
Data Prefetching
for High-Performance Processors

Tien-Fu Chen

Technical Report 93-07-01

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195

July 1993

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

In presenting this dissertation in partial fulfillment of the requirements for the Doctoral

degree at the University of Washington, I agree that the library shall make its copies

freely available for inspection. I further agree that extensive copying of this dissertation is

allowable only for scholarly purposes, consistent with ‘‘fair use’’ as prescribed in the U.S.

Copyright Law. Requests for copying or reproduction of this dissertation may be referred

to University Microfilms, 1490 Eisenhower Place, P.O. Box 975, Ann Arbor, MI 48106, to

whom the author has granted ‘‘the right to reproduce and sell (a) copies of the manuscript

in microform and/or (b) printed copies of the manuscript made from microform.’’

Signature

Date

University of Washington

Abstract

Data Prefetching for High-Performance Processors

by Tien-Fu Chen

Chairperson of Supervisory Committee: Professor Jean-Loup Baer

Department of Computer Science

and Engineering

Recent technological advances are such that the gap between processor cycle times and

memory cycle times is growing. Techniques to reduce or tolerate large memory latencies

become essential for achieving high processor utilization. In this dissertation, we propose

and evaluate data prefetching techniques that address the data access penalty problems.

First, we propose a hardware-based data prefetching approach for reducing memory

latency. The basic idea of the prefetching scheme is to keep track of data access patterns

in a reference prediction table (RPT) organized as an instruction cache. It includes three

variations of the design of the RPT and associated logic: generic design, a lookahead

mechanism, and a correlated scheme. They differ mostly on the timing of the prefetching.

We evaluate the three schemes by simulating them in a uniprocessor environment using the

ten SPEC benchmarks. The results show that the prefetching scheme effectively eliminates

a major portion of data access penalty and is particularly suitable to an on-chip design and

a primary-secondary cache hierarchy.

Next, we study and compare the substantive performance gains that could be achieved

with hardware-controlled and software-directed prefetching on shared-memory multipro-

cessors. Simulation results indicate that both hardware and software schemes can handle

programs with regular access patterns. The hardware scheme is good at manipulating

dynamic information, whereas software prefetching has the flexibility of prefetching larger

blocks of data and of dealing with complex data access patterns. The execution overhead of

the additional prefetching instructions may decrease the software prefetching performance

gains. An approach that combines software and hardware schemes is shown to be very

promising for reducing the memory latency with the least overhead.

Finally, we study non-blocking caches that can tolerate read and write miss penalties by

exploiting the overlap between post-miss computations and data accesses. We show that

hardware data prefetching caches generally outperform non-blocking caches. We derive a

static instruction scheduling algorithm to order instructions at compile time. The algorithm

is shown to be effective in exploiting instruction parallelism available in a basic block for

non-blocking loads.

Table of Contents

List of Figures v

List of Tables vii

Chapter 1: Introduction 1

1.1 Overlapping computations with memory accesses 2

1.2 Organization of the Dissertation . 5

Chapter 2: Related Work 7

2.1 Data Prefetching . 7

2.1.1 Hardware-Controlled Prefetching 7

2.1.2 Software-directed Prefetching . 10

2.2 Non-blocking Caches . 12

2.2.1 Lockup-free Caches . 12

2.2.2 Non-blocking Reads/Writes . 13

Chapter 3: Data Prefetching Caches 15

3.1 Motivation . 15

3.2 Generic Reference Prediction . 17

3.2.1 Reference Prediction Table - RPT 18

3.2.2 RPT mechanism . 18

3.2.3 Example and Discussion . 21

3.3 Lookahead Reference Prediction . 22

3.3.1 Lookahead Program Counter (LA-PC) and RPT 24

3.3.2 Lookahead Distance and Limit . 24

3.3.3 Handling Cache Misses . 26

3.4 Correlated Reference Prediction . 26

3.4.1 Implementation of Correlated RPT 27

3.5 Summary . 30

Chapter 4: Performance Evaluation of Hardware Prefetching Schemes 31

4.1 Evaluation Methodology for Uniprocessors 31

4.1.1 Trace driven Simulation . 31

4.1.2 Architectural Models . 32

4.1.3 Benchmarks and Metrics . 35

4.2 General Results . 36

4.3 Effect of Design Variations . 40

4.3.1 Effect of Memory Models and Latencies 40

4.3.2 Effect of Block Size . 43

4.3.3 Organizing the Reference Prediction Table 44

4.3.4 Varying the Lookahead Limit . 46

4.3.5 Alternatives for the Placement of the Prefetched Data 47

4.4 Summary . 52

Chapter 5: Comparative Evaluation of Software and Hardware Prefetching

Schemes 54

5.1 Overview . 54

5.2 Software Prefetching . 55

5.3 Qualitative Comparison . 56

5.3.1 High-level Comparison . 57

5.3.2 Identifying Cache Misses . 57

5.3.3 Prefetch Instruction and Predicate 59

5.3.4 Scheduling Prefetches . 60

5.3.5 Prefetching in Multiprocessors . 62

5.3.6 Other Aspects and Final Words 63

5.4 Quantitative Evaluation Methodology . 64

5.4.1 Architectural Models . 65

5.4.2 Simulation Environment and Benchmarks 66

5.4.3 Model Implementations . 69

5.5 Simulation Results . 71

ii

5.5.1 General results . 72

5.5.2 Detailed Analysis . 75

5.5.3 Negative Effect of Prefetching . 77

5.5.4 Effect of Memory Latency . 80

5.5.5 Impact of Consistency Models . 83

5.6 Combining Hardware and Software Prefetching 84

5.7 Summary . 88

Chapter 6: Non-blocking Caches 90

6.1 Overview . 90

6.2 Background and Performance Issues . 91

6.2.1 Non-blocking Caches . 91

6.2.2 Performances Issues . 92

6.3 Architectural Models and Evaluation Methodology 94

6.3.1 Processor-cache Models . 94

6.3.2 Simulation Method . 96

6.4 Simulation Results . 98

6.4.1 Effect of Architectural Variations 98

6.4.2 Effect of Large Latency . 103

6.5 Compiler Assistance for Non-blocking Loads 104

6.5.1 Instruction Scheduling and Register Renaming 104

6.5.2 Algorithm for Non-blocking Loads 105

6.5.3 Effect of Instruction Scheduling 111

6.6 A Hybrid Design . 113

6.7 Summary . 115

Chapter 7: Conclusion 116

7.1 Summary of Results . 116

7.2 Future Research . 118

Bibliography 121

iii

Appendix A: Supplemental Data 130

A.1 Evaluation of Data Prefetching . 130

A.2 Evaluation of Non-blocking Caches . 137

iv

List of Figures

3.1 Example of Matrix Multiplication . 17

3.2 Reference Prediction . 19

3.3 Example: Filling RPT entries . 21

3.4 Block diagram of data prefetching . 23

3.5 RPT with Lookahead mechanism . 25

3.6 Kernel 6 . 27

3.7 Correlated RPT . 27

3.8 Example: Correlated RPT entries . 29

4.1 Trace-driven simulator using pixie . 32

4.2 Three memory models . 34

4.3 Simulation Results for δ = 30 -- Overlapped 37

4.4 Effect of memory models and latencies . 41

4.5 MCPI vs. block size for 32K cache (Overlapped) 44

4.6 Hit ratio and attempted prefetch of RPT 45

4.7 MCPI vs. LA-limit (d) for δ = 30 (Overlapped) 47

4.8 Variations in prefetching placement . 50

5.1 Example of instrumented loop . 58

5.2 Scheduling prefetches . 61

5.3 Model Architecture . 65

5.4 Direction Execution Simulator . 67

5.5 Simulation results . 73

5.6 Network traffic . 78

5.7 Effect of memory latency . 81

5.8 Prefetching based on weak and sequential consistency 84

5.9 Effectiveness of combining HW-pf and SW-pf 86

v

6.1 Prefetching vs. Lockup-free for δ = 30 (Pipelined) 99

6.2 Effect of a larger latency (for δ = 30 vs. δ = 100 Pipelined) 103

6.3 Building the DAG for a basic block . 106

6.4 Instruction Scheduler on the DAG . 107

6.5 DAG of an example . 108

6.6 Scheduling the example . 108

6.7 Instruction scheduling and register renaming 109

6.8 Effect of instruction scheduling on NBC for δ = 30 (Non-overlapped) . . . 112

6.9 Effect of instruction scheduling on NBC for δ = 30 (Pipelined) 113

6.10 Hybrid design on varying cache size δ = 30 (Pipelined) 114

A.1 Effect of memory models and latencies (continued from Figure 4.4) 130

A.2 MCPI vs. block size for 32K cache (continued from Figure 4.5) 133

A.3 MCPI vs. LA-limit (d) for δ = 30 (continued from Figure 4.7) 134

A.4 Variations in prefetching placement (continued from Figure 4.8) 135

A.5 Prefetching vs. Lockup-free for � = 30 (continued from Figure 6.1) 137

A.6 Hybrid design on varying cache size δ = 30 (continued from Figure 6.7) . . 139

A.7 Effect of memory models: Prefetching vs. Lockup-free 140

vi

List of Tables

3.1 Classification of memory access patterns 16

4.1 Characteristics of benchmarks . 36

5.1 Benchmarks characteristics - average numbers for a single processor in the

16 processor simulation . 68

5.2 Proportions of Conflicts in the direct-mapped sets 79

6.1 Architectural Choices . 96

6.2 Statistics of benchmarks (for first 100 million instructions on 32K baseline

cache) . 97

6.3 Average of basic block size, non-blocking distance, and extra registers

needed . 112

vii

Acknowledgments

I would like to express sincere appreciation to my advisor, Professor Jean-Loup

Baer. I am indebted to him for his inspiration, patience, and encouragement.

Without his valuable guidance and insight, I would never have completed this

study.

I would like to thank Professor Susan Eggers for her helpful comments and

constructive criticism in my study. I thank Professor Arun Somani for his effort on

the reading committee and for his comments and suggestions in this dissertation. I

also thank the other members of my supervisory committee, Professor Carl Ebeling

and Professor George Prater.

I wish to thank friends Wen-Hann Wang, who gave me unfailing encouragement

and support, Yi-Bing Lin for his valuable technical assistance, and Shu-Yuen Hwang

for his suggestions. I thank Michael Smith and Stephen Goldschmidt at Stanford

for their helping me to use simulation tools pixie and tango. Without their help,

the experimental study in this dissertation would not have been possible. I also

appreciate fellow graduate students Craig Anderson, Claudia Chiang, Calvin Lin,

Ton Anh Ngo, and Richard Zucker during my study in the department. I also thank

my friends Yu-Jung Chang, Yeh-Chung Din, and Po-Fat Yuen for giving me a

wonderful stay in Seattle.

Lastly, I wish to give special thanks to my wife Meei-Shin, my daughter Janice,

and my family in Taiwan for their love and support.

viii

Chapter 1

Introduction

Processor performance has increased dramatically over the last few years and has now

surpassed the 200 MIPS level. Memory latency and bandwidth have also progressed but at

a much slower pace. It is therefore essential that we investigate techniques to reduce the

effects of the imbalance between processor and memory cycle times. The introduction of

caches between the processor and memory modules has been shown to be an effective way

to bridge this gap. However, with a cache miss penalty that is becoming relatively larger,

a system may still experience low processor utilization even with a high hit rate. Hence,

efficient mechanisms for optimizing accesses to the memory hierarchy are mandatory for

the realization of high performance systems.

The principle behind an effective cache implementation is to take advantage of locality

without a performance loss. With current VLSI developments, several functional units,

instruction and data caches, and hardware assists can be included on the processor chip.

Therefore, a first obvious method for reducing the average memory access time is to

implement multi-level cache hierarchies [Baer & Wang 89] with an on-chip first level

cache. However, under the usual caching mechanism, the processor will still stall on a

first-level cache miss and of course also on misses on any of the next levels of the memory

hierarchy with an even larger penalty time, until the miss is resolved. Since usually a

processor must stall on a cache miss, caches do not actually hide memory latency but,

instead, they eliminate many memory accesses. In order to make further progress towards

the reduction in memory latency, memory accesses due to cache misses must proceed

in parallel with processor execution. As a result, a number of different solutions have

been proposed to allow computations to overlap with memory accesses for hiding memory

latency. They basically provide efficient mechanisms to allow buffering and pipelining of

memory references.

2

1.1 Overlapping computations with memory accesses

Many solutions have been proposed to reduce memory accesses and/or hide memory

latency. They can be classified according to several dimensions such as the type of latency

(read, write, consistency), the architectural component (processor, cache, or network),

the target system (uniprocessor or multiprocessor), and the basic technology (hardware,

software, or hybrid). In this introductory chapter, we briefly list some of them; those most

germane to our work will be described in more detail in the next chapter.

The simplest technique is a write buffer, a FIFO queue which is used to hide the

write latency [Smith 82a]. Buffering is a performance enhancement for caches both with

write-back and write-through strategies. Under write-back, the write buffer is used to

hold replaced dirty blocks while ‘‘normal’’ execution proceeds. The system uses spare

interconnect and memory cycles to write buffered values to the next level of the memory

hierarchy. Under write-through, the buffering of write requests releases the CPU from

waiting for the writes to complete. An extension to the write buffer is a write cache

[Bray & Flynn 91], organized like a small regular cache, that uses an allocate strategy on

write misses and write backs to reduce the number of writes. Unlike a write buffer, the

write cache allows writes which access the same cache line to be combined and thus,

reduces the write miss penalty.

The next solution is a design that allows the processor to continue execution on

unsatisfied memory references through the use of non-blocking caches (also called lockup-

free caches [Kroft 81]). The non-blocking caches (see Section 2.2 for more detail) hide the

latency of data misses through the overlap of data accesses and computations to the extent

allowed by the data dependencies and consistency requirements. While the entire write

latency can be hidden by a sufficiently large write buffer, dependence restrictions must be

observed by the read requests in the processor and it is therefore likely that only a portion

of the read latency can be hidden. Consequently, extra hardware complexity in both caches

and processors is required to record the information pertaining to the outstanding requests,

such as the cache line where the return value is to be stored and which function units are

waiting for what data.

To achieve additional overlap, the compiler may perform instruction scheduling to avoid

unnecessary stalls by keeping the CPU busy [Gibbons & Muchnick 86, Krishnamurthy 90,

Kerns & Eggers 92]. The freedom of instruction scheduling in most compiler algorithms

is limited by the data and control dependencies in the programs. Better performance is

3

generally achieved by moving loads far enough ahead of their uses. Like ‘‘regular’’ non-

blocking loads, speculative loads [Chen et al. 92, Rogers & Li 92] fetch memory values

into registers directly bypassing the cache if need be, i.e., without blocking the pipeline on

a miss, and allow other instructions to be executed simultaneously. Because these loads are

performed based on speculative execution, they will be scheduled under fewer constraints.

For instance, speculative loads can be moved around across the basic block boundary

regardless of control dependence restrictions. The basic requirement is that they should be

issued speculatively without introducing unnecessary faults into the system. Speculative

loads require both software and hardware supports, including instruction scheduling and

extra state bits and transitions in register management.

An important approach is prefetching (the main topic of this dissertation), that is, the

action of bringing data in the cache before it is actually needed. Prefetching is similar

to speculative loads in the sense that it is non-blocking and behaves like a hint without

incurring semantic faults. The main difference between prefetching and speculative loads

is that the data are loaded into the cache rather than registers, and thus the restriction due to

the limited number of registers does not limit the flexibility of prefetching. Depending on

how prefetches are determined and initiated, prefetching can be either hardware-controlled

[Baer & Chen 91, Fu & Patel 92] or software-directed [Porterfield 89, Klaiber & Levy 91,

Mowry et al. 92]. The hardware approach detects accesses with regular patterns and

issues prefetches at run time, whereas the software approach relies on the compiler to

analyze programs and to insert prefetch instructions. In a shared-memory multiprocessor

environment, where consistency requirements are taken into account, prefetching can

be either binding (at compile time) [Lee et al. 87b, Gornish et al. 90] or non-binding

(supported by hardware coherence) [Mowry & Gupta 91, Tullsen & Eggers 93]. In the

former case, a data block location is bound to the value of prefetched data in caches at the

time that the prefetch completes, whereas in the latter case, data is kept coherent by the

cache coherency mechanism.

Yet another technique is the use of a processor with multiple hardware contexts

[Kowalik 85, Weber & Gupta 89, Agarwal et al. 90, Alverson et al. 90, Nikhi et al. 91,

Kurihara et al. 91]. If several threads are assigned to a processor, memory latencies

can be masked by rapidly context switching to a different thread rather than waiting for a

memory reference to complete. The two key issues for implementing multiple-context pro-

cessors are: when is context switching performed [Boothe & Ranade 92, Laudon et al. 92],

4

and what defines a context [Hum & Gao 91]. Variations on these issues include conditional-

switch, switch-on-cache-miss, and switch-every-cycle.

The cache coherence, or cache consistency, problem [Archibald & Baer 86] arises in

shared-memory multiprocessors where several copies of the same block can be present

in the local caches of the individual processors. The presence of write buffers and

non-blocking caches makes the consistency problem more complicated, not only because

yet another location for a copy of the data is possible, but also due to the fact that the

results of writes may not be immediately observed (e.g., by the I/O system or other

processors). One of the techniques to alleviate the processor’s stalls on observing writes

is load bypassing, that is, a memory load can bypass memory stores that are buffered and

thus overlap between accesses can be exploited. Load bypassing is essentially required

for processors with dynamic scheduling [Hennessy & Patterson 90]. A second technique

is to relax the memory consistency model. A consistency model is an agreement between

the parallel programs and the multiprocessor architecture on the ordering that shared

references must observe. The most intuitive model is sequential consistency, that is, the

serialization of the interleaving of the execution of the parallel processes like on a sequential

machine. However, it imposes the strictest restrictions on the buffering of memory

accesses. In order to further weaken the constraints imposed by serializability, several

relaxed models of memory consistency have been proposed, including weak consistency

and release consistency models[Dubois et al. 88, Adve & Hill 90, Gharachorloo et al. 91a,

Dubois et al. 91, Zucker 92]. They allow memory accesses between synchronizations to be

executed out-of-order and therefore exploit an overlap between memory accesses. Under

these consistency models, the synchronizations should be explicitly specified.

In summary, many solutions have been proposed and shown to be effective in tolerating

memory latencies. The success of these solutions relies on sufficient memory bandwidth

for parallel memory accesses. Most of them require extra hardware support in processors

and caches. A danger in the additional complexity is that it will increase the critical path

time in the processor and thus offset the performance gains. The architecture proposed in

this dissertation is an attempt to improve the technique of data prefetching for reducing

memory latencies without increasing the critical cycle time.

5

1.2 Organization of the Dissertation

In this dissertation, we focus on one of the techniques mentioned above, namely hardware-

based prefetching through a hardware unit whose function is to generate prefetches for the

data cache. The goal of the prefetching is to reduce the processor stall time by bringing

data into the cache just before its use. Ideally, the latency time would be totally masked;

practically it can only be reduced since there are many impediments that prevent a perfect

prediction of both the instruction stream, e.g., imperfect branch prediction, and of the data

stream, e.g., data dependent addresses. The basic idea of the hardware-based prefetching

scheme is to keep track of data access patterns in a reference prediction table (RPT)

organized as an instruction cache.

In Chapter 3, we describe three variations of the design of the RPT and associated logic.

They differ mostly on the timing of the prefetching. In the simplest scheme, called generic,

prefetches can be generated one iteration ahead of actual use. The lookahead variation takes

advantage of a look-ahead program counter that ideally stays one memory latency time,

i.e., potentially several loop iterations, ahead of the real program counter and that is used

as the control mechanism to generate the prefetches. Finally the correlated scheme uses a

more sophisticated design to detect patterns across loop levels. As mentioned previously,

a review of related work is presented in Chapter 2.

Chapter 4 presents the results of performance evaluation. The three designs are

evaluated by simulating the ten SPEC benchmarks cycle-by-cycle in a uniprocessor

environment. The results show that (1) the three hardware prefetching schemes all yield

significant reductions in the data access penalty when compared to regular caches, (2) the

look-ahead scheme is the preferred one in terms of cost-performance, and (3) the benefits

are greater when the hardware assist augments small on-chip caches.

In Chapter 5, first we qualitatively compare the substantive performance gains that can

be achieved with hardware-controlled and software-directed prefetching. Then we evaluate

these two schemes for the prefetching of shared data through direct-execution simulation in

a shared-memory multiprocessor environment. Results indicate that hardware prefetching

is good at handling programs with regular access patterns and at manipulating dynamic

information. In addition to the capability of handling regular accesses, software prefetching

has the flexibility of prefetching larger blocks of data (rather than cache lines) and of

dealing with some load dependent references. However, the execution overhead of the

additional prefetching instructions decreases the software prefetching performance gains.

6

A combination of software and hardware approaches is promising in taking advantage of

both schemes without incurring much overhead.

In Chapter 6, we discuss and evaluate the effectiveness of non-blocking caches and

compare it with that of the proposed prefetching scheme. We consider compiler-based

optimizations to enhance the effectiveness of non-blocking caches and propose a hybrid

design based on the combination of prefetching and non-blocking schemes. Results from

instruction level simulations show that the proposed hardware prefetching caches generally

outperform non-blocking caches. Also, the relative effectiveness of non-blocking caches

is more adversely affected by an increase in memory latency than that of prefetching

caches. However, the performance of non-blocking caches can be improved substantially

by compiler optimizations such as instruction scheduling and register renaming. The hybrid

design can be very effective in reducing the memory latency penalty for many applications.

Finally, Chapter 7 summarizes the dissertation and suggests directions for future

research.

Chapter 2

Related Work

This chapter gives a survey of previous work which is directly relevant to the main theme

of this dissertation. First, we specifically review previous data prefetching techniques,

including hardware-controlled and software-directed approaches. We then briefly review

non-blocking techniques that are used to hide memory latency and discuss associated

compiler optimization algorithms.

2.1 Data Prefetching

Data prefetching in the context of this work is defined as the asynchronous action of

bringing data in the data (or mixed instruction-data) cache before it is directly accessed

by a memory instruction (such as a load or a store). In fact, data that will never be used

might be erroneously prefetched. The prefetching might be triggered either by a hardware

mechanism, or by a software instruction, or by a combination of both.

2.1.1 Hardware-Controlled Prefetching

Hardware-based approaches can be classified into two categories: spatial schemes, when

the decision to prefetch is based on the access to the current cache block, and temporal

schemes, which implies lookahead decoding of the instruction stream. In the spatial

approaches, prefetches occur when there is a miss on a cache block, and the address of the

prefetched block is dependent on the current data access, while prefetches in the temporal

category occur at times ahead of actual use and are not related to cache misses.

Spatial schemes

Smith [82a] studies variations on the one block look-ahead (OBL) policy, i.e., upon

referencing block i, the only potential prefetch is to block i + 1. Upon referencing block i,

three options are: prefetch block i + 1 unconditionally, prefetch block i + 1 only on a miss

to block i, or prefetch block i + 1 if block i is referenced for the first time after prefetching

8

(a one-bit encoding is required). Smith’s experiments show a decrease in miss ratios when

prefetching is used but with a concomitant increase in memory traffic due to potentially

prefetching unused blocks. Memory latencies are now (relatively to the processor speed)

much larger than when Smith performed his experiments. Therefore, the risks of the

processor stalling, because the memory bus is busy servicing a yet unneeded prefetched

block rather than a current miss, has become greater. Based on a similar observation,

Przybylski [90] argues against complex (pre)fetch strategies because either there is not

enough memory bandwidth or because misses are too temporally clustered.

An extension to OBL where several consecutive data streams are prefetched in FIFO

stream buffers is proposed by Jouppi [90]. The FIFO queues are filled sequentially starting

from the missing block address. He finds that a stream buffer of four 8-byte blocks can

remove up to 85% of the misses for a 4K I-cache but will remove only about 35% of the

misses of a 4K D-cache. As could be expected, OBL, or extensions based on (sequential)

spatial locality, would work better for I-caches than for D-caches and its effectiveness

decreases with increased block sizes. Miss rates can be reduced, mostly for direct-mapped

caches, at the expense of some increase in memory traffic. These OBL-based schemes take

advantage of limited (sequential) spatial locality but are not able to deal with large strides.

The use of stride information carried by vector instructions leads Fu and Patel [91] to

propose prefetch strategies for vector processors. They define the cache load size l as the

number of bytes loaded into the cache on a miss, l = (p + 1)� b, where b is the block size

and p is the number of blocks prefetched. A sequential-prefetch strategy is such that, on

a cache miss, the cache prefetches p consecutive blocks for a reference which is a scalar

or a short stride (< b) vector access. The stride-prefetch strategy states that in addition to

sequential-prefetching, the cache prefetches p blocks for long stride (� b) vector accesses

on a cache miss, where those b-byte blocks are separated by the stride. By simulating four

numerical programs on a 2-way 64K cache with a block size of 32 bytes and a 128-byte

load size, they find that sequential-prefetch can increase performance by 30%-50% by

loading multiple small blocks to capture spatial locality. A stride-prefetch cache shows

some performance improvement, but not significantly better than a sequential-prefetch

cache.

Later on, Fu and Patel [92] derive a similar approach for scalar processors. The primary

mechanism is to record the previous memory address in a history table and to generate

prefetch requests by calculating a stride between the current address and the previous

9

address if the stride is non-zero. Their results show that a history table with a small number

of entries can significantly reduce, with low overhead, the number of cache misses for

programs that can be highly vectorized. However, a significant overhead for non-vectorized

programs may occur. The main problem is that the approach lacks the control of preventing

unnecessary prefetches on irregular accesses or unneeded blocks. The same general idea

of a hardware assist is presented by Sklenar [92], but without any performance or cost

evaluation. These two schemes post-date our earlier study of a hardware-assist function for

prefetching [Baer & Chen 91]. Our approach will be described in Chapter 3.

Temporal schemes

By lookahead decoding of the instruction stream, temporal mechanisms attempt to have

data be in the cache ‘‘just in time’’ to be used. Lee et al. [87a] propose a data prefetching

scheme based on instruction lookahead for CISC-like machines. The processor includes an

instruction prefetch buffer and a data prefetch buffer (FIFO queue), which is used to hold

the operand addresses of the decoded instructions. As each new instruction is decoded,

an entry for the data buffer is created and the data prefetch is generated for the operand

simultaneously. Hence, in ideal situations (far enough ahead) the data can be available by

the time the instruction is actually executed. When a conditional branch is encountered,

the system will randomly select a path, and instruction and data prefetch buffers continue

the decoding and prefetching until the condition is evaluated. When an incorrect branch

prediction is detected, the execution will stall waiting for the buffer to be flushed.

Implicit prefetching is present in decoupled architectures [Smith 82b], where two

instruction streams operate concurrently, communicate via queues and drive two execution

units: one for data access and one for functional operations. The data access stream can be

‘‘ahead’’ of the functional stream and hence can prefetch operands most likely needed in

the near future.

The main problem with temporal prefetching is that the time window where the

prefetching can occur is limited by the instruction decoding buffer size and is not wide

enough for large memory latencies.

In summary, in spatial schemes, the opportune time at which prefetch should be initiated

is not linked very closely to the time of next use, while in temporal schemes, the address

of the data to be prefetched is based on the values of the speculated operands and is not

10

related to the current locality in the cache.

2.1.2 Software-directed Prefetching

A totally different approach to prefetching is to use software-directed techniques that rely

on data access patterns detected by static program analysis. An intelligent compiler inserts

data prefetch instructions several cycles before their corresponding memory instructions.

A processor has to explicitly execute the prefetch instruction to initiate a prefetch request.

Such prefetch instructions, which are just hints to the memory subsystem for reducing

memory latency, are found in contemporary processors, such as ALPHA [DEC 92].

Porterfield [89] examines the effect of prefetching all array references in the most inner

loops of programs by inserting prefetches one iteration ahead. Based on a simulation study

of scientific programs, he finds that with good compile-time analysis, software prefetching

is more effective than a simple prefetching through one cache block lookahead (OBL) or

the use of a large cache line size. His results show that if the software prefetching were

free, it could decrease the execution time of programs by up to 50%, with a decrease of

over 20% on the average. However, he recognizes that the original ‘‘prefetch all’’ scheme

may lead to too much overhead. The overhead can be reduced by selectively prefetching

references that will be misses and by keeping the effective address in a register between

the prefetch and the actual load.

Klaiber and Levy [91] show that the time to prefetch should depend on the memory

latency and loop execution time. They propose a prefetching scheme which brings data

into a separate fetch buffer instead of a unified cache. Chen et al. [91] examine compiler-

assisted data prefetching in superscalar processors. Their results, based on fairly small

caches, show that a prefetch buffer is more effective than increasing the cache dimension in

solving the data pollution problem. Their study of software prefetching for non-scientific

codes indicates that it is difficult to generate prefetch addresses early when the access

patterns are irregular.

Gornish et al. [90] propose an algorithm, meant for parallel programs in multiprocessors,

that finds the earliest point, before a loop that an entire subarray can be prefetched. The

determination is based on the control and data dependencies in the program. The approach

mainly focuses on asynchronous block transfers of data from global memory to local

memory before the data are actually used, rather than on a single cache line at a time.

Because they want the algorithm to be generic under any architecture and do not have a

11

specific coherence mechanism in mind, their approach is a binding prefetching, that is,

a data block location is bound to the value of prefetched data in caches at the time that

the prefetch completes. Based on a simulation of the execution of Fortran Kernels on a

multiprocessor, they show that even a simple algorithm can reduce the processor stall time

by as much as 32% to 97%. However, as prefetching is binding and subject to control

and data dependence constraints at compile time, the restriction on the binding time may

suppress significant prefetching candidates and limit the flexibility of prefetching.

Mowry and Gupta [91] propose a nonbinding software-controlled prefetching scheme.

Prefetching is nonbinding in the sense that prefetched data are still kept coherent (by

hardware) as if the data were fetched by normal operations. Unlike the algorithm by

Gornish et al. [90], nonbinding prefetching provides the flexibility that prefetching can be

done with fewer restrictions, but requires hardware-based coherence because the hardware

must be dynamically aware of which data have been prefetched. They show (by manually

inserting prefetch instructions) that prefetching can increase the performance by 83% to

86% for programs with regular data access patterns and by only 14% for a program with

extensive use of linked lists. In addition to the study of a prefetch strategy, they consider

both prefetch instructions for read and write accesses, and also data prefetches of size

determined by the semantic data objects.

While software prefetching schemes discussed in the above are shown to be effective,

most of the studies do not address the cost: issuing prefetching incurs instruction overhead

and may increase the traffic in the memory system. Mowry and Gupta [92] further

developed a compiler algorithm to perform the prefetch insertion. The new advance is

to identify useful references for prefetching without introducing too much unnecessary

overhead. Based on locality analysis and on loop transformations with proper prefetch

predicates, the algorithm selectively inserts prefetches only for those references which are

likely to cause cache misses. As the algorithm demonstrates locality analysis only for simple

codes that operate on dense matrices, it is not clear that the compiler can automatically add

useful prefetching for the programs with more complicated access patterns.

In summary, software-directed prefetching aims at compiler techniques to insert

prefetches instructions without requiring too much hardware complexity. The two main

issues are how the prefetch instructions are inserted and how their overhead can be reduced.

12

2.2 Non-blocking Caches

Non-blocking caches allow execution to proceed concurrently with one or more cache

misses until necessary dependence on the missing data mandates stalling. In contrast to the

overlap of computations prior to an actual cache miss by prefetching techniques, the non-

blocking scheme exploits the overlap of memory accesses with post-miss computations.

Although the design requires more complex hardware support in the processor, it can exploit

instruction level parallelism without incurring extra overhead to the memory system.

Non-blocking caches (also called lockup-free caches) were originally proposed by Kroft

[81] for uniprocessors. He introduced the concept of Miss Information/Status Holding

Registers (MSHR) to keep track of multiple pending requests. Interestingly, the terms

‘‘lockup-free cache’’ and ‘‘non-blocking cache’’ are used interchangeably in the literature.

We clarify the features by dividing them into two categories: (1) a cache supporting multiple

outstanding memory requests, but blocking the processor on read misses (blocking loads),

and (2) the processor supporting non-blocking loads and writes. In the following discussion,

we refer to the first category as lockup-free caches and specifically refer to the latter as

non-blocking reads/writes.

2.2.1 Lockup-free Caches

A cache design in the first category is generally used or studied for supporting ad-

vance architecture features in high-performance computers. The lockup-free cache in RP3

[Brantley et al. 85] supports non-blocking prefetches and multiple outstanding stores. How-

ever, reads are blocking until the missed datum returns. The lockup-free cache appearing in

the studies of the DASH multiprocessor [Gharachorloo et al. 91a, Mowry & Gupta 91] al-

lows multiple outstanding write and prefetch requests, while the processor still stalls on read

misses. In principle, the capability of handling multiple pending requests is essential for

prefetching or any other ‘‘buffering’’ and ‘‘pipelining’’ techniques that we have reviewed.

Most studies on prefetching [Lee et al. 87b, Porterfield 89, Jouppi 90, Fu & Patel 91] and

relaxed memory consistency models [Gharachorloo et al. 91b] simply assume pipelined

caches, which also can be thought of as lockup-free caches.

13

2.2.2 Non-blocking Reads/Writes

In the second category, where out-of-order execution is allowed, the processor essen-

tially requires extra hardware complexity to perform dynamic scheduling and support

non-blocking loads. The memory requirements include a write buffer allowing load

bypassing and a cache capable of servicing multiple requests. The SIMP architecture

[Murakami et al. 89], which provides dynamic dependency resolution with speculative

branch prediction, can take more advantage of lockup-free caches than a processor with

MSHR’s. Gharachorloo et al. [92] explore the advantages of relaxed consistency models

in dynamically scheduled processors. With lockup-free caches associated with each pro-

cessor, shared-memory multiprocessors have concurrently pending misses in the various

processors. Scheurich and Dubois [91] discuss variations of cache coherence protocols for

lockup-free caches of multiprocessors in weakly ordered systems. In their study, Sohi and

Franklin [91] show that a multi-ported non-blocking cache at the first level can support

the data bandwidth demands of an advance instruction issue mechanism. Stenstrom et al.

[91] formulate access order information from programs, so that a lockup-free cache can

exploit this information to achieve performance improvements. They present an imple-

mentation which can support and control pipelining among multiple accesses. In the IBM

RS/6000 processor [Oehler & Groves 90], register tagging is implemented to allow data

cache accesses to overlap with the execution of subsequent independent register-to-register

instructions.

The schemes discussed in the above require fairly complex hardware. Performance

can be improved by compiler assistance. Compiler optimizations for non-blocking loads

mainly consist of instruction reordering and the insertion of independent instructions after

non-blocking loads to keep the processor as busy as possible. Traditional instruction list

schedulers [Gibbons & Muchnick 86, Krishnamurthy 90] can be employed to perform the

code scheduling. More recently, Kerns and Eggers [92] proposed balanced scheduling,

which is particularly suitable to non-blocking loads since the latency of a load is unknown

until run time. Their key idea is to distribute loads according to the amount of instruction

level parallelism that is available.

With a combination of hardware and software solutions, speculative loads fetch memory

values into registers directly. Unlike normal non-blocking loads, they are speculatively

executed so that unnecessary semantic page faults or dependencies will be ignored without

introducing extra overhead. The advantage is that the compiler has more freedom to move

14

around the speculative loads, but they require extra detection and correction mechanism.

Chen et. al. [92] study a design of preload register update, which allows the compiler

to move load instructions even in the presence of data dependence. They derived the

scheduling support for register preloads based on the superblock structure. Rogers and

Li [90, 92] describe a hardware mechanism for non-fault speculative loads and compiler

techniques to move across basic block boundaries.

In short, we have reviewed two related techniques for tolerating memory latency:

data prefetching caches and non-blocking caches. The next chapter will present a new

hardware-based data prefetching scheme.

Chapter 3

Data Prefetching Caches

Prefetching based on sequentiality has been shown be successful for the optimization of

I-caches, but much less so for D-caches. In this chapter, we propose a hardware-based data

prefetching scheme that overcomes the drawbacks of the previous approaches discussed

in Section 2.1.1. The key idea of our scheme is to detect dynamically the strides and

access patterns in a reference prediction table (RPT). Based on the timing of prefetching

determination and issue, we propose three variations, in increasing order of complexity

generic, lookahead, and correlated. The common basis of these schemes is to predict,

based on data access patterns, the data stream far enough in advance, so that the required

data can be prefetched and be in the cache when the ‘‘real’’ memory access instruction is

executed. Our approach takes advantages of both spatial and temporal schemes.

In this chapter, we first give the basic motivation in Section 3.1. Then we describe the

three schemes: generic, lookahead, and correlated in sections 3.2, 3.3, and 3.4 respectively.

Finally, we summarize and briefly compare our scheme with other relevant approaches.

3.1 Motivation

The hardware supporting schemes generate prefetches by taking advantage of the regularity

of memory access patterns when they exist and prevent prefetching when the access patterns

are unpredictable.

Consider a program segment with m-nested loops indexed by I1, I2, � � �, Im. Let LPIi be

the set of statements with data references in the loop at level i. Given a data reference r, we

can divide the memory access patterns into four categories: scalar, zero stride, constant

stride, and irregular as shown in Table 3.1.

The difference between scalar and zero stride is that the latter is a reference to a

subscripted array element with the subscript being an invariant at the inner loop level but

modifiable at an outer level. Obviously, standard caches work well for scalar and zero stride

references. Caches with large block sizes and simple prefetch strategies (cf. Section 3.4)

16

Table 3.1: Classification of memory access patterns

Pattern Description examples

scalar simple variable reference index, count

zero stride
r 2 LPIi with subscript expres-

sion unchanged w.r.t Ii

A[I1, I2] in LPI3

TAB[I1].off in LPI2

constant stride
r 2 LPIi with subscript expres-

sion linear w.r.t Ii

A[I1] in LPI1

A[I1,I2],A[I2,I1] in LPI2

A[B[I]] in LPI

irregular none of the above A[I,I] in LPI

Linked List

can improve the performance for the constant stride category if the stride is small but will

be of no help if the stride is large. Our goal is to generate prefetches in advance for uncached

blocks in the scalar, zero stride, and constant stride access categories independently of

the size of the stride. At the same time, we will avoid unnecessary prefetching for the

irregular accesses. Our scheme will be most appropriate for high-performance processors

with relatively small first-level caches, i.e., those such that they cannot hold the working

set of the application, with a small block size, and running programs where the data access

patterns are regular but not necessarily of stride 1.

The basis of our design is a Reference Prediction Table (RPT) that holds data access

patterns of load/store instructions. To illustrate the concept, we consider the usual matrix

multiplication loop (for more detail, see Section 3.2.3) and the pseudo-assembly RISC-like

code version of the computational part of the inner loop shown in Figure 3.1. In the code

we assume that the subscripts are kept in registers. At steady state, the RPT will contain

entries for the three load lw and the store sw instructions. Since each iteration of the inner

loop accesses the same location of A[i,j] (zero stride), no prefetch will be requested for it.

Depending on the block size, references to B[i,k] (constant stride) will either be prefetched

at every iteration (block size = 4), or every other iteration (block size = 8), and so on. Load

references to C[k,j] (constant stride with a stride larger than the block size) will generate a

prefetch instruction every iteration.

17

int A[100,100],B[100,100],C[100,100]

for i = 1 to 100

for j = 1 to 100

for k = 1 to 100

A[i,j] += B[i,k] � C[k,j]

(a) A Matrix Multiplication

addr instruction comment

500 lw r4, 0(r2) ; load B[i,k] stride 4 B

504 lw r5, 0(r3) ; load C[k,j] stride 400 B

508 mul r6, r5, r4 ; B[i,k] � C[k,j]

512 lw r7, 0(r1) ; load A[i,j] stride 0

516 addu r7, r7, r6 ; +=

520 sw r7, 0(r1) ; store A[i,j] stride 0

524 addu r2, r2, 4 ; ref B[i,k]

528 addu r3, r3, 400 ; ref C[k,j]

532 addu r11, r11, 1 ; increase k

536 bne r11, r13, 500 ; loop

(b) assembly code

Figure 3.1: Example of Matrix Multiplication

3.2 Generic Reference Prediction

The most intuitive prediction scheme is to have prefetches for the (i + 1)st iteration be

generated when the ith iteration is executed. Thus, when the program counter (PC) decodes

a load/store instruction, a check is made to see if there is an entry corresponding to the

instruction in the RPT. If not, it is entered. If it is there and if the reference for the

next iteration is predictable (as defined below), a prefetch is issued. This generic scheme

involves only the PC and the RPT. As shown in Figure 3.4, the hardware requirement

for the generic design is a subset of the more complex lookahead variation that will be

18

described in Section 3.3. We now introduce the design and use of the RPT under the

generic scheme.

3.2.1 Reference Prediction Table - RPT

The Reference Prediction Table (RPT) is used to keep track of previous reference addresses

and associated strides for load and store instructions. The RPT is organized as a cache.

Each RPT entry has the following format (see Figure 3.2):

� tag: corresponds to the address of the Load/Store instruction

� prev addr: the last (operand) address that was referenced when the PC reached that

instruction.

� stride: the difference between the last two addresses that were generated.

� state: a two-bit encoding (4 states) of the past history; it indicates how further

prefetching should be generated. The four states are:

-- initial: set at first entry in the RPT or after the entry experienced an incorrect

prediction from steady state.

-- transient: corresponds to the case when the system is not sure whether the

previous prediction was good or not. The new stride will be obtained by

subtracting the previous address from the currently referenced address.

-- steady: indicates that the prediction should be stable for a while.

-- no prediction: disables the prefetching for this entry for the time being.

3.2.2 RPT mechanism

When the PC encounters a load/store instruction with effective operand address addr, the

RPT is updated as follows: (To make it clear, we denote correct by the condition: addr =

(prev addr + stride) and incorrect by the condition: addr 6= (prev addr + stride).)

� A.1. There is no corresponding entry. The instruction is entered in the RPT, the

prev addr field is set to addr, the stride to 0, and the state to initial.

19

tag stride

PC -

+

prev_addr

effective address

state

prefetching
address

(a) reference prediction table

init

incorrect

correct

correct

(update stride)

correct

incorrect

incorrect

correct

no-predtransient

steady

(update stride)

incorrect

(update stride)

(b) state transition by PC

Figure 3.2: Reference Prediction

� A.2. There is a corresponding entry. Then:

(a) Transition --

When incorrect and state = initial:

Set prev addr to addr, stride to (addr - prev addr), and state to transient.

(b) Moving to/being in steady state --

20

When correct and (state = initial, transient, or steady):

Set prev addr to addr, leave stride unchanged, and set state to steady.

(c) Steady state is over; back to initialization --

When incorrect and state = steady:

Set prev addr to addr, leave stride unchanged, and set state to initial.

(d) Detection of irregular pattern --

When incorrect and state = transient:

Set prev addr to addr, stride to (addr - prev addr), and state to no prediction.

(e) No prediction state is over; back to transient

When correct and state = no prediction:

Set prev addr to addr, leave stride unchanged, and set state to transient.

(f) Irregular pattern --

When incorrect and state = no prediction:

Set prev addr to addr, stride to (addr - prev addr), and leave state unchanged.

Following the update, a prefetch request can be generated based on the presence and

state of the entry. Note that the generation of a prefetch does not block the execution of

the instruction stream and, in particular, the increment of the PC. There are two mutually

exclusive possibilities:

� B.1. No action.

There is no existing entry or the entry is in state no prediction.

� B.2. Potential prefetch.

There is an entry in init, transient, or steady state. A data block address (prev addr

+ stride) is generated. If the block is uncached and the address is not found in

an Outstanding Request List (ORL) (see Section 3.3), a prefetch is initiated. This

implies sending a request to the next level of the memory hierarchy, or buffering it

if the communication channel is busy. The address of the request is entered in the

ORL.

21

3.2.3 Example and Discussion

Figure 3.3 illustrates how the Reference Prediction Table is filled and used when the inner

loop of the matrix multiplication code shown previously is executed. We restrict our

example to the handling of the 3 load instructions at addresses 500, 504, and 512. We

assume that the base addresses of matrices A, B and C are respectively at locations 10,000,

50,000, and 90,000.

tag prev addr stride state

Initially empty

(a)

tag prev addr stride state

500 50,000 0 init

504 90,000 0 init

512 10,000 0 init
After iteration 1

(b)

tag prev addr stride state

500 50,004 4 transient

504 90,400 400 transient

512 10,000 0 steady
After iteration 2

(c)

tag prev addr stride state

500 50,008 4 steady

504 90,800 400 steady

512 10,000 0 steady
After iteration 3

(d)
Figure 3.3: Example: Filling RPT entries

Before the start of the first iteration, the RPT can be considered empty since there

won’t be any entry corresponding to addresses 500, 504, and 512 (cf. Figure 3.3.a). Let us

assume also that no element of A, B, or C has been cached.

When the PC executes for the first time the load instruction at address 500, there is no

corresponding entry. Therefore, the instruction is entered in RPT with its tag (500), the

prev addr field set to the address of the operand, i.e., 50,000, the stride set to 0, and the

state to initial (cf. A.1 above). Similar actions are taken for the other two load instructions

(cf. Figure 3.3.b). In all three cases, there will be cache misses and no prefetches.

When the PC executes the load instruction at address 500 at the beginning of the second

22

iteration, we are in the situation described as ‘‘transition’’ (cf. A.2.a). The following three

actions are taken:

1. Normal reference access to address 50,004. This results in a cache hit if the block

size is larger than 4 and in a miss otherwise.

2. Update of the entry in the RPT. The prev addr field becomes 50,004, the stride is

set to 4, and the state to transient.

3. Potential prefetch of the block at address (50,004 + 4) = 50,008. A prefetch occurs if

the block size is less than 8.

Similar actions take place for the load at address 504 with, in this case, the certainty that

a prefetch will be generated (cf. Figure 3.3.c). For the load at instruction 512, we are in

the situation ‘‘moving to steady state’’ (cf. A.2.b). The prev addr and stride fields are

unchanged and the state becomes steady. Of course, we have a cache hit and no prefetch.

During the third iteration, all three loads should result in cache hits, or in indications

that prefetches for the referenced items are in progress. The RPT entries are updated as

shown in Figure 3.3.d (note the transient to steady transitions); prefetches are generated

for blocks at addresses 50,012 (if needed) and 91,200. Subsequent iterations follow the

same pattern.

As can be observed in Figure 3.2, scalar and zero stride references will pass from

initial to steady state in one transition (instruction 512). The constant stride references

will pass through the transient state to ‘‘obtain’’ the stride and then stay in steady state

(instructions 500 and 504). References with two wrong predictions in a row (not shown

in the example) will be prevented from being prefetched by passing to the no prediction

state; they could re-enter the transient state, provided that the reference addresses become

predictable. For instance, accesses to elements of a triangular matrix may follow such a

pattern. Note that the stride field is not updated in the transition from steady to initial when

there is an incorrect prediction.

3.3 Lookahead Reference Prediction

The generic scheme has a potential weakness associated with the timing of the prefetch.

If the loop body is too small, the prefetched data may arrive too late for the next access,

23

and if the loop body is too large, an early arrival of prefetched data may replace (or be

replaced by) other useful blocks before the data is actually used. The lookahead reference

prediction scheme seeks to remedy this drawback.

An ideal time to issue a prefetch request is to perform the prefetch δ cycles ahead of

the actual use, where δ is the latency to access the next level in the memory hierarchy. The

lookahead prediction will approximate this ideal prefetch time with the help of a pseudo

program counter, called the Look-Ahead Program Counter (LA-PC), that will remain as

much as possible δ cycles ahead of the regular PC and that will access the RPT in order to

generate prefetches. The LA-PC is incremented as the regular PC. It is used in conjunction

with a Branch Prediction Table (BPT) to take full advantage of the lookahead feature.

Table

Branch

Prediction

mux

inc

LA-PC

unit
execution

Cache

Instruction

write buf

Cache
Data

effective
address & PC

PC

Reference

Prediction

Table

ORL

Generic Pred
Lookahead Pred

branch target

match ?

Figure 3.4: Block diagram of data prefetching

An overall block diagram of the target processor is shown in Figure 3.4. The bottom

part of the figure abstracts a common high-performance processor with on-chip data and

instruction caches. The upper-left part shows the Reference Prediction Table (RPT) and the

Outstanding Request List (ORL) that keeps track of the addresses in progress or outstanding

requests. Under the generic scheme, the RPT is accessed by the PC. In order to implement

the lookahead mechanism, a Look-Ahead Program Counter (LA-PC) and its associated

logic are added to the top part (on the right in the figure). The LA-PC is a secondary PC

used to predict the execution stream. In addition, we assume that a Branch Prediction Table

(BPT) such as branch target buffer (BTB), a branch prediction mechanism for the PC in a

24

high-performance processor, is used for modifying the LA-PC.

Entries in the RPT and BPT, are initialized and updated when the PC encounters the

corresponding instruction. In the lookahead scheme, in contrast to the generic prediction,

it is the LA-PC rather than the PC that is used to generate potential prefetches according to

rules B.1 and B.2 of the previous section. At each cycle, the LA-PC is simply incremented

by one. When the LA-PC finds an entry in the BPT, it indicates that the LA-PC points

to a branch instruction. In that case, the prediction result of the branch entry in the BPT

is provided to modify the LA-PC. Note that, unlike the instruction prefetch structure in

[Lee et al. 87a] or decoupled architectures[Smith 82b], the system does not need to decode

the predicted instruction stream. Instead, the lookahead mechanism is based on the history

information of the execution stream.

3.3.1 Lookahead Program Counter (LA-PC) and RPT

In the generic prediction scheme, prefetching can occur only one iteration ahead and thus,

as mentioned earlier, the prefetched data might not yet be in the cache there when the real

access takes place. This situation will occur when the loop iteration time is smaller than the

memory latency. With the help of the lookahead mechanism, the LA-PC may wrap around

the loop and revisit the same data instruction when the execution time of a loop iteration is

smaller than the memory latency. In this way, we may have multiple iterations lookahead.

An extra field (times) in the entries of the RPT will keep track of how many iterations

the LA-PC is ahead of the PC (cf. Figure 3.5). Another difference in the design of the

RPT with respect to the generic RPT (cf. Figure 3.2) is that it is the LA-PC that is used

to detect and to generate prefetch requests while the PC is still used to access the RPT

when an effective address is obtained. Now, when the LA-PC hits an instruction with

a corresponding entry in the RPT, the address of a potential prefetch is determined by

computing (prev addr + stride � times). The times field is incremented whenever the

LA-PC hits the entry, while it is decremented when the PC catches up with the entry. The

times field is reset when it is found that the reference prediction of the corresponding entry

is incorrect.

3.3.2 Lookahead Distance and Limit

The ideal Look Ahead distance (LA-distance), i.e., the time between the execution of the

instruction pointed to by the PC and that of the instruction pointed to by the LA-PC, is

25

addressLA-PC

prev_addr stridetag

PC

times state

X

-

+

effective address

prefetching

cmp

- When hit by the LA-PC :

times++

- When hit by the PC :

If the reference prediction is

� Correct�! times-- --

� Incorrect�! times = 0

Figure 3.5: RPT with Lookahead mechanism

equal to the latency δ of the next level in the memory hierarchy. Clearly this can only

be approximated, since the LA-distance is variable. Initially, and after each wrong branch

prediction, the LA-distance will be set to one, i.e., the LA-PC points to the instruction

following the current PC. When a real cache miss occurs or when a prefetch is not

completed by the time the data is actually needed, the current execution is stalled, i.e., the

value of PC does not change, while the LA-PC can still move ahead and generate new

requests (recall the role of the ORL).

As shown in Figure 3.4, the LA-PC is maintained with the help of a branch predic-

tion mechanism BPT. BPT designs have been thoroughly investigated [Lee & Smith 84,

Perleberg & Smith 89] and we will not repeat these studies here. In our experiments

we use the Branch Target Buffer (BTB) with two-bit state transition design described in

[Lee & Smith 84] and we assume that the BTB has been implemented in the core processor

for other purposes.

As the LA-distance increases, the data prefetch can be issued early enough so that

the memory latency can be completely hidden. However, the further PC and LA-PC are

apart, the more likely the prediction of the execution stream will be incorrect because

the LA-distance is likely to cross over more than one basic block. Moreover, we don’t

want some of the prefetched data to be cached too early and displace other needed data.

Therefore, we introduce a system parameter called Look Ahead Limit (LA-limit d) to

specify the maximum distance between PC and LA-PC. Thus, the LA-PC is stalled (until

the normal execution is resumed) in the following situations: (1) The LA-distance reaches

the specific limit d, or (2) the ORL is full.

26

3.3.3 Handling Cache Misses

On a cache read miss, the cache controller checks the ORL. If the block has already been

requested, a ‘‘normal’’ (but less lengthy) stall occurs. (We call hit-wait cycles those cycles

during which the CPU waits for the prefetched block to be in the cache.) Otherwise, a

regular load is issued with priority over the buffered prefetch requests.

Since we are using a write-back, write-allocate strategy, a write miss in the data cache

will cause the system to fetch the data block and then update the desired word. If the block

size is larger than a single word, we can initiate prefetching as for a read miss. When the

block size is one word, no prefetch needs to be issued but a check of the ORL is needed

for consistency purposes. In case of a match, the entry in the ORL must be tagged with a

discard status so that the data will be ignored when it arrives.

When the LA-PC has to be reset because of an incorrect branch prediction, the buffered

prefetch requests are flushed. Finally, when a prefetch raises an exception (e.g., page

fault, out-of-range violation) we ignore the prefetch. The drawbacks of a wrong page fault

prediction would far outweigh the small benefits of a correct prefetch.

3.4 Correlated Reference Prediction

In the previous two designs, reference prediction was based on the regularity between

adjacent data accesses. In general, the schemes work well for predicting references in inner

loops. However, the results are less significant for those execution segments with small

inner-loop bodies or triangle-shaped loop patterns because of the frequent stride change in

the outer iterations. For example, let us look at Livermore Kernel Loop 6 in Figure 3.6.

While executing the inner loop, accesses to the B matrix have regular strides (e.g.,

B[3,0], B[3,1], B[3,2] and B[3,3] have a stride of 4). This pattern will be picked up by

the two schemes presented above. However, an incorrect prediction will occur each time

the k loop is finished, e.g., when accessing B[4,0] after B[3,3]. We can observe though

that there is a correlation between the accesses due to the termination of the inner loop

(i.e., B[1,0], B[2,0], B[3,0] etc. have a stride of 400). Correlation has led to the design of

more accurate branch prediction [Pan et al. 92, Yeh & Patt 92] and can be equally applied

to data reference prediction.

The key idea behind correlated reference prediction thus is to keep track not only of

those adjacent accesses in inner loops (as in the above two schemes) but also of those

27

int B[100,100], W[100]

DO 6 i=1,n

DO 6 k=0,i

W(i) = W(i) + B(i,k)*W(i-k)

6 CONTINUE

(a) Code

1,0 1,1

2,0 2,1 2,2

3,0 3,1 3,2 3,3

4,0 4,1 4,2 4,3 4,4

(b) Access pattern of Matrix B

Figure 3.6: Kernel 6

correlated by changes in the loop level. Since branches in the inner loop are taken until the

last iteration, a non-taken branch will trigger the correlation to the next level up.

3.4.1 Implementation of Correlated RPT

The implementation of a correlated scheme would bring two additions to the lookahead

mechanism: a shift register to record the outcome of the last branches and an extended

RPT with separate fields for computing the strides of the various correlated accesses. In

the most general case, an N-bit shift register can be used to keep track of the results of the

last N branches and to serve as a mask to address the various fields in the extended RPT.

tag
PC

Branch
History

-
effective
address

p_addr0 statetimesstride0 p_addr1 stride1

Figure 3.7: Correlated RPT

Since prefetching too far in advance might be detrimental, we restrict ourselves to the

28

correlation in two-level nested loops. The RPT is extended (cf. Figure 3.7), with a second

pair of prev addr and stride fields for recording the access patterns of the outer loop.

(Note that at the outer loop level the times and state fields are no longer relevant.) We

also have now a two-bit shift register for recording the outcome of loop-only branches.

Assuming that a bit ‘1’ encodes a taken branch, the steady state encoding while executing

the inner loop will be ‘11’. In that case prefetching will be based on the entry in the

RPT corresponding to the inner loop (the ‘‘right’’ part in the figure). When the branch

is not taken, the shift register will contain ‘10’ (due to a non-taken inner-loop branch

followed by a taken outer-loop branch) and prefetching will be based on the part of the

entry corresponding to the outer loop (the ‘‘left’’ part). Updating of the left prev addr0

and stride0, as well as the right prev addr1, fields will take place at the beginning of an

outer iteration (when the shift register contains ‘10’ or ‘00’) while all the right fields will

be updated for consecutive inner iterations (when the register contains ‘11’ or ‘01’).

Figure 3.8 shows how the RPT entry for B[i,k] would be filled and updated during

execution of the first three iterations of the outer loop of Kernel Loop 6. We have left out

the times field for ease of explanation. Without loss of generality, we can assume that the

initial content of the shift register is ‘10’ and that the entry in the RPT is empty. At the

initial access of B[1,0], all fields are filled as in the previous schemes (first row of top

table in Figure 3.8). At the second access (first row of bottom table) only the right fields

are modified as they would be in the previous schemes (the shift register contains ‘11’). At

the beginning of the second outer iteration, i.e., first access to B[2,0], the shift register will

again contain ‘10’ (branch non-taken). Thus, prefetching of B[3,0] and B[2,1], if needed,

will be done for accesses in both levels of the loop, and updating of the first pair of fields

and of prev addr1 will be performed (second row of top table). On subsequent accesses to

B[2,i], prefetching and updating will be based on the right fields (second row of bottom

table). At the beginning of the third outer iteration, we are in steady state (cf. last row

of the table). By that time B[3,0] should have been prefetched (at the end of the second

iteration). A prefetch to B[3,1] would be generated and most likely not activated if the line

size is large enough, i.e., if B[3,0] and B[3,1] are in the same line.

Three issues regarding the implementation of a correlated reference prediction scheme

need to be addressed. In all three cases, we make reasonable assumptions to keep a

design as simple as possible. The first assumption is that since it is easy for a compiler to

distinguish between end of loop branches and other branches, the former will be flagged,

29

1st inner iteration
outer prev prev

iteration addr0 stride0 addr1 stride1 state

1 B[1,0] 0 B[1,0] 0 init

2 B[2,0] 400 B[2,0] 4 transient

3 B[3,0] 400 B[3,0] 4 steady

2nd inner iteration

outer prev prev

iteration addr0 stride0 addr1 stride1 state

1 B[1,0] 0 B[1,1] 4 transient

2 B[2,0] 400 B[2,1] 4 steady

3 B[3,0] 400 B[3,1] 4 steady

Figure 3.8: Example: Correlated RPT entries

e.g., in the branch prediction table, and the shift register will be modified only when they

are encountered. This assumption could be removed by letting the shift register be modified

on every branch as in [Pan et al. 92]. While some predictable patterns might emerge, it is

not evident that the complexity of implementation is warranted. Second, we assume that

the loop iterations are controlled by backward branches1. Third, we assume that prefetches

for the correlated references (across outer iterations) are issued as in the generic case, since

the LA-PC will be the same as the PC on the incorrect branch prediction. Those prefetches

are generated without any attempt to control the prefetch issue δ cycles ahead of the actual

use of the data. The assumption is quite reasonable since accesses in the outer loop are

separated by the execution of all the iterations of the inner loop which, in most likelihood,

will take longer than δ cycles.

1 A backward branch always passes execution control to a location which is before the address of the branch

instruction. The compiler could easily perform a transformation resulting in backward branches for these

programs in which forwards conditional branches are used to control the loop iterations [Ball & Larus 93].

30

3.5 Summary

In this chapter we have proposed a design for a hardware-based prefetching scheme. The

goal of this support unit is to reduce the CPI contribution associated with data cache misses.

The basic idea of data prefetching is to predict future data addresses by keeping track

of past data access patterns in a Reference Prediction Table. Based on the various times

when a prefetch is issued, we have investigated three variations: generic, lookahead, and

correlated prefetching schemes.

The basic mechanism is that access instructions are recorded in the RPT associated with

a finite state mechanism to prevent unnecessary prefetches. The generic scheme generates

prefetches for the (i + 1)st iteration when the ith iteration is executed. The lookahead scheme

controls prefetches one memory latency time ahead of actual use by a lookahead program

counter. It can have prefetches issued multiple iterations in advance. Finally, the correlated

scheme uses a more sophisticated design to detect patterns across loop levels.

The prefetching hardware support unit that we advocate is designed to be close to

the processor without introducing extra gate delays to the critical path. The performance

evaluation in the next chapter will show that this design is effective and applicable to a

chip with limited area. For example, it can be a support unit for an on-chip cache.

It is worthwhile to close this chapter with a brief qualitative comparison of our design

with the two closest approaches [Fu & Patel 92, Sklenar 92] that were reviewed in Section

2.1.1. Fu and Patel [92] present a mechanism which will generate a prefetch request based

on two consecutive accesses by adding the current effective address with the difference

between the current and previous addresses. They do not provide a mechanism to prevent

unnecessary prefetches. Severe data pollution and memory saturation problems could

occur when memory bandwidth is limited. Since there is no state transition mechanism,

this scheme corresponds to a degenerated version of our generic scheme. Sklenar [92]

gives a design for a prefetch unit, which behaves like a co-processor. The prefetch

processor calculates the effective addresses and generates prefetch requests. Although

these two approaches were proposed later than our original scheme [Baer & Chen 91], they

apparently lack two key ingredients: (1) the prefetch for the next iteration is generated on

current access, and therefore cannot prefetch more than one iteration ahead, and (2) they do

not have a lookahead mechanism to approximately control the arrival time of prefetched

blocks.

Chapter 4

Performance Evaluation of Hardware Prefetching
Schemes

In this chapter, we evaluate the three proposed hardware schemes and we examine

several design issues. Our study is performed at the level of instruction simulation in the

context of a RISC uniprocessor model. First, in Section 4.1, we describe the methodology

for evaluating the proposed schemes in an uniprocessor environment. Since memory

bandwidth is one of the vital resources if prefetching is to succeed, we consider three

memory models with varying capability for handling concurrent memory requests. We use

‘‘cycle per instruction contributed by memory access’’ (MCPI) as the main metric instead

of miss ratio in order to reflect results in a more realistic manner. Then, we present and

discuss the general results of the simulation on ten SPEC benchmarks in Section 4.2. To

better understand the characteristics of the schemes, we examine several design issues in

Section 4.3, including the effect of memory latencies, block sizes, and the organization of

the reference prediction table. We also consider various placements for the prefetched data.

4.1 Evaluation Methodology for Uniprocessors

4.1.1 Trace driven Simulation

We evaluate our proposed architectures using cycle-by-cycle trace generation combined

with on-the-fly simulation. To avoid the overhead of re-running the trace generation for

every configuration, we simulate several configurations simultaneously. As illustrated

in Figure 4.1, the simulator, written in C++, first reads in a variety of configuration

descriptions and creates simulation objects (which models most aspects of the CPU and

the memory system) initialized with various configurations and parameters (such as cache

size and latency time).

Benchmarks are instrumented on a DECstation 5000 (R3000 MIPS CPU) using the

pixie facility. As shown in Figure 4.1, the simulator runs the pixified benchmark programs,

which will generate address traces at the same time. The simulator reads the trace through

32

code Simulator

user program
Configurations

Simulation results

stdin /dev/null

(pipe)

addr/data trace

trace record

Prog.pixie

Postprocessor
Trace

disassembled

Figure 4.1: Trace-driven simulator using pixie

a pipe facility and feeds the trace records to each simulation object. This on-the-fly trace

simulation method is advantageous in the sense that large traces do not need to be saved

and furthermore it provides the flexibility of simulating rescheduled code. Traces include

data and instruction references so that the simulator can emulate the detail behavior of

overlapping computation with data access. The experiment results are collected at the clock

cycle level from the individual configurations.

We use ten SPEC 1 benchmarks (see Section 4.1.3) to generate traces for our study. The

traces captured at the beginning of the execution phase of the benchmarks are discarded

because they are traces of initial routines that generate the test data for the benchmarks.

No statistical data are recorded while the system simulates the first 500,000 data accesses.

However, these references are used to fill up the cache, the Branch Prediction Table, and

the Reference Prediction Table in order to simulate a warm start. After the initialization

phase and the warm-start period, simulations results are collected for the first 100 million

instructions for all programs.

4.1.2 Architectural Models

For comparison purposes, a baseline architecture consisting of a processor with perfect

pipelining and direct-mapped D-cache with 32K bytes and a block size of 32 bytes,

1 SPEC is a trademark of the Standard Performance Evaluation Corporation.

33

unless otherwise specified, is also simulated. The baseline and prefetching caches use a

write-back, write-allocate policy, and an 8-entry write-back buffer for replaced dirty data

lines. We assume that the processor has an ideal instruction cache with no instruction

cache miss incurring. The RPT we use is a 512-entry table organized as shown in Figure

3.2. When the schemes with lookahead are evaluated, branch predictions are performed

by a Branch Target Buffer with a two-bit state transition design [Lee & Smith 84]. Both

baseline and prefetching caches will cause the processor to stall on a cache miss.

The interface between the processor and the cache can handle one data access at each

cycle and, in case of a hit, the load latency is one cycle (i.e., delayed load with one delay

slot). In the case of a write hit, an extra cycle is required to modify the data block in the

cache. The refilling of a prefetched line will be delayed when it competes with real data

accesses for the cache. Also, real cache misses could conflict with prefetch or outstanding

write requests in the cache interface. We will assume, conservatively, that a fetch in

progress cannot be aborted. However, a real read miss will be given priority over buffered

prefetch requests or writes.

Data bandwidth is an important consideration in the design of an architecture that allows

overlap of computation and data accesses since several memory requests (e.g., cache misses,

prefetching requests) can be present simultaneously. In this study, we present three memory

model interfaces with increasing capabilities of concurrency between caches and the next

level in the memory hierarchy. Since several requests can be present, either in process or

waiting to be processed, we have associated an Outstanding Request List (ORL) with the

prefetching caches. A requirement for this list is that it can be searched associatively.

The three memory interfaces are as follows (cf. Figure 4.2 for timing charts and block

diagrams).

- Non-overlapped(1) : As soon as a request is sent to the next level, no other request

can be initiated until the (sole) request in progress is completed. This model is typical

of an on-chip cache backed up by a second level cache.

This interface supports only one cache request at a time.

-- Overlapped(C,N) : The access time for a memory request can be decomposed into

three parts: request issue cycle, memory latency, and transfer cycles. We assume

that during the period of memory latency other data requests can be in their request

34

req A

req Btime
L2 cycle

fetch B

xfer A

xfer A

xfer B

req B

xfer Breq A

latency
memory

fetch A

Non-

Pipelined

Overlapped

Overlapped

fetch A

fetch B

Timing of data access

Pipelined(N)Overlapped(C,N)Non-overlapped(1)

INTERCONNECTbus

Cache
Secondary

ORL
ORL C1C1ORL

Cache
Secondary

C1

CPUCPU CPU

Modules
Memory

Outstanding Request List of caches

Figure 4.2: Three memory models

issue or transfer phases. However, no more than one request issue or transfer can

take place at the same time.

This model represents split busses and a bank of C interleaved memory modules or

secondary caches. An ORL with N entries is associated with each module.

- Pipelined(N) : A request can be issued at every cycle. This model is repre-

sentative of processor-cache pairs being linked to memory modules through a

pipelined packet-switched interconnection network. We assume a load through

35

mechanism[Smith 82a], i.e., the desired word is available as soon as the first data

response arrives. An N-entry ORL is associated with the cache.

The configurations of the ORLs used in our experiment are Non-overlapped(1),

Overlapped(8,2), and Pipelined(8) respectively. The memory latency δ is usually equal

to 30. The Overlapped model is used as the default model to show general results since it is

the most likely implementation for future high performance processors. The cycle times of

the three phases (requesting, accessing memory, and transferring) are 2, 20, and 8 cycles

respectively.

4.1.3 Benchmarks and Metrics

As mentioned earlier, we use ten applications from the SPEC benchmarks, which are

compiled by the MIPS C compiler and the MIPS F77 compiler, both with optimization

options. Table 4.1 shows the dynamic characteristics of the workload. The columns below

data references show the proportions of data references (weighted by their frequency) that

belong to the memory access categories mentioned in Section 3.1. They are one indication

of the reference predictability of the ten programs. Scalar or zero stride references are

beneficial to the data cache and, in addition, the prefetching schemes can be useful in

bringing back in advance blocks that were displaced because of a small cache size (capacity

misses) or a small associativity (conflict misses). Constant stride references, which may

substantially contribute to cache misses, should be helped by the RPT schemes. Prefetching

should be avoided for unpredictable irregular references. The column branch prediction

miss ratio shows the outcome of branch predictions with a 512-entry BPT, which functions

like a 2-state-bit Branch Target Buffer[Lee & Smith 84]. This is a second indication of

the reference predictability, illustrating the possible benefits exploited by the lookahead

approach.

We experimented with the three architectural choices, and varying architectural pa-

rameters, described previously. The results of the experiments are presented in terms of

‘‘cycle per instruction contributed by memory accesses’’ (MCPI) as the main metric. Since

we assume that the processor can execute each instruction in one cycle (perfect pipelining)

and that we have an ideal instruction cache, the only extra contribution of CPI is due to the

data access penalty. Hence, the MCPI due to data access penalty is obtained as:

MCPIdata access =
total data access penalty

number of instructions executed

36

Table 4.1: Characteristics of benchmarks

data references branch pred.

Name scalar, zero stride constant stride irregular miss ratio

Tomcatv 0.312 0.682 0.006 0.005

Fpppp 0.981 0.006 0.014 0.110

Matrix 0.059 0.921 0.021 0.073

Spice 0.581 0.239 0.180 0.060

Doduc 0.692 0.154 0.154 0.120

Nasa 0.006 0.989 0.003 0.008

Eqntott 0.338 0.574 0.088 0.069

Espresso 0.460 0.424 0.116 0.055

Gcc 0.516 0.120 0.365 0.204

Xlisp 0.440 0.078 0.482 0.156

The reason for choosing MCPI as a metric instead of the miss rate or the average effective

access time is that MCPI can reflect the actual stall time observed by the processor, taking

both processor execution and cache behavior into account. In the figures, we also give the

percentage of the data access penalty reduced by the prefetching scheme. This percentage

number is computed as:

% of penalty reduced =
data penaltycache � data penaltyprefetch

data penaltycache

� 100

4.2 General Results

In this section, we present experimental results that show the benefits of the prefetching

schemes. We compare an architecture with a baseline cache with the same architecture

augmented by each of the three prefetching schemes. These comparisons are performed on

all ten SPEC benchmarks.

Figure 4.3(a)(b)(c) shows the results of the simulation of the four architectures with the

data access penalty MCPI as a function of the cache size. The Overlapped memory model

is used, the block size is 32 bytes, and the RPT and the BPT used in the prefetching schemes

have 512 entries. The results show that the prefetching organizations always perform better

37

than the pure cache scheme since they have the same amount of cache and, in addition,

the prefetching component. When the cache is too small to contain the working set of the

application, the best prefetching scheme can reduce the data access penalty from 16% up

to 97%. The additional cost paid for prefetching is justified by the significant performance

improvement. This additional cost (RPT and logic) is approximately equivalent to a

4K-byte D-cache (cf. Section 4.3.3).

Matrix

8 16 32 64 128

Cache Size (K)

0.0

0.2

0.5

0.7

0.9

M
C
P
I

..

�

�

�

�

�

...
�

�

�

�

�

...
?

?

?

?

?

...87%
92% 95% 97% 91%

.
. . . .

Espresso

8 16 32 64 128

Cache Size (K)

0.0

0.3

0.5

0.8

1.0

M
C
P
I

�

........... Cache only
�

................................. One-iteration
?

................................. Lookahead
.................................. Correlated.................................

�

�

�

�

�

...

�

�

�

�

�

..
?

?

?

?

?

..90% 92% 93%

.

Figure 4.3: Simulation Results for δ = 30 -- Overlapped

We examine further the performance curves by dividing the ten benchmarks into three

groups: 1) prefetching performs extremely well, 2) prefetching yields a good or moderate

improvement to the performance, and 3) prefetching’s contribution to the reduction in data

access penalty is slight.

The first group is formed by the Matrix and Espresso benchmarks, in which the data

access penalty has been reduced by over 90%. For all practical purposes, the CPI due to

data access is almost completely eliminated. With good reference predictability in these

two programs, the flat performance curves of the prefetching illustrate that a cache of small

size is sufficient to capture most of the locality when compulsory cache misses have been

eliminated by the prefetching.

The second group includes Tomcatv, Nasa, Eqntott, and Xlisp in which the prefetching

yields a good performance improvement, a reduction in data access penalty in the range of

35% to 70%. In the case of Eqntott and Xlisp, the MCPI penalty is about a quarter of a cycle

even for a very small cache. Seeking further improvement is not worthwhile. In Tomcatv

and Nasa, as the cache size increases, the miss penalty of both the pure and prefetching

caches is minimized until the working set is captured (e.g., 32 K for Tomcatv). Notice

38

Tomcatv

8 16 32 64 128

Cache Size (K)

0.0

0.6

1.1

1.7

2.3

2.9

M
C
P
I

..

�

�

�

�

�

..

�

�

�

�
�

..

?

?

?

?
?

...

35%

44%

71% 71% 71%

.

.

. . .

Nasa

8 16 32 64 128

Cache Size (K)

0.0

0.8

1.6

2.4

3.2

4.0

M
C
P
I

�

...................... Cache only
�

................................. Generic
?

................................. Lookahead
.................................. Correlated..

�

�

�

�

�

..

�

�

�

�

�

..

?

?

?

?

?

..

40%

45%

51%

59%

70%

.

.

.

.

.

Eqntott

8 16 32 64 128

Cache Size (K)

0.00

0.09

0.18

0.27

0.36

0.45

M
C
P
I

...

�

�

�

�

�

...

�

�

�

�

�

..

?

?

?

?

?

..

42%

51%

54%
57%

58%

.

.

.
.

.

Xlisp

8 16 32 64 128

Cache Size (K)

0.00

0.08

0.15

0.23

0.30

M
C
P
I

...

�

�

�

�

�

...

�

�

�

�

�

...

?

?

?

?

?

..

37%

41%

64%

.

.

.
. .

Figure 4.3b: Simulation Results for δ = 30 -- Overlapped

that the absolute reduction in the MCPI is significant, over one cycle in both cases, and

independent of the cache size. Based on the results of the first two groups, it can be seen

that the performance data at moderate cache size (e.g., 16K and 32K) argues forcefully for

spending some cache real estate on the RPT and BPT rather than increasing the cache size.

The third group consists of Spice, Doduc, Gcc, and Fpppp. For Spice and Doduc

prefetching is still valuable: the data access penalty is reduced by about 30%. For Fpppp,

and to a lesser extent Gcc, a pure cache of 16K has almost captured the working set:

prefetching cannot help much. There are several factors that lead to the small advantage

brought upon by prefetching. First, because the fraction of references in scalar or zero

39

Spice

8 16 32 64 128

Cache Size (K)

0.0

0.2

0.3

0.5

0.7

M
C
P
I

...

�

�

�

�

�

...

�

�

�

�

�

...

?

?

?

?

?

..

30%

27%

26%

27%

.

.

.

.

.

Doduc

8 16 32 64 128

Cache Size (K)

0.0

0.1

0.3

0.4

0.6

M
C
P
I

�

...................... Cache only
�

................................. One-iteration
?

................................. Lookahead
.................................. Correlated...

�

�

�

�

�

..

�

�

�

�

�

..

?

?

?

?

?

..

31%

29%
31%

31%

.

.
.

.
.

Gcc

8 16 32 64 128

Cache Size (K)

0.0

0.2

0.5

0.7

1.0

M
C
P
I

...

�

�

�

�

�

...

�

�

�

�

�

..

?

?

?

?

?

...

13%

18%

30%
40%

.

.

.
.

.

Fpppp

8 16 32 64 128

Cache Size (K)

0.0

0.2

0.5

0.7

1.0

M
C
P
I

.. ..

�

�

�

�

�

...

�

�

�

�

�

...

?

?

?

?

?

...

16%

8% 3%

.

. .
. .

Figure 4.3c: Simulation Results for δ = 30 -- Overlapped

stride categories dominates (98% in Fpppp and over 50% in the other 3 benchmarks, cf.

Table 4.1), the performance contribution by prefetching accesses with non-zero strides

become less significant. Second, the significant branch prediction miss ratio (e.g., 20% in

Gcc) precludes successful prefetching. And, third, the RPT may not be capable to hold all

active memory instructions at the same time because of either its limited associativity or

its small number of entries. We examine this last issue later in this section.

Finally we compare the relative performances of the three reference prediction schemes.

As could be expected, the increased level in hardware complexity pays off. However, the

difference between the lookahead and correlated variations is always small, less than 2%,

with Eqntott being the only exception with one data point showing a 10% improvement.

The difference between lookahead and generic is more significant. It is most notable,

40

differences of over 40%, in the benchmarks Tomcatv (large loop body so in the generic

scheme the prefetched data will arrive too early displacing other useful data or being

replaced before its use) and Espresso (small basic block so in the generic scheme the data

will arrive too late, generating hit-wait cycles). These results show that the lookahead logic

is worth implementing since it allows the flexibility to prefetch at the correct time while

the complexity required to help data accesses in outer loops as in the correlated scheme

plays a much less significant role.

In summary, the prefetching schemes are effective in reducing the data access penalty.

A prefetching hardware unit is particularly worthwhile when the chip area is limited and

a choice has to be made between the added unit and slightly increasing the on-chip cache

capacity.

4.3 Effect of Design Variations

In this section, we examine the impact of several architectural issues on the performance of

prefetching. The issues include memory latencies, memory models, changes in block size,

the organization of the RPT, the lookahead-limit, and various placements of prefetched

blocks. In the remainder of the section, for brevity sake, we restrict ourselves to reporting

on benchmarks with the most salient features (cf. see Appendix A.1 for complete results).

All performance evaluations of prefetching are based on the lookahead scheme.

4.3.1 Effect of Memory Models and Latencies

Figure 4.4 presents the data access penalties of the baseline cache and the lookahead

scheme with respect to the three memory models and memory latency varying from 10 to

50 cycles for four of the benchmarks (Tomcatv, Espresso, Eqntott, and Xlisp). Each bar

corresponds to one architecture and one memory latency, with the MCPI due to a Pipelined

access and the overhead coming from the Overlapped and Non-overlapped models stacked

on top of each other. The two numbers inside the bars of the lookahead prefetching give

the percentages of the penalties reduced by the prefetching for the Non-overlapped model

(worst) and the Pipelined model (best) respectively. The overhead in the case of the

baseline cache comes from the waiting time incurred by a cache miss when a write back

is in progress since we assume that a request in progress cannot be aborted. Similarly,

the overhead in the prefetching scheme includes the stall time of ‘‘real’’ demand cache

41

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

84%
77%

71%
68%

61%

80%

57%

39%

28%

20%

10 20 30 40 50Memory
Latency

Tomcatv
M

C
PI

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

97% 95% 94% 93% 93%95%

67%

47%

37%

31%

10 20 30 40 50Memory
Latency

Espresso

M
C

PI

Pipelined
Overlapped
Non-overlapped

Figure 4.4a: Effect of memory models and latencies

miss waiting for prefetching or write-back requests in progress. Note that it is not very

meaningful to have a large access time (say 50 cycles) for the Non-overlapped model and

a small latency of 10 cycles for the Pipelined model. We simply intend to show the effect

of the stall penalty when a large spectrum of memory bandwidth is presented.

As could be expected, a memory interface with restricted bandwidth like that of the

Non-overlapped model will result in poorer relative performance improvements with longer

42

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

0.
0

0.
1

0.
2

0.
3

0.
4

54%

49%

47%

44%

42%

49%

41%

37%

31%

27%

10 20 30 40 50Memory
Latency

Eqntott
M

C
PI

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

0.
0

0.
02

0.
06

0.
10

0.
14

63%
63%

62%
62%

59%

62%
60%

57%

48%

40%

10 20 30 40 50Memory
Latency

Xlisp

M
C

PI

Pipelined
Overlapped
Non-overlapped

Figure 4.4b: Effect of memory models and latencies (Continued)

memory latencies. This is quite noticeable in the benchmark Espresso and even more

in Tomcatv, where the MCPI’s are larger than others. A large portion of busy time is

eliminated when passing from the Non-overlapped model to the Overlapped model and

then even more with the Pipelined model. For all four benchmarks, the difference between

the latter two models is less significant than that between the first two models. This is

because much of the required parallelism can be exploited by the Overlapped model. The

43

results shown in Figure 4.4 indicate that an adequate interface is necessary to meet the

memory bandwidth demand of prefetching techniques that exploit the parallelism among

several memory requests. Cache miss reduction by itself is not sufficient to assess the value

of a prefetching scheme.

As the memory latency increases, the relative access penalty of the prefetching scheme

in all three models also increase. In the case of the Non-overlapped model, the main reason

is the lack of concurrency in the requests, resulting both in hit-wait cycles and in the ORL

being full more often. Another reason, common to all three models, is that the lookahead

scheme relies on the branch prediction for the LA-PC. The correctness of the prediction is

sensitive to a large latency (see also Section 4.3.4) and therefore wrong prefetches using the

interface can occur more often with larger latencies. The better results obtained with small

memory latencies reinforce our previous claim that the lookahead scheme is beneficial to

high-performance processors with a limited on-chip cache. Such benefits do not degrade

too much even with an interface to a secondary cache with limited concurrency such as the

Non-overlapped model.

4.3.2 Effect of Block Size

It is well known that for a cache of given capacity and associativity, the block size that

leads to the best hit ratio is a compromise between very large sizes to increase the spatial

locality and small sizes to reduce conflict misses[Przybylski 90]. Given that a prefetching

scheme will increase the spatial locality, we can predict that the best block size for a

prefetching scheme should be smaller than or equal to that of the pure cache.

Figure 4.5 presents the performance of the various architectures as a function of the

block size. The baseline is a 32K-byte direct-mapped cache. The prefetched blocks are

of the same size as the blocks fetched on real misses. Our experiments are based on

the Overlapped model with a transfer rate of 8 bytes per cycle, and request and memory

latency of 2 and 20 cycles respectively. As can be seen in the figure, the best block size

for the baseline architecture is either 32 or 64 bytes and the choice can lead to significant

improvements, for example a reduction in MCPI by a factor of 3 in Matrix and a factor of

2 in Eqntott when passing from a block size of 8 to a block size of 32. By contrast, the

prefetching scheme is much less sensitive to the block size and the best results are obtained

for a block size of 32 or less. This result one more time argues for the hardware prefetching

being associated with an on-chip cache since limited bandwidth (small number of pins, i.e.,

44

Matrix

8 16 32 64 128 256

Block Size (byte)

0.0

0.7

1.4

2.2

2.9

M
C
P
I

...
...............

.................
.................

.....................
.................

..........
..........

..........
..........

..........
..........

.
�

�

�

�

�

�

..
..............................

......................
......................

.....................
..............
.............
..............
..............
..............
.............
..............
..............
.............

�

� �

�

�

�

..
......................

......................
......................

..................
...............
...............
..............
...............
...............
...............
..........

?

? ?

?

?

?

Tomcatv

8 16 32 64 128 256

Block Size (byte)

0.0

0.8

1.5

2.2

3.0

M
C
P
I

�

...................... Cache only
�

................................. One-iteration
?

................................. Lookahead...
..................

..................
...............

�

�

�

�

�

�

...
..

..
.....................................

.....................
....................

....................
................

�

�

�

�

�

�

..
...................

...................
...................

...................
...

?

?

?

?

?

?

Eqntott

8 16 32 64 128 256

Block Size (byte)

0.0

0.1

0.2

0.3

0.5

M
C
P
I

..
......................

.............
.............

.............
...........

�

�

�

�

�

�

..
...............................

..............................
.................

................
................

................
.................

.......

�

�

�

�

�

�

...
....................................

...............................
......................

................
................

................
................

................
....

?

?

?

?

?

?

Nasa

8 16 32 64 128 256

Block Size (byte)

0.0

0.8

1.6

2.4

3.2

M
C
P
I

...
.......................

................
...............

................
.........
.........
..........
...........
...........
...........
...........
..

�

�
�

�

�

�

..
..

...................................
........................

.................
................

.................
................

.................
............
.............
.............
............
.............
.............
.............
............
.............
.............
............
.............
.......

�

�

�

�

�

�

...
...........................

............................
.....................

................
.................

................
................

.................
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............

?

?

?

?

?

?

Figure 4.5: MCPI vs. block size for 32K cache (Overlapped)

small block size) is not an impediment to its performance.

4.3.3 Organizing the Reference Prediction Table

As discussed in Section 4.2, the benefits incurred by the prefetching schemes depend

primarily on program behavior, more specifically on the amount of predictable references.

A second factor is the organization of the Reference Prediction Table, i.e., its size and its

associativity.

Let us look at the cost of implementing a direct-mapped 512-entry RPT. In each entry

of the generic scheme, the prev addr and stride fields need 4 bytes each, and the tag and

state bits are similar to the tag directory in a cache. For a lookahead scheme, we have to

add a few bits per entry for the times field. The correlated scheme requires significantly

more space (maybe 50% more). Therefore, the cost of a 512-entry RPT for the lookahead

45

scheme is roughly equivalent to that of a 4K-byte data cache with block size of 8 bytes.

The hit ratio of instructions referencing the RPT is over 90% in seven out of the ten

SPEC benchmarks. In an eighth benchmark, Fpppp, the hit ratio is very low (as low as

10%) even when we double the size of the RPT. This is primarily because the program has

a very large loop body due to a long sequence of scalar accesses. Most of the references

recorded in the RPT have been replaced when the loop starts its next iteration. For the two

remaining benchmarks, Gcc and Doduc, Figure 4.6 shows the fractions of instructions that

hit in the RPT as a function of the size and associativity of the RPT. In addition, the line

entitled ‘‘prefetch attempt %’’ (below the number of RPT entries) shows the percentage of

accesses hitting entries not in the no-prediction state and with a non-zero stride for which

prefetching was attempted.

128 256 512 1024

0.
0

0.
4

0.
8

0.575
0.689

0.813
0.914

13.1 13.8 14.4 14.8prefetch
attempt

(%)

RPT
entries

Gcc

H
it

ra
tio

1-way
2-way
4-way

128 256 512 1024

0.
0

0.
4

0.
8

0.311
0.466

0.696
0.889

10.1 11.1 12.9 14.4prefetch
attempt

(%)

RPT
entries

Doduc

H
it

ra
tio

1-way
2-way
4-way

Figure 4.6: Hit ratio and attempted prefetch of RPT

As shown in the figure, increasing the associativity of the RPT has minimal effect. The

sequential nature of instructions is the reason for this lack of improvement. On the other

hand, increasing the size of the RPT improves the hit ratio since a small RPT cannot hold

46

the referencing instructions of the most frequently executed loops in these two benchmarks.

Note also, that the ‘‘prefetch attempt %’’ increases with the larger hit ratio. It is because it

takes two or three accesses to regain the necessary stride information for those instructions

that have been replaced. When a fairly good hit ratio is obtained, the percentage of accesses

with prefetches is roughly equal to that of data accesses in the constant stride category (cf.

Table 4.1).

A question that might arise is given extra chip capacity, should it be devoted to a

larger or more complex D-cache or a larger or more complex RPT. On one hand, a good

hit ratio in the RPT may not be directly translated into a smaller miss ratio in the data

cache (depending on the fraction of non-zero stride accesses). On the other hand, adding

complexity to the data cache may yield a better performance, but care should be taken

not to increase the basic cycle time of the cache (e.g., because of extra gate delays due to

comparators and multiplexors). However, on the basis of our experiments we would not

argue for a larger or more sophisticated RPT. A possible solution for improving the RPT

hit ratio without enlarging the table is to not replace those entries with non-zero strides.

While useful patterns might be preserved, there is a problem, namely we are locking in

the RPT entries corresponding to instructions that will be never executed again. A better

approach is to enter in the RPT only those instructions that may have a non-zero stride. A

compiler can easily provide this information. In an experiment on the DECstation 5000,

we simply excluded memory instructions that use the stack pointer or a general register (sp

or gp) from being entered in the RPT, since in general a non-scalar reference does not use

these two registers as base register. The hit ratios for Fpppp and Doduc were increased up

to 91% for an RPT of 512 entries.

In summary, in most cases, a moderate sized RPT (e.g., 512 entries, roughly equivalent

to a 4K-byte cache) is sufficient to capture the access patterns for the most frequently

executed instructions. A possible optimization that would be useful for programs with very

large basic blocks is to be selective in storing entries in the RPT.

4.3.4 Varying the Lookahead Limit

In the lookahead and correlated schemes, the LA-PC is used to control the timing of the

prefetches. Its forward progress is bounded by the Lookahead limit d, i.e., the maximum

number of cycles allowed between LA-PC and PC. Setting d must take into account two

opposite effects. We should certainly issue prefetches early enough and therefore d must

47

be greater than δ so that the number of hit-wait cycles is reduced. This is even more

crucial when the data misses are clustered and the memory model is restrictive like in

the Non-overlapped and to a lesser extent the Overlapped model. On the other hand, d

should not be too large and cross over too many basic blocks because the branch prediction

mechanism loses some of its reliability with increased d. Also, we don’t want prefetched

data to replace (or to be replaced by) other useful blocks.

Tomcatv

5 10 15 20 25 30 35 40 45 50

Lookahead limit

0.3

0.5

0.8

1.0

1.3

M
C
P
I

...........
� � � � � � � � � �

...
....................

.............

?

?

?

?

?

?

?

?
?

?

Espresso

5 10 15 20 25 30 35 40 45 50

Lookahead limit

0.0

0.2

0.4

0.6

0.7

M
C
P
I

�

........... .. Baseline cache
?

.................. Lookahead prefetching

..
� � � � � � � � � �

...

?

?

?

?

?

?

?

?
?

?

Figure 4.7: MCPI vs. LA-limit (d) for δ = 30 (Overlapped)

Figure 4.7 shows the performance of the lookahead scheme under the Overlapped

model as a function of the Lookahead limit d for two representative programs. When d is

less than the memory cycle time δ (30 cycles in the figure), each access to the prefetched

block in progress will be a hit-wait access and thus contributes hit-wait cycles to the total

access penalty. The contributed hit-wait cycles are decreasing as d approaches δ . A

local minimum for the MCPI happens around d = 35. A further increase in d will result

in a slight MCPI increase because of the two aforementioned factors (incorrect branch

prediction and data replacement). For the Overlapped model, it appears that setting d to a

value slightly above δ will give the best results.

4.3.5 Alternatives for the Placement of the Prefetched Data

Up until now, our model architectures have placed the prefetched data directly in the

first-level direct-mapped, 32K-byte cache. This strategy imposes additional complexity to

the design of the primary cache. For example, that cache must be able to serve multiple

48

requests (non-blocking on prefetches) and a priority scheme for ‘‘real’’ misses must be

implemented. Performance factors also come into play: interference between prefetch and

real miss requests as well as data pollution. This potential performance loss could be

alleviated by increasing either the cache size or the associativity. However, this would

further add to the cost and complexity of the first-level cache.

In case of a cache hierarchy, a possibility is to prefetch only in the secondary level

off-chip cache. Placing the prefetched data in the secondary cache simplifies the design of

the primary cache since the extra features mentioned above are moved to the secondary

cache - off the critical path; and the secondary cache is generally large so that the effect

of pollution is decreased. Such a design could be advantageous when the latency to the

secondary cache is not too large. However, when the latency of the secondary cache is

one order of magnitude larger than the hit time in the primary cache, the small reductions

in cache interference and the detrimental effects of data pollution do not balance out with

the increase in the average cache access time due to bringing the prefetched data from

the secondary cache. Mowry and Gupta [Mowry & Gupta 91] study software prefetching

in a secondary-level remote access cache (RAC) in the context of the DASH cluster

architecture. Prefetching in the RAC is the default but their results show that prefetching in

the primary cache would have been more effective. A simulation study of prefetching into

a second level cache is performed by Smith et al. [91]. Several hardware-based schemes

(basically only using OBL), are simulated showing up to a 38% reduction in the penalty of

memory accesses for scientific programs.

In this section, we investigate an alternative to prefetching in the primary cache, namely

prefetching in a separate prefetch buffer. We also contrast the prefetch buffer solution with

a victim cache [Jouppi 90]. The separate prefetch buffer has a block size the same as that of

the primary data cache [Klaiber & Levy 91, Chen et al. 91]. The rationale is to nullify data

pollution effects. However, the hardware complexity of this solution is non-negligible:

requests for data must be sent -- and checked -- simultaneously in the cache and the buffer;

and the buffer itself takes some space and should be fully associative. There is therefore

a danger that accesses to the cache will take longer and be on the critical path for the

determination of the cycle time. While the overall hit access time will usually be equal

to that of the regular data cache (provided the mechanism can bypass the outcome of the

prefetch buffer), the determination of a miss will be delayed until the comparisons in the

buffer complete. This will take longer since the prefetch buffer has a larger associativity

49

than the data cache. At an equivalent cost of hardware complexity, we can trade the

prefetch buffer for a victim cache, a small fully-associative cache holding the most recently

replaced data lines. The intent here is that instead of using the buffer for the sole use of

storing prefetched data, the presence of the victim cache will reduce the number of conflict

misses among useful and prefetched blocks. At the other extreme of the usage spectrum

of the victim cache is a variation with a 32-entry buffer for nonzero stride data only. The

intuition for this solution is that accesses to the non-scalar data will gradually change and

sweep a large portion of the data area. The ‘‘reuse lifetime’’ of non-scalar data should be

shorter than that of scalar data. To put them in a FIFO buffer may be more advantageous

than to place them in a unified cache where they may conflict with other scalar data which

are more likely to be reused. Finally, we also consider an even cheaper, in terms of the

number of comparators, a two-way set associative cache. For cache hits, the hit access

time in the two-way cache is larger than that of a direct-mapped cache with an extra buffer,

whereas the determination of a cache miss takes longer in the prefetch buffer. Overall, the

average access time in a two-way cache is larger because most references should be cache

hits.

Figure 4.8 presents the results of our simulations using the various alternatives. For

ease in simulation, we assume that the cycle time is the same in all solutions. This favors

the buffer and two-way set associative schemes. We show the MCPI with decomposition

of the read penalty into real read miss and hit-wait cycles. We show from left to right: a

baseline cache (direct-mapped), a baseline (direct-mapped) with 32-entry victim cache, a

two-way set associative cache, and then several lookahead prefetching caches: a unified

cache without extra buffer, a unified cache with a 32-entry victim cache, a cache with a

32-entry prefetch buffer, a cache with a 32-entry buffer for nonzero stride data, and finally

a cache with prefetching based on a two-way set associative unified cache.

First we look at the effect of an extra buffer and of the two-way set associativity

without prefetching. As can be seen, both the victim cache and the two-way cache show a

slight performance improvement over the direct-mapped baseline cache. The benchmark

Nasa shows remarkable benefits from the extra hardware because there are severe conflict

misses in the program. The two options, victim cache and set-associativity, make similar

contributions to performance improvements.

Then we examine the impact of the extra hardware components on prefetching. As can

be observed in the figure, the cache with a victim cache as well as with prefetch buffers

50

Base Base
victim

Base
2-way

Prefch Prefch
victim

Prefch
pf buf

Prefch
nonzero

Prefch
2-way

0.
0

0.
2

0.
4

0.
6

0.
8

0.75 0.74 0.73

0.04 0.03 0.02 0.02 0.03

Espresso
M

C
PI

Pref+32-ent buf

read miss

hit-wait

Base Base
victim

Base
2-way

Prefch Prefch
victim

Prefch
pf buf

Prefch
nonzero

Prefch
2-way

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

2.28

1.23 1.23
1.08

0.02 0.02 0.02 0.02

Nasa

M
C

PI

Pref+32-ent buf

Figure 4.8a: Variations in prefetching placement

does have a better reduction in read penalty than a unified prefetching cache without any

extra hardware. However, the performance improvement in all benchmarks except NASA

is not significant when compared to the overall reduction of the read penalty by effective

prefetching schemes. The benefits of these choices are roughly equivalent to the gains

51

Base Base
victim

Base
2-way

Prefch Prefch
victim

Prefch
pf buf

Prefch
nonzero

Prefch
2-way

0.
0

0.
02

0.
04

0.
06

0.
08

0.07

0.06

0.05

0.03

0.01 0.02 0.02
0.01

Xlisp
M

C
PI

Pref+32-ent buf

read miss

hit-wait

Base Base
victim

Base
2-way

Prefch Prefch
victim

Prefch
pf buf

Prefch
nonzero

Prefch
2-way

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.66
0.6 0.61

0.55
0.49

0.46 0.46
0.5

Spice

M
C

PI

Pref+32-ent buf

Figure 4.8b: Variations in prefetching placement

brought upon in the baseline caches when the same features are added. In case of Nasa the

costs of adding an extra buffer eliminates most of the data access penalty. The magnitude

of the performance gain is similar to that in the baseline caches.

When we compare a victim cache, a prefetch buffer or nonzero-stride buffer, we can

52

see that the difference among them is negligible. Basically since the buffer is a temporary

FIFO queue, the lifetime of a block in the buffer does not exceed the length of that buffer.

It does not make much difference regarding what blocks are placed in the buffer instead of

the data cache. As we use a lookahead mechanism to control the arrival time of prefetched

data and a state detection mechanism to avoid unnecessary prefetches, conflicts between

non-scalar and scalar data are not significant.

Last, we see that a two-way set associative cache performs about the same as the

direct-mapped cache with the 32-entry buffer. Nevertheless, it requires less complexity in

terms of the number of comparators, when compared with the fully-associative buffer.

Overall, our experiments suggest that the cache interference and data pollution problem

in prefetching are not critical for those benchmarks with a primary cache of moderate size.

An extra prefetch buffer appears unnecessary.

4.4 Summary

In this chapter we have evaluated the three prefetching schemes presented in Chapter 3

by comparing them with a pure cache design at various cache sizes. These comparisons

were performed using cycle by cycle simulations of the ten SPEC benchmarks. The results

show that the prefetching schemes are generally effective in reducing the data access

penalty. The cost of the hardware unit is not prohibitive; a moderately sized RPT (roughly

equivalent to a 4K cache) is generally sufficient to capture the access patterns for the most

frequently executed instructions. We observed that the lookahead scheme has a moderate

win over the generic scheme, while the performance difference between the lookahead and

correlated schemes is fairly small.

We have also examined the performance of the prefetching scheme when we vary

architectural parameters such as block size, memory latency, and memory bandwidth. The

main results are that the performance of the lookahead prefetching is best for small blocks

(8 or 16 bytes) and that its effectiveness is quite significant with a small memory latency

even when assuming a restricted bandwidth interface to the next level of the memory

hierarchy. These observations lead us to argue that a hardware-based prefetching scheme

would be valuable and cost-effective as an assist to an on-chip data cache backed-up by a

second-level cache with an access time an order of magnitude larger.

Finally, we examined several alternatives for target storage devices for the prefetched

data. Comparisons among unified caches, prefetch buffers, and victim caches suggest that

53

the unified cache (direct-mapped or two-way) is the most cost-effective choice since the

cache interference and data pollution due to prefetching are minimal.

We therefore advocate an effective prefetching hardware support unit as an assist to

an on-chip cache. However, hardware prefetching schemes may not be as effective in

higher levels of the memory hierarchy. In that case, when the latencies are two orders

of magnitude larger than the processor cycle time, prefetching data by software-directed

techniques may be more beneficial. The software approach might also lend itself much

better to multiprocessor environments. The next chapter will give a comparative evaluation

of software and hardware prefetching and will look at possible ways to combine hardware

and software prefetching.

Chapter 5

Comparative Evaluation of Software and Hardware
Prefetching Schemes

5.1 Overview

The previous two chapters have shown that hardware prefetching can be an effective

mechanism for tolerating memory latency. However, as mentioned in Section 2.1,

prefetching techniques can be in the software as well as in the hardware domain. The

choice of whether to apply hardware or software solutions to prefetching is an interesting

question for the architecture community. In this chapter, we will discuss the advantages

and disadvantages of both schemes, and try to see how a possible combination of the two

can be achieved.

As seen previously, hardware-based prefetching requires some support unit connected

to the cache but no modification to the processor. Its main advantage is that prefetches

are handled dynamically at run-time without compiler intervention. The drawbacks are

that extra hardware resources are needed and that memory references for complex access

patterns are difficult to deal with. In contrast, software-directed approaches rely on

compiler technology to perform static program analysis and to insert prefetch instructions.

The CPU explicitly executes prefetch instructions to initiate data fetches for caches. These

schemes may perform prefetching selectively and effectively. The drawbacks are that they

cannot dynamically uncover some useful prefetching (e.g., conflict misses and invalidation

misses) and that there is some non-negligible execution overhead due to the extra prefetch

instructions.

In this chapter, we compare our proposed hardware scheme with the software-directed

prefetching approach in both qualitative and quantitative ways. The qualitative comparison

is performed by contrasting our hardware scheme with the software scheme (mainly

Mowry et al.’s approach [92]) focusing on aspects such as how accesses are identified for

generating prefetches and how prefetches are scheduled within loops. The quantitative

evaluation is performed by a direct-execution simulation of three SPLASH benchmarks

55

and of the Matmat kernel in a shared-memory multiprocessor environment. We emulate

software prefetching by manually inserting prefetches in the codes. The metrics of interest

include the effectiveness of the prefetching schemes in reducing execution time, the side

effect of prefetching schemes such as the increase in network traffic, the performance

sensitivity to a range of memory latencies, and the impact of the memory consistency

model. We also discuss means of combining both approaches.

Our qualitative comparisons indicate that in the domain of linear array references both

hardware and software schemes are able to generate prefetches to reduce cache misses.

When complex data access patterns are considered, the software approach may have more

compile-time information to perform sophisticated prefetching, whereas the hardware

scheme has the advantage of manipulating dynamic information (such as conflict misses or

input data dependence). While the software scheme may have a code expansion problem,

the predictability that the prefetched data will be used is not as great in the the hardware

scheme. Our performance results from the simulation of the four benchmarks confirm these

observations. Our results also show that hardware prefetching introduces more memory

traffic into the network than software prefetching and that the performance gains of both

approaches degrade slightly when the memory latency is getting larger. Our simulations

indicate that an approach combining software and hardware schemes is very promising in

reducing the memory latency with least overhead.

The rest of the chapter is organized as follows: Section 5.2 gives some background

information on software prefetching. In Section 5.3, we compare the two schemes in a

qualitative fashion. Section 5.4 describes the evaluation methodology as well as the model

implementations of the prefetching schemes that we study. Section 5.5 presents simulation

results and explores the impact of varying memory latencies, of the memory consistency

model, and the side effect that prefetching can bring up. Section 5.6 shows an architecture

for combining the software and hardware schemes.

5.2 Software Prefetching

In this section we give an implementation background of software-directed prefetching

schemes in more detail than what has been discussed in Chapter 2. Most software

approaches proposed in the past mainly focus on the loop domain for uniprocessors

and most of them study prefetching based on codes with manually inserted prefetches

[Porterfield 89, Klaiber & Levy 91, Mowry & Gupta 91]. Because Mowry et. al.’s [92]

56

scheme is the only one, to our knowledge, that has been automated in an experimental

compiler, we will basically use their framework as the basis of our comparison.

Software-directed prefetching requires support from hardware and software. On the

hardware side, the processor must provide a special instruction to initiate prefetches, and

the cache should be able to support servicing multiple memory requests concurrently (as

we have discussed in Section 2.2.1). Also, the system needs a prefetch issue buffer to hold

pending prefetch requests. When the processor executes a prefetch instruction, the address

of the block to be prefetched (as specified in the instruction) will be inserted into the

prefetch issue buffer. Prefetch requests in the buffer will be issued whenever the memory

interface allows it. Once the buffer is full, the processor may either stall until an entry is

available or the prefetch request is simply discarded.

In Mowry et. al’s approach, a compiler algorithm identifies those data references that

are likely to be cache misses, and prefetches are inserted only for them. Specifically, the

algorithm focuses on array accesses whose indices are linear functions of the loop indices

in scientific programs. The compiler algorithm uses locality analysis to perform data reuse

analysis, and then derives, based on given cache parameters (e.g., cache size and block

size), a set of accesses that belong to a (so called) localized iteration space in which locality

is preserved among accesses. Once the locality is known, a prefetch predicate for each

reference that would lead to a cache miss is introduced in the loop for determining if the

prefetch should be executed in a particular iteration. However, the cost of the prefetch

predicate can be removed by loop splitting, that is, decomposing the loops into different

sections in which all predicates will be evaluated to the same value. Then, prefetches are

scheduled within the loop by taking into account the memory latency and estimated loop

execution time. At this last stage, the concept of software pipelining is used to schedule

prefetches several iterations ahead of their corresponding references.

Since the compiler algorithm is aimed at the domain of linear array references, which is

similar to where our hardware scheme obtained its motivation, it is interesting to compare

and contrast the perspective benefits and implementation costs of Mowry et. al.’s approach

and of our hardware scheme.

5.3 Qualitative Comparison

In this section, we first give a high-level comparison between the software and hardware

schemes from a general point of view, and then we specifically contrast Mowry et. al.’s

57

approach [92] with our hardware scheme in more detail. Lastly, we focus on design issues

in a multiprocessor environment.

5.3.1 High-level Comparison

When compared to hardware-based schemes, software-directed approaches have some

advantages. First, their hardware cost is minimal. In addition to the common requirement

of all prefetching schemes (i.e., a lockup-free cache), the only requirement of the software

prefetching in the processor is the extra prefetch instruction. Unlike the hardware scheme,

there is no need for a complex hardware mechanism to detect and perform prefetching.

Second, prefetches for accesses with simple and even with complex patterns, primarily

for loop-domain references, can be identified at compile time. Moreover, more user

information can be exploited so that prefetched data are most likely to be used. And third,

in a multiprocessor environment, more factors such as data coherence, task scheduling, and

task migration can be taken into account. However, software-directed approaches have also

several disadvantages. First, prefetch instructions introduce an overhead, at the very least

the execution of the prefetch instruction and possibly other computations such as effective

addresses and prefetch predicates. Although an intelligent compiler may be able to reduce

much of the unnecessary overhead, it could still be relatively significant, especially as a

result of code expansion and increasing register pressure, or when the memory latency

is small. Second, dynamic information such as conflict or capacity cache misses (thus

preventing the prefetching of replaced data) and estimates of execution time for loops

calling subroutines (thus not being able to prefetch at the right time) may not be uncovered.

Third, the optimizations are language and compiler dependent while the hardware schemes

do not require any change in the executable code.

5.3.2 Identifying Cache Misses

The success of software prefetching depends primarily on whether the prefetch in-

struction overhead can be significantly reduced. To minimize the number of prefetch

instructions, a compiler should be able to identify those accesses that are most likely going

to be cache misses. Mowry et al.’s algorithm exploits three kinds of reuse: temporal,

spatial, and group. The temporal reuse occurs when a reference within a loop accesses

the same data location in different iterations. A reference preserves spatial reuse when the

same cache line is used in consecutive iterations. Different references have group reuse if

58

(a) Original code
for j = 0 to 100

for i = 0 to 100

A[j][i] = B[i][0] + B[i+1][0]

end

(b) Instrumented code (inner loop only)

prefetch(&A[j][0])

for i = 0 to 5 by 2

prefetch(&B[i+1][0])

prefetch(&B[i+2][0])

prefetch(&A[j][i+1])

end

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

prologue

for i = 0 to 93 by 2

prefetch(&B[i+7][0])

prefetch(&B[i+8][0])

prefetch(&A[j][i+7])

A[j][i] = B[i][0] + B[i+1][0]

A[j][i+1] = B[i+1][0] + B[i+2][0]

end

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

main

loop

for i = 94 to 100 by 2

A[j][i] = B[i][0] + B[i+1][0]

A[j][i+1] = B[i+1][0] + B[i+2][0]

end

9

>

>

>

>

>

=

>

>

>

>

>

;

epilogue

Figure 5.1: Example of instrumented loop

they refer to the same location or to the same cache line. Since reuses do not guarantee

locality [Wolf & Lam 91], These reuses are mapped to data locality by taking into account

the loop iteration count and the cache size. Let us take a typical inner loop as an example

(as shown in Figure 5.1). The accesses of A[j][i] have spatial reuse in the loop. Both

B[i][0] and B[i+1][0] share group reuse and also have temporal reuse when their addresses

are invariant with respect to the outer loop that contains this inner loop. While misses for

59

memory accesses (e.g., A[j][i]) with spatial reuse are easily determined, the identification

of cache misses for accesses with temporal and group reuse is made more complicated by

other factors such as set associativity and replacement policy. Moreover, conflict misses

due to self-interference from the same array references or cross-interference from different

arrays are not predictable at all. Overall, the algorithm can be successful in identifying

most compulsory misses and some of the capacity misses for linear array references, but is

unable to handle conflict misses.

In contrast to the software analysis, the hardware scheme has no information that

allows it to avoid unnecessary prefetches. Since it is a supporting unit for the cache, unlike

the prefetch instruction in the software approach, these extra prefetches do not contribute

any overhead as long as they are not on the critical path of the processor. Although

prefetches are suppressed when the data block is already found in the cache, there remains

the drawback that the additional lookup of the cache tag directory may still delay demand

cache accesses or data refills from memory modules. Furthermore, since the prefetches

have no knowledge of potential reuse, the hardware scheme is more likely to bring data

which are not useful. On the other hand, the hardware mechanism can prefetch data which

have been replaced due to conflict misses.

5.3.3 Prefetch Instruction and Predicate

If accesses have spatial or group locality in the same cache line, only the first access to the

line will result in a cache miss. For example, if these accesses are with index i, a prefetch

predicate (i mod l) == 0 should be tested before the prefetch is issued, where l is the

number of array elements in a cache line. The execution of such a predicate is costly in the

inner loop, especially when l is large. To avoid the overhead of such a prefetch predicate,

the compiler algorithm usually performs loop splitting and loop unrolling.

Let us look at the inner-most loop of the previous example in Figure 5.1. Assume that

the memory latency requires the prefetch to be scheduled six iterations ahead and that each

data line contains two array elements. By loop splitting, the original loop is decomposed

in three sections: prologue, main, and epilogue loops. The prologue loop prefetches the

initial data set for the first six iterations. The main loop consists of the largest portion

of the loop execution where the loop is in a steady state, that is, the demand of data can

be satisfied by those prefetches occurring several iterations ahead. Finally, the epilogue

loop finishes the last six iterations without any prefetching. After the loop is split, each

60

loop of the prologue and main loops is unrolled by a factor of two in order to eliminate

the execution of the prefetch condition (i mod 2) == 0. Overall, in their study, Mowry

et. al. [92] have reported that the instruction overhead per prefetch instance is low for

those scientific programs they used. Unfortunately, one consequence of loop splitting and

unrolling is that the code will expand significantly, in addition to the inherent increase

caused by the prefetch insertions. It may result in an additional penalty because of the

increase of cache misses in the instruction cache. One may argue that the only important

part is that the steady-state main loop fits in the instruction cache, and that therefore the

overhead of code size is not critical. However, as shown in the example, the loop has been

increased roughly by two times (at most the code is within three times the original code

[Lam 88]), the expansion of outer loops would be more significant and the problem in an

instruction cache would be even more difficult to avoid. The other side effect as a result

of code expansion is an increase in register pressure, which may introduce extra spilling

store/load instructions.

By contrast, the hardware scheme executes the original loop without modification.

However, at least two iterations are required before obtaining correct strides. Unlike

the software approach where prefetches are dumped together in the prologue loop, the

hardware scheme gradually prefetches the initial data set as the LA-PC runs continuously

several iterations ahead of the PC. When the loop in the steady state, i.e., in the main loop,

the prefetching is performed in a similar way in both schemes. One important drawback

of the hardware approach is that the system still continues to prefetch data even in the last

iterations (corresponding to the epilogue loop), since the hardware is unable to know when

the loop will end.

5.3.4 Scheduling Prefetches

The purpose of prefetching is to bring data ahead of its use, so prefetches should be issued

early enough to hide memory latency. However, they should not be too early so that they

do not displace useful data in the working set or are replaced before use. The software

algorithm usually schedules prefetches ahead by a number of iterations:
&

�

s

'

where δ is the prefetch latency and s is the length of the loop body. As a result, the

software scheme prefetches a data item at least one iteration before it is used. The prefetch

61

is usually placed immediately before or after a corresponding reference to minimize the

computation cost of the effective address.

exec time of

an iteration
exec time of

PC

an iteration

LA-PC

LA-PCPC

τ

i+1

i+1A

i+1A

i+1A

A
Hardware:

Software:

i+1

Hardware:

Software:

Ai-2 A

δ

i+1AiA

δ

δ

δ >=

δ <

prefetch

prefetch

prefetch

prefetch

δ

τ

Figure 5.2: Scheduling prefetches

Similarly, the LA-PC in the hardware scheme is capable to identify a prefetch several

iterations ahead depending on the prefetch latency. Furthermore, the data will arrive at

the cache at a time closer to the actual use. We illustrate the occurrence of a prefetch

for both schemes in Figure 5.2. As can be seen in the figure, the issue time of the

hardware prefetching depends on the length of memory latency1, and data is expected to

be fetched one memory latency before its actual use. Hence, it happens independently of

the corresponding load, and it may even occur in the same iteration as the actual load. In

contrast, in software prefetching, a compiler always identifies accesses which are likely

to be cache misses and inserts prefetches around the actual accesses. There is a timing

window τ between the arrival time of prefetched data and its actual use. Prefetching

within such a window can be vulnerable to the negative effects of prefetched data that is

1 To take memory contention into account, the LA-limit is usually slightly greater than one memory latency

62

replaced or that displaces other useful data. The timing mechanism for issuing prefetches

in the hardware scheme has two implications: (1) prefetched data has less side effects on

the cache (such as replacement problems), (2) there will be less clustering of tag lookup

by multiple prefetches and their actual loads. A difficulty with the software scheme is

that δ may not always be predictable at compile time; however it does not have a

drawback encountered in the hardware lookahead mechanism, namely relying on good

branch prediction to predict useful lookahead stream.

5.3.5 Prefetching in Multiprocessors

Thus far we have been focusing on prefetching for uniprocessors. When we consider a

multiprocessor environment, additional factors come into play:

1. prefetches increase memory traffic,

2. prefetching of shared data items may bring coherence traffic,

3. invalidation misses are not predictable at compile time, and

4. the cache affinity on which task scheduling and migration policy may depend is

increased.

Since these factors are common to all prefetching approaches, we will not particularly

focus on Mowry et. al.’s solution and our scheme in the following discussion.

The first factor, additional memory traffic, depends on how many unnecessary data

are prefetched and how much impact they will have on the working set. Although the

same problem may occur in uniprocessors, it becomes more sensitive in multiprocessors,

especially when there is a possibility of saturating the interconnection network as in a

shared-bus architecture. Ideal prefetching would be such that only data which are most

likely to be used are prefetched and the prefetched data arrive at the cache just in time

of actual use. The software scheme can be more successful with the first goal, while the

hardware scheme may be better at achieving the second goal.

The fact that prefetching may increase coherence traffic is usually difficult to avoid

in all prefetching approaches. The problem arises from two situations: the first is that a

prefetched data item may need to be invalidated before it is used, and the second is due to

the fact that an exclusive-prefetch causes invalidation misses on data that might yet have to

63

be used in other processors. If a relaxed consistency model is assumed, write propagations

are usually delayed until synchronizations. In this case, the first situation is equivalent to

the attempt at controlling data that arrive at the cache just in time for its use. The second

situation occurs when there is high contention for some shared writable data. Approaches,

such as binding prefetch [Gornish et al. 90], can reduce the problem by conservatively

suppressing prefetches which may have data and control dependencies of accesses in other

processors.

The fact that invalidation misses are not predictable at compile time is a weak point

of the software approaches, since they lack the dynamic information necessary to initiate

prefetches for missing data which have been invalidated. Hardware approaches should be

able to fetch back the data which were invalidated, if the state information mandates the

prefetching. In case that most invalidation misses are attributed to false sharing, those

misses can be minimized by reorganizing the shared data. As a result, an algorithm

[Jeremiassen & Eggers 92] that restructures shared data to reduce false sharing can be

incorporated in the software prefetching schemes.

Task scheduling and task migration make prefetching in multiprocessors more compli-

cated, because processor assignments may change before the prefetched data in the cache

has been used. Parallel programs based on static task scheduling can still be handled by

the software algorithm. However, a fine-grained task scheduling policy will be detrimental

to prefetching, since the prefetching cost cannot be amortized by the insufficient cache

miss reduction. The task scheduling problem is even more critical to the hardware scheme,

which requires past access histories stored in a cache-like table. The table contents, like the

context of data, should be accumulated in the cache affinity parameter used in the decision

of task scheduling.

5.3.6 Other Aspects and Final Words

In this section, we discuss other issues which are not limited to one particular scheme.

The first thing is the implementation cost. The hardware scheme requires the RPT and its

associated logic (equivalent to a 4K-byte data cache as indicated in Section 4.3.3). The

software solution requires little hardware complexity except the prefetch instruction in the

processor, but a sophisticated compiler should be provided. Both schemes need a cache

which can support multiple concurrent memory requests.

The second issue is whether or not more aggressive program-specific prefetches can be

64

supported. The software scheme can definitely provide better solutions than the hardware

scheme in taking advantage of program information. Although it has not been shown in

the literature, the software solution may be able to provide more flexible prefetching, such

as pointer-chasing for linked lists, block prefetches (prefetching size being determined in

terms of semantic object instead of cache line size), and data reorganization. Although

Mowry and Gupta [91] have shown the success of several strategies by code-specific and

programmer-directed techniques, it is still unknown if the techniques can be automated for

general applications without programmers’ intervention and be easily implemented in the

compiler.

To summarize, we have compared software and hardware schemes in the context of

uniprocessors and multiprocessors. In the domain of linear array references, both hardware

and software schemes are able to generate prefetches to minimize cache misses. However,

the software scheme may have a code expansion problem, while the hardware scheme

has less clues on whether prefetching data will be used or not. The software approach

may have more compile-time information to perform sophisticated prefetching such as

program-specific prefetches for complex data patterns, whereas the hardware scheme has

the advantage of manipulating dynamic information (such as conflict misses or input data

dependence). Both of them face the problems of increasing memory traffic and coherence

traffic in a multiprocessor environment. Tullsen and Eggers [93] have shown that the

prefetching benefits are limited if memory bandwidth is a primary resource in the context

of a bus-based shared memory multiprocessor. We examine the latter issues by performing

a simulation evaluation for a multiprocessor with an interconnection network with more

bandwidth.

5.4 Quantitative Evaluation Methodology

In this section, we first describe the architectural models, the simulation environment, and

the benchmarks. We then present our model implementations of hardware and software

prefetching.

65

5.4.1 Architectural Models

The architecture that we assume is a shared-memory multiprocessor (cf. Figure 5.3).

It includes 16 MIPS R3000-like processors connected to memory modules through an

interconnection network. Each processor has a local memory for private data and

instructions, and primary caches for shared data. We assume that private or stack data

are allocated in the local memory. Cache coherence is maintained using a full directory

protocol [Censier & Feautrier 78]. The directory is distributed among the memory modules

and dynamically maintains the states of the data blocks. Prefetched data are put into the

caches so that the data still remain visible to the cache coherence protocol.

Processor

Cache

Memory Memory

Processor

Cache

Interconnection Network

M M

Processor

prefetch
buffer

ORL Data
Cache

Local

Memory

Figure 5.3: Model Architecture

Prefetch requests are generated by the processor. For software prefetching, a prefetch

is initiated by a prefetch instruction. For hardware prefetching, a prefetch is triggered by

an on-chip supporting unit. To handle prefetching, the system has a prefetch issue buffer,

which can hold up to 16 prefetches. The prefetch request will check the tag directory in the

cache and will be initiated to the memory system if there is no matched cache line. When

the buffer is full, incoming prefetches are just discarded. Each processor has a 64K-byte

data cache, which is direct-mapped and copy-back with a cache line size of 16 bytes. The

caches are lockup-free [Kroft 81], thus allowing multiple outstanding data requests. A

16-entry outstanding request list (ORL) is used to keep track of pending requests, some of

which might then become hit-wait accesses.

As mentioned above, the cache hierarchy is used only for storing shared data.

Instructions and private data references are assumed to hit in the local memory with the

processor incurring no time penalty. Since the configuration of the interconnection network

is not of our primary interest, we simply assume that the memory bandwidth is sufficient

66

for any application and that a fixed latency time is used when a request travels through the

network. The one-way latency time between caches and the global memory modules, that

is, the one-way network latency, is 40 cycles. Hence, a reference that misses in caches

incurs a total latency of at least 80 cycles (Lm). A read miss to a dirty block owned by

another cache or a write request to a block that is already cached elsewhere will need at

least two network round trips, i.e., 160 cycles. Although we do not model the contention

in the network, we do take into account interference at the caches and at the memory

directories since each cache and directory module can process only one request per cycle.

Lock/unlock and barrier requests are handled using a queue-based protocol in the directory.

A request waiting on a synchronization operation will not cause extra traffic for the caches

and the network.

5.4.2 Simulation Environment and Benchmarks

We have developed a direct-execution simulator that simulates important events of

interest in a shared-memory multiprocessor, while the computation instructions are directly

executed by the host machine. A simulation module is assigned to each component of the

architecture. Processor, cache, memory, and network simulation modules are built in the

simulator and are replicated as needed for a given configuration (as shown in Figure 5.4).

Clocks are associated with simulation modules. The modules behave like light-weight

threads within a single UNIX process. A kernel of the simulator always drives the module

with the earliest clock time. When a processor module is simulated, a user context of the

simulated benchmark is restored and the corresponding user thread is directly executed

until an operation that may have global effects, like a shared reference or a synchronization

primitive, is encountered. As a result, the interactions among modules in the system reflect

the dynamic execution of the user program with the correct actual delays and interleaving

order of the global requests. The number of instructions executed is counted based on the

annotations of basic blocks and global events which are instrumented by a preprocessor.

Hence, the instruction stream is obtained and can be simulated as in the real execution.

The main goal of the simulator is to effectively simulate the execution of ‘‘parallel’’

programs in a uniprocessor environment. Parallel applications are developed in C using a

set of parallel constructs, such as locks, barriers, forks. The constructs are expanded by

a macro processor and then are translated to a set of simulator ‘‘system calls’’ by a code

instrumenting program. Since the entire simulation and user execution reside in the same

67

processes
user

Execution Driven Kernel

CacheCPU

vtime vtime

Network

context

vtime

Figure 5.4: Direction Execution Simulator

process, when the execution reaches those system calls (parallel constructs), the simulator

kernel will handle the internal context switching. Locks and barriers are implemented by

the kernel synchronization mechanism and fork calls will cause the simulator to create

new user threads running in the process. The advantages of this technique are that an

efficient evaluation can be performed in an uniprocessor environment and that the simulated

architecture modules can be easily developed and controlled. The idea of a simulation

where the simulator and user programs execute concurrently appears in several simulators

[Davis et al. 91, Brewer et al. 91, Grunwald et al. 91]. Specifically, our implementation is

similar to Tango [Brewer et al. 91]. However, the differences are:

1. User synchronizations are handled in the simulator kernel, instead of UNIX processes

and semaphores. This can significantly reduce the simulation overhead.

2. Each simulation module is running independently as an internal thread in the process.

It allows the system to efficiently switch from one simulation module to another and

thus reduces the simulation time. It also imposes a structured organization for the

development of simulation components.

3. The original instruction stream is captured so that studies of branch prediction and

instruction lookahead are possible in the multiprocessor environment.

68

Because of the execution-driven simulation paradigm, the total number of instructions

executed in some dynamically scheduled programs (e.g., Cholesky -- see below) may vary

across the architectural configurations. In addition, the amount of barrier waiting time can

be quite variable. Thus, to avoid providing misleading statistics on total execution time per

processor, the synchronization times that we will show will not include the time when a

processor stalls for a barrier to complete.

Table 5.1: Benchmarks characteristics - average numbers for a single processor in the 16

processor simulation

Instructions shared shared data

Applications executed (K) reads (K) writes (K) Locks Barriers size (K bytes)

Matmat 8,723 1,355 421 0 82 2109

Mp3d 7,231 1,334 426 10 60 3673

Water 21,173 1,033 72 8,737 25 156

Cholesky 38,233 6,809 524 5,671 81 6403

The benchmarks we used are Matmat and three SPLASH benchmarks [Singh et al. 92].

To study the architectures with a moderate cache size, we run the benchmark programs

with larger data sets than what are provided in the benchmark. Table 5.1 summarizes the

statistics collected on these benchmarks once their parallel sections are started up until the

program is completed. Only shared references are recorded in the table and the column

below ‘‘shared data size’’ indicates the total size of global shared area which is explicitly

allocated in the program. Matmat is a blocked matrix multiplication program, run with

two 300�300 matrices with proper cache buffer and block setting so that the effects of

cache size and block size can be balanced. MP3D is a particle-based fluid flow simulation

program. We ran MP3D with 100,000 particles in a 14 � 24 � 7 space array for 10 time

steps. Water, an N-body molecular application, was run with 288 molecules for 4 time

steps. Cholesky performs parallel factorization of a sparse matrix, run with the test set

bcsttk15.

69

5.4.3 Model Implementations

In this study, we experimented with three architectural choices: baseline caches, caches

with lookahead prefetching, and caches with software prefetching. In prefetching caches,

prefetching was performed for read misses only. Although write misses or writes on

clean write-shared data can be helped by the use of an exclusive-prefetch, the prefetching

overhead may be still substantial because it increases invalidation misses in other processors

that are still using the data. Instead, our default consistency model is weak consistency

[Dubois et al. 86], under which the write latency can be mostly hidden.

The baseline cache hierarchy without prefetching was described in Section 5.4.1. In

both the baseline cache and caches with prefetching, we assume that reads are blocking,

that is, a processor stalls on a miss or hit-wait until the data is ready in the cache. Our

model of lookahead prefetching for each processor is the hardware lookahead prefetching

scheme, which has been described in Section 3.3.

We now describe the methodology that we followed to simulate software prefetching.

To achieve the maximum possible benefits of software prefetching, we try to identify those

accesses which have the highest cache miss rates by profiling the benchmark programs.

The instruction addresses of the cache misses (candidates for prefetching) are recorded by

running each program based on the same configuration of the study with the same data

set. After the accesses for prefetching are identified, we instrument the codes with prefetch

instructions. Since there is no prefetching compiler available to us, we manually insert

prefetch instructions related to these high miss frequency items at the source level based

on the following strategies:

1. We estimate the execution time of an iteration for a loop. A data item accessed in

the loop is prefetched one or more iterations ahead depending on the relative values

of the loop execution time and the memory latency (e.g., 80 cycles).

2. Taking the block size of 16 bytes into account, we may unroll a loop or introduce

a prefetch predicate to avoid unnecessary prefetches. Also, we perform the loop

splitting such that in the prologue loop prefetches are started, and in the epilogue

prefetches for the last final iterations will be suppressed.

3. By default, each prefetch will bring one cache line. We allow the possibility of

block prefetching. If our profiling information detects that prefetching the whole

70

data object at once would be beneficial, we pipeline prefetch requests by a block

prefetch. As a result, a prefetch request initiated by a single prefetch instruction may

trigger the cache to issue several data access requests to memory modules.

4. If the address of the prefetch can only be determined dynamically, e.g., depending on

result of a previous load (we call it a load dependent access), we attempt to schedule

the instruction source of the dependence ahead in the instruction stream to provide

as large a non-blocking span as possible.

Based on the above strategies, we try to keep the overhead associated with each prefetch

in our implementation as low as possible. We analyze the following possible sources which

may contribute to software prefetching overhead:

� The prefetch instruction itself requires the processor execution. As a result, the

prefetch overhead is at least one cycle per prefetch instance.

� We assume that the data address of the prefetch can be specified in the instruction.

The address computation of prefetch instructions is generally combined with the

corresponding loads and the overhead for address computations is nearly nil, since

we use the compiler to perform all optimizations. Note that when the prefetches are

moved away from their loads due to instruction scheduling, the cost of prefetching

may increase because address expressions cannot be completely eliminated.

� Each prefetch instruction implicitly fetches one cache line. An additional instruction

is needed when the prefetch size is greater than one cache line size to specify the

prefetch size for block prefetching,

� Prefetching may increase register pressure as a result of loop splitting and unrolling.

The additional spilled code will contribute to the prefetching overhead.

Overall, the overhead in our implementation is relatively low (just over one instruction

per prefetch instance) in order to emulate an effective compiler algorithm.

Next we describe the complications and limitations of software prefetching in our

implementation. Adding prefetching to real benchmark programs gave us a different

71

experience from adding to kernel programs, such as Livermore Loops, or Nasa Kernels.

For example, the number of iterations in a loop nest is usually variable. We need to add

additional code when we perform loop unrolling and loop splitting. Also, the starting

element of a data array in the loop does not necessarily align to a cache line boundary.

This problem is getting complicated when the starting index and the ending index are

depending on previous computations. Although a compiler has information to align data

arrays, most of those difficulties are due to the fact that the execution depends on certain

variables or input data, a problem which a compiler has difficulty to deal with as well. We

therefore might end up with splitting loops into various sections and expanding the code to

compromise any possible run-time results by adding more IF condition statements.

Another noteworthy point is that the codes were inserted with prefetches based on ‘‘as-

is’’ benchmarks. We instrument the programs from the original SPLASH benchmarks, with

some portion of codes being rewritten to better perform software prefetching. Admittedly,

results could be different if programmers, with prefetching in mind, reorganize the entire

codes so that prefetching insertion would be more effective and efficient by a compiler. A

good solution in compiler design may be that programmers specify more program-specific

hints or constructs, and then the compiler takes care of low-level prefetch insertions.

In summary, the goal of the instrumentation is to emulate a compiler algorithm that

will carefully generate effective prefetches. Although these strategies may soon be within

the realm of current optimizing compiler technology, it is our contention that our results

will be optimistic.

5.5 Simulation Results

In this section, we present experimental results that contrast the hardware and software

prefetching approaches. We first give general comparisons and then examine the bench-

marks in more detail to better understand the effectiveness of prefetching. Section 5.5.3

discusses some negative effects introduced by prefetching. In sections 5.5.4 and 5.5.5, we

study the effect of variations in memory latency and the impact of consistency models.

Then in Section 5.6, we investigate the combination of hardware and software approaches.

72

5.5.1 General results

Figure 5.5 shows the simulation results of the average execution time from 16 processors

with respect to various approaches. The left-most bar shows the breakdown of the execution

time of the baseline cache (BASE). The next two bars are for hardware-based lookahead

prefetching (HW-pf), and software prefetching (SW-pf) respectively. We present the data

by normalizing the total execution time with respect to the baseline organization. Each bar

contains several sections. The exec section denotes the time to execute instructions -- it

also includes the extra instruction overhead for executing software prefetching instructions,

necessary address/size computations, and execution of possible extra spilling loads due to

the increase of register pressure (determined by the compiler optimization); read and write

indicate the fraction of processor stall time for reads and writes ; delay shows the delay of

demand accesses resulting from handling prefetch and tag updates in the cache; and synch

gives the time waiting for lock and barrier accesses.

We look at the results by examining each stall time component. The instruction

execution time corresponds to the processor utilization. As shown in Figure 5.5, the

processor utilization is between 13% in Mp3d and 75% in Water. There is much room

for improvement on the read access penalty by the lookahead (HW-pf) and software

prefetching (SW-pf). A comparison between the BASE and the prefetching schemes shows

that hardware prefetching can significantly reduce the read stall time by 10%-39% of the

original total cycles, while software prefetching also achieves remarkable reduction (by

15%-43% of total cycles). We will dwell on these numbers in more detail in Section 5.5.4.

The next component contributing to CPU stall time is the write penalty. Since the

system is based on the Weak Consistency model, it is not surprising that only a small

portion of the write penalty is seen. Under a weak consistency model, the write portion is

the sum of the time spent at a synchronization point to wait for previous pending writes

to complete, the stall time because of the write buffer being full, and the time waiting for

a read miss which needs the same line as another pending write. However, since those

situations are rare, the sum of the stall times is nearly negligible with respect to the total

CPU stall time.

As to stall time due to synchronizations, the overhead looks relatively small compared

with other stall contributions. Synchronization delays are slightly visible only in Water

and Cholesky, where synchronization activity is more apparent (c.f., Table 5.1). The

synchronization overheads are not modified significantly by prefetching.

73

BASE HW pf SW pf

0
20

40
60

80
10

0

N
or

m
al

iz
ed

 e
xe

c
tim

e
(%

)

57.1

42.9

 0
 0
 0

57.1

9.5
 0

0.4
 0

65.7

5.4
0.2
1.4
 0

100

67
72.7

Matmat

BASE HW pf SW pf

0
20

40
60

80
10

0

N
or

m
al

iz
ed

 e
xe

c
tim

e
(%

)

13.1

86.8

0.1
0.1
 0

13.1

53.3

0.1
0.7
 0

14

34.3

0.1
0.5
 0

100

67.2

49

Mp3d

exec
read
write
sync
delay

Figure 5.5a: Simulation results

The last component is the cache interference, an overhead introduced by the prefetching.

It includes the number of processor stall cycles as a result of the cache handling the requests

and tag updates of prefetched blocks. As seen from the delay section in Figure 5.5, the

number of busy cycles are very small (only 0.05%-0.6%). Hence, this negative effect is

almost negligible.

Extra instruction execution time is yet another overhead, which is present only in

SW-pf. As shown in the exec section of SW-pf, the SW-pf instruction overhead can be

74

BASE HW pf SW pf

0
20

40
60

80
10

0

N
or

m
al

iz
ed

 e
xe

c
tim

e
(%

)

74.6

18
1.9
5.5
 0

74.6

8.5

1.9
5.3
0.1

76.3

3.1
1.9
5.2
0.1

100
90.5 86.5

Water

BASE HW pf SW pf

0
20

40
60

80
10

0

N
or

m
al

iz
ed

 e
xe

c
tim

e
(%

)

48.6

47.6

0.3
3.5
 0

48.6

8.2
0.3
2.4
0.7

52.1

24.7

0.3
3.4
0.3

100

60.1

80.7

Cholesky
exec
read
write
sync
delay

Figure 5.5b: Simulation results

substantial. The portion of normalized time due to the software overhead ranges from 0.9%

in MP3D to 8.6% for Matmat and may offset part of what was gained in reducing the read

penalty.

In summary, the results show that when the processor utilization is not high, the total

execution time (read penalty) can be significantly reduced by prefetching. Under a weak

consistency model and given sufficient memory bandwidth, writes and synchronizations do

not contribute much to stall time. We also observe that the side effects of prefetching such

75

as processor interference and cache busy time are insignificant. However, the instruction

overhead in SW-pf is substantial.

5.5.2 Detailed Analysis

We examine further the effectiveness of prefetching by looking in more detail at the

individual behavior of the four benchmarks (cf. Table 5.1).

Matmat

Matmat is a blocked matrix multiplication program in which almost all references are

regular and sequential. Both HW-pf and SW-pf perform as well on the Matmat benchmark

where data access patterns are regular (read penalty reduced by 77% and 87% respectively).

Even so they do not eliminate all of the read penalty. In HW-pf some of the read penalty

is contributed by a portion of hit-wait cycles in the first iterations. Another portion of the

remaining read penalty stems from the fact that the blocking technique tries to localize the

referenced domain of inner loops and thus data blocks prefetched at the last iteration of an

inner loop are generally unused. Similarly, SW-pf has a portion of hit-wait cycles. Since the

register pressure is already very tight because of tiling of the inner-most loop, loop splitting

due to prefetching would exaggerate the pressure. By looking in more detail at SW-pf

shows that the execution time of one iteration of the inner-most loop (unrolled by factor

of 2) takes 85 ideal cycles. It has been increased by 11%, compared with the execution

time of the original code (76 cycles for two iterations). The increase comes from the

prefetch instructions and extra spilling code. This explains the magnitude of the instruction

overhead (8.6% of total time) for SW-pf. It indicates that the SW-pf should be more

conservative when taking into account optimizations arising from locality considerations.

MP3D

The two data structures that account for most of the references are particles and space

cells. The particles are statically allocated; the space cells are accessed in a relatively

random manner depending on the location of the particle being moved. In such an

application where data structures are more complex, SW-pf exhibits better performance in

reducing the read penalty than HW-pf (38% for HW-pf in MP3D vs. 60% reduction for

SW-pf). Although HW-pf has no difficulty in prefetching a particle record, it is not good

at dealing with space cells because their locations vary with time. Thus only roughly half

76

of the cache misses are covered through HW-pf. In contrast, SW-pf performs much better

than HW-pf. SW-pf can statically prefetch particle data and use load dependent prefetches

to get the space cell when the address of an associated particle is determined. Moreover,

particle objects and space cells can be prefetched by a single block prefetch instruction.

Consequently, several memory access requests triggered by only one prefetch instruction

can be pipelined to the memory system. The prefetching of space cells is scheduled so that

it can be performed in parallel with other computations. Therefore the latency of the load

dependent prefetch is further hidden. The use of block prefetches is also the reason that

MP3D has a negligible instruction overhead in Figure 5.5.

Water

The main data structure is an array of molecules where each element holds all the data

for one molecule. Each molecule requires about 38 cache lines. Data accesses preserve

spatial locality in the intramolecular computations and data access patterns are predictable

intermolecular computation phases. Since the ratio of the number of shared references

to instructions is very small, the instruction time accounts for a large portion of the total

execution time (cf. Table 5.1). In addition because the cache can almost hold the entire

working set, most of the accesses result in cache hits. Therefore the read penalty contributes

only 18% of the total execution time. While this benchmark has predictable access patterns

but with small nested loops, the SW-pf moderately outperforms HW-pf (52% for HW-pf

vs. 83% for SW-pf). The read penalty reduction is remarkable but does not improve

performance that much since the read penalty is relative small. It is easy for both HW-pf

and SW-pf to handle the shared references in the intra and intermolecular computation

phases, with SW-pf being more effective. The main reason is that each computation of

a molecule involves two or three nested small inner loops with only a small number of

iterations in each level of loop. SW-pf simply prefetches data for all the iterations at one

time, whereas the small loops hinder HW-pf from gaining sufficient prefetching distance.

Loop unrolling and blocking techniques in the original code may remove the obstacles for

HW-pf. However, unrolling multiple levels of loops may potentially expand the code by a

significant amount.

Cholesky

Cholesky is dynamically scheduled with coarse task granularity (about 86,000 shared

77

references per task). Each task works on supernodes, which are sets of columns of a

very large but sparse matrix. The input data file is a 3948-by-3948 matrix with only

56934 non-zeros. The primary operation is the column modification which involves the

addition of one column into another in order to cancel a non-zero in the upper triangle.

Since all non-zeros belonging to a certain column are stored contiguously in an array

and the row numbers of the non-zero elements are stored in a compressed manner, the

program iterates on the array of row numbers to find matching rows and then fetch the

non-zero to perform computations. As a result, the starting and ending values of loops

are generally unknown at compile time. In the benchmark, where the data structures are

regular with input-dependent accesses, the hardware scheme performs better than SW-pf

(82% vs. 48%). The HW-pf scheme can benefit from the assignment of large supernodes

to the processors by sequentially prefetching the array and dynamically extracting data

access patterns for the accesses of non-zeros. Similarly, SW-pf can prefetch the data for

accesses to the array holding row numbers. However, it is conservative in prefetching the

non-zeros by using load dependent prefetches only after the row pointer is known. This

will usually cause prefetched blocks to arrive in the cache too late and thus to contribute

a large portion of hit-wait cycles to the read penalty. In addition, because the starting

and ending values are run-time variables, the code is significantly expanded as a result of

loop unrolling and splitting as well as prefetch insertion. For example, an IF statement

is required in the prologue loop to align the prefetch access on the cache line boundary.

Hence, the instruction execution time is increased.

To summarize, our data show that SW-pf and HW-pf can achieve good performance

improvements in programs with regular access patterns. HW-pf can handle applications

with input data dependence if the loop granularity is not too small. SW-pf is flexible and

even good at dealing with programs with complicated but well-organized data structures.

However, the benefit of software prefetching may be offset by the extra overhead it incurs.

5.5.3 Negative Effect of Prefetching

As we have discussed in Section 5.3.5, one of the concerns for prefetching in multiprocessors

is the negative effects that may offset the performance benefits. In this section, we examine

the issue of negative effects brought by prefetching, including memory traffic and pressure

on a cache for holding the working set.

78

Prefetching typically increases memory traffic. A multiprocessor is generally sensitive

to such an increase in memory traffic, especially in the case of bus-based shared memory

multiprocessor. The increase usually comes from: (1) prefetches of unused data lines, (2)

extra cache misses due to conflicts with the current working set, (3) extra invalidates owing

to additional write-sharing by prefetching, (4) the increase of invalidation misses due to

exclusive prefetches. Since we do not perform prefetch for writes, the last problem does

not exist in our study.

BASE HW pf SW pf

0
20

40
60

80
10

0
12

0

N
et

w
or

k
tr

af
fi

c
(%

)

82.1

 0
14.6
3.3

5.8

84

14.1
3.2

1.7

84.7

19.1
7.4100

107.1 112.9

Matmat

BASE HW pf SW pf

0
20

40
60

80
10

0
12

0

N
et

w
or

k
tr

af
fi

c
(%

)

40.3

 0

35.9

23.8

20.2

20.3

36.1

24.6

2.8

38.4

36

24.7

100 101.2 101.9

Mp3d

BASE HW pf SW pf

0
20

40
60

80
10

0
12

0

N
et

w
or

k
tr

af
fi

c
(%

)

43.2

 0

27.1

29.7

14.1

34.4

27.9

35.3

3.3

40.3

27.3

29.9

100
111.8

100.8

Water

BASE HW pf SW pf

0
20

40
60

80
10

0
14

0

N
et

w
or

k
tr

af
fi

c
(%

)

60

 0

34.5

5.5

4.9

77.2

34.5

5.3

10.9

49.9

34.4

5.9
100

121.9

101.1

Cholesky
read
prefetch
write
invalidation

Figure 5.6: Network traffic

In Figure 5.6, we present the increase in network traffic. In terms of the number of

79

requests appearing in the network, we consider four kinds of network traffic: read misses,

prefetch requests, write requests (write misses and write hits on clean), and invalidates.

From these results, we observe that the total number of memory requests increases, as

expected, for both types of prefetching for all benchmarks. However, the increase due to

prefetching (especially SW-pf) is relatively insignificant with respect to the total traffic.

Most of the memory traffic increase stems from the fact that the total requests of read

misses and prefetches are greater than those of read misses for the baseline cache. Since

prefetching may fetch write-shared data, a slight increase of write requests and invalidates

can be also observed in the figure. In general, SW-pf is more conservative in introducing

memory traffic than HW-pf. The reasons are that HW-pf has less information to avoid

sending unnecessary prefetches to the system and that data blocks prefetched during the

last iterations are usually unused. The traffic increase is more significant in benchmarks

with small iterations, such as Water, where the penalty reduction by HW-pf is less than that

by SW-pf, but where HW-pf brings more network traffic. One exception is Matmat, where

SW-pf results in more network traffic than HW-pf. However, the increase is mainly because

more writes and invalidates are issued since there is more prefetching of write-shared data.

Table 5.2: Proportions of Conflicts in the direct-mapped sets

Hardware Software

Programs ws , ws ws, pf pf, pf ws , ws ws , pf pf, pf

Matmat .924 .076 0 -a - -

Mp3d .976 .024 0 .925 .062 .013

Waterb - - - - - -

Cholesky .710 .174 .117 .961 .034 .005

a Miss rate is too small (< 0.001).

b There are very few conflict misses left, since most of the data set fits in the cache and misses are

mainly caused by invalidation misses.

To examine the impact of prefetching on the working set in the cache, we estimate the

negative effect by measuring conflicts between the working set and prefetched data. We

record the information of replaced data lines in a ‘‘shadow’’ direct-mapped cache with

the same size as the data cache. If a cache miss finds a matched entry in the shadow

80

cache, we record the status of both replaced and current blocks. It indicates that the miss

is due to a conflict with previous access2. As the prefetching schemes effectively reduce

the number of cache misses, the miss ratios of the four benchmarks are generally low.

Among the remaining misses, we are interested in conflict misses. Table 5.2 gives the

proportions of those conflict misses among three categories: conflicts within the current

working set itself, between the working set and prefetched blocks, and between prefetched

blocks themselves. The results show that a large portion of conflicts occurs among data

in the working set itself. When a prefetched data arrives in cache at a time close to the

actual use, the probability of conflicts with the current working set is small. We also see

that HW-pf in Cholesky brings more prefetched data than necessary and, thus causes more

conflicts with data in the cache. This can be explained by the evident increase of data read

(read misses and prefetches) traffic in the network, as shown in Figure 5.6.

To sum up, we observe that the negative effect of prefetching in network traffic and

conflicts with the working set is not severe. The increase of network traffic is very small

for SW-pf, whereas HW-pf may give a slight increase. Most conflict misses are caused by

the working set itself.

5.5.4 Effect of Memory Latency

In this section we explore how variations in the secondary cache and main memory latencies

influence the performance of the three prefetching schemes. We consider three sets of

latencies: the one used previously (Lm = 80), one where we consider a processor twice as

slow (Lm = 40), and one where the main memory latency is doubled (Lm = 160) with the

rationale here that our 16 processor system might be a subset of a larger multiprocessor.

In Figure 5.7, we show the read access times for these three organizations normalized

with respect to the no-prefetch BASE default case (Lm = 80). The read access penalty is

decomposed into two sections: read miss, the stall time due to cache misses, and hit-wait,

the waiting time for a prefetch which is issued too late. In order to have a fair comparison

for SW-pf, we modified and moved around some prefetch instructions in an attempt to

provide a sufficient prefetching span for large latencies.

As can be seen in Figure 5.7, the reduction in the read penalty slightly degrades as the

memory latency increases. This illustrates that both HW-pf and SW-pf still can be effective,

2 Note that this metric just includes the number of conflicts which the current data have with most recently

replaced data, instead of all of the conflict misses and capacity misses.

81

Base HW-pf SW-pf Base HW-pf SW-pf Base HW-pf SW-pf

0
50

10
0

15
0

20
0

51.9

10.7 6.1

100

22.2
12.5

194.5

51 50.3

Matmat
N

or
m

al
iz

ed
 r

ea
d

ac
ce

ss
 ti

m
e

(%
)

Latency 40 Latency 80 Latency 160

Base HW-pf SW-pf Base HW-pf SW-pf Base HW-pf SW-pf

0
50

10
0

15
0

20
0

50.1
30

19.8

100

61.4
39.5

199.9

123.6

80

Mp3d

N
or

m
al

iz
ed

 r
ea

d
ac

ce
ss

 ti
m

e
(%

)

Latency 40 Latency 80 Latency 160

read miss

hit wait

Figure 5.7a: Effect of memory latency

to a lesser extent, in tolerating large latencies by adjusting prefetching to occur several

iterations ahead of the actual use. Note that since the number of instruction executed is

generally fixed, the slight increase in the read penalty in SW-pf is more than compensated

by the relative decrease in the overhead of the prefetch instructions. For example,

when passing from Lm = 80 to Lm = 160, the overall execution time increases and the

overhead from software prefetching (not shown in the figure), an almost constant number

of instructions for each benchmark, decreases from 8.6% to 6% in Matmat, from 0.9% to

82

Base HW-pf SW-pf Base HW-pf SW-pf Base HW-pf SW-pf

0
50

10
0

15
0

20
0

25
0

50.1
22.4

6.5

100

46.3

17.1

200.2

95.8

39.6

Water
N

or
m

al
iz

ed
 r

ea
d

ac
ce

ss
 ti

m
e

(%
)

Latency 40 Latency 80 Latency 160

Base HW-pf SW-pf Base HW-pf SW-pf Base HW-pf SW-pf

0
50

10
0

15
0

20
0

25
0

50

8
25.7

100

17.3

52

200.1

55.1

110.7

Cholesky

N
or

m
al

iz
ed

 r
ea

d
ac

ce
ss

 ti
m

e
(%

)

Latency 40 Latency 80 Latency 160

read miss

hit wait

Figure 5.7b: Effect of memory latency

0.04% in MP3D, from 1.7% to 0.013% in Water, and from 3.5% to 0.3% in Cholesky.

This leads us to conjecture that software prefetching should be more advantageous as the

prefetch overhead becomes less significant with an increase in latency.

The cost of the hit-wait cycles is particularly important in prefetching. The read penalty

in HW-pf contains a fair amount of hit-wait time. In this scheme, the lookahead mechanism

needs to be reset to the value of the PC after each incorrect branch prediction. Therefore,

the first few prefetches are not yet one ‘‘memory latency time’’ ahead of when their data

83

will be used. This phenomenon tends to be serious in those programs with nested inner

loops with only a few iterations such as Matmat and Water. For SW-pf (cf. Cholesky),

the hit-wait cycles are mostly contributed by the load dependent prefetches, which are

constrained by the data dependencies. While SW-pf is generally able to identify most of

the cache misses, there remains the challenge of scheduling useful computations to overlap

with the prefetches, a task that becomes more difficult as latencies get larger.

To summarize, we show that the prefetching schemes can still be effective when the

memory latency increases. The stall time due to hit-wait accesses is a significant portion

of the read access penalty when the latency is large and will affect the relative gains of

prefetching.

5.5.5 Impact of Consistency Models

The simulation architecture that we have been using so far assumes weak consistency

(WC). Under this model, memory references between synchronization accesses can be

completed out of order, subject of course to dependencies, and thus WC exploits overlap

among memory accesses. This removes some constraints of Sequential Consistency SC,

the strictest model requiring that both reads and writes be blocking; the processor must

stall on a miss until the data is ready in the cache, although there may be several non-

blocking prefetches in progress simultaneously. In order to show the impact of consistency

models on the effectiveness of prefetching, we performed experiments under the sequential

consistency model.

Figure 5.8 presents the experimental results comparing prefetching under SC and

WC. We break down the execution time (normalized to the baseline under WC) into

the same five sections as before (recall Figure 5.5). As can be seen from Figure 5.8,

the overall execution time for the baseline architecture under SC (second bar) increases

from 6% to 80% over that of WC (first bar). This increase is because of the significant

portion of the write stall time. Similar results have been observed in the literature

[Gharachorloo et al. 91a, Mowry & Gupta 91, Zucker & Baer 92]. When looking at the

effects of HW-pf (third bar and fourth bar) and SW-pf (fifth bar and sixth bar), the

reductions of the read access penalty under SC are generally similar to those realized under

WC. The only subtle effect (not obviously seen in the figure) of consistency models on

prefetching is that the read stall time slightly increases from SC to WC. This is because the

latency of prefetch is likely to be hidden during the time that reads are blocking on pending

84

Base
WC

Base
SC

HW pf
WC

HW pf
SC

SW pf
WC

SW pf
SC

0
20

40
60

80
10

0
12

0

N
or

m
al

iz
ed

 e
xe

c
tim

e
(%

)

57.1

41.8

7.6
 0
 0

57.1

9.1

7.5
0.3
 0

65.7

5

8.8
1.3
 0

100
106.5

67
74 72.7

80.8

Matmat

Base
WC

Base
SC

HW pf
WC

HW pf
SC

SW pf
WC

SW pf
SC

0
50

10
0

15
0

20
0

N
or

m
al

iz
ed

 e
xe

c
tim

e
(%

)

13.1

86.4

80.9

 0 0

13.1

53

81.5

0.6 0

14.4

33.9

81

0.4 0

100

180.5

67.2

148.2

49

129.7

Mp3d

exec
read
write
sync
delay

Figure 5.8a: Prefetching based on weak and sequential consistency

writes in SC. This is particularly true of HW-pf, where the LA-PC, under SC, has a good

chance to get far enough in advance of the real PC because of write stalls.

5.6 Combining Hardware and Software Prefetching

In this section, we propose a combination of hardware and software solutions to prefetching.

The main idea is that the compiler inserts prefetches for user’s semantic data objects that

85

Base
WC

Base
SC

HW pf
WC

HW pf
SC

SW pf
WC

SW pf
SC

0
20

40
60

80
10

0
12

0

N
or

m
al

iz
ed

 e
xe

c
tim

e
(%

)

74.6

18

13.8
 0

5.7

74.6

8.2
14.2
0.1
5.5

77

3.1

13.9
0.1
5.3100

112.1

90.5
102.6

86.5

99.4

Water

Base
WC

Base
SC

HW pf
WC

HW pf
SC

SW pf
WC

SW pf
SC

0
20

40
60

80
10

0
12

0
14

0

N
or

m
al

iz
ed

 e
xe

c
tim

e
(%

)

48.6

47.6

29.1
 0

3.5

48.6

7.4

28.8
0.5
2.9

52.1

24.5

29
0.2
3.4100

128.9

60.1

88.2
80.7

109.2

Cholesky
exec
read
write
sync
delay

Figure 5.8b: Prefetching based on weak and sequential consistency

can be of any size, not necessarily of a cache line, in a manner more related to the program

information available to the compiler, and that a hardware supporting unit will take care

of accesses in the loop with a closer relation with the hardware organization. In addition

to bringing appropriate data belonging to the working set, software prefetching on data

objects reduces the instruction overhead incurring in the inner loop. Also, the problem of

explosive code expansion in the software prefetching can be avoided by using the hardware

component that handles loop or input-dependent accesses. To achieve maximum gains,

86

Base HW pf SW pf HW pf+SW pf
combined

0
20

40
60

80
10

0

N
or

m
al

iz
ed

 e
xe

c
tim

e
(%

)

50.4

10.5

58

5.6

52.5

5

100

61.5
66.8

58.2

Matmat

Base HW pf SW pf HW pf+SW pf
combined

0
20

40
60

80
10

0

N
or

m
al

iz
ed

 e
xe

c
tim

e
(%

)

11.6

54.1

12.4

35.5

12.4

19.4

100

66.3

48.5

32.5

Mp3d

exec
read
write
sync
delay

Figure 5.9a: Effectiveness of combining HW-pf and SW-pf

the hardware part is aimed at prefetching data from the secondary cache to a relatively

small primary cache and the software part is aimed at a large block fetch from memory

modules to the secondary cache. The reasons are that the hardware scheme can collect the

dynamic information and perform well at small latencies and that the software scheme can

be good at predicting the necessary working data that are brought into the larger secondary

cache with only a few prefetch instructions. By adding a special control instruction to

the instruction set, some unnecessary prefetches in the hardware prefetching scheme can

87

be further reduced by using the instruction as a control hint to enable (and disable) the

hardware mechanism. Such control hints can be inserted around a loop body so that the

hardware unit will operate only during the execution of loops.

Previously proposed approaches can be employed to realize the combined scheme. As

we have shown in Chapter 4, our proposed hardware scheme can be effective for small

caches. Gornish et al. [90] have proposed a compiler algorithm to identify the data for

block prefetches. It would be promising if a modification of the algorithm is made for

programs with more complex data structures in the context of non-binding prefetching,

rather than of binding prefetching.

We performed experiments for studying the effectiveness of the HW-pf and SW-pf

combined architecture. In the experiment, we consider a similar architecture to the earlier

study, except that each processor has a 32K-byte primary cache (C1) backed up by a

256K-byte second-level cache (C2). Both caches are direct-mapped with a cache line size

of 16 bytes and lockup-free. The one-way latency time between C1 and C2 is 5 cycles

and thus the delay for a miss in C1 with a hit in C2 is 10 cycles. Misses in C2 trigger

requests to the global memory modules. The one-way network latency is 35 cycles. Hence,

a reference that misses in both caches incurs a total latency of at least 80 cycles. In the

experiment, we modify the strategy for prefetch insertion in software prefetching: we do

not prefetch data in inner-most loops, we do not perform loop unrolling and splitting, we

insert prefetches for user data structures to be used (regardless of cache size, line size), and

we move prefetches far ahead of actual use (may even move to a location before the loop).

Figure 5.9 gives the simulation results of the new architecture with the combined

hardware and software schemes. As can be observed from the results, the read access

penalty has been further decreased when compared to either the hardware approach or

the software approach. This ends up with total reductions of the read penalty in the

baseline by 90% for Matmat, 78% for Mp3d, 88% for Water, 80% for Cholesky. The

instruction overhead of the new scheme is relatively small3 when compared with the

software approach. The portion of total normalized time due to the overhead ranges from

0.8% in Mp3d to 2.1% in Matmat. Overall, the total execution time can be significantly

improved by the combination of software and hardware schemes.

3 There is nearly no decrease in Mp3d. This is because SW-pf already performed block prefetching in Mp3d.

88

Base HW pf SW pf HW pf+SW pf
combined

0
20

40
60

80
10

0

N
or

m
al

iz
ed

 e
xe

c
tim

e
(%

)

72.9

7.3

75.3

1.6

74.2

1.4

100
89.7 85.6 83.4

Water

Base HW pf SW pf HW pf+SW pf
combined

0
20

40
60

80
10

0

N
or

m
al

iz
ed

 e
xe

c
tim

e
(%

)

42.9

13.5

46

27.7

43.8

10.1

100

62.6

81.5

59.5

Cholesky

exec
read
write
sync
delay

Figure 5.9b: Effectiveness of combining HW-pf and SW-pf

5.7 Summary

In this chapter we have studied the performance of hardware-based and software-directed

prefetching schemes. Our qualitative comparisons indicate that in the domain of linear

array references, both hardware and software schemes are able to generate prefetches

for cache misses. However, the software scheme may have a code expansion problem,

while the hardware scheme has less information on whether the prefetched data will be

89

used or not. As to other complex data access patterns, the software approach may have

more compile-time information to perform sophisticated prefetching, whereas the hardware

scheme has the advantage of manipulating dynamic information (such as conflict misses

or input data dependence).

The quantitative evaluation was performed by running direct-execution simulations of a

shared-memory multiprocessor using four benchmarks. Our experiments confirm the above

observations. We observed that the cache interference incurred by prefetching is almost

negligible. The software approach has less negative effect on network traffic and conflicts

with the working set than the hardware approach. However, the overhead due to the extra

prefetch instructions and associated computations is substantial in the software-directed

approach. The performance gain of reducing the read penalty can be offset by the slight

increase in instruction execution time.

We also evaluated the impact of varying memory latencies and of consistency models.

Our results show that the effectiveness of prefetching is slightly degraded by the increase of

memory latencies. Reductions in read penalty by prefetching were similar under sequential

and weak consistency.

Finally, we proposed and examined an alternative of combining the software and

hardware solutions. The main idea is that software will use program user’s semantic to

prefetch data objects into a secondary cache and that the hardware supporting unit will take

care of accesses in the loop and fetch the data into the primary cache. The new approach

can combine advantages of both hardware and software approaches and at the same time

avoid most of their negative effects. Our experimental results show that the new solution

is very attractive in reducing data access penalty without incurring much overhead.

Chapter 6

Non-blocking Caches

6.1 Overview

So far, we have discussed hardware and/or software prefetching techniques that can

eliminate, or at least reduce, the cache miss penalty by generating prefetch requests to the

memory system to bring the data into the cache before the data value is actually used.

These techniques exploit the overlap of computation with memory accesses prior to an

actual cache miss. In contrast, non-blocking is a technique to take advantage of a post-miss

overlap. A non-blocking cache (also called lockup-free cache) allows execution to proceed

concurrently with one (or more) cache misses until an instruction that actually needs a

value to be returned is reached. The basic idea in both non-blocking and prefetching caches

is to hide the latency of (read and write) data misses by the overlap of data accesses and

computations to the extent allowed by the data dependencies or consistency requirements.

In this chapter, we evaluate the effectiveness of the non-blocking technique on reducing

the memory latency. We consider ways to improve the approaches by compiler-based

optimizations (e.g., code rescheduling, software register renaming). We also propose a

hybrid design which is a combination of non-blocking and prefetching approaches. From

the simulation of ten SPEC benchmarks, our results show that hardware prefetching caches,

which require extra hardware complexity, generally outperform non-blocking caches and

that the prefetching caches are less sensitive than non-blocking caches to the increase in

memory latency. The compiler optimizations that we propose can significantly improve

the effectiveness of non-blocking caches.

The rest of the chapter is organized as follows: Section 6.2 gives some background

information on non-blocking caches. Section 6.3 describes the processor and memory

architectures under study as well as the evaluation methodology. Simulation results are

presented in Section 6.4. Section 6.5 describes the compiler optimization algorithms and

discusses the results. In Section 6.6, we propose and evaluate a hybrid design. Finally, we

summarize in Section 6.7.

91

6.2 Background and Performance Issues

We start this section with a brief description of non-blocking caches, including supporting

non-blocking writes in write buffers and non-blocking reads by the processor. We then

discuss performance issues and the extra hardware requirements.

6.2.1 Non-blocking Caches

Lockup-free caches were originally proposed by Kroft [81]. In his design, the following

three features are included:

1. Load operations are non-blocking.

2. Write operations are non-blocking.

3. The cache is capable of servicing multiple cache miss requests.

In order to allow non-blocking operations and multiple misses, Kroft introduced Miss

Information/Status Holding Registers (MSHRs) that are used to record the information

pertaining to the outstanding requests. Each MSHR entry includes (1) the data block

address, (2) the cache frame for the block, (3) the word in the block which caused the

miss, and (4) the function unit or register to which the data is to be routed. As we

have indicated in Section 2.2, the terms ‘‘lockup-free cache’’ and ‘‘non-blocking cache’’

are used interchangeably in the literature. We can somewhat clarify this confusion by

considering two distinct features: (1) a cache supporting multiple outstanding memory

requests, but with a processor stalling on read misses (blocking loads), and (2) a processor

supporting non-blocking loads and writes. Our view is that non-blocking loads are features

specified in the processor, non-blocking writes are supported by buffering writes, whereas

whether the cache allows multiple pending accesses or not depends not only on the presence

of MSHRs, but also on the available cache bandwidth as defined by the interface between

caches and memory modules. In the discussion of this chapter, we specifically focus on

non-blocking writes and non-blocking reads. We first discuss related designs which have

been proposed to support these two features.

To support non-blocking writes, write buffers are used to eliminate stalls on write

operations. They permit the processor to continue executing even though there may be

outstanding writes. Write buffers in conjunction with write-through caches are especially

92

useful in reducing the processor stalls on writes. For write-back caches (with write-

allocate), write buffers are used to temporarily store the written value until the missing data

line is returned. Another example is the write-back buffer used for temporary storage of

replaced dirty blocks in a write-back cache. As a further example, the lockup-free cache in

RP3 [Brantley et al. 85] supports non-blocking prefetches and multiple outstanding writes.

The cache allows partial writes, i.e., writes to only parts of a line and bypassing loads, i.e.,

the datum is directly forwarded to the CPU when the needed word is available in the cache,

even though the rest of the words in the same line may not be ready yet. Extensions to write

buffers have been proposed. For example, write caches [Bray & Flynn 91], organized like

regular caches, hold partial written data lines and allow multiple writes on the same line

to be combined, thus reducing the total number of writes to the next level of the memory

hierarchy.

In addition to the MSHR’s associated with a non-blocking cache, non-blocking loads

require extra support in the execution unit of the processor. If static instruction scheduling

in pipelines is used in the processor, some form of register interlock (like a full/empty bit for

each register) is needed for preserving correct data dependencies. For instance, the register

file in the MC88100 [Motorola 90] includes a scoreboard register, which contains one such

bit for each of the general-purpose registers. In the case of dynamic instruction scheduling,

introducing out-of-order execution, a more complicated scoreboarding mechanism is

required. In addition, both static and dynamic instruction scheduling strategies need

interrupt handling routines that can deal with interrupts generated by the non-blocking

operations [Hennessy & Patterson 90].

A consistency problem can arise when the processor allows non-blocking writes since a

later (in program order) read may be needed before a previous buffered write is performed.

If these two operations are on the same data block, an associative check in the write buffer

or the MSHRs must be done to provide the correct value to the following read. When the

processor is part of a shared-memory multiprocessor, the problem becomes more complex

and the solution depends on the model of memory consistency that is adopted.

6.2.2 Performances Issues

As mentioned previously, the non-blocking operations exploit the post-miss overlap of

computation and memory access while prefetching exploits the pre-miss overlap. The

following is a brief qualitative view of the expected benefits for both types of overlap.

93

Non-blocking loads delay processor’s stalls until the necessary data dependence is

encountered. Non-blocking loads will become necessary for processors, such as super-

scalar processors, capable of issuing multiple instructions per cycle [Sohi & Franklin 91].

However, the non-blocking distance, which is the number of instructions that can be

overlapped with the memory access (e.g., instructions between the reference and the first

dependent instruction), is likely to be small in the case of static scheduling. It can be

increased when compilers produce code optimized for this potential overlap (see Section

6.5). Dynamic instruction scheduling (out of order execution) obtained at a significant

increased cost in hardware complexity, can provide a larger non-blocking distance. How-

ever, the effectiveness is still subject to data dependence effects, branch prediction, and the

size of the lookahead window provided by the architecture [Gharachorloo et al. 92].

By comparison, non-blocking writes have more chances to fully hide the write miss

latency because the non-blocking distance is usually equal to the memory access time1.

Moreover, the write buffer, a FIFO queue buffering pending writes, does not need a

supporting unit in the processor. However, the other side of the coin is that even without

a write buffer the write miss penalty may not be a large fraction of the total data access

penalty. In this study, we consider write buffers both with read bypass (i.e., read misses

which have priority over writes can bypass buffering writes) and with no-bypass.

In contrast to the non-blocking distance, the lookahead distance, i.e., the number of

cycles which a prefetch request is generated ahead of the reference instruction, can be

tuned by the designer and be as large as a small multiple of the memory latency. In our

hardware-based scheme, its magnitude is constrained by effects such as the capacity of

the RPT, the amount of regular data access patterns, and the success of branch prediction

techniques. The implementation costs of prefetching caches, additional on-chip support

units and more hardware complexity, are substantially higher than those of non-blocking

caches.

Another noteworthy point is that the scoreboarding mechanism for non-blocking loads

would increase the critical path time, whereas the prefetching cache, a supporting unit to

the processor, will have less impact on the critical cycle. A final point to mention is that

in the case of non-blocking loads, the binding of a register with a certain value starts at the

1 In other words, the processor does not stall on most write misses. A stall would occur only if a write miss

is followed by a read miss on a different word in the same block. In that case, the stall is attributed to the

read miss.

94

moment the non-blocking load is initiated. In contrast, the prefetch request is non-binding;

it is only a hint to bring a data line close to the processor without involving any register

binding.

6.3 Architectural Models and Evaluation Methodology

In this section, we first describe the architectural models on which we will base our

evaluation of non-blocking and prefetching caches. We then present our simulation

methodology and the benchmarks used in the evaluation.

6.3.1 Processor-cache Models

As in our previous experiments, the baseline system consists of a CPU with a load/store

architecture similar to the MIPS R3000 and an ideal instruction cache (thus no I-cache

misses). The CPU has an instruction decoding unit, a fixed point unit (FXU), a floating

point unit (FPU), and a cache interface. The decoding unit issues an instruction per clock

cycle and the FXU can execute an integer operation in one cycle (perfect pipelining).

Because we need more precise comparisons between the pre-miss and post-miss

overlaps, we refine the model to include timings on floating-point operations. The FPU,

which behaves like a co-processor, can accept one floating-point operation at every cycle

until a data dependency on an unfinished instruction occurs. In this case, the dependent

instruction needs to wait until the conflicting operation terminates. The FPU will handle

FP operations in a multicycle pipeline with the execution times shown in the following

table:

FP operations # of cycles

Fadd 2

Fsub 2

Fmultiply 4

Fdiv 12

Fcvt 2

The cache interface can handle one data access at each cycle and, in case of a hit, the

load latency is one cycle (i.e., delayed load with one delay slot). In the case of a write

hit, an extra cycle is required to modify the data block in the cache. The refilling of a

prefetched line will be delayed when it competes with real data accesses for the cache.

95

Also, real cache misses could conflict with prefetch or outstanding write requests in the

cache interface. As before we will assume, conservatively, that a fetch in progress cannot

be aborted. However, a real read miss will be given priority over buffered prefetch requests

or writes.

All caches used in this study are direct-mapped with 32K bytes and a block size of

16 bytes, unless otherwise specified. These caches use a write-back, write-allocate policy.

The prefetching cache we studied is based on the implementation of our lookahead scheme

as described in Chapter 3. In both the baseline architecture and the prefetching cache, read

and write operations are always blocking.

When studying non-blocking loads, we assume a static scheduling of the pipeline. A

status bit is associated with each register. On a cache miss, the target register status bit is

set and the outstanding information is recorded. When the miss is resolved, the register

status bit is cleared. If an instruction requires a register that is to be read or written to, the

status bit is checked for the availability of that register. An instruction needing the value

from a register with its status bit set will cause the processor to stall until the value is

returned from memory. If a cache miss occurs when one (or more) request is in progress,

the cache controller will check to ascertain that the same block is not requested twice.

When studying non-blocking writes, we assume a full-associative write buffer with 8

entries. Each entry consists of a data block and associated ‘‘valid’’ bitmap. A write miss

will allocate an entry in the write buffer, update the word in the entry, set the corresponding

valid bit, and then initiate a data access to memory whenever the memory interface is

available. Subsequent accesses check the write buffer. A read miss finding a matched

valid word in the write buffer is treated as a cache hit. Since the buffer is fully-associative,

a subsequent write on a matched entry in the write buffer can be merged by writing the

data in the buffer and setting the corresponding valid bit. When the block is returned from

memory, those words with valid bits set in the buffer entry replace the corresponding ones

returned from memory before the entire block is written into the cache.

As we have shown in Chapter 4, we consider three memory models: Non-overlapped,

Overlapped, and Pipelined, with each model showing an increasing possibility of concur-

rency of access to the next level of the memory hierarchy.

We experimented with various architectural choices summarized in Table 6.1. Since

the above techniques for reducing the data access penalty are not mutually exclusive,

each choice of architecture is based on the combination of components described earlier.

96

This allows us to study the effect and contributed performance gain of various techniques,

including prefetching caches (PREFETCH), write buffer (WB), prefetching caches coupled

with write buffer (PREFETCH/WB), non-blocking caches (NBC), and whether allowing

bypassing of writes by reads or not.

Table 6.1: Architectural Choices

Non-blocking Ordering

Cache Prefetch write read no bypass bypass

BASELINE X

PREFETCH X X

WB X X X

PREFETCH/WB X X X X

NBC X X X X

WB X X X

PREFETCH/WB X X X X

NBC X X X X

HYBRID X X X X X

6.3.2 Simulation Method

The simulator we used is similar to what has been described in Chapter 4. We evaluated

our proposed architectures using cycle-by-cycle trace generation combined with on-the-fly

simulation. To simulate the interlock mechanism for non-blocking reads, the simulator

needs to read the object code of the benchmark program and decodes instructions so that it

is aware of which registers are involved in each instruction as well as boundary information

on basic blocks. This knowledge is vital to simulate the detail behavior of non-blocking

operations.

Then the simulator runs the pixified benchmark programs, which will generate address

traces at the same time. The simulator reads the trace through a pipe facility and feeds

the trace records to each simulation object. The experiment results are collected at the

clock cycle level from the individual configurations. This on-the-fly trace simulation

methodology provides the flexibility of simulating a rescheduled code.

97

Once again, we use the SPEC Benchmarks, which are compiled by the MIPS C compiler

and the MIPS F77 compiler, both with default options. Table 6.2 shows some reference

characteristics for the applications. The data is collected based on the simulation of our

32K-byte baseline cache. The number of writes is smaller than the number of reads and the

proportion of write misses is considerably smaller than the proportion of read misses.

Table 6.2: Statistics of benchmarks (for first 100 million instructions on 32K baseline

cache)

ratio over total instructions miss proportion of cache miss (%)

Name data refs reads writes ratio read miss write miss

Matrix 0.461 0.307 0.154 0.087 99.1 0.9

Espresso 0.182 0.167 0.015 0.184 99.5 0.5

Tomcatv 0.418 0.326 0.092 0.063 82.4 17.6

Spice 0.258 0.209 0.049 0.116 98.7 1.3

Doduc 0.301 0.223 0.078 0.017 58.7 41.3

Nasa 0.303 0.152 0.151 0.281 84.9 15.1

Xlisp 0.467 0.315 0.151 0.014 65.5 34.5

Eqntott 0.299 0.265 0.035 0.033 79.2 20.8

Fpppp 0.567 0.449 0.118 0.004 62.2 37.8

Gcc 0.338 0.223 0.115 0.018 65.3 34.7

In the following sections, we will use MCPI as a metric to present the results of our

experiments. When an average reduction of MCPI is summarized, a geometric mean is

used to average the percentages of the penalty reduction for the benchmarks [Jain 91a].

In the figures, we present a breakdown of the data access penalty as follows: the bottom

section (light grey area) of each bar represents the stalls for reads, the black section shows

the write miss penalty, and the section on top of that (grey area) represents the stalls due to

the memory interface being busy or waiting due to the ORL or the write buffer being full.

98

6.4 Simulation Results

In this section, we present a comparative analysis of the performance achieved by the

various architectural choices and show the impact of memory latency. In the discussion,

we will show only a set of representative results. The rest of data can be found in Appendix

A.2.

6.4.1 Effect of Architectural Variations

Figure 6.1 shows the results for the benchmarks when simulated on the various architectures.

In this first set of experiments, we used the Pipelined memory model so that we could

temporarily ignore bandwidth limitations. Thus, there is no busy time penalty. We

examine the data of Figure 6.1 according to three groups of architectures: (i) processors

always stalling on a miss (blocking caches: BASE and PREFETCH), (ii) architectures with

non-blocking writes and no bypass, and (iii) architectures with non-blocking writes and

bypass of writes by reads. In the last two categories, we consider a baseline cache with non-

blocking writes (WB), a prefetching cache with non-blocking writes (PREFETCH/WB),

and a non-blocking cache (NBC) (cf. Table 6.1).

A comparison between the baseline and the prefetching cache (the first two bars in the

figures) was already done in Chapter 4. Since our model is slightly different, we repeated

the experiment. The results are consistent with those of Chapter 4 and show a moderate

to very significant reduction in the penalty for data access when the prefetching facility is

added to the baseline cache. As can be seen in Figure 6.1 (only six of ten benchmarks are

shown), the access penalty is reduced by 96% for Matrix, 96% for Espresso, 41% for Xlisp,

19% for Spice, 12% for Doduc, and 36% for Nasa (66% for Tomcatv, 4% for Fpppp and

Gcc, and 19% for Eqntott, see Appendix A.2). The geometric mean of the MCPI reduction

from these ten applications is 23%. As we have already demonstrated, the prefetching

scheme can achieve reasonable gains at the cost of the RPT and the additional logic. The

effectiveness of the prefetching technique relies mostly on the presence of regular data

access patterns. Also since the prediction occurs for both reads and writes, the prefetching

has a proportion of write miss similar to that of the baseline case.

The effect of non-blocking writes on the baseline architecture is shown by the difference

between the first, third (for no-bypassing), and sixth (bypassing) bars in the figures. Recall

that in the baseline architecture the processor stalls on a write miss until the write completes.

99

BASE Prefetch WB Prefetch+
WB

NBC WB Prefetch+
WB

NBC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.22

0.04

1.21

0.04

1.06

1.2

0.04

1.06

M
C

PI

Matrix

No-bypassing Bypassing

BASE Prefetch WB Prefetch+
WB

NBC WB Prefetch+
WB

NBC

0.
0

0.
2

0.
4

0.
6

0.
8

0.75

0.05

0.75

0.04

0.72 0.74

0.04

0.72

M
C

PI

Espresso

No-bypassing Bypassing

read
write
busy

Figure 6.1a: Prefetching vs. Lockup-free for δ = 30 (Pipelined)

In the non-blocking writes (WB) implementations, the write is put in the write buffer and

the processor will stall at the next read operation in the case of no-bypass. In the case

of bypass, the only case where stalls occur is on a read miss -- and the read will have

priority over buffered writes -- or if the write buffer is full. As can be seen, the WB with

no-bypass has almost no improvement on the write penalty (Nasa has a small gain). This

is because the writes are most often followed by a read within a very small number of

100

BASE Prefetch WB Prefetch+
WB

NBC WB Prefetch+
WB

NBC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.9

0.73

0.9

0.73
0.81

0.89

0.73
0.8

M
C

PI

Spice

No-bypassing Bypassing

BASE Prefetch WB Prefetch+
WB

NBC WB Prefetch+
WB

NBC

0.
0

0.
05

0.
10

0.
15

0.
20

0.17

0.1

0.16

0.1

0.15

0.12

0.07

0.11

M
C

PI

Xlisp

No-bypassing Bypassing

read
write
busy

Figure 6.1b: Prefetching vs. Lockup-free for δ = 30 (Pipelined)

instructions. When the restriction of stalling on a subsequent read is lifted, i.e., WB with

bypass, the penalty due to write misses is in essence totally avoided (cf. Tomcatv, Doduc,

and Nasa). However, such a reduction by the WB may not contribute to a significant

overall performance improvement over the total penalty when the fraction of write miss is

very small (cf. Table 6.2). A surprising but subtle result is that a write buffer may even

reduce slightly the read miss penalty (e.g., 12% reduction for Nasa). This reduction is a

101

BASE Prefetch WB Prefetch+
WB

NBC WB Prefetch+
WB

NBC

0.
0

0.
05

0.
10

0.
15

0.
20

0.16

0.14 0.14
0.13

0.12

0.09
0.08

0.07M
C

PI

Doduc

No-bypassing Bypassing

read
write
busy

BASE Prefetch WB Prefetch+
WB

NBC WB Prefetch+
WB

NBC

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

2.56

1.64

2.2

1.29
1.06

2.11

1.16
0.93

M
C

PI

Nasa

No-bypassing Bypassing

read
write
busy

Figure 6.1c: Prefetching vs. Lockup-free for δ = 30 (Pipelined)

consequence of forwarding data from a write to subsequent reads.2

We now look at the performance of WB in conjunction with prefetching (PREFETCH/WB,

fourth and seventh bars) and non-blocking caches (NBC, fifth and eight bars). The purpose

of showing PREFETCH/WB is to give a fair base of comparison to contrast the effect of

2 There is also a small chance of increasing the read miss penalty since the penalty of a write miss followed

by a read on the same line, but on a different word, is charged to the read miss penalty.

102

the read penalty reduction between the pre-miss overlap and the post-miss overlap. We

focus only on WB with bypass. The results for no-bypass are qualitatively similar. The

relative performances of NBC and PREFETCH/WB can be divided into three groups: i)

PREFETCH/WB performs extremely well, ii) PREFETCH/WB has moderate improve-

ment and also outperforms NBC, and iii) the performance of NBC is better than that of

PREFETCH/WB.

The Matrix, Espresso and Tomcatv benchmarks belong to the first group. These

programs have very good reference predictability. Although a non-blocking cache

contributes to some penalty reduction (12% for Matrix, 4% for Espresso, and 31% for

Tomcatv), prefetching still significantly outperforms NBC since a large portion of the data

access penalty has disappeared.

Spice, Xlisp and Eqntott are the benchmarks in the second group. The effectiveness of

NBC is even less than that in the first group (reductions of 10%, 8% and 12% respectively)

but also is PREFETCH/WB’s. As we shall see in Table 6.3 (Section 6.5), the average size

of the basic blocks in these two programs is smaller than that of basic blocks in the other

programs. The small size usually restricts the prediction of references for PREFETCH/WB

(due to the impact of branch prediction) and also implies a limited non-blocking distance.

Therefore, for Spice PREFETCH/WB has some moderate gains over the baseline WB, and

NBC is only slightly better than WB. Also, WB does not help much since the fraction of

write misses is fairly low.

Doduc and Nasa form the third group where NBC becomes more attractive than

PREFETCH/WB. NBC is quite efficient for the two programs and the reductions are larger

than those attained through PREFETCH/WB. The weak performance of PREFETCH/WB

in Doduc can be related to the size (or associativity) of the reference prediction table.

Doubling the size of the table, or making it of larger associativity, would remove the large

number of conflicts (35% with a 256-entry direct-mapped RPT). In the case of Nasa, both

schemes lead to a fair amount of performance gain, with NBC showing an advantage.

For Fpppp and Gcc, PREFETCH/WB and NBC have little performance improvement

over WB. Since Fpppp has already a low miss ratio and a large loop size (as we discussed

in Section 4.3.3), the improvement due to a prefetching scheme is very marginal. Gcc is a

big program with many conditional branches. Since its predictability is very poor and the

basic block size is small, prefetching will not be done often.

103

6.4.2 Effect of Large Latency
0

20
40

60
80

10
0

96.596.9

11.8
5.9

94.5

63.5

3.9 1.4

72.2

46.1
38.1

18

45 43.8

55.953.2

M
C

PI
 r

ed
uc

tio
n

ov
er

 W
B

 (
%

) Prefetch+WB (30)
Prefetch+WB (100)
NBC (30)
NBC (100)

Matrix Espresso Tomcatv NasaMatrix Espresso

Figure 6.2a: Effect of a larger latency (for δ = 30 vs. δ = 100 Pipelined)

Figure 6.2 shows the experiment results of eight benchmarks3 when the memory latency is

larger. The figure plots percentages of reduction in data access penalty of PREFETCH/WB

and NBC over WB with bypassing when the memory latency δ is either 30 (left bars) or

100 cycles (right bars). In general, the effectiveness of PREFETCH/WB is slightly sensitive

to the (large) memory latency and is more stable than NBC’s. This is because the lookahead

distance of the prefetching can be dynamically as large as the memory latency so that data

may be prefetched early enough to hide the latency. In contrast, the non-blocking distance,

which is statically determined by the programs, becomes relatively small when the latency

increases. Thus NBC’s relative effectiveness is reduced significantly (almost a factor of

6 in Doduc). Note, however, that the predictability will decrease as the latency increases

mostly because branch prediction becomes less reliable. The program Espresso, where the

average size of basic blocks is 5.6 instructions, has significant performance degradation

when there is an increase in the memory latency. As can be seen, the PREFETCH/WB’s

effectiveness is cut by one-third when δ increases from 30 to 100.

3 Fpppp and Gcc are not shown because comparisons of the marginal improvement could be misleading.

104

0
20

40
60

80
10

0

16.4
11.8 13.9

7.8

31.4
26.9

7.9
3.2

18.617.9
10.8

6
11.9 9

25.5

4.4M
C

PI
 r

ed
uc

tio
n

ov
er

 W
B

 (
%

) Prefetch+WB (30)
Prefetch+WB (100)
NBC (30)
NBC (100)

Eqntott Xlisp Spice DoducEqntott Xlisp

Figure 6.2b: Effect of a larger latency (for δ = 30 vs. δ = 100 Pipelined)

6.5 Compiler Assistance for Non-blocking Loads

In this section, we consider optimizations in the code generation phase for non-blocking

loads. We examine two kinds of optimization: instruction scheduling for exploiting

a possibly large non-blocking distance within a basic block and register renaming for

removing false dependencies before the instruction scheduling is applied.

6.5.1 Instruction Scheduling and Register Renaming

With the advent of RISC architectures, compiler optimization techniques have become more

important so that CPU performance can be increased. Instruction scheduling is a compiler

optimization phase which schedules as many operations as possible in parallel on separate

functional units. Several instruction scheduling techniques based on the architecture

of a specific target machine have been proposed in the literature [Krishnamurthy 90].

Those traditional schedulers focus on instruction scheduling subject to machine resource

constraints. More recently, Kerns and Eggers [92] have proposed ‘‘balanced scheduling,’’

where instructions are scheduled based on an estimate of the amount of instruction-level

parallelism in the code. Their goal is to tolerate a wide range of variance in operation

latency. The algorithm would be useful in scheduling code when the latency is unknown

at compile time.

105

The purpose of register renaming, similar to that of dynamic instruction scheduling, is to

remove write-after-read (WAR) and write-after-write (WAW) dependencies, thus allowing

greater freedom in moving instructions around. Register renaming at compile time has

been used in conjunction with software pipelining [Jain 91b]. The advantage of register

renaming at compile time over dynamically renaming at run time is that the compiler

can take more advantage of increased instruction parallelism (as a result of renaming) by

distributing the parallelism more effectively in the code. Obviously, software renaming

requires no hardware complexity.

6.5.2 Algorithm for Non-blocking Loads

The instruction scheduling that we study here, based on the scheme given by Gibbons and

Muchnick [86], is performed after register allocation. The goal of the scheduling algorithm

is to create as much distance as possible between a load and the first instruction dependent

on that load. At the same time, we want to intersperse the loads so that the lack of memory

bandwidth does not become too much of a constraint. As discussed previously, we define

the non-blocking distance as the number of instructions that can be overlapped with the

memory access, i.e., instructions between a reference and the first dependent instruction.

The algorithm schedules instructions only within basic blocks. Instructions within the

block are the nodes of a weighted directed acyclic graph (DAG). As shown in Figure

6.3, edges represent dependencies and are labeled with latencies. The latency of an edge

between two dependent nodes is one except when the first instruction is a load. In the

latter, in order to achieve as large as possible a non-blocking distance and to avoid the

clustering of loads at the beginning of a schedule, we estimate the latency of a load edge as

the minimum of either the size (in number of instructions) of the basic block size divided

by the number of loads in the basic block, or the actual memory latency. Once the latencies

of the edges have been determined, we assign weights to the nodes of the DAG, with the

weight of a node being the number of child nodes plus the maximum (over its children)

of the sum of the weight of a child and of the weight of the edge leading to the child.

The purpose of calculating the weight is to implement the heuristic of first picking the

instruction with the greatest number of successors along the longest path from the node to

a leaf node.

After the weighted DAG is built, we apply a list scheduling algorithm (shown in Figure

6.4) to derive the final schedule. The scheduling algorithm is a variation on list scheduling.

106

1. Build DAG G(V, E) for a basic block:

Each instruction is a vertex vi 2 V; an edge e(vi, vj) 2 E if vj depends on vi.
l(vi, vj) is the estimated latency between nodes vi and vj:

l(vi, vj) =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

vi vj e(vi, vj)
$

basic block size
of loads

%

load any othera true dependency

1 any other any true dependency

1 any any false dependency

1 leaf branch control dependency

a Any instruction node other than load

2. Define weight(vi):

weight(vi) =

8

>

>

>

<

>

>

>

:

0 if vi is a leaf node

n� 1 + MAX
1�k�n

fl(vi, vjk) + weight(vjk)g

where vi has n child nodes vj1 , . . . , vjn

Figure 6.3: Building the DAG for a basic block

Several sets of nodes are maintained: Sready (a set of vertices that have all their predecessors

already scheduled) and Sslot[i] where i varies from 1 to the largest estimated latency. Initially

Sready contains the nodes which are ready to schedule, including the first instruction and

other independent instructions. The scheduler always picks up in the set Sready the node

which has the largest weight and assigns it as the next instruction. After a node vi from

Sready is scheduled, if it was the only unscheduled predecessor of its child node vj, then vj

is included in the set Sslot[l(vi ,vj)]. This allows at least l(vi, vj) instructions to be interspersed

between them. When an instruction is scheduled, all Sslot[i] sets are shifted ‘‘left’’ by one

slot with Sslot[1] joining Sready, because the latency of every node in Sslot[i] (to be scheduled)

has been decreased by one. When there is no instruction available in Sready, we do not insert

a NOP, but simply keep moving Sslot[i] until Sready is not empty. In this case, the processor

107

procedure reorder (G)

initialize Sslot[i] with empty pointer

Sready = fvijvi has no parent node in DAGg

new order = 1

while new order � length of BB

while Sready is empty

Sready (Sslot[1] (. . . (Sslot[n]

choose a node vi in Sready, where weight(vi) is largest.

order(vi) = new order++

for each child vj of vi (with an edge latency l = l(vi, vj))

if vj has no other unscheduled parent then

Sslot[l] = Sslot[l]
S

fvjg

Sready = Sready
S

Sslot[1]

Sslot[1] (. . . (Sslot[n]

end

end

Figure 6.4: Instruction Scheduler on the DAG

is expected to stall on the interlock, since there is no independent instruction available.

Figure 6.5 gives an example of a basic block code of 11 instructions including 3 loads

and illustrates the corresponding code DAG. Nodes labeled Lx represent load instructions

and nodes labeled Ii represent other instructions. After dependencies between nodes are

determined, we first build a DAG for the code. We estimate the average latency of a load

instruction as
j

11
3

k

= 3 and then compute the weight of each node on a bottom-up basis as

shown in the right part of Figure 6.5. Referring to the new code schedule shown in Figure

6.6 and Figure 6.7, we demonstrate how the instructions are scheduled by the algorithm.

At the very beginning, Sready contains three independent instructions La, Lb, and I1. The

instruction scheduler picks up the instruction Lb, since it has the largest weight. At the

108

Original code

I1: add r7,r4,4

I2: mul r4,r7,999

I3: div r7,r7,13

La: lw r6,0(r20)

Lb: lw r8,8(r20)

I4: add r6,r6,99

I5: sll r8,r8,2

I6: add r9,r8,r7

I7: add r10,r8,r6

Lc: lw r7,0(r10)

I8: sw r9,0(r7)

total NB dist = 2

I1

Lc

start

3

4

0

5

8 LbLa

6

9

I3I5I4

I6

end

4

5

7

I7

I8

I2
0

DAG for the original code

Figure 6.5: DAG of an example

Step Scheduled Sready Sslot[1] Sslot[2] Sslot[3]

0 La,Lb,I1

1 Lb La,I1 I5

2 La I1 I5 I4

3 I1 I2,I3 I5 I4

4 I3 I2,I5 I4

5 I5 I2,I4,I6

6 I4 I2,I6,I7

.............

Figure 6.6: Scheduling the example

same time, it adds the instruction I5 to the set Sslot[3] because I5 has no other predecessor

node. The instructions in Sslot[i] will be gradually shifted ‘‘left’’ once an instruction is

109

New code schedule

Lb

La

I1

I3

I5

I4

I6

I7

Lc

I2

I8

total NB dist=7

After reg renaming

Lb

La

I1

I3

I5

I4

I7

Lc

I2

I6

I8

total NB dist=8

I1

Lc

start

3

4

0

5

8 LbLa

6

9

I3I5I4

I6

4

end

1

2

I8

I7
I2

0

DAG after register renaming

Figure 6.7: Instruction scheduling and register renaming

scheduled and eventually be included in Sready. Consequently, the algorithm continues to

schedule the remaining instructions La and I1 in Sready. Scheduling La will add I4 to Sslot[3].

Scheduling I1 will add its dependent instructions I2 and I3 to Sslot[1] and then I2 and I3

will be moved to Sready. Hence, I3, the one with the largest weight, is chosen after the first

three instructions are scheduled. After that, the instruction I5 is available in Sready, since

there are already three instructions filling the latency slots following the previous load Lb.

At this point, Sready contains I2 and I5. However, I5, instead of I2, is chosen because

I5 has a larger weight. Although I2 has been in Sready for a while, it will not picked up

until the last load Lc is scheduled, since its wweight is 0. This illustrates our strategy that

we try to distribute the independent instructions among loads by estimating an equal load

latency. In the same way, the algorithm schedules the rest of the instructions and obtains

the new schedule as given in the left part of Figure 6.7. Overall, the new code has a total

non-blocking distance of 7, compared to a non-blocking distance of 2 in the original code.

The way to estimate equal latencies of loads within a basic block could be improved

110

through program analysis by a compiler. The software prefetching techniques that we

have discussed previously are able to identify accesses that are likely to have misses.

For instance, a load of an array element with a large stride is likely to be a cache miss

while accesses to the stack area will most often result in cache hits. An intelligent

compiler could take this into account when assigning edge latencies. Balanced scheduling

[Kerns & Eggers 92] can also be incorporated in the compiler for distributing instruction

parallelism only to the accesses which have been determined as misses.

Before instruction scheduling, we may perform software register renaming on the code

so that the instruction scheduler would have more freedom to move instructions. The

algorithm we use first identifies the live ranges (from a new definition to the last use before

the next definition) for each register to be renamed (local registers). Then, for the live

ranges entirely falling within the basic block, except the last live range, the destination

register used in a load operation is replaced by a new register. This renaming is carried on

for those instructions using the same register within the live range. Since the scheduling

is performed after register allocation, we assume that there is a set of ‘‘spare’’ registers

available. This is in order to keep the algorithm simple. Otherwise, we would have to

identify temporary registers and unused registers in the basic block and our algorithm

would become global rather than being restricted to the basic block level. After the register

renaming process, we apply the instruction scheduling described above on the new DAG

from which some false dependence edges have been removed.

Referring again to Figure 6.5 and Figure 6.7, we note that the relationship between I6

and Lc is due to a write-after-read (WAR) dependency. We may simply remove this false

dependency by replacing the usage of ‘‘r7’’ in the instructions Lc and I8 with another

register available to the scheduler. Removing such a false dependence makes it possible to

move I6 to fill the latency slots of Lc. Such a renaming will result in different weights in a

new DAG from those in the original DAG. Hence we schedule the code based on the new

DAG as illustrated in Figure 6.7 and the average non-blocking distance has been increased

by one.

A potential criticism of our study is that we adversely increase the register pressure in

a basic block. A compensating factor is that WB may help, by buffering writes, the extra

spilling store/load instructions that could be generated. Our point is that we give priority

for register use to a load operation with a large latency, even at the cost of adding spill

code. Although the results of our register renaming procedure are optimistic since we do

111

not limit the number of registers, the approach is still feasible if the compiler identifies the

unused registers or performs a priority-based register allocation [Chow & Hennessy 90] by

taking into account the cost of the data access penalty.

6.5.3 Effect of Instruction Scheduling

Table 6.3 shows the effect of the reordering of data accesses. All the data is in ‘‘weighted

average’’ form where the weight is the execution frequency of the individual basic blocks.

The data in the columns ‘‘non-blocking distance’’ are the average numbers of instructions

between a read access and the subsequent instruction dependent on the value being read,

regardless of whether the read is a cache miss or not. In general, the non-blocking distance

based on the original code is fairly small.4 A comparison between the second and third

columns of the table shows that the instruction scheduling algorithm is very effective

for increasing the non-blocking distance for Matrix and Tomcatv. This indicates that in

these two benchmarks there are several data loading phases followed by computations on

that data. The scheduling algorithm reorganizes the instructions to allow more overlap

between the independent loading phases. For the other benchmarks5 that do not have this

characteristic, the distance is moderately increased.

When register renaming is added to instruction scheduling, the compiler has more

flexibility to optimize the code reordering. As shown in Table 6.3, a significant increase

in non-blocking distance is achieved in Doduc and Nasa with the use of a small number

of extra registers (less than one per block on the average). On the other hand Matrix and

Tomcatv need more registers with not much improvement for the latter. Note that the

number of registers required for renaming is overestimated, since two live ranges, which

are originally far apart, are less likely to be live at the same time after renaming because of

other dependence chaining between them. This was not taken into account in our algorithm

but could be checked out by the compiler.

Figure 6.8 and Figure 6.9 show the relative performance of the optimizations for the

NBC architecture. The data access penalty for the two code optimization algorithms is

normalized to the penalty of the original code. The results of the Non-overlapped model

4 Note that the original MIPS compiler should strive to yield a non-blocking distance greater than one since

the R3000 has a delayed load of one cycle.

5 In the following discussion, we omit the results of the other benchmarks because the effects of Xlisp (4.97)

and Eqntott (3.84) with small average block sizes are similar to those of Espresso and Spice.

112

Table 6.3: Average of basic block size, non-blocking distance, and extra registers needed

(weighted by frequency of execution)

Original code scheduling only Renaming + scheduling

Basic block non-blocking non-blocking non-blocking extra regs

Name size distance distance distance needed

Matrix 39.15 2.23 8.33 15.14 8.65

Tomcatv 54.47 3.38 10.03 11.91 12.13

Spice 7.79 2.46 3.27 3.83 0.05

Espresso 5.63 1.47 2.25 2.93 0.11

Doduc 10.01 3.44 4.88 8.14 0.77

Nasa 27.49 2.09 4.89 8.17 0.28

0
20

40
60

80
10

0 100

78.6 83.3

100

80.6 80.2

100 98.2 99.4 100 98.9 98 100
94.3

69.4

100
91.3 92.9

N
or

m
al

iz
ed

 D
at

a
Pe

na
lty

Original

Scheduled

Sched+Renaming

Matrix Tomcatv Spice Espresso Doduc Nasa

Figure 6.8: Effect of instruction scheduling on NBC for δ = 30 (Non-overlapped)

in Figure 6.8 show that only those programs with low miss ratios (Matrix, Tomcatv,

and Doduc) can benefit from instruction scheduling. This is not surprising because the

Non-overlapped model does not provide sufficient bandwidth to fully exploit the advantage

of the overlap. Also, register renaming does not contribute much performance gain to

the NBC in the Non-overlapped model and might even degrade the performance slightly

(cf. Matrix). Instruction scheduling tends to increase the clustering of read accesses.

113

Scheduling instructions which have no false dependencies by applying register renaming

causes the read accesses to be more clustered.
0

20
40

60
80

10
0 100

70.7

33.2

100

65.2
55.2

100 97.7
92

100 98.2 97.3 100
92.5

58

100

82.6
71.8

N
or

m
al

iz
ed

 D
at

a
Pe

na
lty

Original

Scheduled

Sched+Renaming

Matrix Tomcatv Spice Espresso Doduc Nasa

Figure 6.9: Effect of instruction scheduling on NBC for δ = 30 (Pipelined)

When the Pipelined model is assumed (shown in Figure 6.9), the clustering of reads

becomes an advantage that can be exploited by the NBC. In all cases except Espresso and

Spice, the experiments show significant gains from instruction scheduling (improvement

varies from 2% for Espresso to 35% for Tomcatv). Even better results are achieved when

register renaming is applied before instruction scheduling (improvement varies from 3%

for Espresso to 67% for Matrix but recall that the results are optimistic). The geometric

mean of penalty reduction by instruction scheduling for those benchmarks is 9.5% over the

original code and when register renaming is added, this geometric mean is up to 24% over

the original code. This illustrates that instruction scheduling and register renaming provide

an inexpensive solution to help hide the large memory latency for non-blocking loads in

processors whose design is based on static instruction scheduling. However, techniques of

instruction scheduling across basic block boundaries should be further investigated.

6.6 A Hybrid Design

Since prefetching and non-blocking caches are not mutually exclusive, a further enhance-

ment would be to combine the two schemes: a prefetch hint is provided prior to the load

instruction and the binding of a loaded value with a register is delayed until the value is

actually used. This hybrid design is attractive since the combined scheme can tolerate the

114

drawbacks of poor predictability and of short non-blocking distance. Moreover, the cost

is not dramatically increased from either the prefetching cache or the non-blocking cache.

For the prefetching cache, in addition to an RPT and associated logic, the register interlock

mechanism is added in the processor. At the same time, an ORL (or MSHRs), which is

searched associatively, must be extended to record the information of function units which

is waiting for a miss data item.

Matrix

8 16 32 64 128

Cache size (K)

0.0

0.4

0.7

1.1

1.5

M
C
P
I

�

................................. Base data cache (s)
�

................................. Prefetch (s)
.................................. Nonblocking read/write (w)
?

................................. Hybrid (w)
?

...................... Hybrid+rescheduled (w)..

�

�

�

�

�..�

�

�
�

�

...

.
. . .

...?

?

? ?

?

..?

?

? ?

?

Nasa

8 16 32 64 128

Cache size (K)

0.00

1.07

2.14

3.21

4.27

M
C
P
I

...

�

�

�

�

�

..

�

�

�

�

�

...

..?

?

?

?

?

........... ..?

?

?

?

?

Figure 6.10: Hybrid design on varying cache size δ = 30 (Pipelined)

In figure 6.10, we present the results of the simulation of such a hybrid scheme with

and without instruction rescheduling when compared to the baseline cache, a prefetching

only scheme, and a non-blocking cache with bypass. We vary the cache size from 8K bytes

to 128K bytes and show only two benchmarks: Matrix where prefetching is performing

much better than NBC, and Nasa where the converse is true. In Matrix, the prefetch scheme

already had reduced the data access penalty to only a few hundredths of a cycle. The

hybrid design has now nearly ideal performance. The performance of the hybrid scheme

has more dramatic effects in Nasa. The data access penalty that is far from being negligible

if either prefetching or NBC is applied alone becomes small even at the smallest cache

size. Code optimization helps the hybrid combination further so that only 4% of the initial

penalty incurred with a baseline cache remains. These results indicate that the length of the

overlap from pre-miss to post-miss can be large enough to cover the memory latency to a

great extent. The additional cost paid for the hybrid design is justified by the significant

performance improvement.

115

6.7 Summary

In this chapter, we have evaluated the effectiveness of write buffers, and non-blocking

caches in exploiting the overlap of data accesses with computation. These evaluations are

made using the SPEC benchmarks and simulations are performed on a cycle by cycle basis.

We confirm previous studies showing that buffering writes while allowing bypass of reads

can eliminate entirely the write miss penalty. The results show that when the non-blocking

write with bypass is used as a basis, the average percentage of read penalty reduction by

prefetching caches was 37%, whereas the average percentage of read penalty reduction

by non-blocking caches was 16%. Also, the effectiveness of prefetching caches is less

sensitive to a large memory latency than that of non-blocking caches.

Code optimization via instruction scheduling can reduce prominently the data access

penalty in the case of non-blocking caches. We have presented a local (at the basic block

level) algorithm that, on the average, reduced the penalty by 9.5%. With the addition of an

(optimistic) renaming scheme, this reduction went up to 24%. These results illustrate that

a non-blocking cache assisted by a good code optimizer and associated with a statically

scheduled processor can achieve remarkable gains at a cost of less complicated hardware

complexity than what is needed for a dynamically scheduled processor.

Finally, we have proposed a hybrid design incorporating features from both prefetching

and non-blocking caches. We have showed that the combination of pre-miss overlap and

post-miss overlap present in such a scheme can be very effective in hiding large memory

latencies.

Chapter 7

Conclusion

7.1 Summary of Results

In this dissertation, we have addressed issues concerning the design and analysis of caching

techniques for tolerating memory latency in high-performance processors. Under the usual

caching mechanism, the processor will stall on a cache miss. In order to make further

progress towards the reduction in memory latency, memory accesses must proceed in

parallel with processor execution. We have examined two techniques: data prefetching

and non-blocking caches. The goal of the prefetching is to reduce the processor stall time

by bringing data into the cache just before its use. A non-blocking cache allows execution

to proceed concurrently with one (or more) cache misses until an instruction that actually

needs the missed value is reached. Prefetching exploits the overlap of computations prior

to an actual cache miss, whereas non-blocking takes the advantage of the post-miss overlap

We have proposed a hardware-based data prefetching scheme. The basic idea of the

scheme is to keep track of data access patterns in a reference prediction table (RPT)

organized as an instruction cache. Each entry in the RPT is associated with a finite state

mechanism to prevent unnecessary prefetches. We have investigated three variations of the

design of the RPT and associated logic. They differ mostly on the timing of the prefetching.

In the simplest way, the generic scheme generates prefetches one iteration ahead of actual

use. The lookahead scheme takes advantage of a look-ahead program counter that ideally

stays one memory latency time, i.e., potentially several loop iterations, ahead of the real

program counter. The pseudo program counter is also used as the control mechanism to

generate the prefetches. Finally the correlated scheme uses a more sophisticated design to

detect patterns across loop levels.

We have evaluated the three prefetching schemes by comparing them with a pure

cache design at various cache sizes. These designs are evaluated by simulating the ten

SPEC benchmarks cycle-by-cycle in a uniprocessor environment. The results show that

the prefetching schemes are generally effective in reducing the data access penalty. The

117

cost of the hardware unit is not prohibitive; a moderately sized RPT (roughly equivalent to

a 4K cache) is generally sufficient to capture the access patterns for the most frequently

executed instructions. We observed that the lookahead scheme has a moderate win over the

generic scheme, while the performance difference between the lookahead and correlated

schemes is fairly small. The benefits of prefetching are greater when the hardware assist

augments small on-chip caches.

We further examined the substantive performance gains that can be achieved with

hardware-controlled and software-directed prefetching. Our qualitative comparisons

indicate that on the domain of linear array references, both hardware and software schemes

are able to generate prefetches for cache misses. However, the software scheme may have

a code expansion problem, while the hardware scheme has less information on whether

prefetching data will be used or not. When dealing with complex data access patterns,

the software approach may have more compile-time information to perform sophisticated

prefetching, whereas the hardware scheme has the advantage of manipulating dynamic

information (such as conflict misses or input data dependence).

Then we quantitatively evaluated these two schemes through direct-execution sim-

ulation in a shared-memory multiprocessor environment. Our experiments confirm the

previous observations. We also observed that the cache interference incurred by prefetching

is almost negligible given sufficient memory bandwidth. The software approach has less

of a negative effect on network traffic and conflicts with the working set than the hardware

approach. However, the overhead due to the extra prefetch instructions and associated

computations is substantial in the software-directed approach. In that scheme, the per-

formance gain of reducing the read penalty will be offset by the increase in instruction

execution time. Consequently we proposed and examined an alternative for combining the

software and hardware solutions. The main idea is that through software prefetches we

bring into the secondary cache data objects of the size determined by the user’s semantics

and let the hardware supporting unit take care of cache line size accesses in the loops and

fetch the corresponding data into the primary cache. The new approach can combine the

advantages of both hardware and software approaches and at the same time avoid most of

their negative effects. Our experimental results show that the new solution is very attractive

in reducing the data access penalty without incurring much overhead.

Finally, we discussed and evaluated the effectiveness of non-blocking caches and

compared it with that of the lookahead prefetching hardware scheme. The results show

118

that when non-blocking writes with bypass are used as a basis, the average percentage

of the read penalty reduction by non-blocking caches is 16%, compared to a average

reduction of 37% by prefetching caches. The effectiveness of prefetching caches is less

sensitive to a large memory latency than that of non-blocking caches. We considered

compiler-based optimizations to enhance the effectiveness of non-blocking caches. We

have shown that instruction scheduling and register renaming can reduce significantly the

data access penalty in the non-blocking paradigm. Then we proposed a hybrid design

based on the combination of prefetching and non-blocking schemes. We showed that the

combination of pre-miss overlap and post-miss overlap present in such a scheme can be

very effective in hiding large memory latencies.

7.2 Future Research

In this dissertation, we mainly focused on techniques for tolerating memory latency. As we

believe that caches are crucial components in high-performance systems, we would like to

further pursue the following issues regarding cache memory:

� Cache memory support for multithreading

Multithreaded architectures have been shown to be effective for tolerating long

memory latencies. A fast context switch mechanism is an essential requirement

in those architectures. Caches can be used in these architectures (note that not all

threaded architectures use caches, e.g., the Tera machine [Alverson et al. 90]) but it is

important to realize their vulnerability. The problem stems from the dual functions of

the cache: hiding memory latency and preserving locality for all the threads that can

be activated. As too many threads share the cache, capacity and conflict misses will

increase. Interesting research topics include a design of register-cache organization

for fast task switching and conserving locality, compiler efforts in scheduling and

protecting vulnerable pending threads from switching, and the study of granularity

of thread parallelism with scheduling affinity in the register-cache complex.

� Programmable cache controller

As multiprocessor architectures are getting more complicated, the role that caches

play in these architectures becomes increasingly important and sophisticated. Co-

herence protocol, choice of block size, and associativity are a non-exhaustive list

119

of design issues. Several researchers have proposed various solutions to address

those issues and performance results showed that no particular approach absolutely

dominates the others. A good way to take advantage of various approaches is to

allow adaptive mechanisms in the controller. Our research efforts will focus on the

efficient interaction between processor and controller and a well-defined framework

for dynamic adjustment in the controller.

� Efficient simulation environments

We have implemented a trace-driven simulator for uniprocessors and an execution-

driven simulator for multiprocessor architectures. We are investigating an adaptive

time sampling technique to improve simulation run-time. This technique is expected

to reduce trace size and simulation time for long traces that are generated from the

complete execution of applications. Future research work may include:

-- extending the sampling technique to allow on-the-fly decision-making so that

trace reduction can be achieved in one pass,

-- studying sampling techniques coupled to the execution-driven environment,

-- building a formal validation of proposed architectures, and

-- building up a complete simulation environment and testbed for evaluating

parallel computer systems.

� Cache memory systems for data-processing programs

So far, most of the quantitative research on cache systems in the literature is based

on evaluations of scientific codes or general purpose programs. Another extremely

important application domain for high-performance systems, namely data-processing

programs and database systems, may illustrate different program characteristics from

what had been derived from scientific programs. For example, the grain size of data

sharing depends on the type of transactions, and computations in one processor may

require more interactions with other processors. Some preliminary measurements

should be performed on contemporary database systems. Current memory design

may not be a suitable environment to perform such a study. We should characterize

and abstract the features of memory accesses in those programs and then investigate

the applicability of current memory caching techniques on these features. Overall,

120

observations which are made on a different application domain may lead to different

views of the memory systems and may result in new approaches in exploring efficient

caching techniques for high-performance systems.

Bibliography

[Adve & Hill 90] Adve, S. and Hill, M. (1990). Weak ordering - a new definition. In

Proc. of the 17th Annual Intl. Symp. on Computer Architecture, pages

2--14.

[Agarwal et al. 90] Agarwal, A., Lim, B.-H., Kranz, D., and Kubiatowicz, J. (1990).

APRIL: A processor architecture for multithreading. In Proc. of the 17th

Annual Intl. Symp. on Computer Architecture, pages 104--114.

[Alverson et al. 90] Alverson, R., Callahan, D., Cummings, D., Koblenz, D., Porterfield,

B., and Smith, B. (1990). The Tera computer system. In Proc. 1990 Intl.

Conf. on Supercomputing, pages 1--6.

[Archibald & Baer 86] Archibald, J. and Baer, J. L. (1986). Cache coherence protocols:

evaluation using a multiprocessor simulation model. ACM Transactions

on Computer Systems, 4(4):273--298.

[Baer & Chen 91] Baer, J.-L. and Chen, T.-F. (1991). An effective on-chip preloading

scheme to reduce data access penalty. In Proc. of Supercomputing ’91,

pages 176--186. Also TR 91-03-07, Department of Computer Science and

Engineering, University of Washington.

[Baer & Wang 89] Baer, J.-L. and Wang, W.-H. (1989). Multi-level cache hierarchies:

Organizations, protocols and performance. Journal of Parallel and Dis-

tributed Computing, 6(3):451--476.

[Ball & Larus 93] Ball, T. and Larus, J. R. (1993). Branch prediction for free. Technical

Report #1137, Computer Science Department, University of Wisconsin -

Madison.

122

[Boothe & Ranade 92] Boothe, B. and Ranade, A. (1992). Improved multithreading

techniques for hiding communication latency in multiprocessors. In Proc.

of the 19th Annual Intl. Symp. on Computer Architecture, pages 214--223.

[Brantley et al. 85] Brantley, W. C., McAuliffe, K. P., and Weiss, J. (1985). RP3

processor-memory element. In Proc. of the Int. Conf. on Parallel Pro-

cessing, pages 782--789.

[Bray & Flynn 91] Bray, B. K. and Flynn, M. J. (1991). Writes caches as an alternative

to write buffers. Technical Report CSL-TR-91-470, Stanford University.

[Brewer et al. 91] Brewer, E. A., Dellarocas, C. N., Colbrook, A., and Weihl, W. E.

(1991). PROTEUS: A parallel-architecture simulator. Technical Report

LCS/TR-516, MIT.

[Censier & Feautrier 78] Censier, L. and Feautrier, P. (1978). A new solution to coherence

problems in multicache systems. IEEE Transactions on Computers, C-

27(12):1112--1118.

[Chen et al. 91] Chen, W. Y., Mahlke, S. A., Chang, P. P., and Hwu, W.-M. (1991).

Data access microarchitectures for superscalar processors with compiler-

assisted data prefetching. In Proceedings of the 24th International Sym-

posium on Mircoarchitecture.

[Chen et al. 92] Chen, W. Y., Mahlke, S. A., and Hwu, W.-M. (1992). Tolerating data

access latency with register preloading. In Proc. 1992 Intl. Conf. on

Supercomputing.

[Chow & Hennessy 90] Chow, F. C. and Hennessy, J. (1990). The priority-based coloring

approach to register allocation. ACM Transactions on Programming

Languages and Systems, 12(4):501--536.

[Davis et al. 91] Davis, H., Goldschmidt, S., and Hennessy, J. (1991). Multiprocessor

simulation and tracing using Tango. In Proc. of the Int. Conf. on Parallel

Processing, pages II 99 -- 107.

123

[DEC 92] DEC (1992). Alpha Architecture Handbook. Digital Press.

[Dubois et al. 86] Dubois, M., Scheurich, C., and Briggs, F. (1986). Memory access

buffering in multiprocessors. In Proc. of the 13th Annual Intl. Symp. on

Computer Architecture, pages 434--442.

[Dubois et al. 88] Dubois, M., Scheurich, C., and Briggs, F. A. (1988). Synchronization,

coherence, and event ordering in multiprocessors. Computer, 21(2).

[Dubois et al. 91] Dubois, M., Wang, J.-C., Barroso, L., Lee, K., and Chen, Y.-S. (1991).

Delayed consistency and its effects on miss rate of parallel programs. In

Proc. of Supercomputing ’91, pages 197--206.

[Fu & Patel 91] Fu, J. W. C. and Patel, J. H. (1991). Data prefetching in multiprocessor

vector cache memories. In Proc. of the 18th Annual Intl. Symp. on

Computer Architecture, pages 54--63.

[Fu & Patel 92] Fu, J. W. C. and Patel, J. H. (1992). Stride directed prefetching in scalar

processors. In Proc. of the 25th Int’l Symp. on Microarchitecture, pages

102--110.

[Gharachorloo et al. 91a] Gharachorloo, K., Gupta, A., and Hennessy, J. (1991a). Per-

formance evaluation of memory consistency models for shared-memory

multiprocessors. In Proc. of the 4th Intl. Conf. on Architectural Support

for Programming Languages and Operating Systems, pages 245--259.

[Gharachorloo et al. 91b] Gharachorloo, K., Gupta, A., and Hennessy, J. (1991b). Two

techniques to enchance the performance of memory consistency models.

In Proc. of the Int. Conf. on Parallel Processing, pages I:355--I:364.

[Gharachorloo et al. 92] Gharachorloo, K., Gupta, A., and Hennessy, J. (1992). Hiding

memory latency using dynamic scheduling in shared-memory multipro-

cessors. In Proc. of the 19th Annual Intl. Symp. on Computer Architecture.

124

[Gibbons & Muchnick 86] Gibbons, P. B. and Muchnick, S. S. (1986). Efficient instruc-

tion scheduling for a pipelined architecture. In Proc. of SIGPLAN Symp.

on Compiler Construction.

[Gornish et al. 90] Gornish, E., Granston, E., and Veidenbaum, A. (1990). Compiler-

directed data prefetching in multiprocessors with memory hierarchies. In

Proc. 1990 Intl. Conf. on Supercomputing, pages 354--368.

[Grunwald et al. 91] Grunwald, D., Nutt, G. J., Wagner, D., and Zorn, B. (1991). A

parallel execution evaluation testbed. Technical report, University of

Colorado.

[Hennessy & Patterson 90] Hennessy, J. L. and Patterson, D. A. (1990). Computer

Architecture: A Quantitative Approach. Morgan Kaufmann, San Mateo,

CA.

[Hum & Gao 91] Hum, H. J. and Gao, G. R. (1991). Efficient support of concurrent threads

in a hybrid dataflow/von neumann architecture. Technical Report 35,

McGill University.

[Jain 91a] Jain, R. (1991a). The Art of Computer System Performance Anaylsis. John

Wiley & Sons, Inc.

[Jain 91b] Jain, S. (1991b). Circular scheduling: a new technique to perform software

pipelining. In Proc. SIGPLAN Conf. on Programming Language Design

and Implementation, pages 219--228.

[Jeremiassen & Eggers 92] Jeremiassen, T. E. and Eggers, S. J. (1992). Computing

per-processor summary side-effect information. In Proc. of workshop on

Language and Compilers for Parallel Computing.

[Jouppi 90] Jouppi, N. P. (1990). Improving direct-mapped cache performance by the

addition of a small fully-associative cache and prefetch buffers. In Proc.

of the 17th Annual Intl. Symp. on Computer Architecture, pages 364--373.

125

[Kerns & Eggers 92] Kerns, D. R. and Eggers, S. (1992). Balanced scheduling: instruction

scheduling when memory latency is uncertain. Technical Report 92-11-03,

Department of Computer Science, University of Washington, Seattle WA.

[Klaiber & Levy 91] Klaiber, A. C. and Levy, H. M. (1991). An architecture for software-

controlled data prefetching. In Proc. of the 18th Annual Intl. Symp. on

Computer Architecture, pages 43--53.

[Kowalik 85] Kowalik, J. S. (1985). Parallel MIMD Computation: the HEP Supercom-

puter and its application. MIT Press.

[Krishnamurthy 90] Krishnamurthy, S. M. (1990). A brief survey of papers on scheduling

for pipelined processors. SIGPLAN Notices, 25(7):97--106.

[Kroft 81] Kroft, D. (1981). Lockup-free instruction fetch/prefetch cache organiza-

tion. In Proc. of the 8th Annual Intl. Symp. on Computer Architecture,

pages 81--87.

[Kurihara et al. 91] Kurihara, K., Chaiken, D., and Agarwal, A. (1991). Latency tolerance

through multithreading in large-scale multiprocessing. In Proc. of Int.

Symp. on Shared Memory Multiprocessing, pages 91--101.

[Lam 88] Lam, M. S. (1988). Sotfware pipelining: An effective scheduling tech-

nique for VLIW machines. In Proc. ACM SIGPLAN 88 Conference on

Programming Language Design and Implementation, pages 318--328.

[Laudon et al. 92] Laudon, J., Gupta, A., and Horowitz, M. (1992). Architectural and

implementations tradeoffs in the design of multiple-context processors.

Technical Report CSL-TR-92-523, Stanford University.

[Lee & Smith 84] Lee, J. K. F. and Smith, A. J. (1984). Branch prediction strategies and

branch target buffer design. Computer, pages 6--22.

[Lee et al. 87a] Lee, R. L., Yew, P.-C., and Lawrie, D. H. (1987a). Data prefetching in

shared memory multiprocessors. In Proc. of the Int. Conf. on Parallel

Processing, pages 28--31.

126

[Lee et al. 87b] Lee, R. L., Yew, P.-C., and Lawrie, D. H. (1987b). Multprocessor cache

design considerations. In Proc. of the 14th Annual Intl. Symp. on Computer

Architecture, pages 253--262.

[Motorola 90] Motorola (1990). MC88100 RISC Microprocessor User’s Manual. Pren-

tice Hall.

[Mowry & Gupta 91] Mowry, T. and Gupta, A. (1991). Tolerating latency through

software-controlled prefetching in shared-memory multiprocessors. Jour-

nal of Parallel and Distributed Computing, 12(2):87--106.

[Mowry et al. 92] Mowry, T., Lam, M. S., and Gupta, A. (1992). Design and evaluation

of a compiler algoritm for prefetching. In Proc. of the 5th Intl. Conf.

on Architectural Support for Programming Languages and Operating

Systems, pages 62--73.

[Murakami et al. 89] Murakami, K., Irie, N., and Tomita, S. (1989). SIMP (single

instruction stream / multiple instruction pipelining): A novel high-speed

single-processor architecture. In Proc. of the 16th Annual Intl. Symp. on

Computer Architecture, pages 78--85.

[Nikhi et al. 91] Nikhi, R. S., Papadopoulos, G. M., and Arvind (1991). *T: A multi-

threaded massively parallel architecture. Technical report, MIT Computer

Science.

[Oehler & Groves 90] Oehler, R. R. and Groves, R. D. (1990). IBM RISC System/6000

processor architecture. IBM J. Res. Development, 34(1):23--36.

[Pan et al. 92] Pan, S.-T., So, K., and Rahmeh, J. T. (1992). Improving the accuracy

of dynamic branch prediction using branch correlation. In Proc. of the

5th Intl. Conf. on Architectural Support for Programming Languages and

Operating Systems, pages 76--84.

[Perleberg & Smith 89] Perleberg, C. H. and Smith, A. J. (1989). Branch target buffer

design and optimization. Technical Report UCB/CSD 89/552, University

of California, Berkeley.

127

[Porterfield 89] Porterfield, A. K. (1989). Software methods for improvement of cache

performance on supercomputer applications. Technical Report COMP TR

89-93, Rice University.

[Przybylski 90] Przybylski, S. (1990). The performance impact of block sizes and

fetch strategies. In Proc. of the 17th Annual Intl. Symp. on Computer

Architecture, pages 160--169.

[Rogers & Li 92] Rogers, A. and Li, K. (1992). Software support for speculative loads.

In Proc. of the 5th Intl. Conf. on Architectural Support for Programming

Languages and Operating Systems, pages 38--50.

[Scheurich & Dubois 91] Scheurich, C. and Dubois, M. (1991). Lockup-free caches in

high-performance multiprocessors. Journal of Parallel and Distributed

Computing, 11(1):25--36.

[Singh et al. 92] Singh, J. P., Weber, W.-D., and Gupta, A. (1992). SPLASH: Stanford

parallel applications for shared-memory. Computer Architecture News,

20(1):5--44.

[Sklenar 92] Sklenar, I. (1992). Prefetch unit for vector operations on scalar computers.

Computer Architecture News, 20(4):31--37.

[Smith 82a] Smith, A. J. (1982a). Cache memories. ACM Computing Surveys,

14(3):473--530.

[Smith 82b] Smith, J. E. (1982b). Decoupled access/execute computer architectures.

In Proc. of the 9th Annual Intl. Symp. on Computer Architecture, pages

112--119.

[Smith et al. 90] Smith, M. D., Lam, M., and Horowitz, M. A. (1990). Boosting beyond

static scheduling in a superscalar processor. In Proc. of the 17th Annual

Intl. Symp. on Computer Architecture, pages 344--254.

128

[Smith et al. 91] Smith, R., Archibald, J., and Nelson, B. (1991). A timing based

simulation study of prefetching in a second level cache. Technical Report

TR-A105-91.3, Brigham Young University.

[Sohi & Franklin 91] Sohi, G. S. and Franklin, M. (1991). High-bandwidth data memory

systems for superscalar processor. In Proc. of the 4th Intl. Conf. on Ar-

chitectural Support for Programming Languages and Operating Systems,

pages 53--62.

[Stenstrom et al. 91] Stenstrom, P., Dahlgren, F., and Lundberg, L. (1991). A lockup-

free multiprocesso cache design. In Proc. of the Int. Conf. on Parallel

Processing, pages I--246 -- I--250.

[Tullsen & Eggers 93] Tullsen, D. M. and Eggers, S. J. (1993). Limitation of cache

prefetching on a bus-based multiprocessor. In Proc. of the 20th Annual

Intl. Symp. on Computer Architecture.

[Weber & Gupta 89] Weber, W.-D. and Gupta, A. (1989). Exploring the benefits of

multiple hardware contexts in a multiprocessor architecture: Preliminary

results. In Proc. of the 16th Annual Intl. Symp. on Computer Architecture,

pages 273--280.

[Wolf & Lam 91] Wolf, M. E. and Lam, M. (1991). A data locality optimizing algorithm.

In Proc. ACM SIGPLAN 91 Conference on Programming Language

Design and Implementation, pages 30--44.

[Yeh & Patt 92] Yeh, T. and Patt, Y. N. (1992). Alternative implementation of two-level

adaptive branch prediction. In Proc. of the 19th Annual Intl. Symp. on

Computer Architecture, pages 124--134.

[Zucker 92] Zucker, R. N. (1992). Relaxed Consistency and Synchronization in

Parallel Processors. PhD thesis, Department of Computer Science and

Engineering, University of Washington.

129

[Zucker & Baer 92] Zucker, R. N. and Baer, J.-L. (1992). A performance study of memory

consistency models. In Proc. of the 19th Annual Intl. Symp. on Computer

Architecture, pages 2--12.

Appendix A

Supplemental Data

A.1 Evaluation of Data Prefetching

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

96% 96% 95% 95% 96%
95% 94%

88%
83%

75%

10 20 30 40 50Memory
Latency

Matrix

C
PI

 (
da

ta
 a

cc
es

s)

Pipelined
Overlapped
Non-overlapped

Figure A.1a: Effect of memory models and latencies (continued from Figure 4.4)

131

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

0
1

2
3

4
5

6

56%
53%

54%
53%

51%

37%

37%

30%

16%

10%

10 20 30 40 50Memory
Latency

Nasa

C
PI

 (
da

ta
 a

cc
es

s)

Pipelined
Overlapped
Non-overlapped

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

17%

16%

16%

16%

16%

9%

14%

13%

12%

11%

10 20 30 40 50Memory
Latency

Spice

C
PI

 (
da

ta
 a

cc
es

s)

Figure A.1b: Effect of memory models and latencies (continued from Figure 4.4)

132

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

18%

18%

17%

16%

14%

16%

13%

10%

7%

5%

10 20 30 40 50Memory
Latency

Doduc

C
PI

 (
da

ta
 a

cc
es

s)

Pipelined
Overlapped
Non-overlapped

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

cache
only

LA
pref

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

23%

22%

21%

21%

20%

16%

8%

5%

3%

2%

10 20 30 40 50Memory
Latency

Gcc

C
PI

 (
da

ta
 a

cc
es

s)

Figure A.1c: Effect of memory models and latencies (continued from Figure 4.4)

133

Espresso

8 16 32 64 128 256

Block Size (byte)

0.0

0.2

0.5

0.8

1.0

M
C
P
I

...........
...........
...........
...........
...........
...........
...........
...........
...

�

�

�

�

�

�

..................
..................

.................
.................

..

�

�

�
�

� �

...
.................

?

?

? ?

?

?

Xlisp

8 16 32 64 128 256

Block Size (byte)

0.00

0.04

0.09

0.14

0.18

M
C
P
I

�

...................... Cache only
�

................................. Generic
?

................................. Lookahead
..

...................

�

�

�

�

�

�

...
..........................

..........................
....................

�

�

�
�

�

�

..
.................................

.........................
..........................

?

?

?

?

?

?

Spice

8 16 32 64 128 256

Block Size (byte)

0.0

0.3

0.6

0.8

1.1

M
C
P
I

..
...............

...............
...........

�

�

�

�
�

�

..
..................

...................
...................

..................
�

�

�

�

�

�

...
...................

..................
...................

..................
?

?

?

?

?

?

Doduc

8 16 32 64 128 256

Block Size (byte)

0.0

0.2

0.3

0.5

0.7

CPI
(data

access)
...

.......
.....................

...............
.........
...........
...........
...........
...........
...........
...........

�

� �

�

�

�

...
...

............................
.............................

..................
..............
..............
..............
..............
..............
..............
..............
......

�

�

�

�

�

�

...
..

..........................
...........................

...................
..............
..............
..............
..............
..............
..............
..............
.......

?

?

?

?

?

?

Figure A.2: MCPI vs. block size for 32K cache (continued from Figure 4.5)

134

Matrix

5 10 15 20 25 30 35 40 45 50

Lookahead limit

0.0

0.2

0.3

0.5

0.7

M
C
P
I

..
� � � � � � � � � �

...

?

?

?

?

?

?

? ? ? ?

Nasa

5 10 15 20 25 30 35 40 45 50

Lookahead limit

1.2

1.6

2.0

2.4

2.8

M
C
P
I

�

............. Baseline cache
?

.................. Lookahead prefetching

...........
� � � � � � � � � �

..

?

?

?

?

?

?

?

?

?

?

Eqntott

5 10 15 20 25 30 35 40 45 50

Lookahead limit

0.13

0.15

0.17

0.20

0.22

M
C
P
I

...........
� � � � � � � � � �

..

?

?

?

?

?

?

?

?

?

?

Xlisp

5 10 15 20 25 30 35 40 45 50

Lookahead limit

0.02

0.03

0.04

0.06

0.07

M
C
P
I

..
� � � � � � � � � �

..

?

?

?

?

?

?

?
? ? ?

Figure A.3: MCPI vs. LA-limit (d) for δ = 30 (continued from Figure 4.7)

135

Base Base
victim

Base
2-way

Prefch Prefch
victim

Prefch
pf buf

Prefch
nonzero

Prefch
2-way

0.
0

0.
2

0.
4

0.
6

0.
8

0.71
0.67

0.59

0.03 0.02 0.01 0.01 0.01

Matrix

M
C

PI

Pref+32-ent buf

read miss

hit-wait

Base Base
victim

Base
2-way

Prefch Prefch
victim

Prefch
pf buf

Prefch
nonzero

Prefch
2-way

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.6

0.25 0.24
0.18

0.01 0.01 0.01 0.03

Tomcatv

M
C

PI

Pref+32-ent buf

Figure A.4a: Variations in prefetching placement (continued from Figure 4.8)

136

Base Base
victim

Base
2-way

Prefch Prefch
victim

Prefch
pf buf

Prefch
nonzero

Prefch
2-way

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

0.22

0.14

0.03

0.19

0.12
0.09 0.09

0.03

Doduc

M
C

PI

Pref+32-ent buf

read miss

hit-wait

Base Base
victim

Base
2-way

Prefch Prefch
victim

Prefch
pf buf

Prefch
nonzero

Prefch
2-way

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25 0.24

0.22 0.22

0.14
0.12 0.13 0.13 0.12

Eqntott

M
C

PI

Pref+32-ent buf

Figure A.4b: Variations in prefetching placement (continued from Figure 4.8)

137

A.2 Evaluation of Non-blocking Caches

BASE Prefetch WB Prefetch+
WB

NBC WB Prefetch+
WB

NBC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2 1.19

0.4

1.18

0.29

0.81

0.97

0.27

0.6

M
C

PI

Tomcatv

No-bypassing Bypassing

read
write
busy

BASE Prefetch WB Prefetch+
WB

NBC WB Prefetch+
WB

NBC

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30 0.3

0.24 0.25

0.2
0.22

0.24

0.2 0.21

M
C

PI

Eqntott

No-bypassing Bypassing

Figure A.5a: Prefetching vs. Lockup-free for � = 30 (continued from Figure 6.1)

138

BASE Prefetch WB Prefetch+
WB

NBC WB Prefetch+
WB

NBC

0.
0

0.
02

0.
04

0.
06

0.
08

0.07 0.07 0.07 0.07

0.06

0.05 0.05

0.04

M
C

PI

Fpppp

No-bypassing Bypassing

read
write
busy

BASE Prefetch WB Prefetch+
WB

NBC WB Prefetch+
WB

NBC

0.
0

0.
05

0.
10

0.
15

0.
20 0.19 0.18

0.17 0.16
0.15

0.12 0.12
0.11

M
C

PI

Gcc

No-bypassing Bypassing

Figure A.5b: Prefetching vs. Lockup-free for � = 30 (continued from Figure 6.1)

139

Tomcatv

8 16 32 64 128

Cache size (K)

0.0

0.6

1.1

1.7

2.2

M
C
P
I

..

�

�

�

�
�

...

�

�

�

� �

...

.

.

.

. .

..
?

?
? ? ?

........... ..
? ? ?

? ?

Espresso

8 16 32 64 128

Cache size (K)

0.0

0.4

0.9

1.3

1.7

M
C
P
I

�

................................. Base data cache (s)
�

........... Preload (s)
......................... Nonblocking read/write (w)
?

.............. Hybrid (w)

..

�

�

�

�

�

...

�

�

�
�

�

...

. .

.

. .

..

?

?

?

? ?

Doduc

8 16 32 64 128

Cache size (K)

0.0

0.1

0.3

0.4

0.5

M
C
P
I

..

�

�

�

�

�

..

�

�

�

�

�

...

.

.
.

.
.

..

?

?

?

?

?

Spice

8 16 32 64 128

Cache size (K)

0.0

0.3

0.6

0.9

1.2

M
C
P
I

...

�

�

�

�

�

..

�

�

�

�

�

...

.
.

.

.

.

..

?

?

?

?

?

Figure A.6: Hybrid design on varying cache size δ = 30 (continued from Figure 6.7)

140

Prefetch WB Prefetch
+WB

NBC Prefetch WB Prefetch
+WB

NBC Prefetch WB Prefetch
+WB

NBC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

0.21

1.23

0.21

1.12

0.06

1.21

0.06

1.07

0.04

1.2

0.04

1.06

M
C

PI
Matrix

Nonoverlapped Overlapped Pipelined

Prefetch WB Prefetch
+WB

NBC Prefetch WB Prefetch
+WB

NBC Prefetch WB Prefetch
+WB

NBC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.48

1.07

0.44

1.04

0.06

0.81

0.05

0.8

0.05

0.74

0.04

0.72

M
C

PI

Espresso

Nonoverlapped Overlapped Pipelined

read

write

busy

Prefetch WB Prefetch
+WB

NBC Prefetch WB Prefetch
+WB

NBC Prefetch WB Prefetch
+WB

NBC

0.
0

0.
04

0.
08

0.
12

0.
16

0.14
0.13

0.11

0.12

0.14 0.14

0.11

0.13

0.11 0.12

0.08

0.11

M
C

PI

Xlisp

Nonoverlapped Overlapped Pipelined

Figure A.7a: Effect of memory models: Prefetching vs. Lockup-free

141

Prefetch WB Prefetch
+WB

NBC Prefetch WB Prefetch
+WB

NBC Prefetch WB Prefetch
+WB

NBC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

0.87

1.2

0.75

1

0.5

1.06

0.36

0.88

0.4

0.97

0.27

0.6

M
C

PI

Tomcatv

Nonoverlapped Overlapped Pipelined

Prefetch WB Prefetch
+WB

NBC Prefetch WB Prefetch
+WB

NBC Prefetch WB Prefetch
+WB

NBC

0.
0

0.
05

0.
10

0.
15

0.
20

0.17

0.11 0.1
0.09

0.14

0.09
0.08

0.07

0.14

0.09
0.08

0.07M
C

PI

Doduc

Nonoverlapped Overlapped Pipelined

read
write
busy

Prefetch WB Prefetch
+WB

NBC Prefetch WB Prefetch
+WB

NBC Prefetch WB Prefetch
+WB

NBC

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

3.29 3.19

2.71

2.22
2

2.42

1.61

1.17

1.63

2.11

1.16
0.93

M
C

PI

Nasa

Nonoverlapped Overlapped Pipelined

Figure A.7b: Effect of memory models: Prefetching vs. Lockup-free

142

Prefetch WB Prefetch
+WB

NBC Prefetch WB Prefetch
+WB

NBC Prefetch WB Prefetch
+WB

NBC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.83
0.91

0.82 0.85
0.75

0.9

0.74
0.81

0.73

0.89

0.73
0.8

M
C

PI
Spice

Nonoverlapped Overlapped Pipelined

Prefetch WB Prefetch
+WB

NBC Prefetch WB Prefetch
+WB

NBC Prefetch WB Prefetch
+WB

NBC

0.
0

0.
05

0.
10

0.
15

0.
20 0.19

0.12 0.13
0.11

0.2

0.13 0.13
0.11

0.17

0.11 0.11
0.1

M
C

PI

Gcc

Nonoverlapped Overlapped Pipelined

read
write
busy

Prefetch WB Prefetch
+WB

NBC Prefetch WB Prefetch
+WB

NBC Prefetch WB Prefetch
+WB

NBC

0.
0

0.
05

0.
15

0.
25

0.29

0.25 0.24 0.23

0.27
0.25

0.21 0.22
0.24 0.24

0.2 0.2

M
C

PI

Eqntott

Nonoverlapped Overlapped Pipelined

Figure A.7c: Effect of memory models: Prefetching vs. Lockup-free

Vita

Tien-Fu Chen was born in Kaohsiung, Taiwan, Republic of China on August 14,

1961. He graduated from Kaohsiung High School in Kaohsiung, Taiwan in 1979 and

received a B.S. degree in Computer Science from National Taiwan University in 1983.

After completed his military services, he joined Wang Computer Ltd., Taiwan as a

software engineer for three years. From 1988 to 1993 he attended the University of

Washington, receiving his M.S. degree in Computer Science in 1991 and his Ph.D. degree

in Computer Science and Engineering. He will join the Department of Computer Science

and Information Engineering at the National Chung Cheng University, Chiayi, Taiwan

after completing his study at the University of Washington.

