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Abstract

Intelligent agency requires some ability to predict the future. An agent must ask itself what is

presently its best course of action given what it now knows about what the world will be like when it

intends to act. This paper presents a system that uses a probabilistic model to reason about the e�ects of

an agent's proposed actions on a dynamic and uncertain world, computing the probability that relevant

propositions will hold at a speci�ed point in time. The model allows for incomplete information about

the world, the occurrence of exogenous (unplanned) events, unreliable sensors, and the possibility of an

imperfect causal theory. The system provides an application program with answers to questions of the

form \is the probability that ' will hold in the world at time t greater than �?" It is unique among

algorithms for probabilistic temporal reasoning in that it tries to limit its inference according to the

proposition, time, and probability threshold provided by the application. The system will also notify the

application if subsequent evidence invalidates its answer to a query.
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1 Introduction

Acting intelligently in the world requires the ability to look ahead in time in order to consider the conse-

quences of one's actions. Planning a morning of errands may force us to decide ahead of time when to go to

the grocery store, thinking ahead to the fact that we intend to buy ice cream which will melt if left in the car

too long. We mop the oor so as to avoid mopping ourselves into the corner. Cooking a meal requires a great

deal of looking ahead, hypothetical scheduling if you will, to make sure things get done on time and that

any step in the preparation is �nished before its results are needed by some other step. And a doctor, in the

midst of prescribing some medication, must think carefully about the future course of the patient's illness,

potential allergic, reactions, and about potential interactions among whatever drugs she is suggesting.

Looking ahead requires in turn that the agent maintain some sort of dynamic model of its world|

tracking those aspects of the world necessary for it to make good predictions and in addition remembering

those aspects of the world necessary to to allow it to recover its failures and learn from its experiences.

The model will roughly consist of two parts:

� some theory of how the domain operates: rules governing expected changes, assumptions about the

occurrence of events, the truth of propositions, and so on

� evidence about the current state of a�airs, generally in the form of reports from sensors of some sort

(whether they be mechanical, verbal, or whatever).

This work describes a \world-model manager"| a program module that stores and operates on an agent's

model of its world.

1

Such a program is similar in spirit to temporal database managers, e.g. in [Dean 1985],

though we will introduce signi�cant di�erences both in representation and functionality, the most signi�cant

of which is our explicit treatment of uncertainty.

The main contribution of this paper is an algorithm for probabilistic reasoning|estimating the projected

probability

2

that a proposition will be true at a point in time. We de�ne a graphical framework for com-

puting this probability, then point out the computational di�culty: that predicting the world may require

instantiating the graph at every time point between the time the �rst piece of evidence was collected to the

time of the query.

Such a scheme may be both intractable and unnecessary, however. On the one hand we may want to

reason about the world over a long period of time. On the other hand, it may be the case that the world

only infrequently changes state in any \interesting" way (i.e. in any way relevant to the probability we are

trying to compute). Our algorithm tries to identify the relevant state changes and instantiate the graph

only for those propositions and at those times relevant to the prediction task at hand. By examining the

propositional content of the query and our causal model of the domain we can ignore certain propositions

and evidence as irrelevant, and by reasoning about the qualitative relationship of the probability to the

user-supplied threshold (instead of trying to compute the exact probability), we can ignore evidence and

abandon lines of reasoning when they become too tenuous to a�ect that relationship.

1.1 System Overview

The diagram in Figure 1 shows how the world-model manager is embedded in an architecture for planning

and execution.

3

Note that the planner's information about the world comes entirely from the world model,

and its plan commitments are posted through that module as well.

The world model can be viewed as an interconnected network of beliefs, each of which represents a

summary of the agent's information about the state of some proposition in the world at some point in time.

1

Note the ambiguity of the term \model," which may refer to the agent's underlying theory of the domain or to the beliefs

generated from the theory and speci�c evidence, or even to the program that examines the theory and generates the beliefs.

Context should make clear the word's sense.

2

\Projected"means that the probability that a proposition will be true at time t is computed on the basis only of the world's

state at time prior to t. See Section 3.6.1 for more detail.

3

See [Hanks and Firby 1990] for more details.
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Planner

Plan library

World Model

Execution library

Causal theoryinstructions

sense reports

effectors sensors

plan commitments

queries

beliefs

Execution System

Figure 1: The world model imbedded in an agent architecture

The summary takes the form of a probability, so each belief consists of a probability distribution over the

proposition's state

4

along with the time point at which the proposition's state was queried.

Beliefs are built (probabilities computed) on the basis of three sorts of information: evidence from the

sensors, a causal theory that predicts changes in the proposition's state, and plan commitments that come

from the planner. Computing states of the world based on plan commitments is the problem typically

known as \plan projection," and is the topic of [Hanks and McDermott 1992]. Here we will concentrate on

the process of computing probabilities based on sensory evidence and the causal theory.

Central to this work is the interaction between the planner and the world model, in which the planner

posts queries to the world model and receives answers back in the form of belief data structures. The

query indicates to the world-model manager what is important, when it is important, and how important the

information is. The model manager tries to perform only the processing necessary to satisfy the planner's

request. The planner then uses the belief's information to make plan choices (to select new or re�ne existing

plans).

Information about a proposition's state can change after the belief has been computed and returned to the

planner, as the sensors provide more information about the world. A change in the proposition's predicted

state can obviously upset plan choices, so the planner needs to be noti�ed if subsequent information changes

a belief signi�cantly. The belief structure returned to the planner carries with it such a promise: the \owner"

of the belief will be noti�ed if information subsequently invalidates its estimate; it is up to the owner then

to take appropriate action.

1.2 Issues

The main issue confronted in this paper is how to build and reason e�ciently with a model of a dynamic

and uncertain world. The model will have both symbolic and numeric components. Symbolic information,

like rules that predict the e�ects of executing a particular action, is necessary to support processes like

plan selection and repair. Numeric information, on the other hand, provides a concise representation of the

world's uncertainty. Our job will be to integrate the two sorts of information.

4

This paper will consider only binary propositions, so the distribution amounts to a single number|the probability that the

proposition is (or was, or will be) true.
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Consider, for example, the problem of determining whether one's car is in the parking lot downstairs.

One generally knows where it was put in the morning, but the car may be stolen, or towed if one parks in

a lot without a permit.

5

One may have additional information|somebody reporting having seen the car

recently, seeing a tow truck in the vicinity, parking in a high-crime area. One needs to reason about changes

to the car's state over time based on evidence, speci�c knowledge about the domain, and knowledge about

how well speci�c information allows predictions about the case at hand.

The causal theory mentioned in Figure 1 consists of two parts. The �rst, mentioned above, is a set of

\causal rules" that predict change in the world. These rules, similar to those seen in the literature on formal

models of change ([McDermott 1982] for example) describe relationships of the form \for all times t, P true

at t causes Q to become true at t+1."

The numeric part of the theory quanti�es the extent of our con�dence in the rules and also in the

reliability of reports received by the sensors.

Paremeters of the former type measure the extent to which rules that predict changes in P's state (like

the one above) accurately reect the exact circumstances under which P will actually change state. Since

the rules might be neither be necessary nor su�cient, we need parameters of two types: the probability that

P will be false even if a rule predicts that it should have become true, and the probability that P will become

true even if none of the rules predicted that change.

We use probabilities to represent our con�dence in evidence provided us by the execution system (via

its sensors) as well: a numeric parameter attached to a symbolic sensor report measures our belief that the

sensor reporting on P's state is reporting accurately|that is, that the report is an accurate reection of the

actual state of the world.

Apart from these problems of representation we are faced with a di�cult computational problem, which is

to cope with the staggering body of evidence that might be brought to bear in answering a query. Our causal

rules are quanti�ed over all time points, thus we might consider an in�nite number of rule instances in the

process of predicting P's state. Sensory evidence about P's state can extend arbitrarily far back into the past.

Our task therefore will be to consider enough evidence to produce a good estimate of P's exact probability,

ignoring enough evidence so that we can do so quickly. In other words, we have to build an instance of the

causal theory (consisting of instances of the rules along with selected observations) appropriate to the query

at hand.

The algorithm described in the paper can be described briey as follows:

� Inputs:

{ A proposition ', a time point t, and a probability threshold � .

{ A causal theory, consisting of

� A set of causal rule schemas describing the circumstances under which various propositions

(including ') change state.

� A set of probability parameters characterizing the extent to which the model is considered

complete, the rate at which various events occur, and so on.

{ Situation-speci�c evidence, consisting of

� A set of observations, each consisting of a proposition (which might be '), a time point, and

a probability parameter characterizing our con�dence in the observation's veracity.

� Output:

{ A belief data structure, consisting of

� An estimate E of P('

t

) with the property that if E < � then P('

t

) < � , and if E > � then

P('

t

) > � .

� Monitors on the temporal database that will notify the application program if subsquent

evidence changes the estimate with respect to the threshold.

5

This example is purely hypothetical, and does constitute an admission of guilt on either author's part.
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� Method:

{ The program �rst computes an estimate of ''s probability based on current evidence, then tries

to characterize (in terms of recency and reliability) what new evidence it would have to be to

change the current estimate's value with respect to � . It searches for this evidence, and if doesn't

�nd any, reports the current estimate. If it does �nd new evidence it re-computes the estimate

and repeats the process.

The algorithm is \interruptable" in that it always maintains an estimate of ''s probability, and can

produce that estimate at any time the application needs it (yielding a rough estimate quickly, for example).

Although the algorithm will always consider more evidence in computing the probability given more time to

compute, it is not convergent, in the sense that jE � P('

t

)j does not necessarily decrease as the algorithm

takes more time.

1.3 Paper overview

Describing the model manager amounts to explaining how the module takes a query as input and (1) builds

and solves an appropriate instance of the causal theory, yielding an estimate of the query proposition's

probability, and (2) sets up the dependency information necessary to detect and respond appropriately to

subsequent relevant information. We describe the work in the following steps:

1. a discussion of representation issues|time, chance, and their interplay

2. a method for computing probabilities for a proposition at a time point, given an appropriate body of

evidence

3. a method for choosing an appropriate body of evidence for the query

4. an example

5. a discussion of the central assumptions underlying the algorithm

6. a discussion of related and future work.

2 Preliminaries: Notation and Temporal Concepts

We �rst need to establish some notational conventions, as well as introduce the temporal model we will

exploit in later sections. We will also discuss briey the temporal database manager module, which is used

by the rest of the system. This work is covered more thoroughly in [Hanks 1987] and [Hanks 1990b, Chapter

2].

2.1 Temporal ontology

First of all we will adopt a point-based representation of time, meaning that the temporal individuals will

denote instants in time. We will use variables like t and t

i

to refer to these individuals. Our analysis does

not require us to commit to whether the underlying model of time is continuous or discrete, though the

implementation assumes discrete time for the sake of convenience.

An interval denotes an uninterrupted stretch of time de�ned by its endpoints. We will write an interval

as a pair [t

i

, t

j

] where t

i

must occur temporally no later than t

j

. An interval includes both of its endpoints.

The function distance or d relates the instants denoted by time points. d(t

i

, t

j

) indicates the amount

of time elapsed between t

i

and t

j

. We therefore enforce the following constraints:

8i; j; k[d(t

i

; t

j

) + d(t

j

; t

k

) = d(t

i

; t

k

)]

8i; j[d(t

i

; t

j

) = �d(t

j

; t

i

)]

8i[d(t

i

; t

i

) = 0];
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and introduce the notation

t

i

� t

j

� d(t

i

; t

j

) � 0:

2.2 Temporal database management

The temporal database manager is a module that maintains a network of time points and intervals along

with constraints on their temporal distances. It provides four functions:

1. managing the addition and deletion of points and intervals,

2. maintaining the set of constraints on inter-point distances,

3. fetching information from the database,

4. monitoring the database for the addition of new information.

Application programs can add constraints of the form

low � d(t

i

; t

j

) � high

where low and high are integers with low � high, and then pose queries of the form \is d(t

i

; t

j

) � k?" for

time points t

i

and t

j

, and some integer k.

The other type of query is the \temporally scoped fetch," which returns all time points (or intervals)

that fall within a application-supplied time interval, and whose tokens satisfy an application-supplied fetch

criteria (supplied in the form of a function). Each time point and interval has an associated token, indicating,

for example, what happened at the time point or over the interval. The database attaches no particular

meaning to the tokens, using them only in the process of fetching.

The application can ask the database monitor to notify it (by calling an application-supplied function)

when a point or interval gets added that (1) occurs within a particular interval of time, and (2) whose token

satis�es a particular criterion. An add monitor is attached to the interval of interest and checks points and

intervals as they are added to the database, notifying the application if an \interesting" one arrives. The

idea is that new information might invalidate a probabilistic estimate|''s probability was thought to be

greater than � but new evidence shows it to be less|at which point the application should reconsider any

plans that rely on ' being true.

2.3 Propositions and probabilities

This paper is concerned with how to compute probabilities of the form

P(\' true at time t"),

where ' is a proposition and t is a time point. We have already introduced the notion of a time point; now

we move on to the notion of a proposition, then to a brief discussion of why we are using probabilities to

represent the agent's uncertainty.

2.3.1 The form of propositions

We will use Greek letters, most often ', to stand for the propositions we wish to assess. \Assessing '" means

computing ''s probability at some time point t. We will abbreviate this quantity as P('

t

). In cases where

t is an indexed time point, e.g. t

i

, we may further abbreviate P('

t

i

) as P('

i

).

These propositions will in practice look like the usual AI logical propositions: (RAINY),

(LOC MY-CAT MY-LIVING-ROOM), and so on|the atomic formulas in a �rst-order language. Proposi-

tions thus do not contain logical connectives. Instead of logical negation and conjunction, for example,

probability theory speaks of complementary and joint events. If ' and  are propositions of interest (thus

8



are events in the probability space) the events ' and  are the corresponding complementary events, corre-

sponding to (NOT ') and (NOT  ). The axioms of probability theory dictate that P(') = 1 � P('). The

joint event (', ) corresponds to the conjunction (' ^  ). We will discuss below the problem of computing

the probabilities of joint events. We allow quanti�cation only in special domain-dependent cases, which we

will discuss in [Hanks and McDermott 1992]. When we speak of propositions such as ', however, we are

talking about atomic propositions|no connectives.

Our causal model, inspired by McDermott's concept of the \pcause" rule [McDermott 1982], grants

special semantic status to a class of propositions known as \events." Events are the propositions that e�ect

changes in the world. The agent's actions are events. The distinction between events and \facts" (as the

remaining propositions are called) is somewhat arbitrary, as Shoham points out in [1988, Chapter 2]. Is

there a meaningful di�erence between the occurrence of a rainstorm and some period of time over which it

is raining?

2.3.2 Facts and events

Theories of change have typically divided the set of proposition types into facts and events. The latter are

usually associated with the agent's actions. In fact most theories of change, and most planners, assume that

no events except the agent's actions will ever occur.

One reason for making this distinction is to separate the intuition that if a fact F is said to be true over

the interval we want to say it's true over all subintervals as well. In contrast, if an event E is said to be

true over an interval we really want to say it occurs exactly once, over the whole interval, and not over any

subinterval. This distinction avoids a technical problem with the causal rules: if we have a rule that says if

F is true when E occurs then P becomes true, and we assert that E occurred over an interval, then we want

to assert that P becomes true exactly once, and not at every time point contained within the interval.

In practice this problem rarely arises, mainly because events are almost always assumed to occur at a

single point in time. We will begin by making this assumption, then relax it so that certain events (in

particular the agent's actions) are allowed to occur over an interval rather than at a point in time.

A more important distinction arises in the probabilistic assumptions we make about the occurrence of

events as opposed to the persistence of facts.

The �rst assumption is that events occur \dispassionately" in the world. More particularly we assume

that the probability that an exogenous event

6

occurs does not depend on the planning choices made by the

agent. We are thus assuming a situation of uncertainty rather than one of risk or gaming.

A second assumption we make about events is a rather vague one; it is important for the e�ciency of

the assessment and projection algorithms but does not otherwise a�ect the analysis. The assumption is that

causally relevant events occur, unknown to the agent, with low probability. We characterize as \chaotic"

those domains in which the low-probability assumption does not hold. Predicting the future becomes very

di�cult in chaotic situations; our algorithm becomes very slow. We will see below how this assumption of

\low probability events" can be used to guide the search for important causal inferences.

Note that these assumptions|and thus the distinction between facts and events|is essentially a practical

one. In fact the distinction between events and facts will usually be unimportant to our analysis; when it

matters we will use the letter " or E to stand for the former and the letter ' or P to stand for the latter.

2.3.3 Contextual propositions

Contextual propositions are facts we have some information about but do not reason about directly using

our temporal theory; they are assumed not to change in the interval over which we model the temporal facts

and events. The weather, the current temperature, a patient's age are examples.

Our implementation assumes an atemporal probabilisitic model of the contextual propositions, meaning

that we can ask for the probability of these propositions, and these probabilities may be interdependent, but

the probabilities remain unchanged over the interval in question.

6

An exogenous event is one that is not explicitly planned by the agent.

9



Contextual propositions will be relevant only in Sections 3.4 and 7.

2.3.4 Reasoning with probabilities

We will quantify the agent's uncertainty about the world using a probability number, thus will be speaking of

assessing the probability of ' at a time point t, abbreviated to P('

t

). This approach is controversial. Some

researchers of a philosophical bent contend that a probability is not a valid measure of credal commitment.

Practitioners in AI argue a number of points: that probabilistic reasoning requires a tremendous amount

of input data (prior probabilities and the like) that cannot reasonably be expected from an application

program, that probabilistic reasoning is computationally intractable, and that a single probability number is

insu�cient to capture concepts, like ignorance and the value of information, that are essential components

of the decision-making or planning process.

The philosophical issues begin a debate we have no wish to enter at this point; there is an excellent

summary of the issues in [Pearl 1988, Chapter 1]. In any case, the analysis in this chapter does not require

the reader to view the computed probabilities as states of belief

7

The second group of arguments touches on empirical issues, and we hope to show in this paper that

reasoning within an application-supplied probabilistic model can be accomplished e�ciently. Our contention

will be that although computing exact probability values may be impractical, one may nonetheless compute

approximations that (1) can be arrived at quickly, and (2) provide the agent with the information necessary

to make decisions about its future actions.

8

The �nal point, that a single probability number does not su�ce

to represent concepts related to the agent's state of information, will be addressed in [Hanks and McDermott

1992].

3 Uncertainty, Evidence, and Probabilistic Updates

Estimating a proposition's probability can be considered in two steps:

1. choosing an appropriate body of evidence E, and

2. computing the probability P('

t

jE).

Our implementation actually interleaves these two steps, but viewing them separately serves to isolate the

issues involved in the two processes. This section treats the second step, computing a probability given a

particular set of evidence. We explain the process by confronting these questions:

1. How does uncertainty manifest itself in the system?

2. What form does evidence take?

3. What is the proper update for each type of evidence?

3.1 The nature of uncertainty

There are two ways to arrive at a belief that some proposition, say ', holds in the world at some point in

time t. The �rst is to observe ' at t either directly, or by being told by someone else, or by some other

indirect evidence. We then base a belief in ''s truth on

1. the observation or evidence itself, and

2. the belief that the observation at time t accurately reected ''s state at that time.

7

We may occasionally lapse into language betraying the fact that we are interpreting these probababilities in exactly that

way|e.g. by naming the main data structure a belief. Nonetheless, what we are doing is computing probabilities, and the

reader is free to interpret them any way he or she wants.

8

[Wellman 1988] advances this position as well.
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We will assume that we will get observational evidence about ' only in the form of direct (but possibly

inaccurate) testimony.

We can also reason indirectly about ''s state, provided we have some sense of the circumstances under

which ' can become true. For example, knowing that the occurrence of an event " causes ' to become true,

and knowing that " actually occurred at a time t' prior to t, we can base a belief in ''s truth on

1. the belief that " causes ', and

2. the belief that " occurred at t', and

3. the belief that nothing happened between t' and t to cause ' to become false.

The two modes of reasoning are not exclusive|we may have arrived at the belief that " occurred at t' by

direct observation, or by some other chain of causal inference, or both.

Belief in the truth of ' at t will be uncertain to the extent that we doubt:

� whether an observation was a good reection of ''s state at t

� whether some relevant " actually occurred at t'

� whether " indeed causes '

� whether nothing actually changed ''s state in the interim, because

{ maybe some other known relevant event occurred but its occurrence was unknown

{ maybe some other relevant event occurred but its relevance was unknown.

To summarize the above, one is uncertain about the state of the world to the extent that one lacks

con�dence in the veracity of one's observations, lacks perfect knowledge of all causally relevant events, and

lacks a perfect predictive model of the world.

The discussion identi�es two types of evidence: reports from the sensors and predictive information from

the causal rules. Each has an associated update equation|a function that incorporates the new evidence

into one's belief about ''s state at t. In other words, if one's current state of information about ', say

E, leads one to a certain probability P('

t

jE), and a new piece of evidence e is obtained, then the update

equation determines the new probability P('

t

jE, e) on the basis of the old probability and an estimate of e's

veracity.

3.2 Updates on sensory observations

Suppose we are reasoning about the state of ' at a point in time t. We are thus computing the probability

P('

t

), and we have so far amassed a body of evidence E that bears on ', and have used it to compute a

probability P('

t

jE). Then we get a sensory observation O to the e�ect that ' was observed true at time t.

9

The complementary event is O, which denotes an observation that ' is false. The question is how to

update the probability P('

t

jE) to incorporate the new piece of evidence; that is, to compute P('

t

jE, O),

bearing in mind that O may or may not accurately reect ''s state at t.

Associated with each observation O we have several parameters: the proposition it claims to have ob-

served, whether that proposition was true or false, the time point at which the observation occurred, and

9

We should note a potential confusion here among time points. Two times points are potentially relevant in considering an

observation: the time at which the observation was made and the time at which the observation was posted to the database.

Likewise when one makes a query like \what is ''s probability at t" we can consider both the time t and whatever time the

application posed the query. We are not considering times of the second sort: the times at which observations are made and

the times at which queries are posed. Our network of beliefs represents what the application believes now, on the basis of what

information it has received to this point. We cannot therefore reason about changes to the agent's state of information over

time. Although we can represent statements like \I believe that ' was true �ve minutes ago but will not be true in one hour,"

we cannot explicitly represent statements like \�ve minutes ago I believed that ' would be true in one hour, but now I do not."
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one or more parameters characterizing the relationship between ''s state and the sensor's report about ''s

state.

The last parameters are most interesting. The sensor either was functioning properly when it made the

observation, in which case we say the observation was \reliable," or it was malfunctioning, in which case

we say the observation was \unreliable." Let R denote a reliable observation. The probability space then

consists of the following events:

� ' = proposition ' is true in the world

� ' = proposition ' is false

� O = sensor reports ' is true

� O = sensor reports ' is false

� R = observation O is reliable

� R = observation O is unreliable

all of which are relative to time t.

We can constrain the joint distribution over these events so that it corresponds to our de�nitions of

observations and reliability. We �rst assume that a reliable observation of ' is de�nitive|it should determine

our belief in ' at the time the observation was made. A reliable observation of ' (i.e. O) means that we

believe absolutely that ' is false at t. This assumption translates into the following two constraints:

P('jO,R,E) = 1 (1)

P('jO,R,E) = 0 (2)

for any body of evidence E.

It is harder to characterize the relationship between an observation and ' if the observation was unreliable:

a malfunctioning sensor may still report either O, or O, and hence an observation may correctly report ''s

state even though it was unreliable|i.e. the sensor may do the right thing for the wrong reason.

Furthermore, we generally won't know whether any individual observation was reliable or not, and may

therefore have to base our update on statistical information about the sensor's behavior. First let us assume

we have a probability r = P(R) that represents the likelihood that the observation was reliable. We next

assume that that there is no systematic relationship between ''s state and the observation's reliability. That

is, ' being true in no way causes the sensor to malfunction. This assumption amounts to an assertion that

R is probabilistically independent of ':

P(Rj') = P(Rj') = P(R) = r: (3)

Next we have to characterize the relationship between the observation and ' for those cases when the

sensor malfunctions. This information corresponds to the parameters P(OjR,') and P(OjR,'). In some cases

we may have a good model of the sensor's \failure-mode" behavior|for example, the sensor may always

report \true" when it malfunctions, in which case we would set

P(O j R; ') = P(O j R; ') = 1:0:

This example introduces a reasonable assumption about unreliable observations: that when the sensor

malfunctions its output is no longer sensitive to ''s state. This assumption amounts to the assertion that

P(O j R; ') = P(O j R; '). If we had less precise information about the sensor's behavior when it malfunctions,

we might introduce into the model a \failure-mode" parameter f: the probability that the sensor reports

\true" given that it is malfunctioning:

P(OjR,') = P(O j R; ') = f: (4)
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In other cases we may have no explicit model of the sensor's failure-mode behavior, and thus have no

values for the probabilities P(OjR,') and P(OjR,'). The assumption we made above|that the sensor's

failure-mode behavior does not depend on ''s state|is still reasonable, but we may have no f parameter

available. Two other reasonable assumptions might be:

1. That one's state of belief about ' should not change as a result of an unreliable sensor report. Formally

we might say that P(' j O;R) = P(' j O;R) = P('), though it is not immediately clear that this

assumption determines a unique distribution or even that it is consistent with the rest of the constraints.

2. That our assumption about the failure-mode probabilities should add the least possible amount of

information to the distribution. This is in e�ect the \maximum-entropy" solution ([Jaynes 1979]

[Hunter 1989]): choose the (unique) distribution consistent with the constraints that exhibits maximum

entropy (minimum information).

We show in [Hanks 1990b, Section 3.4] that the three assumptions are equivalent: that the maximum-

entropy distribution implies

P(O j R; ') = P(O j R; ') = 0:5;

which in turn implies

P(' j O;R) = P(' j O;R) = P('):

In other words, the report of a malfunctioning sensor does not depend on ''s state, and an unreliable

observation conveys no information.

This model|the reliability probability parameter r coupled with a minimum-information assumption

about the sensor's failure-mode behavior|is essentially the same as that adopted for electronic components

in the literature on circuit diagnosis, e.g. [de Kleer and Williams 1987]. For the remainder of the paper we

will assume a model consisting of the reliability parameter r only. Adopting a model with more parameters,

e.g. the f parameter from Equation (4), would require minimal changes to the algorithm.

3.2.1 The observation update equations

Now suppose we have available a prior probability p = P(' j E) and a reliability parameter r = P(R). We

can then build the following set of constraints:

P('jO,R,E) = 1

P('jO,R,E) = 0

P('jE) = p

P(RjE) = P(Rj') = P(R j ') = r

P(Oj',R, E) = P(Oj',R, E) = 0:5

which de�nes a unique distribution over the probability space. We can then apply Bayes' rule:

P('jE, O) =

P(O j E; ')P(' j E)

P(O j E)

which, after expanding terms and substitution, yields:

P('jE,O) =

:5(1 + r)p

rp + :5(1� r)

(5)

for positive observations, and similarly for negative observations

P('jE, O) =

(1� r)p

1 + r � 2rp

: (6)
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Figure 2: Graph representation for observation updates

Note the following properties of these equations: if the observation is certainly reliable (r = 1) then P(' j

O) = 1 and P(' j O) = 0. A reliable observation renders the agent certain about the state of the proposition

in question. If the observation is certainly unreliable (r = 0) then P(' j O) = P(' j O) = p = P('). An

unreliable observation provides no information regarding the proposition. The positive update equation is

unde�ned in case r = 1 and p = 0; a negative update is unde�ned in case r = 1 and p = 1.

Now assume we have an observation o

i

that takes place at time t

i

and has reliability parameter r

i

. We

can rewrite (5) and (6) as a function of the prior probability p, but which depends on (1) whether o

i

is

positive or negative and (2) the reliability parameter r

i

. We will call this function s

i

, for a sensor update at

time t

i

and reliability parameter r

i

, and note that it is monotone nondecreasing in its input parameter.

10

s

i

(p) =

(

:5(1+r

i

)p

r

i

p+:5(1�r

i

)

if o

i

is positive

(1�r

i

)p

1+r�2r

i

p

: if o

i

is negative.

(7)

3.2.2 An equivalent graph representation

Figure 2 shows explicitly the probabilistic model implied by the update equations. Note that the state of

' and the observation's reliability R jointly determine whether the observation will be true or not. ' and

R are independent, given a true or false observation. We require prior probabilities for ' and for R and a

matrix (shown in the diagram) for all possible values of P(Oj',R). The entries in this matrix are determined

by the constraints and the maximum-entropy assumption introduced in the previous section.

3.2.3 Comparison to the likelihood ratio

The approach above does sensor updates on the basis of (1) a reliability parameter r, (2) a prior probability

p, and (3) additional parameters or assumptions about the sensor's behavior when it malfunctions. A more

traditional update technique (see [Pearl 1988, Chapter 2], for example) uses two likelihood ratios instead,

�

o

=

P(O j ')

P(O j ')

�

o

=

P(O j ')

P(O j ')

10

Note that we no longer need to condition on E. Prior information is summarized in the parameter p. The sensor update

depends only on the reliability parameter, which is assumed to be independent of E.

14



along with the same prior probability, then applies Bayes' rule as follows (this is for positive updates):

P('jO) =

�

o

�

1 + �

o

�

(8)

where

� =

P(')

1� P(')

=

p

1� p

:

As it happens, the two approaches are almost identical in their applicability. Suppose that we admit an

arbitrary relationship between O and '|the following equations then hold:

P(Oj') = P(Oj',R)P(R j ') + P(Oj',R)P(R j ')

P(Oj') = P(Oj',R)P(R j ') + P(Oj',R)P(R j ')

But with our assumption that reliability is independent of ', we can take all of the P(Rj�) parameters to be

equal to r, and then P(R j �) = 1 � r as well. Furthermore, P(O j R; ') = P(O j R; ') = f , the failure-mode

parameter we introduced in Equation (4). And, of course, P(O j R; ') = 0. Hence, the equations above

reduce to

P(Oj') = r + (1� r)f

P(Oj') = (1� r)f:

Subtracting, we obtain

r = P(O j ')� P(O j ');

which establishes a relationship between r and the components of the likelihood ratio �

o

. Considering P(O)

yields the corresponding equation

r = P(O j ')� P(O j �):

We can perform a similar analysis for the f parameter:

f =

P(Oj')

(1�r)

= 1�

P(Oj')

(1�r)

where f is unde�ned (but unnecessary) if r = 1.

These equations suggest certain relationships between the two update methods. They basically cover the

same territory, but just parameterize it di�erently. Any relationship between the probabilities of ' and O

can be modelled in terms of r and f parameters, unless P(O j ') < P(O j '), in which case it is misguided to

think of O as an observation of ' at all.

One advantage to formulating the update in terms of r and f is that it allows the case r = 1, which

corresponds to a singularity in the orthodox Bayesian approach. A perfectly reliable observation �xes belief

with certainty, which is impossible using Equation 8 above|the posterior probability for ' cannot be 1.

A probabilistic purist will no doubt approve of the impossibility of forcing absolute certainty with a single

observation. But in the context of computational modeling it is quite useful to be able to include perfectly

reliable observations as boundary conditions, thereby cutting o� expensive cogitation about slight deviations

from 1.

3.3 Updates on causal rules

Equation (7) allows us to update a probability at a single point in time in response to a new piece of

observational evidence. In this section we discuss the problem of how to update the probability between

a point of time t and the next instant t

>

. (If we were to assume a discrete temporal model we would set

t

>

= t + 1.)
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3.3.1 The structure of causal rules

Many proposals have appeared for reasoning about the dynamics of the world, variously called theories of

time [McDermott 1982], theories of action [Lifschitz 1987] or theories of change [Shoham 1988]. The idea

in all cases is the same: we identify events as the propositions that initiate change in the world; events

change the state of facts. The agent's world model consists of a set of causal rules that dictate what event

types cause what changes to what fact types under what circumstances. One such rule (a variant of which

appears in [Hanks and McDermott 1987]) represents the information that shooting somebody with a loaded

gun usually causes that person to become dead (actually, \not alive"):

11

(DEFINE-RULE-SCHEMA 'GUN-SHOOTING

'(PRECONDITIONS (LOADED ?G))

'(TRIGGER (SHOOT ?P ?G))

'(CONSEQUENT (ALIVE ?P))

'(SIGN 0)

'(EFFECTIVENESS 0.9))

A SIGN of 0 means the same thing as negating the consequent (recall that propositions cannot be negated).

We will explain the EFFECTIVENESS parameter below.

These rules must be accompanied by axioms or algorithms that enforce the idea that the consequents

indicated by the rules are realized at all appropriate time points|that is, for any point in time at which the

TRIGGER event occurs and the PRECONDITION facts are all true, the CONSEQUENT fact is caused to be true (or

false, in this case) immediately afterwards.

A �rst-cut interpretation of these rules is as follows: let R be a rule with precondition P, trigger event

T, sign S, and consequent C. In the case S = 1 (a \positive rule") we can state, for all time points t that

P(C

t

>
jP

t

,T

t

,C

t

,E) = 1 (9)

and similarly for S = 0:

P(C

t

>
jP

t

, T

t

, C

t

,E) = 0 (10)

where E again is our previous body of evidence.

The equation says, in e�ect that the probability that the (positive) rule will e�ect a change in C's state

from false to true between time t and time t

>

is 1. The equation is incorrect in that it assumes that the

rule is a perfect predictor of state changes in C|that is, the rule's preconditions being true are su�cient to

predict a change in C's state. The next section addresses this issue.

We can characterize a rule fully by its precondition, trigger, consequent, and sign, so let R=(P

R

, T

R

,

C

R

, S

R

). We will be immediately interested only in rules for which C

R

=', for these are the only known

conditions under which ''s state can change.

Let us say that a rule \�res" at a point in time t if its precondition facts are all true at t, its trigger event

occurs at t, and ' is false at t for positive rules or true for negative rules. For positive rules R we will de�ne

F

R

t

� (P

R

t

;T

R

t

; '

t

)

and likewise for negative rules

F

R

t

� (P

R

t

;T

R

t

; '

t

)

3.3.2 Incomplete theories

Equations 9 and 10 imply that we know exactly the circumstances under which a rule's e�ects will be

realized|in particular we assume that the rule's �ring is su�cient to change ''s state. This may not always

11

This is the actual LISP form evaluated by the implementation
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be the case: referring to the gun-�ring rule, for example, it may be the case that shooting somebody with a

loaded gun will usually, but not always, cause their death. We can express this notion|that the rule's stated

preconditions are necessary but not su�cient for the rule to e�ect change|by associating with each rule

a parameter called \e�ectiveness." E�ectiveness represents the proportion of situations in which the rule's

consequent will be realized, given that it �res. Giving a rule an e�ectiveness parameter of p is equivalent

to de�ning an additional precondition of \(CHANCE p)" which always has a probability of p and is known

to be independent of all other propositions. The independence assumption is justi�ed here because we are

quantifying the extent to which our model fails to capture certain relationships; presumably any systematic

relationships would be captured in the model. The advantage of using an explicit EFFECTIVENESS parameter

instead of a (CHANCE p) precondition is practical rather than semantically meaningful, so the present

discussion will ignore the rule's e�ectiveness (assuming it is 1.0). (But see below, Section 4.1.)

Just as e�ectiveness represents an admission that the rule's precondition might not be restrictive enough

(but we don't know exactly how to restrict it further), we might also want to represent the possibility that

the precondition might be too restrictive (but we don't know exactly how to weaken it). We have no explicit

parameter to represent this case|such information is coded in the application-supplied parameter �

'

. �

'

is the probability that ' changed state, but the cause of that change is unknown. Section 3.4 discusses this

parameter in more detail. The �

'

parameter does not distinguish between the case in which the unknown

cause of ''s change is a known rule that should have �red and the case in which the change's cause was not

represented at all.

3.3.3 The update equation for causal rules

Now we return to the problem of tracking how belief changes from time t to time t

>

where our theory of

change consists of a set of rules like the one above. Suppose that R

1

, R

2

, : : : , R

n

are all the rules whose

consequent is ', and the corresponding \�ring" events are F

1

, F

2

, : : : , F

n

. Assume for the sake of notational

brevity that n = 2. The following causal update equation indicates that ''s state at t

>

can be determined

by considering its state at t and considering what happens under the (mutually exclusive and exhaustive)

circumstances that (1) neither rule �res, (2) one rule �res but the other does not, and (3) both rules �re.

P('

t

>
jE) = P('

t

>
jF

1

t

,F

2

t

,'

t

)P(F

1

t

;F

2

t

; '

t

j E) + (11)

P('

t

>
jF

1

t

,F

2

t

,'

t

)P(F

1

t

;F

2

t

; '

t

j E) + (12)

P('

t

>
jF

1

t

,F

2

t

,'

t

)P(F

1

t

;F

2

t

; '

t

j E) + (13)

P('

t

>
jF

1

t

,F

2

t

,'

t

)P(F

1

t

;F

2

t

; '

t

j E) + (14)

P('

t

>
jF

1

t

,F

2

t

,'

t

)P(F

1

t

;F

2

t

; '

t

j E) + (15)

P('

t

>
jF

1

t

,F

2

t

,'

t

)P(F

1

t

;F

2

t

; '

t

j E) + (16)

P('

t

>
jF

1

t

,F

2

t

,'

t

)P(F

1

t

;F

2

t

; '

t

j E) + (17)

P('

t

>
jF

1

t

,F

2

t

,'

t

)P(F

1

t

;F

2

t

; '

t

j E): (18)

First consider the left-hand side of each addend|P('

t

>
jF

1

t

,F

2

t

,'

t

), P('

t

>
jF

1

t

,F

2

t

,'

t

), and so on. These

quantities divide into three groups: those in which none of the causal rules �re: (14), (18), those in which

exactly one of the rules �re: (12), (13), (16), (17), and those in which more than one rule �res: (11), (15).

The �rst group represents the case in which nothing was known to cause ' to change state between t and

t

>

. While we admit the possibility of unpredicted state changes over intervals (Section 3.4), we assume that

the probability that such a change happens in the instant [t,t

>

] is negligible. We can therefore rewrite the

left-hand-sides of terms (14) and (18) as follows:

P('

t

>
j F

1

t

;F

2

t

; '

t

) � 1

P('

t

>
j F

1

t

;F

2

t

; '

t

) � 0:
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The second group of terms|(12), (13), (16), (17)|represents the case where exactly one rule �res.

Consider (12) and (16), for example:

P('

t

>
jF

1

t

,F

2

t

,'

t

)P(F

1

t

;F

2

t

; '

t

j E)

P('

t

>
jF

1

t

,F

2

t

,'

t

)P(F

1

t

;F

2

t

; '

t

j E):

The rule that does �re, R

2

, must either be a positive rule or a negative rule. If R

2

is positive we have directly

from Equation (9) that

P('

t

>
j F

1

t

;F

2

t

; '

t

) = P('

t

>
jF

2

t

) = 1:

Further, if R

2

is positive and did �re then ' must have been false at t, so

P(F

2

t

j'

t

) = 0

and

P(F

1

t

;F

2

t

; '

t

j E) = 0:

Likewise, if R

2

is a negative rule,

P('

t

>
j F

1

t

;F

2

t

; '

t

) = P('

t

>
jF

2

t

) = 0

P(F

1

t

;F

2

t

; '

t

j E) = 0:

The case of two rules �ring simultaneously is trivial: R

1

and R

2

must either both be positive or both be

negative, otherwise they could not both �re at the same instant. If they are both positive then P('

t

>

) = 1

since by assumption either is su�cient to make ' true; if both are negative then P('

t

>
) = 0.

Next we turn attention to computing the �ring probabilities|the right sides of the causal update equa-

tion, for example

P(F

1

t

;F

2

t

; '

t

j E)

P(F

1

t

;F

2

t

; '

t

j E):

The questions to address are to what extent the rule �rings interact, and to what extent rule �rings depend

on the previous evidence E.

First of all, as we hinted above, we will not worry about multiple rule �rings: interacting positive and

negative rules are not the issue here, so the danger is that we overestimate the probability of a state change

by double counting evidence common to the �ring of two positive (or two negative) rules.

The assumption that tends to mitigate this problem involves independence of event occurrences. In

Section 2.3.2 we assumed events occurred \dispassionately" in the world: that the probability of an event

occurring did not depend on that event's implications. We can formalize that assumption by assuming that

an event occurs independent of the preconditions of the causal rules in which it participates. So, considering

a positive rule R

1

, we can apply these apply these assumptions and write its �ring probability as follows:

P(F

1

t

j E) � P(P

1

t

,T

1

t

,'

t

jE)

= P(T

1

t

jP

1

t

,'

t

,E)P(P

1

t

j '

t

;E)P('

t

j E)

= P(T

1

t

)P(P

1

t

j '

t

;E)(1� p)

where p is the estimate of ' we get from prior updates. The independence assumption on events allows us

to write P(T

1

t

j P

1

t

; '

t

;E) = P(T

1

t

): we can assess the probability of events occurring separate from the rules

in which they participate.

We will further make a Markov assumption with regards to the rule's precondition: that ''s state at t

renders all prior information irrelevant|that P(P

1

t

j '

t

;E) = P(P

1

t

j '

t

). This assumption is questionable|

later in the paper we will examine it in more detail.
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3.3.4 Causal updates: summary

The assumptions above allow us to consider rule �rings (relevant to ') at a time point t to be mutually

exclusive and exhaustive. That is, either exactly one of the rules �re, or none of the rules �re. Under these

assumptions the causal update equation can be rewritten as follows: let

� R

+

be the set of all positive rules whose consequent is ',

� R

�

be the set of all negative rules whose consequent is ',

� F

+

t

�

P

r2R

+

P(F

r

t

j E)

� F

�

t

�

P

r2R

�

P(F

r

t

j E)

� p = P('

t

j E),

then ''s probability at t

>

can be computed by realizing that ' is true at t

>

just in case it was true at t and

no negative rules �red at t, or if ' was false at t and at least one positive rule �red at t:

P('

t

>
jE) = p(1� F

�

t

) + (1 � p)F

+

t

: (19)

We will once again rewrite this update equation as a function of the prior probability p and relative to a

time point t

i

, giving:

c

i

(p) = p(1� F

�

i

) + (1� p)F

+

i

(20)

where F

+

i

and F

�

i

are the �ring probabilities for all positive and negative rules respectively, evaluated at t

i

.

This equation, like Equation (7) dictates how to update a probability given a new piece of evidence (in

this case a causal rule instance). Note the di�erence in the forms of the equations, however: Equation (7)

takes a prior at t and produces a posterior at t as well whereas Equation (20) takes a prior at t and produces

a posterior at t+1.

3.4 Unpredicted changes

We discussed in the previous section the case of a causal theory in which a rule was not su�cient to predict

a change in its consequent's state. The problem is the case in which all the rules are not necessary to predict

a state change|that is, we must admit the possibility that a proposition might change even though no rule

actually predicted that it would.

In the previous section we made the probably innocuous assumption that unpredicted change can't

happen in the instant that passes between t and t

>

, but it is unrealistic to expect the assumption to hold

over longer periods of time, e.g. between times at which our sensors provide us with observations of the

proposition. For example, parking one's car in a parking lot and returning three weeks later to pick it up

requires that one admit the possiblity that it may not still be there, even without being able to say with

any precision how it might have disappeared. Leaving one's wallet on the New York subway even for a short

period of time carries with it the strong possibility that its location has changed.

The point is that we may not have control over the times at which we get evidence about a proposition

of interest, and therefore have to be able to reason about the possibility of change even in the absence of

explicit evidence.

Assume now that we have a set of time points ft

1

, t

2

, : : : , t

n

g such that t

i

� t

i+1

. Each t

i

will correspond

to a point in time at which a sensor observation was received or at which a relevant causal rule was likely to

have �red|in other words, a time point at which we can invoke one of the update rules above. For the sake

of notational simplicity we will assume that the interval of time between t

i

and t

i

>

is negligible, so we will

speak of updating over the interval [t

i

, t

i+1

] when we really mean [t

i

>

, t

i+1

]. Recalling that '

i

abbreviates

'

t

i

, we can write this probability

P('

i+1

) = P('

i+1

j '

i

)P('

i

) + P('

i+1

j '

i

)P('

i

): (21)
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P('

i

) is the probability resulting from the previous observational or causal update. A state change between

t

i

>

and t

i+1

is an unpredicted state change.

The usual approach to reasoning about probabilistic dynamic systems, e.g. in [Howard 1971], is to assume

the probabilities P('

i+1

j'

i

) and P('

i+1

j'

i

) (called \transition probabilities") are available directly as inputs

to the system. Usually this assumption is justi�ed by controlling the amount of time that passes between

any t

i

and the next t

i+1

. By making this interval short enough compared to the expected frequency at which

' changes state, one can assume that ' can change state at most once in any interval [t

i

, t

i+1

]. Believing

that ' changed state in an interval therefore implies that its state at t

i+1

is the opposite of what it was at

t

i

, and of course believing that ' did not change state in the interval implies the belief that its state at t

i+1

is the same as it was at t

i

. Predicting ''s new state is therefore the same as predicting whether it changed

state at all.

When our view of assessment involves reasoning about the persistence of ' over longer intervals of time,

however,

12

we invalidate the assumption that a state change amounts to a known transition. We may be

reasonably sure that ' changed state at least once during a (long) interval of time, but still be unsure of ''s

state at the end of that interval.

Consider, for example, the problem of predicting whether a certain cat is currently in the living room.

Suppose that it's now 4PM, and that it is known (by observation) that she was there at noon, four hours

ago. We have no speci�c information that she has left (mainly because we don't have a very good causal

model of her behavior), but we can be fairly certain at least that she has not stayed put for the whole time.

That is, the probability of a state change over that four-hour period is very high. Does that mean she is not

in the room? No. She might have left, then reentered, left, entered and left again, and so on. In fact, to the

extent that it is likely she has left the room, our causal model loses its predictive power|an observation of

her location at noon loses its predictive impact. At that point predictions must start to depend only on her

\typical" behavior.

To represent this method of reasoning we introduce a new event into the probability space:

�

'

i;j

� \' experienced at least one unpredicted state change

between t

i

and t

j

,"

where t

i

and t

j

are two arbitrary time points such that t

i

� t

j

and \unpredicted" means that no known

causal rule �ring explains the change. Then we rewrite the transition probabilities in (21) to reect the fact

that ' can be true at t

i+1

just in case (1) it was true at t

i

and nothing changed it between t

i

and t

i+1

, or (2)

it was true at t

i

and changed, but ended up true, or (3) it was false at t

i

and changed and ended up true:

P('

i+1

j'

i

) = P('

i+1

j '

i

;�

'

i;i+1

)P(�

'

i;i+1

j '

i

) +

P('

i+1

j '

i

;�

'

i;i+1

)P(�

'

i;i+1

j '

i

)

= P('

i+1

j '

i

;�

'

i;i+1

)P(�

'

i;i+1

j '

i

) +

1� P(�

'

i;i+1

j '

i

)

P('

i+1

j '

i

) = P('

i+1

j '

i

;�

'

i;i+1

)P(�

'

i;i+1

j '

i

) +

P('

i+1

j '

i

;�

'

i;i+1

)P(�

'

i;i+1

j '

i

))

= P('

i+1

j '

i

;�

'

i;i+1

)P(�

'

i;i+1

j '

i

)

The parameters P(�

'

i;i+1

j'

i

) and P(�

'

i;i+1

j'

i

) are called the state-change probabilities for '. If we assume

that ''s state at t

i

is irrelevant to its state at t

i+1

assuming a state change took place in the interim, we can

rewrite

P('

i+1

j '

i

;�

'

i;i+1

) = P('

i+1

j '

i

;�

'

i;i+1

) = P('

i+1

j �

'

i;i+1

)

which we call the post-change probability for '. The state-change and post-change probabilities together we

call the background probabilities for '.

12

Recall that we have no a priori bound on the amount of time that might elapse between a point t

i

and the next distinguished

time point t

i+1

.
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Now note that �

'

i;i+1

represents a situation in which no state change, predicted or unpredicted, occurs

between t

i

and t

i+1

and therefore by de�nition

P('

i+1

j '

i

;�

'

i;i+1

) = 1

P('

i+1

j '

i

;�

'

i;i+1

) = 0:

The new equation for updating probabilities over intervals then becomes:

P('

i+1

) = P('

i+1

j'

i

)P('

i

) + P('

i+1

j '

i

)(1� P('

i

))

= (P('

i+1

j �

'

i;i+1

; '

i

)P(�

'

i;i+1

j '

i

) + P('

i+1

j �

'

i;i+1

; '

i

)P(�

'

i;i+1

j '

i

))P('

i

) +

(P('

i+1

j �

'

i;i+1

; '

i

)P(�

'

i;i+1

j '

i

) + P('

i+1

j �

'

i;i+1

; '

i

)P(�

'

i;i+1

j '

i

))P('

i

)

= (P('

i+1

j �

'

i;i+1

)P(�

'

i;i+1

j '

i

) + (1)(1� P(�

'

i;i+1

j '

i

)))P('

i

) +

(P('

i+1

j �

'

i;i+1

)P(�

'

i;i+1

j '

i

) + (0)(1� P(�

'

i;i+1

j '

i

)))(1 � P('

i

))

= P('

i

)(P('

i+1

j �

'

i;i+1

)P(�

'

i;i+1

j '

i

) + 1� P(�

'

i;i+1

j '

i

)) +

(1� P('

i

))P('

i+1

j �

'

i;i+1

)P(�

'

i;i+1

j '

i

) (22)

which depends on the two state-change parameters, one post-change parameter, and a prior on '

i

. The

equation says essentially that ' will be true at t

i+1

if and only if

� it was true at t

i

and there was no state change in the interim, or

� it was true at t

i

and there was a state change in the interim, but it ended up true anyway, or

� it was false at t

i

and there was a state change, and it ended up true.

Now for some t

i

we will summarize the necessary probability parameters as follows:

d

+

i

= P(�

'

i;i+1

j'

i

)

d

�

i

= P(�

'

i;i+1

j'

i

)

b

i

= P('

i+1

j�

'

i;i+1

);

which allows us to write the persistence update equation once again as a function of an input parameter

p = P('

i

):

w

i

(p) = p(1� d

+

i

) + pd

+

i

b

i

+ (1� p)d

�

i

b

i

: (23)

It is often reasonable to assume that the two state-change probabilities are exponential and that the

background probability is constant, in which case this equation can be reduced to an exponential with a

single parameter (see Section 6). Our implementation makes the less restrictive assumption that background

probabilities can depend on the contextual propositions but not on the temporal propositions themselves. It

would therefore be more accurate to write the background probabilities explicitly in terms of the contextual

propositions C, e.g. d

+

i

= P(�

'

i;i+1

j '

i

;C).

3.5 The update process for �xed evidence

Recall the three update equations, corresponding to the evidential e�ects of sensor observations, causal rules,

and \uncaused persistence" respectively:

s

i

(p) =

(

:5(1+r

i

)p

r

i

p+:5(1�r

i

)

if o

i

is positive

(1�r

i

)p

1+r�2r

i

p

: if o

i

is negative.

(24)

c

i

(p) = p(1 � F

�

i

) + (1� p)F

+

i

(25)

w

i

(p) = p(1 � d

+

i

) + pd

+

i

b

i

+ (1� p)d

�

i

b

i

(26)
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which suggests the following algorithm for computing the probability P('

n+1

) based on a set of distinguished

time points ft

i

g representing a set of causally relevant events that occurred at those times:

1. Compute a prior on ' at t

1

: P P('

1

).

2. For i = 1; 2; : : : ; n

(a) compute and apply the appropriate update function (s

i

, c

i

) depending on what sort of event

occurred at t

i

, e.g., P s

i

(P)

(b) \persist P forward" from t

i

to t

i+1

: compute w

i

for the interval [t

i

, t

i+1

] and let P w

i

(P).

One can alternatively view this algorithm as a function A

E

(p), where E is the set of events that occurred

at the ft

i

g. A

E

is the composition of appropriate instances of s, c, and w. The input parameter p is the prior

P('

t

1

). Note that A(p) is monotone nondecreasing in p since all of its component functions are nondecreasing

in their input parameters.

3.5.1 Conditioning on contextual propositions

We have left out one aspect of the update algorithm: the role of the contextual propositions. Recall that

the equations that de�ne the update algorithm depend on background probabilities (priors on the facts and

events and probabilities for unpredicted state changes over intervals), and these background probabilities in

turn depend on the contextual propositions. The same contextual proposition can �gure in more than one

background probability used in an update, so to avoid double counting we must explicitly condition on these

propositions. Strictly speaking, then, we run the update algorithm once for each possible assignment of truth

values to the contextual propositions that appear in the equations, weighting the result by the probability

associated with that assignment. While this represents a potential explosion of computation time, in practice

it has not been an issue: for all applications to this point (see Section 6 for example) contextual variables

have not �gured in the background probabilities at all. Generally a state-independent number su�ces for a

prior, and for the state-change probabilities we have been using an exponential function that depends only

on the duration of the interval. Also note that since the states of contextual propositions do not depend

on the temporal facts and events, we need calculate a probability distribution over those propositions only

once.

3.6 An equivalent graph structure

So far we have de�ned a model for computing probabilities for propositions that vary over time, stating this

model implicitly in functional or algorithmic terms. We can also describe the model in terms of a graph

[Pearl 1988]: each node in the graph represents a quantity that can be assigned a probability and the arcs

connecting nodes indicate a probabilistic dependency. Figure 3 shows the structure for a simple example:

� There are two fact types, P and Q.

� There are two event types, E and F.

� There are two rules:

{ R1: If E occurs when P is true then Q becomes true (perhaps with some probability).

{ R2: If F occurs then P becomes true (perhaps with some probability).

The graph shows the model's structure for a single update, between two time points, t

i

and t

i+1

. Recall

that an arbitrary amount of time might separate t

i

and t

i+1

, but the expectation is that the system did not

make any \interesting" state changes in the interim.

Each row on the grid represents a proposition, each column represents a point in time. In addition to

the facts, events, and rules we mentioned above we model the possibility that a fact is observed to be true
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(or false) and that an event is observed to have occurred (or not to have occurred). Each observation has

an associated reliability parameter. The nodes in the rows labelled R1 and R2 represent the possibility that

the rules �red at the corresponding time point.

The graph does not show the probabilistic parameters|the numbers that determine how a node's proba-

bility is computed based on the states of those nodes that point to it. This application supplies this informa-

tion in the form of prior probabilities for those nodes with no incoming arcs. The application communicates

whether an observation was made by providing a value of true or false or none for the appropriate obs(x)

node, and also provides the reliability parameter r as a prior for the associated rel(x) node. The application

also supplies priors for each fact and event proposition and for the state-change parameters �

x

. These priors

can all depend on the contextual propositions, so there should be an arrow pointing from the contextual

propositions to all nodes with no other incoming arcs. (These arrows were omitted to unclutter the graph's

diagram.)

The other relationships are determined by the equations developed earlier in the paper. Considering

the graph from left to right, we see that updating occurs in four stages, each corresponding to one of the

equations presented in this section:

� Equation (7) determines a fact's or event's state based on its prior state, whether it was observed true

or false, and how reliable that observation was.

� Equation (19) determines whether a rule �red based on the states of its precondition facts and trigger

event and on the rule's e�ectiveness parameter.

� Equation (20) determines whether a fact will be true based on whether it was previously true and

whether any of its rules �red.

� Equation (23) determines whether a fact will be true based on whether it was true before and whether

an unpredicted state change took place over the interval.

3.6.1 Projected probabilities

We should note that although Figure 3 illustrates the probability space and how elements of the space are

related, our update algorithm is not the same as the Bayesian propagation algorithm (as described in [Pearl

1988] for example). The di�erence is that our algorithm computes probabilities only from earlier to later time

points, so a proposition's state at time t can only have an e�ect on the system's state at times subsequent

to t. A full propagation algorithm, on the other hand, also considers the e�ect of later evidence on earlier

propositions.

Suppose, for example, that P were observed to be false (fairly reliably) at time t

i

but was observed to

be true (again fairly reliably) at a subsequent time t

i+1

. The full propagation algorithm would reason that

P is probably true at t

i+1

and therefore that it must either have been true at time t

i

or it had to have been

made true between t

i

and t

i+1

. The algorithm would therefore increase the probability that P was true at

t

i

and also that the observation made at t

i

was unreliable. It would also increase the probability that one of

P's causal rules �red at t

i

and that P changed state from false to true between t

i

and t

i+1

. These changes

in turn would cause the probabilities of propositions at times prior to t

i

to change. In other words, the

observation at t

i+1

a�ects probabilities of propositions at t

i

and before.

Our algorithm determines P's state at t

i

, then at t

i

>

, then at t

i+1

. P would therefore be given low

probability at t

i

>

based on the negative observation. That would provide a low prior for the observation-

update stage at t

i+1

. That prior would be combined with the observational evidence at t

i+1

, tending to

lower the posterior. But the algorithm does not then go back and revise its beliefs about P at t

i

based on

the observation at t

i+1

|subsequent evidence has no e�ects on prior beliefs.

3.7 Time-based versus state-based models

Our equations so far tell us how to update probabilities given a set of \important" time points|those time

points at which the system is likely to change state|but we have no way of reasoning about the system over
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some interval of time over which several changes might have occurred. In other words we have no way of

identifying the important time points.

One easy way to model the system completely is to consider every time point to be potentially important.

Suppose we want to project the course of the system over an interval of time [t

0

, t

n

]. One way to do so is

choose some short interval of time, say �, short enough so that no event is likely to occur within any interval

[t, t+ �]. This interval is usually called a time mesh. We can then instantiate the model by letting the �rst

important time point be t

0

, the second be t

0

+ �, the third be t

0

+2�, and so on to t

n

, duplicating the graph

in Figure 3 at every time point. We then provide probabilities for the facts at the initial time point t

0

and

propagate that information through the graph. This method is equivalent to the usual method for reasoning

about Markov random processes, and is similar to the approach suggested by [Dean and Kanazawa 1989].

13

We call this approach a \time-based" approach to solving the system.

While this is an adequate formal model for solving the system it can be quite ine�cient, for several

reasons. First it requires reasoning about every time point whether or not anything changes between one

time and the next. We would prefer to focus attention only on those times at which a change occurs and

ignore those intervals (those parts of the graphs) over which the system is stable. A time-based system forces

us to reason about every time point, whether or not a change is likely. We therefore risk spending large

amounts of processing resources propagating information through the model over intervals in which nothing

happens.

Second, it requires reasoning about the state of every proposition whether or not the application program

is interested in that proposition's state. We would prefer to focus attention only on those propositions

that are of direct interest to the application (e.g. its goals) and to those that have a causal impact on

those propositions. Third, it requires reasoning about the entire system using a level of granularity (time

mesh) short enough to be appropriate for the fastest-changing proposition in the system. Reasoning about

hummingbirds and boulders simultaneously requires thinking about whether the boulder has moved on a

second-by-second basis.

The alternative to a time-based approach is to try to identify the propositions of interest and the time

points at which they are likely to change, and instantiate only those parts of the model relevant to the

speci�c reasoning task at hand. We call this approach a \state-based" approach because it focuses on

signi�cant changes in the system's state. To implement this approach we must identify what changes qualify

as signi�cant, and how likely they have to be to demand our attention.

14

The next section attacks the problem of deciding which parts of the model to instantiate; in the language

of the previous sections, this process can also be viewed as the process of identifying an appropriate set of

evidence (observations, events, and rules) to reason about explicitly.

4 Identifying important evidence

Analysis to this point has relied on the existence of a �nite set of relevant events|sensory observations or

causal rule instances|occurring at the t

i

points that together should determine the probabilityP('

n+1

). The

problem remains, of course, how we collect these events in the �rst place. Virtually any piece of evidence|

sensory observation or causal rule instance mentioning ' and occurring prior to t

n

|will have some impact

on P('

n+1

). The number of actual pieces of evidence will certainly be enormous: we may have collected

many sensory observations of ' over a long period of time, and we have to consider potential causal rule

instances for every rule whose consequent is ' at every point in time prior to t

n+1

. Of course if the �ring

probabilities of these rule instances are close to zero, we see from Equation (25) that they will have little

e�ect on P(').

The intuition that we can get away with examining only a few important events rests not only on the

assumption that the important events are fairly decisive (have reliabilities or �ring probabilities near 1.0,

13

Also see Section 9.4

14

The statistics literature sometimes refers to the time-based approach as a \discrete-time" model and the state-based

approach as a \continuous-time" model. We avoid these terms to head o� confusion with the literature on temporal logics, in

which discrete and continuous refer to whether time is represented by the integers or the reals.
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thus pretty much determine belief at that point in time) but also on the realization that we generally need

only an approximation of the exact probability.

My decision whether or not to ride my bicycle to work, for example, may depend on whether or not I

think it will be raining the next morning. Weighing the discomfort of getting wet against the inconvenience

of having to �nd a parking place, I arrive at some threshold for the probability of rain, say 0.6, above which

I will decide to drive. The threshold presumably comes from an analysis of the planner's current goals|see

[Haddawy and Hanks 1990]. At that point the exact probability of rain is of no interest to me; all that

matters is what side of the threshold the true probability lies. And by implication, the only evidence of

interest to me is some subset of the evidence that will convince me that the probability of rain is above or

below that threshold. If, for example, I have a current estimate of the probability that is above the threshold,

I needn't consider con�rming evidence at all, since it can't possibly change my judgement relative to the

threshold and thus will not a�ect the decision at hand.

Basically a piece of evidence can be ignored for one of three reasons: �rst, as above, it can be the wrong

\sign"|it will only tend to con�rm the current hypothesis. Second, it can be too unreliable. Recall from

the update equations that sensory and causal evidence a�ect the estimate only to the extent that they are

reliable, or likely to �re. An unreliable observation, for example, may not inuence my belief enough to

change it with respect to the threshold. Finally, a piece of evidence may be too remote: the farther in the

past a piece of evidence occurs the more likely it is that an intervening state change will occur, which renders

the evidence irrelevant. In trying to �gure out where my car is, for example, I don't want to dwell on the

fact that I saw it in my driveway two years ago.

All three criteria for ignoring evidence can be applied to the causal rules as well. Suppose that the query

proposition is ', and we have a rule that says event E and proposition P together cause P. Then we can

compute how likely it must be for this rule to \�re" to a�ect our estimate of ', which in turn gives us bounds

on how likely E's occurrence and P's truth must be to warrant our attention.

These limits suggest an algorithm for computing the probability of ' at t

n+1

, relative to some threshold

� :

1. Start with no evidence, E = �. (E will be the set of relevant events.)

2. Estimate P('

n+1

) using the algorithm from the previous section, that is, letting E = P('

n+1

j E) =

A

E

(�).

3. If E = � , perturb � slightly, letting (�  � + ") or (�  � � ").

15

4. If E > � , search for new evidence O (observations and rule instances) such that, if it were to be found,

would change the estimate such that

E

0

= P('

t

n+1

j E [O) < � .

5. Otherwise, if E < � , search for new evidence O (observations and rule instances) such that, if it were

to be found, would change the estimate such that E

0

= P('

t

n+1

j E [O) > � .

6. If no such evidence is found, report that P('

t

n+1

) stands in relation to � as E does. Otherwise let

E E [O and go back to Step 2.

We stated the retrieval problem as that of �nding a body of evidence O such that addingO to our current

body of evidence E would change our estimate of ''s probability with respect to the input threshold. In the

process we might �nd that there is no such O, in which case we terminate. Establishing that there is no

such set requires, in the worst case, examining all possible evidence, which is exactly what we want to avoid:

we would have to verify that there is no set O of size 1, of size 2, and so on, that invalidates our current

estimate.

We therefore have to adopt a heuristic criterion for deciding that there is no such body of evidence

(implying that our current estimate is correct). Subsequent sections adopt the following rule: we will

15

The rules below for bounding the search for evidence are based on � , and are unde�ned when E = � . In that case one might

search arbitrarily carefully, since any piece of evidence, positive or negative would push E over or under the threshold � .
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terminate the assessment if we �nd no single piece of evidence that upsets the current estimate. We base

this policy on the observation that in many planning applications a single event, observation, or action often

determines a proposition's state|rarely do several unlikely events conspire to make a proposition likely.

The analysis in subsequent sections could instead use heuristics that consider evidence subsets of size 2 or

greater; these heuristics tend to be more expensive to calculate and require searching more of the database,

however, so more accurate policies carry with them a corresponding computational burden.

4.1 Bounding the reliability of evidence

We now confront the problem of how to identify the new evidence. In addition to considering evidence of

the correct sign, we also want to limit consideration to evidence that is reliable enough, and recent enough,

to change the current estimate.

First consider the reliability problem, and assume that E < � , so we are looking only for positive evidence.

The impact of a (single) piece of evidence|the extent to which it changes the probability estimate|can be

measured by the appropriate s or c equation, but in either case the impact depends on the time at which

that evidence is noted. It is generally the case that the more recent the evidence, the greater its impact.

This will strictly be the case if the �ring probabilities for the causal rules do not depend on '. So we can

conservatively ask: how reliable must a piece of evidence, noted at t

n+1

, be in order that the new estimate

E' would exceed � .

Consider the positive case for s, which measures the evidential impact of a positive sensory observation.

We know that the current estimate of ' at t

n+1

is E. Setting the reliability parameter in equation (7) to the

desired level r

�

:

:5(1 + r

�

)E

r

�

E+ :5(1� r

�

)

> �

or, in order for a positive observation to be interesting it must have a reliability parameter that exceeds

r

�

>

� � E

E� 2�E+ �

: (27)

If we were instead searching for negative observations we would look for

r

�

>

E� �

E� 2�E+ �

: (28)

Similarly for causal rules, we use equation (20) to get

f

�

>

� � E

1� E

(29)

or for negative rules we use

f

�

> 1�

�

E

: (30)

Recall that f is the probability that a particular rule �res at some time t, assuming that ' is in the correct

state. Note one detail here: we have not required that f be independent of the state of ' at that time,

so strictly speaking we cannot use this formula for bounding f. In the case where a rule depends on a

precondition  , and  is true just in case ' is false, then f and ' are highly correlated and we will tend to

underestimate the rule's evidential impact. We did assume, however, that the probability of trigger events

occurring, and also the \e�ectiveness" of the rule, could both be assessed independent of ''s state. So a

conservative policy would be to consider all those rule instances for which

P(T)� >

� � E

1� E

where T is the rule's trigger event and � is the rule's e�ectiveness.
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4.2 Bounding the search's temporal scope

The �nal problem is to limit how far back in time we search for evidence. We ask the question: how far back

in time would a perfectly reliable piece of evidence have to occur in order that if we were to �nd it (and it

alone), it would change our estimate E with respect to �?

Recall that the current estimate E is based on the estimate A

E

(p), which we will abbreviate A(p). If

currently E(p) < � , we can ask two questions:

� what value p

�

will cause A(p

�

) > � ,

� what is the latest possible time point t

�

� t

1

such that a perfectly reliable positive observation taken

at t

�

would induce a probability at least as great as p

�

?

And of course the same holds if E > � , except substitute \<" for \>" and \negative" for \positive."

The �rst question obviously depends on the form of the function A(p). We can most easily arrive at a p

�

value by using binary search and repeatedly evaluating A, since we noted that A is nondecreasing in p. The

second quantity depends on the state change and background probabilities for ': d

+

, d

�

, and b. For certain

forms of these functions we can compute exactly the time t

�

(see Section 6), otherwise we can compute t

�

by binary search as well, since �

'

i;j

must increase as d(t

i

, t

j

) increases.

5 Algorithm summary

5.1 Algorithm description

We can now restate the estimation algorithm from Section 4 as follows:

� Inputs:

{ A proposition ', a time point t, a probability threshold � .

{ A set of causal rule schemas such as the one described in Section 3.3.1.

{ Probabilities concerning the occurrence of trigger events and on the background probabilities of

facts at points in time.

{ Sensory observations of various facts and events, each with an associated proposition, reliability

parameter and time point.

� Output:

{ An estimate E of P('

t

) with the property that if E < � then P('

t

) < � , and if E > � then

P('

t

) > � .

{ Monitors in the temporal database ensuring that the estimate will be recomputed if subsequent

evidence calls this relationship into question (see next section).

� Method:

1. Initialize K = �.

2. Compute an estimate E = A

K

(�), using the algorithm from Section 3.5.

3. If E = � then randomly set �  � � ".

4. Determine reliability, �ring, and recency bounds on evidence that would change E with respect to

� , using, respectively, equation (27) or (28), equation (29) or (30), and the method of Section 4.2.

5. Search through the temporal database for these new events.

6. If none are found, report E as the estimate for P('

t

).
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7. Otherwise add the newly found evidence to K, and go back to step 2.

The algorithm is heuristic in the sense that it considers only a single piece of evidence that would change

its estimate in computing the reliability and recency bounds. The estimate may be incorrect only if several

pieces of evidence considered jointly would change the estimate with respect to the threshold even though

any piece of evidence taken alone would be too unreliable to do so.

5.2 Maintaining the belief: monitors and signals

We mentioned in the introduction that a belief, as computed by the algorithm above, also represents a

promise to notify the calling program in case subsequent evidence invalidates the relationship between the

current estimate and the belief's threshold.

Providing this functionality is quite easy at this point in that the last search iteration (which yielded no

evidence) also tells us what new evidence (in terms of sign, recency, and reliability) we should look for. Once

the estimate is established we therefore establish add monitors in the temporal database (Section 2.2) telling

it to notify the belief-computation algorithm if any such new evidence should appear. When new evidence

arrives we recompute the estimate including that new evidence. If the estimate changes with respect to

the threshold we call the application-supplied signal function associated with the belief; if the new estimate

stands in the same relationship to the threshold as before, we re-compute the recency and reliability bounds

and post new add monitors, but do not call the signal function.

We will devote the remainder of the paper to an example illustrating the algorithm, then to a discussion

of the algorithm's implementation, the assumptions we have made, and related and future work.

6 Example

To illustrate the algorithm we will work through a simple example. The proposition of interest is

CAT = \the cat is now in the living room,"

and it is now 2:00 in the afternoon. There are two relevant sensory observations: at 9:00 this morning the

cat was seen in the room. But at 1:00 this afternoon a meow-like noise was sensed coming from the kitchen,

which might (or might not) have been the cat. If it was, then the cat couldn't possibly have been in the

living room at that time, but if the sound came from some other source, then it doesn't help me determine

where the cat was. We estimate at 50% the probability that the noise really was the cat, therefore count the

experience as a negative sensory observation with a reliability parameter r = 0:5.

Mainly the cat's behavior is inexplicable, but we do have one rule: when the postman comes he scares

the cat out of the living room with probability about 0:6. Furthermore, the probability that the postman

comes at noon is 0:8.

Finally, background knowledge about the cat leads us to estimate three parameters:

1. the probability that the cat will enter the room unobserved is roughly 1/2 in a 90-minute period

2. the probability that the cat will leave the room unobserved is roughly 1/2 in a two-hour period

3. the cat is in the room about 60% of the time.

We take the state-change probabilities to be exponential, with a parameter � such that the above half-lives

are realized. That is,

P(�

CAT

i;j

jCAT

i

) = 1� e

(�:0077)d(i;j)

P(�

CAT

i;j

jCAT

i

) = 1� e

(�:00578)d(i;j)
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Sensory Observations:

k

1

: s

1

=1, t

1

=9AM, r

1

=1.0

k

3

: s

2

=0, t

2

=1PM, r

2

=0.5

Rule:

(DEFINE-RULE-SCHEMA 'SCARED-CAT

'(TRIGGER POSTMAN)

'(CONSEQUENT CAT)

'(SIGN 0)

'(EFFECTIVENESS 0.6))

Event:

P(POSTMAN

12N

)= 0:8

P(POSTMAN

t

) = 0 (t 6= 12N)

Background:

P(�

CAT

i;j

j CAT

i

) = 1� e

(�:0077)d(t

i

;t

j

)

P(�

CAT

i;j

j CAT

i

) = 1� e

(�:0077)d(t

i

;t

j

)

P(CAT

j

j �

CAT

i;j

) = 0:6

Figure 4: Summary of cat example's parameters

-�

9:00 12:00 1:00 2:00

k

1

POSTMAN

k

3

query

6 6 6 6

0.6 1.0 0.75 0.39 0.48 0.24 0.376

6

Figure 5: Summary of cat example's scenario

where e

(�:0077)(90)

= 0:5 and e

(�:00578)(120)

= 0:5. (A time unit equals one minute.)

The problem is to estimate the likelihood of CAT at 2PM; we'll demonstrate with a probability thresh-

old � = 0:4. Figure 4 recapitulates the problem's parameters; Figure 5 shows the exact probability of

P(CAT

2PM

) = 0:376.

Analysis proceeds as follows:

Iteration 1 begins with no known observations. First we compute the current estimate, which is just the

prior E = 0:6

Since E > � , we search for negative observations. First we determine what the current prior would have

to be in order to lower the current estimate (0.6) below the threshold (0.4). Since the current prior is the

current estimate, the answer is obviously 0.4.
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Next we �nd the time point t

�

such that a perfect negative observation taken at t

�

and persisted to 2PM

would yield a posterior value at or below 0.4. Recall that if we have a perfect negative observation at t

�

,

then P(CAT

t

�
) = 0. We can then write

P(CAT

2PM

jCAT

t

�
) = P(CAT

2PM

j�

CAT

t

�

;2PM

)P(�

CAT

t

�

;2PM

j CAT

t

�
)

= (0:6)(1� e

(�:0077)d(t

�

;2PM)

)

and set the left-hand-side to the threshold,

0:4 = 0:6(1� e

(�:0077)d(t

�

;2PM)

)

0:667 = 1� e

(�:0077)d(t

�

;2PM)

d(t

�

; 2PM) =

ln(0:333)

�:0077

d(t

�

; 2PM) = 142

t

�

� 11 : 40AM:

We next have to compute the bound on r and f that will make a negative causal observation interesting.

Recall that we do so by postulating a negative observation exactly at the query time 2PM. What can we say

about the values of r and f that will lower the posterior probability to 0:4 or below? For sensory observations

we can set the negative case of update equation (24) equal to � and solve for r:

r

�

=

p � �

� + p� 2�p

and setting the prior parameter p to the current estimate 0.6 and � to the current threshold 0.4:

r

�

=

0:6� 0:4

0:4 + 0:6� 2(0:4)(0:6)

r

�

= 0:38

Similarly for negative causal observations, we set � = 0:4 and p = 0:6 in Equation (25)

f

�

= 1�

�

p

= 1�

0:4

0:6

f

�

= 0:33

That is, either a negative sensory observation with reliability greater than 0.38 or a causal rule instance

with impact greater than 0.33 would cause us to change our mind and conclude that P(CAT

2PM

) is actually

less than 0.4.

We therefore initiate a fetch in the temporal database, searching for all negative sensory observations

from 11:40AM to 2PM for which r � 0:38 and for all negative causal observations in the same period for

which f � 0:33.

The search nets us k

3

|the negative sensory observation at 1PM, and also k

2

|the negative causal rule

instance that occurred at 12N. Since we did �nd evidence as a result of the fetch, we add k

2

and k

3

to our

set K of relevant events, and initiate another estimate/fetch cycle.

First we recompute the estimate E on the basis of the newly-enhanced K, which produces E = 0:354.

And we �nd ourselves in the opposite position: the current estimate is below the threshold, so we have to

look for positive observations that will put it back over 0.4.

Now we recompute the reliability, recency, and �ring bounds. First we consider E = A(p) where p is the

prior at the earliest observation (in this case noon). Recall that A(p) is non-decreasing in p. We thus ask the
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Evidence P(CATjK)

K

� 0.6

k

1

0.671

k

2

0.498

k

3

0.442

k

1

, k

2

0.530

k

1

, k

3

0.511

k

2

, k

3

0.354

k

1

, k

2

, k

3

0.376

Table 1: Probabilities for di�erent collections of evidence

question: how high above 0.6 would p have to be raised in order to cause A(p) to move from 0.354 to 0.4. We

get the answer through binary search, repeatedly evaluating A to get p

�

= 0:88. Then we do a state-change

analysis as above, asking the question of how recent a perfectly reliable positive observation would have to

be in order to raise the probability at noon to at least 0.88.

P(CAT

12N

j CAT

t

�
) = P(CAT

12N

jCAT

t

, �

CAT

t

�

;12N

)P(�

CAT

t

�

;12N

j CAT

t

) +

P(CAT

12N

jCAT

t

, �

CAT

t

�

;12N

)P(�

CAT

t

�

;12N

j CAT

t

)

0:88 = (0:6)(1� e

(�:00578)d(t

�

;12N)

) + (1)(e

(�:00578)d(t

�

;12N)

)

0:88 = 0:6 + 0:4e

(�:00578)d(t

�

;12N)

d(t

�

; 12N) =

ln(

0:28

0:4

)

�:00578

d(t

�

; 12N) = 61:7

t

�

� 11AM:

We also derive new reliability and �ring bounds: r

�

= 0:1, f

�

= 0:07. The resulting search for observations

nets us nothing, however: we search only back to about 11AM, and thus exclude the 9AM positive observation.

Since the search yields no new information we report that our current estimate can't change with respect to

the threshold 0.4, and thus P(CAT

2PM

) < 0:4.

Table 1 shows the probability for all combinations of the three observations, and Table 2 indicates the

amount of work that would need to be done in order to process a number of di�erent thresholds. From

Table 1 note that we were justi�ed in ignoring observation k

1

: adding it to the set fk

2

, k

3

g does not change

the estimate's position with respect to the threshold 0.4.

From Table 2 note that we tend to do a lot of work if the threshold � is near the prior P('), and also if �

is near the exact probability. The reects two factors: a �xed cost associated with setting up and executing a

fetch in the temporal database, and a variable cost associated with how far back in time the fetch covers. The

magnitudes of these numbers reect the actual implementation, of course|we �nd in [Hanks and McDermott

1992] that most of the time is spent in the temporal database manager module computing distances between

time points, so e�ciency gains in that module would improve these results considerably.

7 Assessing joint events

The assessment algorithm estimates the probability of simple propositions. We also need to compute proba-

bilities for composite propositions, however, most critically for conjoined or joint events. Recall that a rule's
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Threshold No. pieces Time

evidence (secs)

0.0 0 0.00

0.1 0 0.75

0.2 0 0.85

0.3 0 0.95

0.36 3 5.50

0.4 2 3.05

0.5 2 2.50

0.61 3 5.90

0.7 0 1.55

0.8 0 1.05

0.9 0 0.80

1.0 0 0.00

Table 2: Process time as a function of threshold

precondition consists of a precondition, which may require that several conditions hold jointly in the world

at the time the trigger event occurs. This section points out the di�culties associated with assessing joint

events, and provides a method for dealing with one particular class of dependencies.

Suppose I want to assess the probability that my cat and my dog are both in the living room at the same

time. Both tend to hang out there some fraction of the time (say 25% each), but the dog typically scares the

cat out shortly after he enters the room, so rarely are they in the room together for long. Probabilistically

this information is usually conveyed by a conditional probability like P(CAT j DOG) = :01 or some small

number, which in turn implies

P(CAT;DOG) = P(CAT j DOG)P(DOG) = (:01)(:25) = :025:

Conditional probability constraints comment on interrelationships between propositions at a single point in

time, while our focus to this point has been on the dynamic behavior of propositions considered in isolation.

The relationship between CAT and DOG actually summarizes the \typical" behavior of the theory, taking

into account the existence of causal rules like \dog entering the room while cat is in the room causes cat to

leave the room," the relative frequency of \dog enterings" to \cat enterings," other things that might scare

the cat o�, and so on. Put more directly, it says that if you were to view the system (look in the living

room) at various points of time, under a variety of circumstances, only very rarely would you �nd the cat in

the room if the dog was in there too.

But while we must take into account the typical, static behavior of the system, we must not at the same

time ignore what we know about the situation at hand. What should we conclude if we were in the living

room not 30 seconds before, and saw both animals in the room? (And what if they were both asleep?) In

that case we should consider the possibility that this is one of the rare occasions in which the two animals

coexist for a while.

7.1 The nature of probabilistic dependencies

Given a causal theory consisting of causal rules and background probabilities, there are two ways that

propositions (say ' and  ) might be interdependent:

1. Through dependencies in the causal rules. ' might be a precondition of a rule that a�ects  , for

example, or the same event might tend to cause both propositions. Or perhaps the propositions share

a rule precondition. In any case, by examining the structure of the causal rules we can identify those

propositions that have an e�ect on both.
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2. Through dependencies in the background probabilities. Recall that the state-change and post-change

probabilities depend on the contextual propositions. ' and  can be interdependent because their

background probabilities are interdependent.

In the �rst case we rely on a \scenario" or \hypothetical future" structure generated by the projection

algorithm to resolve the dependencies. We will formally introduce the scenario structure in [Hanks and

McDermott 1992]

16

; here we will just hint at how such a structure can be used to avoid the over- or

under-estimation of joint probabilities in those cases where the propositions are interrelated by sharing

causal rule components. We can solve restricted forms of the second problem|interdependent background

probabilities|without reference to the scenario structure. We will sketch this solution later in this section.

7.2 Dependencies in the causal rules

Returning to the cat and dog example, suppose that we have propositions CAT and DOG, and also the event

E-DOG= \dog enters the living room."

The relationship between CAT and DOG shows up in the causal rules: the event E-DOG of course causes

DOG. Furthermore, we have a rule that says the dog usually chases the cat out of the room: if CAT is

true, then E-DOG causes CAT with some probability. If we compute P(CAT;DOG) = P(CAT)P(DOG) we will

overestimate, failing to realize that the situations where DOG is likely are the ones in which E-DOG occurred,

but those situations are those in which CAT is unlikely. The scenario structure makes these situations explicit,

and reasons about each in isolation.

The way it works is that when P(CAT,DOG) is assessed, the system notices that the event E-DOG is

relevant to both propositions. Then if, in the assessment process, it is asked to assess the probability that

an E-DOG event occurs in a particular interval, it \splits the world" into two hypothetical situations, or

chronicles, say c

1

and c

2

. In c

1

an E-DOG event actually occurs, and in c

2

it does not. We can assign a

probability to each chronicle. Then, reasoning within each chronicle separately, we notice that in c

1

the

probability of DOG is high, but, since the \dog chases cat" causal rule probably �red, the probability of

CAT is low. Likewise, in c

2

, the probability of DOG is low (since we have no evidence that he entered). The

probability of CAT may be high or low, depending on whether we have other evidence to support CAT.

Since c

1

and c

2

are mutually exclusive and exhaustive we can compute

P(CAT,DOG) = P(CAT,DOGjc

1

)P(c

1

) + P(CAT;DOG j c

2

)P(c

2

)

= P(CATjc

1

)P(DOG j c

1

)P(c

1

) + P(CAT j c

2

)P(DOG j c

2

)P(c

2

)

which will turn out to be low. Note, however, that nowhere do we explicitly represent the probability

P(CATjDOG).

We will call this style of reasoning, in which chronicles are introduced and assigned probabilities, \explicit

reasoning by cases." Although it takes dependencies into account properly, it is computationally expensive:

all probability calculations must be undertaken with respect to each separate chronicle, so frequent splitting

may result in an exponential increase in the complexity of the probabilistic reasoning. We discuss this point

further in Section 8.

7.3 Dependencies in the background probabilities

Recall from Section 3.4 that we allow the background probabilities to depend on the contextual (atemporal)

propositions. Our algorithm (especially see Section 3.5) handles this case correctly: suppose we are jointly

assessing P and Q, and their background probabilities both depend on a contextual proposition C. Further

suppose that our current body of evidence is E. The algorithm correctly computes

P(P;Q j E) = P(P;Q j E;C)P(C j E) + P(P;Q j E;C)P(C j E)

(where P(C j E) = P(C) by assumption), thus avoiding the problem of double-counting the e�ect of C.

16

Also see [Hanks 1990a].
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8 Assumptions

The assessment algorithm embodies several assumptions both stated and unstated. They divide naturally

into three groups: those concerning the temporal model, those concerning the causal rules, and those con-

cerning the probabilistic model and its related calculations. Here we will summarize those assumptions and

discuss the advisability and di�culty of relaxing them.

We made two assumptions regarding the temporal model:

� Instantaneous events.

First we made a distinction between event propositions and fact propositions. Event types were then

assumed to occur instantaneously (i.e. at a single point in time). We will relax this assumption in the

projection algorithm, thus allowing the agent's actions to consume variable amounts of time. Relaxing

the assumption is not problematic, except that the rules' syntax would have to be extended to indicate

whether the consequent was realized when the event begins, or when the event ends, or at some

indeterminate point during the event's execution. The third option makes the next assumption more

problematic.

� Temporal separation known precisely.

Although the temporal database manager is well equipped to handle imprecision in the time elapsed

between time points, we assumed that the time separation among observations, and between the

observations and the point of query, were known precisely. This assumption may be violated if we

don't know exactly when an event's e�ects are realized. Relaxing this assumption turns out to be quite

problematic. Imprecision in the temporal database is a problem only when it extends to imprecision

in the ordering of events. If we are uncertain about the ordering of events we may at worst have to

consider all possible total orderings in order to compute probabilities correctly.

17

Next we made two assumptions about the form of causal rules:

� Rule e�ects realized immediately.

We assume that if a rule �res its consequent becomes true at the next instant in time. Relaxing this

assumption to allow a delay is no problem except to the extent that the delay's length is imprecisely

speci�ed, once again bringing up the problem of imprecision in the ordering of events.

� Events can't cause events.

A rule's consequent can currently be a fact type but not an event type, which precludes causal chains|

an exogenous event triggering a rule, which then triggers other rules subsequently. This assumption

allowed us to compute ''s probability at t taking into account the world's state prior to t only.

All of these assumptions are common in the work on causal reasoning within a logical framework (e.g.

[Shoham 1988]). Finally we made the following assumptions about the structure of the probability space:

� Sensor reliability not systematically predictable.

We assumed that an observation's reliability parameter is not correlated with other states of the world,

in particular that it is independent of the assessed proposition ' and also of the preconditions of all

rules used in assessing '. This assumption is crucial to our algorithm's behavior, but seems to be

an intuitively reasonable one. If a sensor's reliability is correlated with other propositions involved

in the assessment we can no longer guarantee a reliability bound, below which an observation has

negligible evidential impact. Given the right dependencies, even a very unreliable observation can have

an arbitrarily high impact.

� Rule preconditions are short-lived.

This assumption indicates that a rule's precondition propositions could be expected to change state

between potential �rings of the rule, and allows us to consider rule �rings in isolation. We noted that

17

See, for example, [Dean and Boddy 1988].
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rules representing an agent's intended actions, strung together in a plan, would typically violate this

assumption, and this violation forces us to engage in explicit reasoning by cases. We confront this

problem in [Hanks and McDermott 1992].

� Events occur dispassionately and predictably.

We assumed that the probability with which an event occurs does not depend on the propositions that

�gure in the rule for which that event is a trigger. This assumption allowed us to bound the probability

that a rule would �re. Obviously there are situations involving adversarial and cooperative behavior

that will violate this assumption. We suspect, however, that probabilistic reasoning of the sort we

have presented herein will be inappropriate in those situations anyway. Game theory and minimax

reasoning provide a better formal framework.

� Evidence ows in a forward direction only.

We mentioned in Section 3.6 the fact that our algorithmdid not perform the usual Bayesian propagation

of evidence forward and backward through its graph. This di�erence amounts to saying that we are

doing temporal projection only, and manifests itself as the assumption that the evidence brought to

bear in assessing P('

t

) involves only events that occur temporally prior to t. Our algorithm thus

\walks forward in time" to compute probabilities. The assumption means, for example, that one could

simultanously believe that ' was very likely true at t, and that a very reliable sensor reported ' false

at t

>

. We are currently exploring both the conceptual and the computational consequences of relaxing

this assumption. Note, however, that the assumption is quite reasonable when applied to the problem

of plan projection.

The last group of assumptions mainly allow us to avoid explicit reasoning by cases, as we de�ned it

in Section 7.2|introducing hypothetical courses of events and reasoning about each in parallel. These

assumptions allow us to summarize the computation's state, at each stage of the probability calculation,

using a single number p which is passed from one stage to the next (as in Figure 5, for example).

9 Related Work

Our survey of related work starts with the logical approaches to reasoning about change, then touches on

several probabilistic approaches: Markov processes, expert-systems frameworks, a rule-based approach, and

a similar approach to approximate reasoning with probabilities.

9.1 Logical approaches

We will not attempt to summarize here the literature on logical reasoning about change|[Shoham and

Goyal 1988] provides a good starting point. Our formulation most closely resembles Shoham's [1988] causal

theories, to which we have added probabilistic information in various places. Our algorithm for computing

probability given a �xed set of information corresponds to Shoham's de�nition of a chronologicallly minimal

model.

18

9.2 Markov processes

Before discussing alternative proposals in the AI literature we should mention briey the literature on Markov

processes, e.g. [Howard 1971]. The idea is to represent the domain by a state space, in which every state

represents a complete static description of the world (or that portion of it under study). Change is described

by a transition matix: for a domain with n possible states a transition matrix is an n � n matrix whose

(i; j)

th

entry contains the probability that the system will be in state s

j

at time t + � given that it was in

18

In fact it corresponds exactly to chronological minimality in the case that (1) all priors are either 0 or 1, (2) all rules have

an e�ectiveness parameter of 1, (3) all observations have reliability 1, and (4) the probability of an unobserved state change

over an interval (the �

'

parameter) is 0.
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state s

i

at time t. We can then compute a probability distribution over possible states at time n by (1)

providing a probability distribution over world states at the initial time t

0

, and (2) multiplying this vector

n times by the transition matrix.

While the representational power of these systems is the same as for our symbolic graphical models

(see [Nunez 1989], for example), the problem with the standard Markov-process representation is that it

is inconvenient. We are generally more comfortable building symbolic state descriptions than de�ning the

system's state space as a whole, and can more easily de�ne our causal theory using symbolic rules of change

than using numeric transition matrices. Our rule-based representation is simply more appropriate for the

larger task of maintaining a world model that will be used for plan generation, re�nement, and repair.

9.3 Expert-system approaches

[Cooper et al. 1988] confronts the problem of probabilistic diagnostic reasoning, in particular determining

the probability that a patient has a certain disease given that he has displayed a certain set of observable

symptoms (evidence). The temporal dimension enters in that the system processes probabilities like the

likelihood that a disease persists to the present given that it began at some time t

x

and the likelihood that

a particular pro�le of symptoms would be observed between t

x

and the present given that the disease began

at that time.

Apart from the explicit mention of time and probabilities, there is little similarity between this work and

our own. Our work is oriented primarily toward two goals: (1) to use an internal causal model (rules and

event probabilities) to predict future states of the system, and (2) to limit inference in a manner appropriate

to the particular problem by instantiating only relevant parts of the model.

Cooper's system addresses neither of these issues. In the �rst place, the probabilities relate diseases and

symptoms (evidence) directly, and diseases are assumed to be mutually exclusive. Therefore there is no way

to reason about a scenario in which disease d

1

begins at time t

1

, eventually causes d

2

at some later time,

and so on. In fact Assumption 7 explicitly rules out this sort of reasoning by saying essentially that the

probability that disease d

i

begins at t

x

does not depend on the patient's state prior to time t

x

.

Decisions as to what evidence to consider are made by the system designer ahead of time rather than by

the system itself dynamically. The system builder �xes a time granularity and a time horizon. The system

then considers all evidence occuring within the horizon. There is no explicit model of noisy evidence (in

fact Assumption 5 states that the values of all evidential variables are known at all times), and there is no

internal causal model corresponding to our rules, therefore no way for the system to ignore evidence that

is too unreliable or too far in the past, nor is there any way to abandon causal chains as their inferences

become too tenuous.

Berzuini's work|[Berzuini and Quaglini 1989], [Berzuini 1990]|likewise provides a discussion of how

an expert might build a graphical model that explicitly describes the time course of the system. The

(human) expert describes the domain's causal structure by providing the model's state space and transition

probabilities directly.

An interesting aspect of Berzuini's work is his adoption of a state-based temporal model. He suggests

a continuous-time semi-Markov process to represent situations in which temporal information (when events

occur, how long do propositions remain true) is imprecise, but does not provide a method for building such

a model automatically. A promising area for future research is to establish the relationship between these

semi-Markov models and symbolic rule-based theories in which a rule's consequent has an indeterminate

delay and an event's time of occurrence is uncertain.

9.4 Rule-based approaches

[Dean and Kanazawa 1988] presents a probabilistic model essentially identical to the one that we built in

Section 3.6: they too take the idea that causal rules are triggered by events and e�ect changes in facts. Their

model has no explicit model of noisy observations, but it could easily be added.
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Where the work di�ers from ours is in the method for building the full network. Dean and Kanazawa

take the \time-based" approach: they choose a time increment � and instantiate the model at each time

point, t

0

, t

0

+ �, t

0

+ 2�, : : : . They suggest using approximate simulation methods to solve the network, but

provide no insight into the time required to guarantee convergence.

19

[Tatman and Shachter 1990] propose

an alternative approach that involves applying dynamic-programming techniques.

There are thus two fundamental di�erences between the work of Dean and Kanazawa and our own: they

rely on a time-based approach (see Section 3.6), requiring them to choose an appropriate time mesh and

instantiate the model at all time points, whereas we try to instantiate the model only at those time points at

which the system changes signi�cantly. Second, they propose a forward simulation solution technique that

does not take into account the speci�c inferences required by the problem solver. The simulation solves the

entire network (approximately), computing the probability of every proposition at every point in time. We

try to reason only about those parts of the network that are of interest to the problem solver and only to

the degree of accuracy it requires.

9.5 Belief updating by assessing impact

Weber's work ([Weber 1989a], [Weber 1989b]) is a computational theory of how to form beliefs based on

statistical information. The idea is that estimating the likelihood of some proposition (say whether my car

will start) suggests the problem of what information is relevant and signi�cant to the prediction. One may

have statistical information about how the car starts under a variety of circumstances: when it is cold, wet,

cold and wet, parked on the street as opposed to in the garage, on weekdays as opposed to weekends, in

the summer as opposed to in the winter, and so on. Some of these factors will be irrelevant, some will be

redundant; as a computational matter it may be infeasible to consider all possible information.

Suppose we are estimating the likelihood of a hypothesis h, and have currently considered a set of

evidence r. Now we consider whether to incorporate a new proposition f into the conditioning set|i.e. our

new estimate of h will be based on r \ f instead of on r. Weber de�nes a quantity called the impact of f on

h given r, which is related to the ratio of the relative frequency of f given h \ r to the relative frequency of

f given h\ r. High positive values mean that f o�ers strong positive evidence for h in the context of r; high

negative values indicate strong evidence that h is false, and impact of 0 means that incorporating f will not

change the estimate.

Weber's algorithm takes as input a proposition and a number a called accuracy, and performs the following

loop:

1. Initial estimate is h's prior; initial r is ;.

2. For all evidence f not in r, compute the impact of f on h given r.

3. r r [ f

�

where f

�

is that single piece of evidence with the highest impact (in absolute value).

4. Recompute estimate on the basis of new evidence set r

5. If jimpact(f

�

)j < a then terminate and return current estimate.

This algorithm is similar in spirit to our own (although it is not applied explicitly to temporally quali�ed

propositions) in that it tries to consider only that set of evidence relevant to a particular probabilistic

assessment task. He also adopts the heuristic of considering only a single piece of evidence in deciding when

the algorithm should terminate.

One di�erence is that Weber uses an accuracy value instead of a threshold. Accuracy a de�nes an

interval [e� a; e+ a] where e is the estimate returned by the algorithm, a is the input accuracy value, and

the interval is guaranteed (or very likely) to contain the exact probability

20

. Deciding degree of belief with

19

Kanazawa [1991] in subsequentwork explores the use of state-based approaches for temporal reasoning, but does not address

the problem of building the graphical network from a set of rules.

20

Things are a little more complicated than that because the updates are de�ned in terms of logarithms.
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respect to a threshold � amounts to asking which of the intervals [�1; � ] and [�;1] the exact probability

lies in. [Haddawy and Hanks 1990] shows a decision-theoretic justi�cation for queries of this form. One

advantage of the threshold approach is that it allows us to assess the impact of certain pieces of information

extremely quickly: if the current estimate is over the threshold we can ignore all positive evidence, even

strongly positive evidence. Weber's algorithm would continue incorporating positive evidence, even though

it would only continue to con�rm the current hypothesis.

[Weber 1989b] also provides classes of \statistical causal rules" that correspond to the causal information

we code in causal rules, observations, and background probabilities. He does not go on to explore whether his

highest-impact-�rst algorithm would provide an e�ective inference mechanism for doing predictive inference

on these theories (although he expresses pessimism in Chapter 8).

10 Conclusion

An agent's model of the world has to take into account the world's propensity to change and the agent's

ignorance about its state. Doing so involves integrating a theory of change with a theory of uncertainty. In

this paper we developed an algorithm for computing the projected probability of a proposition ' at a point

in time t based on a body of evidence known as a probabilistic causal theory. A causal theory consists of:

1. sensory observations|reports from some external sensor about ''s state at some point in time,

2. rules governing change|statements that certain conditions in the world, namely the occurrence of a

trigger event in the presence of a certain precondition, will change ''s state,

3. probabilities quantifying con�dence in the model|expressing the likelihood that the changes predicted

by the rules above are su�cient to predict all changes in ''s state.

This system represents an advance over deterministic theories of change ([McDermott 1982], [McCarthy

1987], [Shoham 1988]) both due to its greater expressive power and due to its ability to limit its inference

according to the demands of the task at hand.

The gain in expressive power has to do with enriching the notion of \persistence" or \inertia" captured

by the deterministic systems, to include the following notions:

� that if we reason about the state of ' over a long interval of time, we may be reasonably sure that ''s

state changes during the interval, even though we have no explicit evidence that it has changed,

� that our causal model of ' may be incomplete, failing to predict the occurrence of causally relevant

events, failing to express correctly the rules that govern ''s changes over time, or failing to capture

the exact circumstances under which a particular known rule will actually e�ect a change.

Our system for probabilistic projection captures all these concepts, using the following information:

1. the known ways in which ''s state can change (the causal rules)

2. the extent to which each rule correctly captures a particular causal relationship (the rule's e�ectiveness

parameter)

3. the extent to which we believe that our causal model is complete (the �

'

parameter).

In addition to this increased expressive power|the ability to quantify the perceived accuracy of our

causal model|the probabilistic approach a�ords us the advantage of limiting our inferential e�ort in those

cases in which approximate answers will su�ce. Instead of computing ''s exact probability at t, we instead

decide only whether that probability is less than, or greater than, an application-supplied threshold. By

doing so we can consider only that evidence signi�cant enough to change our estimate with respect to the

threshold, ignoring su�ciently unreliable or old sensory evidence, and abandoning tenuous lines of causal

inference.
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Another way to view the work is that it takes a causal theory that de�nes a graphical structure over the

system's state space, implicitly quanti�ed over all time points. Instead of trying to evaluate the structure at

all times the algorithm tries to identify the times at which the system changes state in relevant ways, and

instantiates the graph only at those points.

Future work in this area takes three paths:

1. Projecting plans

As we mentioned, various assumptions we made in this theory tend to be violated regularly when the

events encountered comprise a deliberate plan. Relaxing these assumptions involves more reasoning

by cases, which tends to be computationally expensive. Additionally, planning involves reasoning

about a richer collection of phenomena than can be conveniently modeled using our restriction of rule

consequents to binary random variables. We report on this work in [Hanks and McDermott 1992].

2. Relaxing structural assumptions

Relaxing the \projection" assumption|that all evidence bearing on ''s state at t occurs prior to

t|complicates the probability computation, but makes the algorithm amenable to a wider variety of

tasks, such as failure diagnosis and replanning. Adding the idea of \induced causality" (rules causing

other events to occur, thus generating causal chains) and of \domain constraints" (allowing states of

propositions to interact by constraints other than the causal rules) makes the system amenable to

reasoning about complex physical systems.

3. Incorporating temporal imprecision

We have assumed that the temporal distance between any two points is known precisely, but temporal

information can be incomplete and inaccurate in exactly the same sense as can propositional informa-

tion. We need to integrate probabilistic information about time, e.g. the amount of time an action will

take, into our model. Conceptually there is no di�culty; the trick will be to do so in a manner that

preserves fast computation.

4. Planning, replanning, and learning

We have yet to integrate the model manager into a planning system. Interesting questions arise as to

how a planner might use decision-theoretic methods to guide the process of plan selection [Haddawy

and Hanks 1992], and how that process a�ects the interface between planner and world model. Then

when the plans are actually executed we confront the problem of how to deal with failure|failure of

the world to conform to the agent's model, and thus failure of the plan to achieve its intended e�ects.

Replanning is the problem of how subsequent actions should change to cope with the failure; learning

involves how the agent's world model|probabilities, rules, and plan library|should be modi�ed to

prevent subsequent failures.
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