny 1990]. In other words, commitment to one's plans can be a valuable strat-

egy for managing a changing environment. Experimentation also suggested needed

modi�cations to the theory. For example, Oh observed that the agent's performance

is hindered by its inability to immediately adopt certain extremely promising options

without deliberation [Oh 1991]. The original theory included a mechanism for short-

circuiting deliberation to eliminate a new option, but it lacked a mechanism for short-

circuiting deliberation to immediately adopt a new option. The theory thus needed to

be modi�ed to include a new mechanism of the latter type.

� The experiments suggested needed changes to the testbed environment. As SH cor-

rectly points out, the original Tileworld testbed was extremelyhomogeneous|essentially,

the world only presented one type of top-level goal (hole-�lling). This fact limited the

range of experiments we could conduct: there was no way to explore the behavior of

agents who had to perform complex (and thus, computationally costly) plan genera-

tion. We have, since the publication of [Pollack and Ringuette 1990], increased the

complexity of the Tileworld environment, so that we can study situations in which a

wider range of options are presented to the agent.

� The experiments also suggested needed changes to the agent embedded in the Tile-

world environment. Early experiments showed that the simpli�cations we made in the

deliberation and plan generation component of the system were too extreme. Both

processes were uniformly inexpensive, and we were thus unable adequately to explore

the advantages of the �ltering process, whose intent is to cut down on the amount of

deliberation and planning needed [Pollack and Ringuette 1990]. This limitation led us

subsequently to increase the complexity of the deliberation process. Note the interac-

tion between this change and the previous one described; the added complexity in the

agent depended on added complexity in the environment.

� Finally, the experiments suggested a large number of additional experiments that need

to be conducted to expand and strengthen our original theory. SH, in fact, gives many

examples of such experiments. He wonders about the signi�cance of the agent's ability

to perform some planning problems optimally (p. 21). He suggests that the degree of
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(un)predictability in an environment may be an important in
uence on the value of

commiting to one's plans (p. 22). He asks, \What if the agent doesn't have immediate,

perfect, cost-free information about the appearance of holes? What if the designer does

not have an optimal and e�cient planner at his disposal?" (p. 26). Questions such as

these are precisely what a theory of agent design should answer, and directly suggest

experiments that could be performed, using Tileworld and/or other testbed systems.

We count as a success of our experience with the Tileworld that it has led a number

of researchers to ask just these kinds of questions. Moreover, the Tileworld has proven

to be 
exible, in the sense that it can readily be modi�ed to support experiments

investigating environmental and agent-design issues other than those for which it was

originally designed.

One error that we made in the initial Tileworld experiments was a failure to be precise

enough in the terminology we used to describe our theory and its realization in the testbed

and simpli�ed agent.

11

Instead of using qualitative terms, we should perhaps have developed

quantitative analyses. For example, instead of describing environments as \fast" or \slow"

relative to some arbitrary baseline, we might have de�ned the rate of environmental changes

as the ratio between the average period of time between changes in the environment and the

average amount of time it takes an agent to form an arbitrary plan. Qualitative de�nitions

like this would certainly have facilitated the speci�cation of the mapping functions between

\real" phenomena and the Tileworld operationalization of them.

It is clear that signi�cant e�ort must be put into the development of vocabularies for

describing agents and environments and their realizations in implemented systems. I agree

completely with SH that the real contribution of this line of research will be \to come up

with the right way or characterizing the agent, the world, and their relationship" (p. 26).

This is the primary goal of our ongoing work. However, I disagree strongly with SH when

he goes on to claim that so far the terms used in the Tileworld studies (and in all other

experimentation \in the small") are \so speci�c as to be applicable only to the experimental

domain [or] so vague as to be vacuously true".

Consider the Tileworld results that he describes as vacuously true. He states these in

terms of the circumstances under which it is advantageous to reconsider the plans to which

11

Another error was our failure to to provide a clean enough interface between the agent and the environ-

ment; it is more di�cult than we had hoped to excise the IRMA-based embedded agent and replace it with

an alternative. Also, as SH points out (p. 21), we employed an awkward mechanism, which has since been

modi�ed, for simulating concurrent acting and reasoning on a sequential machine.
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one has already committed (e.g., be more inclined to reconsideration when the world is

changing more rapidly; reconsider when your goal becomes impossible). But what is most

important about the early Tileworld results is that they support the idea that commitment

is a good idea in the �rst place: the results, as described by SH, have to do with re�nements

to that basic idea. Kinny and George� found that commitment led to the most e�ective

behavior under all the conditions they studied, provided the agent was given a minimal

override policy that allows for reconsideration of goals that have become unachievable.

The key idea of the IRMA theory is that it pays for an agent in a dynamic environment to

commit to certain courses of action, even though the environment may change so that some

of those courses of action cease to be optimal. Local optimality|always doing what is best

at a given time|must be sacri�ced in the interest of doing well enough overall; commitment

to one's plans generally rules out local optimality, but can help lead to overall satis�cing,

i.e., \good enough," behavior. Although I cannot restate the entire argument here (again,

see [Bratman et al. 1988,Bratman 1987,Pollack 1991]), it should be said that this is far from

being a claim that is so obvious that all reasonable people would assent to it.

12

SH says

that he would be \surprised to hear about an agent that did not adopt these policies" (p.

25), but in fact the recent literature in agent design has been �lled with examples of agents,

speci�cally the so-called reactive agents, that are notable precisely because they do not

commit to any plans; instead, they decide at each point in time what action is appropriate

([Agre and Chapman 1987,Brooks 1991,Schoppers 1987]). A standard attempt to resolve

the debate between the reactivists and the deliberativists has been to suggest a middle road:

rational agents sometimes should deliberate about and commit to plans, and other times

should react more immediately to their environment. The Tileworld experiments conducted

to date can be seen, at least in part, as an attempt to clarify the conditions under which

each alternative is desirable.

5.2.4 Conclusion

In these comments, I have distinguished between two kinds of simpli�cation in experimen-

tation: (a) investigating hypotheses that focus on particular characteristics of a system, its

behavior, and its environment, and (b) using simpli�ed systems, operating in simpli�ed en-

vironments, to conduct the experiments. I have claimed that the former is essential to all

12

If you don't believe me, I invite you to listen to the objections that are raised when I give talks describing

IRMA.
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experimentation, and that, while in principle the latter is not necessary, de facto it is, given

the current state of our science.

Although SH focuses, in his comments, on the di�culties involved in using testbeds and

simpli�ed agents in experimentation, in his conclusion he supports their use, provided that

the hypotheses towards which they are directed were inspired by experiences with particular

large-scale systems. Thus, he says that he is not \opposed to conducting : : : experiments in

controlled, overly simpli�ed worlds [and can] imagine, for example, a researcher implementing

some idea in a system, then building a small world that isolates the essence of that idea,

then using the small world to explore the idea further" (p. 29). So apparently SH feels

that the problem is not in the use of simpli�ed systems and agents per se, but rather in

the fact that researchers who have so far employed simpli�ed systems and agents have been

willing to investigate hypotheses that have been developed apart from the implementation

of any particular system. Given this, it appears that the primary dispute between SH

and me has little to do with the use of testbeds and simpli�ed systems. We both agree

that unprincipled �ddling with any systems (large or small) is just that. Experimentation

must build on theorizing.

13

But SH demands that any theory worth investigating must

derive directly from a large, implemented system, while I see no need for this restriction.

Sometimes, hypotheses about agent design may result from other avenues of inquiry|such

as the philosophical theorizing that led to IRMA|and it may be may be more e�ective to

explore these theories experimentally before investing in large, complex systems that embody

them.

5.3 Generalization of testbed results (Paul Cohen)

Much of the preceding discussion touches on the problem of generalizing results from research

with testbeds. I will do the reader no service by recounting my coauthors' arguments. Instead

I will try to clarify what testbeds are for, focusing on their role in the search for general

rules of behavior.

14

I was struck by Steve Hanks' repeated assertion that results from the Tileworld studies

are di�cult to interpret, so this will serve as the launching point for my own comments.

All empirical results are open to interpretation. Interpretation is our job. When we read

13

There is an exploratory phase of experimentation that may occur after initial attempts at verifying a

particular theory and may sometimes look like \�ddling," but that is another matter.

14

Much of what I will say arises from conversations with Professor Bruce Porter, of the University of Texas.

Although I owe my current understanding of the issues to our discussions, I do not mean to imply that he

agrees with everything here.
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the results of a study we have to ask ourselves, what does this mean? We can answer the

question several ways. First, we might say, Goodness gracious, this result deals a deadly blow

to the prevailing theory of, say, \agent curiosity." Let's agree that this is unlikely for two

reasons: we don't have a theory of agent curiosity, or a theory of any other agent behavior;

and death-dealing empirical results are in any case rare. Second, we might interpret a study

as a chink in the armor of a prevailing theory, as results from astronomy sometimes are

interpreted as troublesome for the Big Bang theory. This too is unlikely because we don't

have any theories that make predictions for results to contradict. Third, a study might be

interpreted as supporting a prevailing theory, if we had any theories to support. Fourth, a

result might suggest a theory or just a tentative explanation of an aspect of agent behavior.

I interpret Kinney and George�'s paper in this way, as weak evidence for the theory that

agents sometimes do better in unpredictable domains if they are \bold." And I have no

sympathy for the complaint that the paper is di�cult to interpret. Interpretation is our

job, especially now, when we have no theories to do the job for us. In short, we ought to

ask what our few empirical results mean|what theories they suggest, because we currently

have no theories to provide interpretations|instead of asserting strenuously that they mean

nothing.

Let us recognize that empirical results are rarely general. Interpretations of results might

be general, but results are invariably tied to an experimental set-up. It is wrong to assert

that because Kinney and George� worked with a trivial testbed, their results have no general

interpretation. I have already recounted one general interpretation: bold agents sometimes

do better in unpredictable domains. Moreover, every substantive word in this interpretation

has a precise meaning in the Tileworld. Thus, Kinney and George� can say, \Bold agents

sometimes do better in an unpredictable environment, and here is what we mean by bold,

agent, sometimes, better and unpredictable. If you are interested in our theory, tell us what

you mean by these terms and let us see if the theory generalizes."

Nothing prevents us inventing general theories as interpretations of results of testbed

studies, and nothing prevents us designing additional studies to test predictions of these the-

ories in several testbeds. For example, two students in my research group explored whether

bold Phoenix agents do better as the Phoenix environment becomes more unpredictable.

The experiment proved technically di�cult because Phoenix agents rely heavily on failure-

recovery strategies, so it is di�cult to get them to commit unswervingly to any plan for very

long. Their natural state is \bold," and they fail catastrophically when we make them less so,
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so our results were inconclusive. But imagine the experiments had succeeded and we had ac-

crued evidence that boldness really does help Phoenix agents when the environment becomes

more unpredictable. Then two research groups|mine, and Kinney and George�'s|would

have demonstrated the same result, right? Whether you agree depends on what you mean by

\the same result." I mean this: Kinney and George� o�ered a mapping from terms in their

theory (bold, agent, better, sometimes, unpredictable) to mechanisms in the Tileworld, and

I o�ered a mapping from the same terms to mechanisms in Phoenix, and we both found that

a sentence composed from these terms|bold agents sometimes do better in an unpredictable

environment|was empirically true. In reality, as I noted, we were unable to replicate Kin-

ney and George�'s result. We failed for technical reasons; there was no easy way to create

a Phoenix agent that was not \bold." Di�erences in experimental apparatus always make

replication di�cult; for example, Tileworld has just one agent and a limited provision for

exogenous events, so it would be di�cult to use Tileworld to replicate results from Phoenix.

Still, these are only technical problems and do not provide a strong argument against the

possibility of generalizing results from testbed research.

Testbeds have a role in three phases of research. In an exploratory phase, they provide

the environments in which agents will behave in interesting ways. During exploration we

will characterize these behaviors loosely; for example, we will observe behaviors that appear

\bold" or \inquisitive." In exploratory research the principal requirement of testbeds is that

they support the manifestation and observation of interesting behaviors, which is why I favor

complex agents and testbeds over simple ones. In a con�rmatory phase we tighten up the

characterizations of behaviors and test speci�c hypotheses. In particular we will provide an

operational de�nition of, say, \boldness" so that a data-collecting computer program can

observe our agent's behavior and decide whether it is bold. We will test hypotheses about

the conditions in which boldness is a virtue, and when we are done we will have a set of

results that describe precise, testbed-speci�c conditions in which a precise, agent-speci�c

behavior is good or bad. In con�rmatory research the primary requirement of a testbed

is that it provide experimental control and makes running experiments and collecting data

easy. This is why Phoenix has a script mechanism for automatically running experiments

and integrated data-collection, data-manipulation and statistical packages. In the third

phase, generalization, we attempt to replicate our results. As I described earlier, several

research groups might attempt to replicate \bold" behavior under comparable conditions as

in the original experiment. Each group will have to design their own agent-speci�c, testbed-

43



speci�c de�nitions of \bold" and \comparable conditions." For example, uncertainty about

the environment might be induced in agents by rapidly changing wind speed in Phoenix and

by erratically moving holes in Tileworld. This requires testbeds to be parameterizable, and

researchers to work closely during the generalization phase.

The \boldness theory" is general to the extent that boldness and unpredictability in

Tileworld are similar phenomena as boldness and unpredictability in Phoenix and other

testbeds. Similar agents in similar testbeds are apt to manifest similar behaviors, but this

will not convince us that the behaviors are general. Generality is achieved when di�erent

agents in di�erent testbeds exhibit common behaviors in common conditions. The more the

agents and testbeds di�er, the more di�cult it will be to show that behaviors and conditions

are common. If we had theories of behavior, we could show how conditions and behaviors in

di�erent testbeds are specializations of terms in our theories. But we do not have theories; we

must bootstrap theories from empirical studies. Our only hope is to rely on our imaginations

and abilities to interpret behaviors and conditions in di�erent testbed studies as similar.

In conclusion, I believe results of testbed research can be generalized. Some features

of testbeds will make it easier to observe, explain and test hypotheses about agents' be-

haviors. Generalization is done by scientists, not apparatus, so I strongly disagree with

any implication that particular kinds of testbeds preclude generalization. Testbeds o�er

researchers the opportunity to tell each other what they observed in particular conditions.

When a researcher publishes an observation, other researchers are responsible for the hard

work required to say, I observed the same thing!
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