
Data Locality On Shared Memory Computers

Under Two Programming Models

Ton A. Ngo Lawrence Snyder

Dept. of Computer Science and Engineering

University of Washington

Seattle, WA 98195

Abstract

Data locality is a well-recognized requirement for the development of any parallel application, but the emphasis on

data locality varies with the programming model. In this paper, we examine two models at the extreme ends of

the spectrum with respect to one general class of parallel machines. We present experiments on shared-memory

machines that indicate that programs written in the nonshared-memory programming model generally o�er better

data locality and thus better performance. We study the LU decomposition problem and a Molecular Dynamics

simulation on �ve shared-memory machines with widely di�ering architectures, and analyze the e�ect of the

programming models on data locality. The comparison is done through a simple analytical model and measurements

on the machines.

1 Introduction

Because of the wide variety of parallel machines, perhaps the single most important issue in the development of

parallel software is program portability. Such variety exists because given the current technology, no single archi-

tecture can claim a clear superiority: while bus-based machines o�er shared-memory e�ciently and economically,

large scale machines are only viable with nonshared-memory. On the other hand, the intermediate range consists

of both shared and nonshared-memory machines.

A portable program by de�nition can execute correctly on a new machine with little programming e�ort.

However, such requirements are not su�cient. To be meaningful, a portable program must also perform well

across the spectrum of machines: the program must not only run, but must also run well. To achieve scalable

performance in a parallel program, a critical factor is data locality. Although locality may have little e�ect on

a small scale machine that presents a uniform access time to all memory, it can be critical on intermediate and

large scale machines which by necessity have distributed memory with di�erent access latencies.

The memory model intrinsic to a parallel language has a great inuence on the performance of programs

written in this language because it dictates how the data locality that exists in the algorithm can be exploited

on a parallel machine. While exploiting data locality can be done at many di�erent levels, this paper focuses on

how programming models a�ect the performance of parallel programs through data locality.

One's interest in the e�ects of data locality will likely di�er depending on whether one is predisposed to a

shared or a nonshared memory model of parallel computation. From the shared memory model viewpoint, a

programmer might ask, \How much is lost by ignoring locality?" Here the assumption is that although physical

(shared memory) machines present a shared memory to the user, the mechanisms that hide the fact that the

memory is actually distributed di�er in their performance. When they work well, there should be no loss, and

when they work poorly, the loss will be reected by the degree to which the nonlocal data references could have

been made local had locality not been ignored. Conversely, from the nonshared memory model viewpoint one

might wonder, \How much is lost from the overhead introduced to exploit locality?" Here the assumption is that

to exploit locality, the program performs explicit data movement operations, e.g. sends and receives, that incur

costs such as bu�er management which do not exist in a truly shared memory architecture. The bene�ts of a



nonshared memory program will be realized only when the gain from referencing data locally instead of globally

is su�cient to o�set the overhead.

Thus, the question in both cases reduces to determining the bene�t of exploiting locality on shared memory

machines. It is widely hoped that compilers will play a major role on both sides of this question: �nding locality

for the shared memory programs or eliminating overheads for the nonshared memory programs. Accordingly,

measuring the bene�t of exploiting locality can be interpreted as quantifying the potential payo� of these compiler

optimizations. If the bene�ts are small, compiler writers can ignore �nding locality, and concentrate on removing

overhead. If however, the bene�ts are large, then �nding locality becomes crucial, while removing overhead can

be de-emphasized.

To understand the e�ect of programmingmodels on data locality, we compare a shared memory and a nonshared

memory version of two applications, LU Decomposition and Molecular Dynamic simulation. The data reference

pattern of each application is used to construct a simple analytical model of the parallel execution to predict

the behavior. The performance of the programs is also measured on �ve shared memory machines with widely

di�ering memory organization. Care is taken to ensure that the scalar computation is the same between the

shared memory and nonshared memory versions so that the di�erence due to data locality can be isolated.

The remainder of the paper is organized as follows. Section 2 de�nes the scope of the problem and section 3

describes the methodology of the experiments, including the machines and the implementation. Sections 4 and

5 describe in detail each of the two applications and the results. Conclusions are found in section 6.

2 Problem Formulation

2.1 Scope

We begin by de�ning the two general classes of parallel programs and parallel computers using the following

short-hand notation:

The memory organization visible to the program is classi�ed as s for shared and ns for nonshared.

P

x

is a program written using the memory model x.

C

x

is a parallel computer with x memory organization.

The time to execute P

x

on C

x

is denoted P

x

jC

x

.

The compiling and runtime support to run programs of model x on computers of type y is Sim

x!y

.

Example of Sim

s!ns

includes Shared Virtual Memory [10], while Sim

ns!s

can be trivially implemented by

emulating the send/receive operations using the shared memory. With such a classi�cation of programs and

computers, we have the following combinations:

computer

program shared nonshared

shared P

s

jC

s

P

s

jC

ns

nonshared P

ns

jC

s

P

ns

jC

ns

Clearly, P

ns

can execute on both nonshared and shared memory parallel machines (C

ns

and C

s

) because in the

�rst case the models of the program and the machine match, and in the second case Sim

ns!s

can be implemented

easily.

Since our focus is on the class of shared-memory computer C

s

, we are interested in the di�erence in performance

between Sim

ns!s

(P

ns

) and P

s

; we represent this di�erence by the factor �:

Sim

ns!s

(P

ns

)jC

s

= (�)P

s

jC

s

(1)

The value of � depends on whether P

ns

o�ers any advantage against the overhead of Sim

ns!s

. We hypothesize

that this advantage derives from the high degree of data locality inherent in P

ns

. The extent of this tradeo�

depends on how critical data locality is to the particular shared memory machine C

s

. Since the importance of

2



data locality is a function of the memory hierarchy, the ratio of access time between the levels of memory can

serve as an indicator of the success of P

ns

on the C

s

. In other words, if the memory hierarchy is relatively at,

we expect � � 1 because it is di�cult to pro�t from the locality of the nonshared memory model, but if there

is a substantial hierarchy, the data locality in the nonshared memory model can reduce the expense of global

references and we can expect � < 1.

To gain an understanding of this factor �, we will compare two versions of programs for the same problem,

P

s

and P

ns

, running on a shared memory machine. By ensuring that the programs perform the same scalar

operations, we can attribute the di�erences in performance to di�erences in the memory model.

2.2 Related work

P

s

and P

ns

have also been compared in similar and di�erent contexts.

Lin and Snyder [11] made similar comparison of P

s

and P

ns

on several shared-memory machines using the

Jacobi iteration and matrix multiplication: they found that P

ns

can actually outperform P

s

.

Leblanc [8] also compared P

s

jC

s

and Sim

ns!s

(P

ns

)jC

s

using Gaussian Elimination (without pivoting) on the

BBN Buttery. He observed that the model should be chosen based on the nature of the application, and that

the shared model may encourage too much communication.

The converse to the problem we are considering, Sim

s!ns

, has also attracted recent interest. An example is

the Shared Virtual Memory system proposed by Li and Hudak [10], in which the operating system maintains a

consistent cache of memory pages to create an illusion of shared memory in a distributed machine environment.

More speci�cally, Priol and Lahjomri [12] developed a Shared Virtual Memory system on the iPSC/2 and compared

Sim

s!ns

(P

s

) in this simulated environment against the native P

ns

; they found that the P

s

tends to have di�culty

with the granularity of sharing.

Byrd and Delagi [3] used a model of network access cost model to compare P

s

jC

s

and P

ns

jC

ns

; they found that

P

s

jC

s

is much more susceptible to high network latency, which is a likely characteristic of large scale machines.

Anderson and Snyder [1] analyzed P

s

and P

ns

of several common algorithms and found that the shared

memory model tends to give overly optimistic performance prediction and, more importantly, can lead to the use

of suboptimal algorithms.

3 Methodology

3.1 The Machines

Machine Sequent CSRD Cedar Buttery Kendall Square Stanford DASH

model Symmetry A Cedar TC2000 KSR-1 DASH

nodes 20 32 128 32 48

processors Intel 80286 MC 68020 MC 88100 custom MIPS R3000

I cache combined 16 Kb/node 32 Kb/node 256 Kb/node 64Kb/node

D cache 64 Kb/node 128 Kb/cluster 16 Kb/node 256 Kb/node (64Kb+256Kb)/node

128 Kb/cluster

local mem 0 32 Mb/cluster 16 Mb/node 32 Mb/node 14 Mb/node

global mem 32 Mb 256 Mb 2 Gb* 1 Gb* 168 Mb*

network bus-based omega buttery ring mesh

access ratio 1 1:4.5 1:3.7:12.7 1:10:75:285 1:4.5:8:26:33

Table 1: Machine characteristics

(* sum of all local memories )

The shared-memory machines used in the experiment are the Sequent Symmetry, the BBN Buttery, the

Cedar at CSRD, Illinois, the Kendall Square Research KSR-1, and the DASH at Stanford. They represent a wide

range of memory hierarchies from uniform access (Sequent) to non-uniform access (Cedar, Buttery, KSR-1, and

DASH). The Sequent, KSR-1 and DASH employ hardware coherent caches while the Cedar and the Buttery do

not. Figure 1 and Table 1 show the general organization and some relevant characteristics of each machine.

3



Figure 1: Machine memory hierarchy

The Sequent Symmetry is a small scale bus-based machine. Because of the low speed of the processors, the bus

is able to support 20 nodes. Cache coherency is maintained by bus-snooping using a modi�ed Illinois protocol.

Since the main memory resides on the bus, the access time is the same from any processor cache, and since

there is no control over the cache, each processor will only see a certain average access time. Because of these

characteristics, the Sequent bears the closest resemblance to the PRAM model when compared to the other

machines.

The Cedar has a cluster architecture: each bus-based cluster contains 8 processors sharing a local memory and

the clusters are connected to the global memories through a switch. Therefore there are two levels of memory

hierarchy. Note that the intra-cluster communication can be done at the cluster memory level, but inter-cluster

communication must use the global memory.

In the Buttery TC2000, each processor node contains a cache and a local memory. Each node is connected to

the local memories of all other nodes through a multistage interconnection network (MIN); the global memory thus

consists of the aggregate of all local memories. There are three levels of memory hierarchy: the cache, the local

memory, and the remote memory. Although memory locations can be assigned a variety of cache attributes, the

two default and most commonly used attributes are cacheable local and non-cacheable global, which represent

only two levels of memory hierarchy. Since there is no hardware coherency mechanism, the machine provides

various cache invalidation functions to support software caching. Finally, to avoid hot spots in this memory

organization, the global address space is interleaved across all nodes.

The KSR-1 employs an AllCache architecture [7]: instead of a main memory, each node possesses a large cache

that is kept coherent with all other caches through a directory-based scheme. In addition to the main cache, there

are also instruction and data subcaches on each node. The nodes are connected in a hierarchy of rings; therefore,

there are multiple levels of memory hierarchy, beginning with the subcache, to the local cache, the caches within

the same ring, the caches within the next ring level, and so on. Because the unit of communication on the ring

is a 128 byte cache line, the granularity of shared data is an important issue. While the architecture provides a

combining mechanism by servicing a cache miss at the lowest level of the ring hierarchy, the machine used in the

experiment only contains one ring; therefore this combining e�ect is not visible.

The Stanford DASH also uses a directory scheme for cache coherency [9]; however, it is organized as a collection

of bus-based clusters connected in a mesh topology. Each cluster contains 4 processor nodes, a cluster memory

and a cluster cache. Each node in turn contains a level 1 and a level 2 cache, with coherency maintained at the

4



level 2 cache through bus snooping. There are then at least 5 levels of memory hierarchy: level 1 cache, level 2

cache, cluster memory, remote cluster memory, and remote dirty cluster memory. The cluster cache which resides

in the interface between a cluster and the other clusters combines requests to the same address. Since there is a

home node for each memory location, the system also provides functions for data placement.

3.2 Implementing the programming models

Since both applications contain a high degree of data parallelism, all programs are written in the SPMD style.

In P

s

, data reside in the global memory and the standard lock and barrier are used for synchronization.

Data in P

ns

are placed in the level of memory closest to the processor. On machines with coherent caches, this

e�ect is achieved automatically through the data reference pattern: a processor only accesses its data section,

allowing it to migrate to the highest level of the cache. The send and receive are emulated with block copy, and

simple one-reader/one-writer ports implement some connection topology (binary tree, mesh, etc.). Broadcasting

is done through a binary tree. The bu�ers used for communication are placed in the global memory. The trade-

o� in P

ns

will then be between the communication overhead and the use of the faster local memory. Note that

synchronization in the nonshared programs is implicit in the communication since blocking sends and receives are

used.

The performance is measured only for the useful computation; the initialization costs are not included.

4 LU Decomposition

The following two sections describe the two sets of experiments. The problem and the algorithmare �rst described,

followed by an analysis of the data locality in the P

s

and P

ns

versions. Results and discussion follow.

4.1 The problem

Typical of matrix problems, LU decomposition is a numerical method for solving large systems of linear equations.

Given the system of equations:

Ax = b

where A is the coe�cient matrix and b is the constant vector, A is decomposed into a lower and upper triangular

matrices L and U:

LUx = b

Letting Ux = y, we can solve directly for y by forward-elimination

Ly = b

and then for x by backward-substitution.

Ux = y

The sequential algorithm consists of iterating over the diagonal of the matrix, each iteration consisting of two

steps: partial pivoting (line 2) and row update (lines 3:6).

LU

seq

(1) for (k=0; k<row; k++)

(2) partial pivot

(3) for (i=k+1; i<row; i++)

(4) A

ik

= A

ik

=A

kk

;

(5) for (j=k+1; j<col; j++)

(6) A

ij

= A

ij

- A

ik

* A

kj

The partial pivoting step is necessary for numerical stability in the division step due to the limited precision

in digital computer: it involves searching the pivot column k for the largest element and then swapping that row

with the pivot row k. With a complexity of O(n

2

) compared to the O(n

3

) of the row update step, this step only

constitutes a minor part of the computation; however, it introduces additional serialization into the algorithm.

5



4.2 The parallel algorithms

Since LU decomposition is a well studied problem, optimized parallel algorithms are widely available in the

literature [2, 6, 13].

The computations in the row update step for each iteration are independent and can be parallelized easily. The

partial pivoting step is more di�cult to parallelize e�ectively because the parallelism available is small compared

to the communication/synchronization required for parallelization. Therefore, the optimized algorithm employs

a pipelining technique: during the current iteration, a processor completely factorizes a set of t columns and

saves the transformation, while the remaining processors update the submatrix using the saved transformation

from the previous iteration. The value of t controls the granularity of the task partitioning and is chosen to best

balance the workload and the communication/synchronization overhead.

The pseudo code for the optimized parallel LU decomposition algorithm is shown below.

LU

s

(1) P0 factors col[0:r]

(2) for (k=r; k<row; k+=t)

(3) switch transformation bu�er

(4) if (own column(k))

(5) updates col[k:k+t] using transformation (k-t)

(6) factors col[k:k+t] saving transformation k

(7) else

(8) updates col[k+t:col-1] using transformation (k-t)

LU

ns

(1) P0 factors col[0:t]

(2) and broadcasts the transformation

(3) for (k=r; k<row; k+=t)

(4) if (own column(k))

(5) updates col[k:k+t] using transformation (k-t)

(6) factors col[k:k+t] saving transformation k

(7) broadcasts the transformation k

(8) else

(9) updates col[k+t:col-1] using transformation (k-t)

LU

s

and LU

ns

thus implement the same algorithm. The di�erences are:

1. Any processors can update any portion of the matrix in LU

s

, while the matrix is partitioned statically by

columns in LU

ns

. Because the iteration traverses the diagonal of the matrix, partitioning the columns by

blocks will result in a poor load balance in LU

ns

: some processors will run out of work once k has passed

their sections. To alleviate this problem, sets of r columns are assigned to the processor in an interleaved

fashion (cyclic).

2. LU

s

requires barrier synchronizations before and after switching the transformation bu�er in line 3. LU

ns

requires broadcasting the newly computed transformation bu�er to all processors in lines 2 and 7.

On the Cedar and the Buttery where there exists a local memory but no coherent cache, we improve the data

locality of LU

s

by performing software caching in the innermost loop. On Cedar where there is a cluster level

memory, we also optimize the communication in LU

ns

by using the cluster memory for intra-cluster messages and

the global memory for inter-cluster messages.

4.3 Volume of data references

Since LU decomposition is a static algorithm, the volume of scalar computation, and thus references of the matrix

data, should be nearly identical for a sequential, shared memory, and nonshared-memory versions, discounting

small variations due to variable reuse and the references of global parameters. The total number of processor

6



cycles to compute and perform this volume of references represents a lower bound on the execution time of the

program. Since the data placement is static in the memory hierarchy and the ratio of access times to each level

of memory is known, we can derive an indicator of the relative performance of P

s

and P

ns

. We assume the

synchronization cost is small and the load balance is perfect. For the following analysis, we only assume a local

and global level of memory and that read and write have the same latency. The matrix is also assumed to be

square, i.e. n=column=row.

Referring to the LU

seq

algorithm above, in each outermost iteration k the partial pivot step consists of scanning

a column (1 read) and swapping two rows (2 reads + 2 writes) beginning from the diagonal element. The number

of references is:

(3r + 2w) � (n� k)

The row update step consists of dividing the column by the pivot element (2 reads + 1 write) and adjusting the

rows (3 reads + 1 write). The number of references is:

((2r + 1w) + (3r + 1w) � (n � k � 1)) � (n� k � 1)

Summing up over the diagonal iterations, we obtain the volume of references to the matrix:

row�1

X

k=0

(3r + 2w) � (n� k) + ((2r + 1w) + (3r + 1w) � (n � k � 1)) � (n� k � 1)

Simplifying and substituting the summations with the equivalent polynomials, we obtain the expression:

n

3

(r +

1

3

w) + n

2

(r + w) + n(r +

2

3

w)

In addition to accessing the matrix data, the transformation data in P

ns

needs to be broadcast to the worker

processors. This is done through a binary tree: the bu�er is sent to the root processor and is propagated down

the tree. Each message requires a pair of sends and receives; each send and receive operation in turn involves

a local read and a global write, or a global read and a local write, respectively. A message transmission then

requires ((2 global + 2 local) * size) references. The elapsed time for propagating through the binary tree requires

the equivalence of (logp + 1) transmissions. The size of the transformation bu�er in each k iteration is (n-k)*t,

where t is the parameter controlling the task granularity. The total time for all tree broadcasts is then:

(log p+ 1) � (2global + 2local) �

n�1

X

k=0;k=k+t

(n� k) � t

Substituting the summation and simplifying yields:

(log p+ 1) � (global + local) � n � (n+ t)

We can compute an estimate of the relative performance of P

s

and P

ns

with the assumptions:

1. The matrix references for P

s

will be to the global memory and for P

ns

to the local memory.

2. The computation and thus the matrix references are perfectly distributed among the processors.

3. P

ns

requires the additional tree broadcast operations.

4. The references are free of contention.

Table 2 summarizes the expressions for the reference counts and the FLOP counts in part (a); part (b) shows

the reference counts that represent the elapsed time for the tree broadcast; and part (c) tabulates the reference

counts to the local and global memory based on the assumption that data is placed in global memory in LU

s

and

in local memory in LU

ns

. From this information, we can derive a simple model for the parallel execution of LU

s

and LU

ns

:

7



Phases FLOP read write

partial pivot

1

2

(n

2

� n)

3

2

(n

2

+ n) n

2

+ n

column update

1

6

(4n

3

� 3n

2

� n)

1

2

(2n

3

� n

2

� n)

1

3

(n

3

� n)

Total

2

3

(n

3

� n) n

3

+ n

2

+ n

1

3

(n

3

+ 3n

2

+ 2n)

(a) Flops and reference count for LU computation phases: n = size of nxn matrix

Phases read write

Total

1

2

n(n+ r)(log p+ 1)(loc+ glob)

1

2

n(n + r)(log p+ 1)(loc+ glol)

(b) Elapsed time for LU

ns

communication in terms of reference count:

n = size of nxn matrix, p = processor number in powers of 2

Program local read+write global read+write

LU

s

0

1

3

(4n

3

+ 6n

2

+ 5n)

LU

ns

1

3

(4n

3

+ 6n

2

+ 5n) n(n+ r)(log p+ 1)

+n(n + r)(log p+ 1)

(c) LU

s

and LU

ns

references to memory hierarchy

Table 2: Volume of data references for LU

total cycles = communication cost+ parallel task

parallel task =

1

p

(FLOP � FLOP cycle + global � global cycle + local � local cycle)

Figure 2 plots the speedup based on the number of cycles required by P

s

and P

ns

for ratios of memory

hierarchy of 1:1, 1:2 and 1:4, with n=512, t=4, and FLOP cycle=1.

Our simple model predicts that P

ns

easily outperforms P

s

when there is any gap between the local and global

memory. Naturally, many factors are ignored, such as the load balancing, the synchronization, the network

contention, the actual higher cost for emulating the communication, etc. However, if the data locality controls

the �rst order e�ects and these factors are secondary, then the estimate can be qualitatively correct. In the next

subsection we will look at the results measured on the �ve machines.

4.4 Performance results

Figures 3 and 4 show the performance and the speedup of the two versions of LU decomposition on the �ve

machines for three di�erent problem sizes. The speedups are based on the performance of a straightforward

sequential version of LU decomposition.

Referring to the predicted speedup curves in Figure 2 and the local:global access ratio for each machine in

Table 1, we �nd that the results match the model prediction well.

We �rst consider the results from the Sequent, the Cedar and the Buttery since the ratios of these machines are

more precise. The ratio of 1:1 on the Sequent gives LU

s

a slightly better performance than LU

ns

for all problem

sizes. On the Cedar where the ratio is 1:4.5, LU

ns

o�ers the better performance. Although the Buttery has

three levels of memory hierarchy, the program only uses two levels (the default cacheable local and noncacheable

global attributes); therefore the e�ective ratio is 1:12.7. This large gap in access latency translates directly into

a large gap in the performance between LU

s

and LU

ns

; the steep hierarchy on the Buttery gives Sim

ns!s

(P

ns

)

an advantage that far outweighs the simulation overhead. We note a number of program optimizations on the

Cedar and the Buttery:

8



Figure 2: LU speedup based on model: n=512, r=4

1. For LU

s

on Cedar and Buttery, software caching is performed in the innermost loop by copying a column

into local memory for performing the column update; this prevents repeated access of the same column

from global memory while updating using the saved transformation.

2. For LU

ns

on Cedar, intra-cluster communication uses the cluster memory, while inter-cluster communication

uses the global memory.

Since the Buttery cache is controlled by software, more advanced caching techniques may improve the perfor-

mance of LU

s

, but it seems di�cult to recapture the large performance gap. It thus appears that Sim

ns!s

(P

ns

)

matches well a large scale shared memory machine with private per processor cache. Since the Sequent has a co-

herent cache while the Buttery does not, a natural question is whether the behavior found on the Sequent would

be observed on the Buttery if a coherent cache were implemented. A coherent cache improves the performance

of both P

s

and P

ns

: it will reduce the global data references in P

s

and e�ectively eliminate the spin-lock tra�c

in P

ns

communication.

To search for an answer, we consider the results from the KSR-1 and the DASH, two machines that employ large

scale coherent caches. Given the very large ratios for these machines, our simple model predicts that the shared-

memory version would not yield any speedup. On the other hand, if we extrapolate from the performance on the

Sequent, the coherent cache would be able to hide the memory hierarchy and to present a more uniform access to

memory, thus giving LU

s

a slight advantage over LU

ns

. The results show that LU

s

achieves a reasonable speedup

on both machines, but that it trails LU

ns

by a signi�cant amount in both actual performance and speedup.

Clearly, the actual behavior lies in the middle ground between our two conicting predictions: by reducing the

number of remote accesses, the coherent cache is very e�ective in reducing the gap in the memory hierarchy, but

not to the degree where data locality is rendered unnecessary. The di�erence in fetching from local and remote

memory by the cache is visible in the program performance.

With respect to scaling with problem size, the relative di�erence in performance between LU

s

and LU

ns

is

maintained in every case, and the speedup improves as the problem size increases. Not surprisingly, this behavior

reects the dominant computation cost relative to the cost of communication or memory references, O(n

3

) versus

O(n

2

) for LU.

With respect to scaling with the number of processors, we observe that while the speedup and performance

appear reasonable for up to 32 processors on Cedar, KSR-1 and DASH, neither LU

s

nor LU

ns

achieves any speedup

9



beyond 32 processors on the Buttery when the number of processors approaches 100. A partial explanation for

the poor scaling in LU

ns

can be found in our simple implementation of the communication: (1) all messages are

point to point, and (2) a processor spin-locks on a global variable while waiting for an empty write port or a full

read port. Each of these factors constitutes a component in the overall communication cost which increases with

the number of processors. It is also possible that the problem sizes used are not large enough. Karp and Boris [16]

showed that speedup for LU on the Buttery can be maintained if the problem size is increased proportionally

with the number of processors. However, such problem size would quickly exceed the storage capacity of the

machine.

10



Figure 3: LU execution time

11



Figure 4: LU speedup

12



5 Molecular Dynamics Simulation

5.1 The problem

The WATER benchmark from the Stanford SPLASH suite is a simulation of several hundred water molecules in

a cubical box in the liquid state at room temperature [14]. The program is representative of the n-body problem,

in which each body interacts in certain ways with all other bodies in the system. In this case, the simulation

computes the forces and potentials among the water molecules to predict various static and dynamic properties

of water. To compute all pairwise interactions, a processor in any partitioning scheme will have to access the

data in all sections, giving an initial appearance of poor data locality in the problem. However, this particular

version, WATER, achieves a good speedup thanks to a favorable ratio of computation to communication, as will

be described in the following subsections.

5.2 The algorithm

The program was manually parallelized from a sequential version, the MDG benchmark in the Perfect Club suite.

After initializing the displacements and velocities, the algorithm consists of iterating over a large number of time

steps until the system converges to a steady state. Each time step consists of seven computation phases separated

by barrier synchronizations:

1. predict new values for displacement and the derivatives.

2. compute the intramolecular forces between the atoms of each molecule.

3. compute the intermolecular forces between the atoms of each pair of molecules.

4. correct the predicted values for forces.

5. handle the boundary conditions by moving the molecules back into the box if they are out of the box.

6. compute the kinetic energy in each of the three spatial dimensions.

7. compute the potential energy as the sum of the intermolecular and intramolecular potentials.

The computation complexity is O(n

2

), but the actual number of pairwise interactions to be computed is reduced

by de�ning a cuto� radius of half the box dimension.

The WATER

s

version was ported to the various machines strictly by substituting the parallel macros for lock

and barrier synchronization.

WATER

ns

is derived fromWATER

s

by replacing the shared data structures with distributed structures and

performing a global update at each point where (1) each partition has to access all other partitions to compute the

pairwise interactions, or (2) a global sum has to be computed and broadcasted to all partitions. Communicating

through a ring topology, each process computes the interactions within its partition, then sends a copy on a

complete trip around the ring; as a partition is received, the process updates both its partition and the traveling

partition. When the modi�ed partition returns to its source, it is merged into the original partition. Computing

the global sum is done similarly by sending the partial sum around the complete ring.

In both versions, the processor workload is statically assigned and load balancing is not considered a prob-

lem due to the uniform distribution of the input data. WATER

s

and WATER

ns

thus perform the identical

computation; the only di�erences are in the placement of the data and the resulting communication.

The algorithm has a computation complexity of O(n

2

) and a communication complexity of O(n), which will

be described in more detail in the next subsection.

5.3 Volume of data references

As with the LU experiment, we create a simple model of the parallel execution of WATER based on the FLOPS

and data reference counts.

13



The computation phases are listed in order in Table 3 part (a) together with the count of oating point ops,

reads and writes for each time step; the counts are obtained manually from the program. To account for the

cuto� range of half the box length, the molecule distribution is assumed to be uniform and those counts which

are dependent on the range are divided in half. Part (b) shows the elapsed time of the ring communication in

WATER

ns

in terms of reference counts; note that only 4 phases actually require communication. In part (c), the

reference counts to local and global memory are tabulated based on the assumption that data is placed in global

memory in WATER

s

and in local memory in WATER

ns

; the counts include those references for emulating the

communication in WATER

ns

.

Phases FLOP read write

predict val 432n 243n 54n

intra force 42n+223 24n 3n+3

inter force 163n

2

+ 9n 46n

2

+ 9n 4n

2

+ 9n

correct val 135n 81n 63n

boundary 9n 9n 9n

kinetic 24n+3 18n + 3 3

potential 122n

2

+ 128n + 3 42n

2

+ 33n + 3 3n+3

Total 285n

2

+ 779n + 229 88n

2

+ 417n + 6 4n

2

+ 141n + 9

(a) WATER computation phases: n = number of molecules

Phases read write

intra force 3 (loc+glob) 3 (loc+glob)

inter force (84n+3) (loc+glob) (84n+3) (loc+glob)

kinetic 3 (loc+glob) 3 (loc+glob)

potential (84n+3) (loc+glob) (84n+3) (loc+glob)

Total (168n+12) (loc+glob) (168n+12) (loc+glob)

(b) Elapsed time for WATER

ns

ring communication:

n = number of molecules; loc, glob = local, global access

Program local read+write global read+write

WATER

s

0 92n

2

+ 558n + 15

WATER

ns

92n

2

+ 894n + 39 336n+24

(c) WATER

s

and WATER

ns

reference to memory hierarchy

Table 3: Volume of data references for WATER

As with the LU experiment, a simple model can be derived as:

total cycle = communication cost + parallel task

parallel task =

1

p

(FLOP � FLOP cycle + global � global cycle + local � local cycle)

Figure 5 shows the speedup for WATER

s

and WATER

ns

based on the number of cycles required; several

ratios of local to global are shown, while the cycle per FLOP is set to 1. The model predicts that for a local:global

ratio of 1:1, WATER

s

has the better speedup, but as the ratio increases, WATER

s

's speedup degrades quickly

and falls below WATER

ns

. Note also that in general the speedups for both versions are better than those for

LU; the reason is evident in the large FLOP count relative to the reference count, indicating a more abundant

amount of parallelism.

14



Figure 5: WATER speedup based on model

5.4 Performance results

Figures 6 and 7 show the performance of the two versions of WATER on the �ve machines for three di�erent

problem sizes. The speedup is based on the better uniprocessor performances of the two versions.

As evident in Table 3, WATER di�ers from LU in that the computation dominates the memory accesses and

the memory reads dominate the memory writes, although all have the same asymptotic complexity.

On the Sequent where the local:global ratio is 1:1, WATER

s

has a near linear speedup while WATER

ns

is

only slightly behind. On Cedar, both versions give virtually the same performance and speedup, although the

model predicts that WATER

ns

would be faster. It is possible that there are some other factors involved that are

not included in the model.

On the Buttery, neither version achieves a speedup beyond 20; indeed, WATER

ns

's performance degrades

below WATER

s

when the number of processors approaches 100. This behavior is consistent with our model

although a graph for this con�guration was not shown: as the number of processor increases, the parallel task

decreases while the communication cost increases as in LU or at best remains constant as in WATER; therefore,

at a certain point, the communication cost in WATER

ns

can no longer be hidden by the saving in using the

local memory and the performance su�ers.

On the KSR-1, the performance and speedup of both versions are high and nearly identical. On the DASH, the

results of WATER actually di�er from that of LU: although both shared and nonshared-memory versions have

the same performance for small numbers of processors, WATER

ns

has the worst performance when the number

of processors is large.

Model prediction for the DASH and KSR-1 is uncertain because of the combination of the cache and the steep

memory hierarchy behind the cache. The e�ectiveness of the cache depends on the characteristic of the application

and the overhead for maintaining consistency. In this case, the high ratio of read to write access implies that the

degree of data sharing is relatively small and that the cache hit rate is high. This would decrease the signi�cance

of the memory hierarchy, allowing the cache to present a more e�ective model of uniform shared-memory. In

other words, given the memory access characteristic of the WATER program, the DASH achieves an e�ective

local:global ratio of 1:1 while the KSR-1 gives a ratio that is only slightly worse.

15



Figure 6: WATER execution time

16



Figure 7: WATER speedup

17



6 Conclusion

To understand the e�ect of the shared and nonshared memory programming model on data locality on shared

memory computers, we have studied in detail two applications on �ve widely di�ering machines and compared

these models with respect to performance. We express the performance di�erence between the two versions as

a factor �. Table 4 summarizes the range of the factor � for each application on each machine; note that the

nonshared memory program has the better performance in the range � < 1.

LU WATER

machine low high low high

Sequent 1.01341 1.11902 1.00238 1.10290

Cedar 0.69997 0.96779 0.77829 1.46597

Buttery 0.14009 0.55449 0.67901 1.52111

DASH 0.78565 1.02385 0.98151 1.73333

KSR-1 0.66854 0.87856 0.85714 1.00000

Table 4: Measured �

The results validate our hypothesis in equation (1). For shared memory machines with a non-uniform memory

access time, programs written using the nonshare memory model has an advantage since it can more fully exploit

the faster local memory. The bene�t varies with the machine architecture and depends mainly on the e�ective

gap between the global and local memory access time. It can be signi�cant if the ratio between the global and

local memory latency is large, for instance those found in the Buttery, but it is otherwise small if the ratio is

small or nonexistent. Although the KSR and DASH have a deep memory hierarchy with large gaps between the

levels, the hardware coherent cache plays a signi�cant role in reducing the number of long latency accesses and

thus the e�ective gap in the memory hierarchy. However, the e�ectiveness of the coherent cache depends critically

on the characteristics of the application, and data locality still plays an important role in achieving good speedup.

Although we have approached the problem from the point of view of comparing two programming models, we

can also view these same results from a purely shared memory perspective: exploiting data locality is critical

for performance and can be done through the machine architecture (e.g. cache) and the compiler (e.g. data

placement); programming with the nonshared memory model provides an attractive approach for e�ectively

extracting data locality in the program.

The limiting factor for a nonshared memory program is the growing communication overhead relative to the

decreasing workload as the number of processors increases. One may argue that this behavior is an artifact of the

manner in which the speedup is measured rather than a characteristic of the nonshared model. This argument

is supported by the fact that the speedup improves uniformly with larger problem sizes; in this case, a more

accurate method for measuring speedup would use the largest problem size possible for each number of processors

[13]. However, the memory requirement as a function of the problem size may limit scaling up the problem size

to match the number of processors: the system memory at best increases linearly with the number of processors,

but the memory requirement of LU, for instance, is O(n

2

). Furthermore, this argument only serves the interest

of obtaining the best speedup possible. In practice, a real problem speci�es a certain data size and the goal is

to obtain the optimal performance for this data size. Therefore, a more pragmatic conclusion is that there is a

need for optimizing the communication; possible techniques include reducing the frequency and the overhead per

message, and overlapping the communication with computation.

Finally, we have not considered architectures such as the Tera machine, which employmultithreading to overlap

the memory access latency with the computation. In such machines, data locality can be rendered unimportant

if there exists su�cient parallelism in the application to hide the memory latency completely. However, we

can speculate that if such machine supports variable message sizes (instead of only single or double words), the

nonshared model can greatly facilitate the compiler e�ort: since the total number of cycles to access data will be

signi�cantly reduced, the compiler can schedule a smaller number of threads to hide the latency.

18



Acknowledgements

We wish to thank Calvin Lin for many helpful discussions. We also express our gratitude to Eugene Brooks at the

Lawrence Livermore Lab, David Padua at the University of Illinois, and the DASH group at Stanford University

for granting access to the Buttery, the Cedar and the DASH machine.

References

[1] R. Anderson and L. Snyder, \A Comparison of Shared and Nonshared Memory Models of Parallel Computa-

tion," Proceedings of IEEE, (1991), 79(4):480-487.

[2] C. Ashcraft, \A Taxonomy of Distributed Dense LU Factorization Methods," Engineering Computing and

Analysis Technical Report ECA-TR-161, (March 1991).

[3] G. Byrd and B. Delagi, \A Performance Comparison of Shared Variables versus Message Passing," The Third

International Conference on Supercomputing, (1988) Vol. 1, pp. 1-7.

[4] R. Eigenmann, J. Hoeinger, Z. Li, and D. Padua, \Experience in the Automatic Parallelization of Four

Perfect Benchmark Programs," The Fourth Workshop on Languages and Compilers for Parallel Computing,

(August 1991) pp. g1-g19.

[5] High Performance Fortran Forum, \HPF Language Speci�cation version 1.0," (1993).

[6] A. Karp, \Programming for Parallelism," Computer, (May 1987) pp. 43-56.

[7] Kendall Square Research, \KSR Technical Summary", (1992).

[8] T. LeBlanc, \Shared-Memory versus Message-Passing in a Tightly-Coupled Multiprocessor: A Case Study,"

International Conference on Parallel Processing, (1986) pp. 463-466.

[9] D. Lenoski, et al., \The DASH Prototype: Logic Overhead and Performance," IEEE Transactions on Parallel

and Distributed Systems, (January 1993) Vol 4, No 1, pp. 41-61.

[10] K. Li and P. Hudak, \Memory Coherence in Shared Virtual Memory Systems," ACM Transactions on

Computer Systems, (November 1989) Vol 7, No 4, pp. 463-466.

[11] C. Lin and L. Snyder, \A Comparison of Programming Models for Shared Memory Multiprocessors," Pro-

ceedings of the International Conference on Parallel Processing, (1990), Penn State Vol. II, pp. 163-170.

[12] F. Andre and T. Priol, \Programming Distributed Memory Parallel Computers without Explicit Message

Passing," SHPCC, (1992), pp. 90-97.

[13] Y. Robert, The Impact of Vector and Parallel Architectures on the Gaussian Elimination Algorithm, Halsted

Press (1990).

[14] J. Singh, W. Weber, and A. Gupta, \SPLASH: Stanford Parallel Applications for Shared Memory," report

draft, Department of Computer Science, Stanford University, (1991).

[15] L. Snyder, \Type Architecture, Shared Memory and the Corollary of Modest Potential," Annual Review of

Computer Science, (1986), Vol. 1, Annual Review, Inc., pp. 289-318.

[16] S. Stark, and A. Beris, \LU Decomposition Optimized For A Parallel Computer With A Hierarchical Dis-

tributed Memory," The 1991 MPCI Yearly Report: The Attack of the Killer Micros, (March 1991), pp.

127-132.

19


