Data Prefetching
for High-Performance Processors
Tien-Fu Chen

Technical Report 93-07-01

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195

July 1993

A dissertation submitted in partial fulfillment of
the requirementsfor the degree of

Doctor of Philosophy

In presenting this dissertation in partial fulfillment of the requirements for the Doctoral
degree at the University of Washington, | agree that the library shall make its copies
freely available for inspection. | further agree that extensive copying of this dissertation is
allowable only for scholarly purposes, consistent with **fair use’’ as prescribed in the U.S.
Copyright Law. Requests for copying or reproduction of this dissertation may be referred
to University Microfilms, 1490 Eisenhower Place, P.O. Box 975, Ann Arbor, M| 48106, to
whom the author has granted * ‘ the right to reproduce and sell (&) copies of the manuscript
in microform and/or (b) printed copies of the manuscript made from microform.””’

Signature

Date

University of Washington
Abstract
Data Prefetching for High-Performance Processors
by Tien-Fu Chen

Chairperson of Supervisory Committee: Professor Jean-Loup Baer
Department of Computer Science
and Engineering

Recent technological advances are such that the gap between processor cycle times and
memory cycle times is growing. Techniques to reduce or tolerate large memory latencies
become essential for achieving high processor utilization. In this dissertation, we propose
and evaluate data prefetching techniques that address the data access penalty problems.

First, we propose a hardware-based data prefetching approach for reducing memory
latency. The basic idea of the prefetching scheme is to keep track of data access patterns
in areference prediction table (RPT) organized as an instruction cache. It includes three
variations of the design of the RPT and associated logic: generic design, a lookahead
mechanism, and a correlated scheme. They differ mostly on the timing of the prefetching.
We eval uate the three schemes by simulating them in a uniprocessor environment using the
ten SPEC benchmarks. The results show that the prefetching scheme effectively eliminates
amagjor portion of data access penalty and is particularly suitable to an on-chip design and
a primary-secondary cache hierarchy.

Next, we study and compare the substantive performance gains that could be achieved
with hardware-controlled and software-directed prefetching on shared-memory multipro-
cessors. Simulation results indicate that both hardware and software schemes can handle
programs with regular access patterns. The hardware scheme is good at manipulating
dynamic information, whereas software prefetching has theflexibility of prefetching larger
blocks of dataand of dealing with complex data access patterns. The execution overhead of
the additional prefetching instructions may decrease the software prefetching performance
gains. An approach that combines software and hardware schemes is shown to be very

promising for reducing the memory latency with the least overhead.

Finally, we study non-blocking cachesthat can tolerate read and write miss penalties by
exploiting the overlap between post-miss computations and data accesses. We show that
hardware data prefetching caches generally outperform non-blocking caches. We derive a
static instruction scheduling algorithm to order instructions at compiletime. The algorithm
is shown to be effective in exploiting instruction parallelism available in a basic block for
non-blocking loads.

Table of Contents

List of Figures
List of Tables

Chapter 1: Introduction
1.1 Overlapping computationswithmemory accesses
1.2 Organizationof the Dissertation

Chapter 2: Related Work
21 DaaPrefetching
211 Hardware-Controlled Prefetching
212 Software-directed Prefetching
22 Non-blockingCaches
221 Lockup-freeCaches
222 Non-blockingReads/Writes

Chapter 3: Data Prefetching Caches
31 Motivation. e e e
3.2 GenericReferencePrediction. L.
3.2.1 ReferencePredictionTable-RPT
322 RPTmechanism
323 ExampleandDiscussion
3.3 Lookahead Reference Prediction
3.3.1 Lookahead Program Counter (LA-PC)andRPT
3.3.2 Lookahead DistanceandLimit
333 HandlingCacheMisses.
34 Correlated Reference Prediction
34.1 Implementationof Correlated RPT

10
12
12
13

35 Summary 30

Chapter 4: Performance Evaluation of Hardwar e Prefetching Schemes 31

4.1 Evaluation Methodology for Uniprocessors 31

411 TracedrivenSimulation 31

412 ArchitecturaModels L 32

413 BenchmarksandMetrics 35

42 Generd Results e 36

4.3 Effectof DesgnVariations 40

431 Effect of Memory Modelsand Latencies. 40

432 EffectofBlockSize, 43

4.3.3 Organizing the Reference PredictionTable 44

434 VayingthelLookahead Limit 46

435 Alternativesfor the Placement of the PrefetchedData. 47

44 SUMMAY . . . o o e e e e e e e 52
Chapter 5: Compar ative Evaluation of Software and Hardwar e Prefetching

Schemes 54

51 Overview e e e 54

5.2 SoftwarePrefetchingo 55

53 QuditativeComparison 56

531 High-level Comparison. 57

53.2 ldentifyingCacheMisses. 57

5.3.3 PrefetchInstructionand Predicate 59

534 SchedulingPrefetches 60

535 PrefetchinginMultiprocessors 62

53.6 Other Aspectsand Final Words 63

54 Quantitative Evaluation Methodology 64

54.1 ArchitecturadModels oL 65

54.2 Simulation Environment and Benchmarks 66

54.3 Moded Implementations 69

55 SmulationResults 71

551
5.5.2
5.5.3
5.54
5.5.5

Generalresults
Detalled Analysis.
Negative Effect of Prefetching
Effectof Memory Latency
Impact of Consistency Models

5.6 Combining Hardware and Software Prefetching
S.7 SUMMary e e

Chapter 6:

Non-blocking Caches

6.1 OVEIVIEW e

6.2 Background and Performancelssues

6.2.1
6.2.2

Non-blockingCaches.
Performancesissues

6.3 Architectura Models and Evaluation Methodology

6.3.1
6.3.2

Processor-cacheModels
SimulationMethod

6.4 SimulationResults

6.4.1
6.4.2

Effect of Architectural Variations
Effectof LargeLatency

6.5 Compiler Assistance for Non-blockingLoads

6.5.1

Instruction Scheduling and Register Renaming

6.5.2 Algorithmfor Non-blockingLoads

6.5.3

Effect of Instruction Scheduling

6.6 AHybridDesign
6.7 SUMMAY e e e e

Chapter 7:

Conclusion

71 Summaryof Results.

7.2 FutureResearch

Bibliography

90
90
91
91
92
94
94
96
98
98
103
104
104
105
111
113
115

116
116
118

121

Appendix A: Supplemental Data
A.1 Evauation of Data Prefetching

A.2 Evauation of Non-blockingCaches

3.1
3.2
3.3
34
35
3.6
3.7
3.8

41
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

List of Figures

Example of Matrix Multiplication 17
Reference Prediction, 19
Example FillingRPT entries 21
Block diagram of dataprefetching 23
RPT with Lookahead mechanism 25
Kernel 6 e 27
Correlated RPT e 27
Example: Correlated RPT entries 29
Trace-drivensimulator usingpixie 32
Threememory models 34
Simulation Resultsfor & =30--Overlapped 37
Effect of memory modelsand latencies. 41
MCPI vs. block size for 32K cache (Overlapped) 44
Hit ratio and attempted prefetchof RPT 45
MCPI vs. LA-limit (d) ford =30 (Overlapped) 47
Variationsin prefetchingplacement 50
Exampleof instrumentedloop 58
Schedulingprefetcheso oo 61
Model Architecture 65
Direction Execution Simulator 67
Simulationresults 73
Network traffic 78
Effectof memorylatency 81
Prefetching based on weak and sequential consistency 84
Effectiveness of combining HW-pfand SW-pf 86

\Y

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Al
A2
A.3
A4
A5
A.6
A7

Prefetching vs. Lockup-freefor & = 30 (Pipelined) 99

Effect of alarger latency (for & =30vs. 0 = 100 Pipelined) 103
Buildingthe DAG forabasicblock 106
Instruction Scheduler onthe DAG 107
DAGofanexample 108
Schedulingtheexample oL 108
Instruction scheduling and register renaming 109
Effect of instruction scheduling on NBC for & = 30 (Non-overlapped) . . . 112
Effect of instruction scheduling on NBC for & = 30 (Pipelined) 113
Hybrid design on varying cachesized =30 (Pipelined) 114
Effect of memory models and latencies (continued from Figure4.4) 130
MCPI vs. block size for 32K cache (continued from Figure4.5) 133
MCPI vs. LA-limit (d) for & = 30 (continued from Figure4.7) 134
Variationsin prefetching placement (continued from Figure4.8) 135
Prefetching vs. Lockup-freefor ¢ = 30 (continued from Figure6.1) 137
Hybrid design on varying cache size & = 30 (continued from Figure6.7) . . 139
Effect of memory models: Prefetchingvs. Lockup-free 140

Vi

31

41

5.1

5.2

6.1
6.2

6.3

List of Tables

Classification of memory accesspatterns. 16
Characteristicsof benchmarks 36

Benchmarks characteristics - average numbersfor a single processor in the

16 processor simulation 68
Proportionsof Conflictsinthedirect-mappedsets 79
Architectural Choices 96
Statistics of benchmarks (for first 100 million instructions on 32K baseline

CaChe) e 97
Average of basic block size, non-blocking distance, and extra registers

needed e 112

vii

Acknowledgments

| would like to express sincere appreciation to my advisor, Professor Jean-Loup
Baer. | am indebted to him for his inspiration, patience, and encouragement.
Without his valuable guidance and insight, | would never have completed this
study.

| would like to thank Professor Susan Eggers for her helpful comments and
constructive criticism in my study. | thank Professor Arun Somani for hiseffort on
the reading committee and for his comments and suggestions in this dissertation. |
also thank the other members of my supervisory committee, Professor Carl Ebeling
and Professor George Prater.

| wish to thank friends Wen-Hann Wang, who gave me unfailing encouragement
and support, Yi-Bing Linfor hisvauabletechnical assistance, and Shu-Y uen Hwang
for his suggestions. | thank Michael Smith and Stephen Goldschmidt at Stanford
for their helping me to use ssimulation tools pixie and tango. Without their help,
the experimental study in this dissertation would not have been possible. | also
appreciate fellow graduate students Craig Anderson, Claudia Chiang, Calvin Lin,
Ton Anh Ngo, and Richard Zucker during my study in the department. | also thank
my friends Y u-Jung Chang, Yeh-Chung Din, and Po-Fat Yuen for giving me a
wonderful stay in Seattle.

Lastly, | wish to give specia thanksto my wife Meei-Shin, my daughter Janice,
and my family in Taiwan for their love and support.

viii

Chapter 1

| ntroduction

Processor performance has increased dramatically over the last few years and has now
surpassed the 200 MIPS level. Memory latency and bandwidth have also progressed but at
a much sower pace. It is therefore essential that we investigate techniques to reduce the
effects of the imbalance between processor and memory cycle times. The introduction of
caches between the processor and memory modul es has been shown to be an effective way
to bridge this gap. However, with a cache miss penalty that is becoming relatively larger,
a system may still experience low processor utilization even with a high hit rate. Hence,
efficient mechanisms for optimizing accesses to the memory hierarchy are mandatory for
the realization of high performance systems.

The principle behind an effective cache implementation is to take advantage of locality
without a performance loss. With current VLSI developments, several functional units,
instruction and data caches, and hardware assists can be included on the processor chip.
Therefore, a first obvious method for reducing the average memory access time is to
implement multi-level cache hierarchies [Baer & Wang 89] with an on-chip first level
cache. However, under the usual caching mechanism, the processor will still stall on a
first-level cache missand of course al'so on misses on any of the next levels of the memory
hierarchy with an even larger penalty time, until the miss is resolved. Since usualy a
processor must stall on a cache miss, caches do not actually hide memory latency but,
instead, they eliminate many memory accesses. In order to make further progress towards
the reduction in memory latency, memory accesses due to cache misses must proceed
in parallel with processor execution. As a result, a number of different solutions have
been proposed to allow computations to overlap with memory accesses for hiding memory
latency. They basically provide efficient mechanisms to allow buffering and pipelining of
memory references.

1.1 Overlapping computationswith memory accesses

Many solutions have been proposed to reduce memory accesses and/or hide memory
latency. They can be classified according to several dimensions such as the type of latency
(read, write, consistency), the architectura component (processor, cache, or network),
the target system (uniprocessor or multiprocessor), and the basic technology (hardware,
software, or hybrid). In thisintroductory chapter, we briefly list some of them; those most
germane to our work will be described in more detail in the next chapter.

The smplest technique is a write buffer, a FIFO queue which is used to hide the
write latency [Smith 82a]. Buffering is a performance enhancement for caches both with
write-back and write-through strategies. Under write-back, the write buffer is used to
hold replaced dirty blocks while **normal’’ execution proceeds. The system uses spare
interconnect and memory cycles to write buffered values to the next level of the memory
hierarchy. Under write-through, the buffering of write requests releases the CPU from
waiting for the writes to complete. An extension to the write buffer is a write cache
[Bray & Flynn 91], organized like a small regular cache, that uses an allocate strategy on
write misses and write backs to reduce the number of writes. Unlike a write buffer, the
write cache allows writes which access the same cache line to be combined and thus,
reduces the write miss penalty.

The next solution is a design that allows the processor to continue execution on
unsatisfied memory referencesthrough the use of non-blocking caches (also called lockup-
free caches [Kroft 81]). The non-blocking caches (see Section 2.2 for more detail) hide the
latency of data misses through the overlap of data accesses and computations to the extent
allowed by the data dependencies and consistency requirements. While the entire write
latency can be hidden by a sufficiently large write buffer, dependence restrictions must be
observed by the read requests in the processor and it is therefore likely that only a portion
of the read latency can be hidden. Consequently, extrahardware complexity in both caches
and processorsis required to record the information pertaining to the outstanding requests,
such as the cache line where the return value is to be stored and which function units are
waiting for what data.

To achieveadditional overlap, thecompiler may performinstruction scheduling to avoid
unnecessary stalls by keeping the CPU busy [Gibbons & Muchnick 86, Krishnamurthy 90,
Kerns & Eggers92]. The freedom of instruction scheduling in most compiler algorithms
is limited by the data and control dependencies in the programs. Better performance is

generally achieved by moving loads far enough ahead of their uses. Like ‘‘regular’’ non-
blocking loads, speculative loads [Chen et al. 92, Rogers & Li 92] fetch memory values
into registers directly bypassing the cache if need be, i.e., without blocking the pipeline on
amiss, and allow other instructionsto be executed simultaneously. Because these loads are
performed based on speculative execution, they will be scheduled under fewer constraints.
For instance, speculative loads can be moved around across the basic block boundary
regardless of control dependence restrictions. The basic requirement is that they should be
issued speculatively without introducing unnecessary faults into the system. Speculative
loads require both software and hardware supports, including instruction scheduling and
extra state bits and transitions in register management.

An important approach is prefetching (the main topic of this dissertation), that is, the
action of bringing data in the cache before it is actually needed. Prefetching is similar
to speculative loads in the sense that it is non-blocking and behaves like a hint without
incurring semantic faults. The main difference between prefetching and speculative loads
isthat the data areloaded into the cache rather than registers, and thusthe restriction dueto
the limited number of registers does not limit the flexibility of prefetching. Depending on
how prefetches are determined and initiated, prefetching can be either hardware-controlled
[Baer & Chen 91, Fu & Patel 92] or software-directed [Porterfield 89, Klaiber & Levy 91,
Mowry et al. 92]. The hardware approach detects accesses with regular patterns and
issues prefetches at run time, whereas the software approach relies on the compiler to
analyze programs and to insert prefetch instructions. In a shared-memory multiprocessor
environment, where consistency requirements are taken into account, prefetching can
be either binding (at compile time) [Leeet al. 87b, Gornish et al. 90] or non-binding
(supported by hardware coherence) [Mowry & Gupta9l, Tullsen & Eggers93]. In the
former case, a data block location is bound to the value of prefetched datain caches at the
time that the prefetch completes, whereas in the latter case, data is kept coherent by the
cache coherency mechanism.

Yet another technique is the use of a processor with multiple hardware contexts
[Kowalik 85, Weber & Gupta89, Agarwal et al. 90, Alverson et al. 90, Nikhi et al. 91,
Kuriharaet al. 91]. If severa threads are assigned to a processor, memory latencies
can be masked by rapidly context switching to a different thread rather than waiting for a
memory reference to complete. The two key issues for implementing multiple-context pro-
cessors are: when is context switching performed [Boothe & Ranade 92, Laudon et al. 92],

andwhat definesacontext [Hum & Gao 91]. Variationson theseissuesinclude conditional -
switch, switch-on-cache-miss, and switch-every-cycle.

The cache coherence, or cache consistency, problem [Archibald & Baer 86] arises in
shared-memory multiprocessors where several copies of the same block can be present
in the local caches of the individual processors. The presence of write buffers and
non-blocking caches makes the consistency problem more complicated, not only because
yet another location for a copy of the data is possible, but also due to the fact that the
results of writes may not be immediately observed (e.g., by the I/O system or other
processors). One of the techniques to aleviate the processor’s stalls on observing writes
isload bypassing, that is, amemory load can bypass memory stores that are buffered and
thus overlap between accesses can be exploited. Load bypassing is essentially required
for processors with dynamic scheduling [Hennessy & Patterson 90]. A second technique
is to relax the memory consistency model. A consistency model is an agreement between
the parallel programs and the multiprocessor architecture on the ordering that shared
references must observe. The most intuitive model is sequential consistency, that is, the
serialization of theinterleaving of the execution of the parallel processeslikeon asequential
machine. However, it imposes the strictest restrictions on the buffering of memory
accesses. In order to further weaken the constraints imposed by seriaizability, several
relaxed models of memory consistency have been proposed, including weak consistency
and release consistency modelgDubois et al. 88, Adve & Hill 90, Gharachorloo et al. 913,
Duboiset al. 91, Zucker 92]. They allow memory accesses between synchronizationsto be
executed out-of-order and therefore exploit an overlap between memory accesses. Under
these consistency models, the synchronizations should be explicitly specified.

In summary, many solutions have been proposed and shown to be effectiveintolerating
memory latencies. The success of these solutions relies on sufficient memory bandwidth
for parallel memory accesses. Most of them require extra hardware support in processors
and caches. A danger in the additional complexity is that it will increase the critical path
time in the processor and thus offset the performance gains. The architecture proposed in
this dissertation is an attempt to improve the technique of data prefetching for reducing
memory latencies without increasing the critical cycle time.

1.2 Organization of the Dissertation

In this dissertation, we focus on one of the techniques mentioned above, namely hardware-
based prefetching through a hardware unit whose function is to generate prefetches for the
data cache. The goal of the prefetching is to reduce the processor stall time by bringing
data into the cache just before its use. Ideally, the latency time would be totally masked;
practically it can only be reduced since there are many impediments that prevent a perfect
prediction of both the instruction stream, e.g., imperfect branch prediction, and of the data
stream, e.g., data dependent addresses. The basic idea of the hardware-based prefetching
scheme is to keep track of data access patterns in a reference prediction table (RPT)
organized as an instruction cache.

In Chapter 3, we describe three variations of the design of the RPT and associated logic.
They differ mostly on the timing of the prefetching. In the ssmplest scheme, called generic,
prefetches can be generated oneiteration ahead of actual use. Thelookahead variation takes
advantage of a look-ahead program counter that ideally stays one memory latency time,
i.e., potentially severa loop iterations, ahead of the real program counter and that is used
as the control mechanism to generate the prefetches. Finally the correlated scheme uses a
more sophisticated design to detect patterns across loop levels. As mentioned previoudy,
areview of related work is presented in Chapter 2.

Chapter 4 presents the results of performance evaluation. The three designs are
evauated by smulating the ten SPEC benchmarks cycle-by-cycle in a uniprocessor
environment. The results show that (1) the three hardware prefetching schemes all yield
significant reductions in the data access penalty when compared to regular caches, (2) the
look-ahead scheme is the preferred one in terms of cost-performance, and (3) the benefits
are greater when the hardware assist augments small on-chip caches.

In Chapter 5, first we qualitatively compare the substantive performance gains that can
be achieved with hardware-controlled and software-directed prefetching. Then we evaluate
these two schemes for the prefetching of shared datathrough direct-execution simulationin
a shared-memory multiprocessor environment. Results indicate that hardware prefetching
is good at handling programs with regular access patterns and at manipulating dynamic
information. In addition to the capability of handling regular accesses, software prefetching
has the flexibility of prefetching larger blocks of data (rather than cache lines) and of
dealing with some load dependent references. However, the execution overhead of the
additional prefetching instructions decreases the software prefetching performance gains.

A combination of software and hardware approaches is promising in taking advantage of
both schemes without incurring much overhead.

In Chapter 6, we discuss and evaluate the effectiveness of non-blocking caches and
compare it with that of the proposed prefetching scheme. We consider compiler-based
optimizations to enhance the effectiveness of non-blocking caches and propose a hybrid
design based on the combination of prefetching and non-blocking schemes. Results from
instruction level ssmulations show that the proposed hardware prefetching caches generally
outperform non-blocking caches. Also, the relative effectiveness of non-blocking caches
is more adversely affected by an increase in memory latency than that of prefetching
caches. However, the performance of non-blocking caches can be improved substantially
by compiler optimizations such asinstruction scheduling and register renaming. The hybrid
design can be very effectivein reducing the memory latency penalty for many applications.

Finally, Chapter 7 summarizes the dissertation and suggests directions for future
research.

Chapter 2
Related Work

Thischapter givesasurvey of previouswork whichisdirectly relevant to themaintheme
of this dissertation. First, we specifically review previous data prefetching techniques,
including hardware-controlled and software-directed approaches. We then briefly review
non-blocking techniques that are used to hide memory latency and discuss associated
compiler optimization algorithms.

2.1 Data Prefetching

Data prefetching in the context of this work is defined as the asynchronous action of
bringing data in the data (or mixed instruction-data) cache before it is directly accessed
by a memory instruction (such as aload or a store). In fact, data that will never be used
might be erroneoudly prefetched. The prefetching might be triggered either by a hardware
mechanism, or by a software instruction, or by a combination of both.

211 Hardware-Controlled Prefetching

Hardware-based approaches can be classified into two categories. spatial schemes, when
the decision to prefetch is based on the access to the current cache block, and temporal
schemes, which implies lookahead decoding of the instruction stream. In the spatial
approaches, prefetches occur when there is amiss on a cache block, and the address of the
prefetched block is dependent on the current data access, while prefetchesin the temporal
category occur at times ahead of actual use and are not related to cache misses.

Spatial schemes

Smith [82a] studies variations on the one block look-ahead (OBL) policy, i.e., upon
referencing block i, the only potentia prefetchisto block i + 1. Upon referencing block i,
three options are: prefetch block i + 1 unconditionally, prefetch block i + 1 only on a miss
to block i, or prefetch block i + 1 if block i isreferenced for the first time after prefetching

(aone-bit encoding isrequired). Smith’ s experiments show a decrease in miss ratios when
prefetching is used but with a concomitant increase in memory traffic due to potentially
prefetching unused blocks. Memory latencies are now (relatively to the processor speed)
much larger than when Smith performed his experiments. Therefore, the risks of the
processor stalling, because the memory bus is busy servicing a yet unneeded prefetched
block rather than a current miss, has become greater. Based on a similar observation,
Przybylski [90] argues against complex (pre)fetch strategies because either there is not
enough memory bandwidth or because misses are too temporally clustered.

An extension to OBL where several consecutive data streams are prefetched in FIFO
stream buffersis proposed by Jouppi [90]. The FIFO queues arefilled sequentialy starting
from the missing block address. He finds that a stream buffer of four 8-byte blocks can
remove up to 85% of the misses for a 4K I-cache but will remove only about 35% of the
misses of a4K D-cache. As could be expected, OBL, or extensions based on (sequential)
gpatial locality, would work better for I-caches than for D-caches and its effectiveness
decreases with increased block sizes. Miss rates can be reduced, mostly for direct-mapped
caches, at the expense of someincreasein memory traffic. These OBL-based schemestake
advantage of limited (sequential) spatial locality but are not able to deal with large strides.

The use of stride information carried by vector instructions leads Fu and Patel [91] to
propose prefetch strategies for vector processors. They define the cache load size | as the
number of bytesloaded into the cache on amiss, | = (p+ 1) x b, where bistheblock size
and p is the number of blocks prefetched. A sequential-prefetch strategy is such that, on
a cache miss, the cache prefetches p consecutive blocks for a reference which is a scalar
or ashort stride (< b) vector access. The stride-prefetch strategy states that in addition to
sequential-prefetching, the cache prefetches p blocks for long stride (> b) vector accesses
on a cache miss, where those b-byte blocks are separated by the stride. By simulating four
numerical programs on a 2-way 64K cache with a block size of 32 bytes and a 128-byte
load size, they find that sequential-prefetch can increase performance by 30%-50% by
loading multiple small blocks to capture spatial locality. A stride-prefetch cache shows
some performance improvement, but not significantly better than a sequential-prefetch
cache.

Later on, Fu and Patel [92] deriveasimilar approach for scalar processors. The primary
mechanism is to record the previous memory address in a history table and to generate
prefetch requests by calculating a stride between the current address and the previous

addressif the strideisnon-zero. Their results show that a history table with a small number
of entries can significantly reduce, with low overhead, the number of cache misses for
programsthat can be highly vectorized. However, asignificant overhead for non-vectorized
programs may occur. The main problem isthat the approach lacks the control of preventing
unnecessary prefetches on irregular accesses or unneeded blocks. The same general idea
of a hardware assist is presented by Sklenar [92], but without any performance or cost
evaluation. These two schemes post-date our earlier study of a hardware-assist function for
prefetching [Baer & Chen 91]. Our approach will be described in Chapter 3.

Temporal schemes

By lookahead decoding of theinstruction stream, temporal mechanisms attempt to have
databeinthecache *‘justintime’’ to be used. Lee et al. [87a] propose a data prefetching
scheme based on instruction lookahead for CISC-like machines. The processor includes an
instruction prefetch buffer and a data prefetch buffer (FIFO queue), which is used to hold
the operand addresses of the decoded instructions. As each new instruction is decoded,
an entry for the data buffer is created and the data prefetch is generated for the operand
simultaneously. Hence, in idea situations (far enough ahead) the data can be available by
the time the instruction is actually executed. When a conditional branch is encountered,
the system will randomly select a path, and instruction and data prefetch buffers continue
the decoding and prefetching until the condition is evaluated. When an incorrect branch
prediction is detected, the execution will stall waiting for the buffer to be flushed.

Implicit prefetching is present in decoupled architectures [Smith 82b], where two
instruction streams operate concurrently, communicate via queues and drive two execution
units: one for data access and one for functional operations. The data access stream can be
‘“ahead’’ of the functional stream and hence can prefetch operands most likely needed in
the near future.

The main problem with tempora prefetching is that the time window where the
prefetching can occur is limited by the instruction decoding buffer size and is not wide
enough for large memory latencies.

Insummary, in spatial schemes, the opportunetimeat which prefetch should beinitiated
is not linked very closely to the time of next use, while in temporal schemes, the address
of the datato be prefetched is based on the values of the speculated operands and is not

10

related to the current locality in the cache.

2.1.2 Software-directed Prefetching

A totally different approach to prefetching is to use software-directed techniques that rely
on data access patterns detected by static program analysis. An intelligent compiler inserts
data prefetch instructions several cycles before their corresponding memory instructions.
A processor hasto explicitly execute the prefetch instruction to initiate a prefetch request.
Such prefetch instructions, which are just hints to the memory subsystem for reducing
memory latency, are found in contemporary processors, such as ALPHA [DEC 92].

Porterfield [89] examinesthe effect of prefetching all array referencesin the most inner
loops of programs by inserting prefetches oneiteration ahead. Based on asimulation study
of scientific programs, he finds that with good compile-time analysis, software prefetching
is more effective than a smple prefetching through one cache block lookahead (OBL) or
the use of alarge cache line size. His results show that if the software prefetching were
free, it could decrease the execution time of programs by up to 50%, with a decrease of
over 20% on the average. However, he recognizes that the original *‘ prefetch al’’ scheme
may lead to too much overhead. The overhead can be reduced by selectively prefetching
references that will be misses and by keeping the effective address in a register between
the prefetch and the actual load.

Klaiber and Levy [91] show that the time to prefetch should depend on the memory
latency and loop execution time. They propose a prefetching scheme which brings data
into a separate fetch buffer instead of a unified cache. Chen et al. [91] examine compiler-
assisted data prefetching in superscalar processors. Their results, based on fairly small
caches, show that a prefetch buffer is more effective than increasing the cache dimensionin
solving the data pollution problem. Their study of software prefetching for non-scientific
codes indicates that it is difficult to generate prefetch addresses early when the access
patterns areirregular.

Gornishet al. [90] proposean algorithm, meant for parallel programsin multiprocessors,
that finds the earliest point, before a loop that an entire subarray can be prefetched. The
determination is based on the control and data dependencies in the program. The approach
mainly focuses on asynchronous block transfers of data from global memory to local
memory before the data are actualy used, rather than on a single cache line at a time.
Because they want the algorithm to be generic under any architecture and do not have a

11

specific coherence mechanism in mind, their approach is a binding prefetching, that is,
a data block location is bound to the value of prefetched data in caches at the time that
the prefetch completes. Based on a simulation of the execution of Fortran Kernels on a
multiprocessor, they show that even a simple algorithm can reduce the processor stall time
by as much as 32% to 97%. However, as prefetching is binding and subject to control
and data dependence constraints at compile time, the restriction on the binding time may
suppress significant prefetching candidates and limit the flexibility of prefetching.

Mowry and Gupta [91] propose a honbinding software-controlled prefetching scheme.
Prefetching is nonbinding in the sense that prefetched data are till kept coherent (by
hardware) as if the data were fetched by norma operations. Unlike the algorithm by
Gornish et al. [90], nonbinding prefetching provides the flexibility that prefetching can be
done with fewer restrictions, but requires hardware-based coherence because the hardware
must be dynamically aware of which data have been prefetched. They show (by manualy
inserting prefetch instructions) that prefetching can increase the performance by 83% to
86% for programs with regular data access patterns and by only 14% for a program with
extensive use of linked lists. In addition to the study of a prefetch strategy, they consider
both prefetch instructions for read and write accesses, and also data prefetches of size
determined by the semantic data objects.

While software prefetching schemes discussed in the above are shown to be effective,
most of the studies do not address the cost: issuing prefetching incurs instruction overhead
and may increase the traffic in the memory system. Mowry and Gupta [92] further
developed a compiler algorithm to perform the prefetch insertion. The new advance is
to identify useful references for prefetching without introducing too much unnecessary
overhead. Based on locality analysis and on loop transformations with proper prefetch
predicates, the algorithm selectively inserts prefetches only for those references which are
likely to cause cache misses. Astheagorithm demonstrates|ocality analysisonly for ssimple
codes that operate on dense matrices, it isnot clear that the compiler can automatically add
useful prefetching for the programs with more complicated access patterns.

In summary, software-directed prefetching ams at compiler techniques to insert
prefetches instructions without requiring too much hardware complexity. The two main
issues are how the prefetchinstructionsare inserted and how their overhead can be reduced.

12

2.2 Non-blocking Caches

Non-blocking caches allow execution to proceed concurrently with one or more cache
misses until necessary dependence on the missing data mandates stalling. In contrast to the
overlap of computations prior to an actual cache miss by prefetching techniques, the non-
blocking scheme exploits the overlap of memory accesses with post-miss computations.
Although the design requiresmore complex hardware support inthe processor, it can exploit
instruction level parallelism without incurring extra overhead to the memory system.

Non-blocking caches (al so called lockup-free caches) were originally proposed by Kroft
[81] for uniprocessors. He introduced the concept of Miss Information/Status Holding
Registers (MSHR) to keep track of multiple pending requests. Interestingly, the terms
“*lockup-free cache’’ and ‘ * non-blocking cache’’ are used interchangeably in the literature.
Weclarify thefeaturesby dividing themintotwo categories: (1) acache supporting multiple
outstanding memory requests, but blocking the processor on read misses (blocking loads),
and (2) the processor supporting non-blockingloads and writes. Inthefollowingdiscussion,
we refer to the first category as lockup-free caches and specifically refer to the latter as
non-blocking reads/writes.

221 Lockup-free Caches

A cache design in the first category is generally used or studied for supporting ad-
vance architecture features in high-performance computers. The lockup-free cache in RP3
[Brantley et al. 85] supportsnon-blocking prefetchesand multiple outstanding stores. How-
ever, reads are blocking until the missed datum returns. The lockup-free cache appearingin
the studies of the DASH multiprocessor [Gharachorloo et al. 91a, Mowry & Gupta 91] al-
lows multiple outstanding write and prefetch requests, whilethe processor still stallson read
misses. In principle, the capability of handling multiple pending requests is essential for
prefetching or any other **buffering’’ and *‘ pipelining’” techniques that we have reviewed.
Most studies on prefetching [Lee et al. 87b, Porterfield 89, Jouppi 90, Fu & Patel 91] and
relaxed memory consistency models [Gharachorloo et al. 91b] simply assume pipelined
caches, which also can be thought of as lockup-free caches.

13

2.2.2 Non-blocking Reads/Writes

In the second category, where out-of-order execution is allowed, the processor essen-
tialy requires extra hardware complexity to perform dynamic scheduling and support
non-blocking loads. The memory requirements include a write buffer allowing load
bypassing and a cache capable of servicing multiple requests. The SIMP architecture
[Murakami et al. 89], which provides dynamic dependency resolution with speculative
branch prediction, can take more advantage of lockup-free caches than a processor with
MSHR’s. Gharachorloo et al. [92] explore the advantages of relaxed consistency models
in dynamically scheduled processors. With lockup-free caches associated with each pro-
cessor, shared-memory multiprocessors have concurrently pending misses in the various
processors. Scheurich and Dubois [91] discuss variations of cache coherence protocols for
lockup-free caches of multiprocessors in weakly ordered systems. In their study, Sohi and
Franklin [91] show that a multi-ported non-blocking cache at the first level can support
the data bandwidth demands of an advance instruction issue mechanism. Stenstrom et al.
[91] formulate access order information from programs, so that a lockup-free cache can
exploit this information to achieve performance improvements. They present an imple-
mentation which can support and control pipelining anong multiple accesses. In the IBM
RS/6000 processor [Oehler & Groves 90], register tagging is implemented to allow data
cache accesses to overlap with the execution of subsequent independent register-to-register
instructions.

The schemes discussed in the above require fairly complex hardware. Performance
can be improved by compiler assistance. Compiler optimizations for non-blocking loads
mainly consist of instruction reordering and the insertion of independent instructions after
non-blocking loads to keep the processor as busy as possible. Traditiona instruction list
schedulers [Gibbons & Muchnick 86, Krishnamurthy 90] can be employed to perform the
code scheduling. More recently, Kerns and Eggers [92] proposed balanced scheduling,
which is particularly suitable to non-blocking loads since the latency of aload is unknown
until run time. Their key ideais to distribute loads according to the amount of instruction
level paralelism that isavailable.

With acombination of hardwareand software sol utions, specul ative loadsfetch memory
values into registers directly. Unlike normal non-blocking loads, they are speculatively
executed so that unnecessary semantic page faults or dependencies will be ignored without
introducing extra overhead. The advantage is that the compiler has more freedom to move

14

around the speculative loads, but they require extra detection and correction mechanism.
Chen et. a. [92] study a design of preload register update, which alows the compiler
to move load instructions even in the presence of data dependence. They derived the
scheduling support for register preloads based on the superblock structure. Rogers and
Li [90, 92] describe a hardware mechanism for non-fault speculative loads and compiler
techniques to move across basic block boundaries.

In short, we have reviewed two related techniques for tolerating memory latency:
data prefetching caches and non-blocking caches. The next chapter will present a new
hardware-based data prefetching scheme.

Chapter 3
Data Prefetching Caches

Prefetching based on sequentiality has been shown be successful for the optimization of
|-caches, but much less so for D-caches. In this chapter, we propose a hardware-based data
prefetching scheme that overcomes the drawbacks of the previous approaches discussed
in Section 2.1.1. The key idea of our scheme is to detect dynamically the strides and
access patterns in a reference prediction table (RPT). Based on the timing of prefetching
determination and issue, we propose three variations, in increasing order of complexity
generic, lookahead, and correlated. The common basis of these schemes is to predict,
based on data access patterns, the data stream far enough in advance, so that the required
data can be prefetched and be in the cache when the “*real’” memory access instruction is
executed. Our approach takes advantages of both spatial and temporal schemes.

In this chapter, we first give the basic motivation in Section 3.1. Then we describe the
three schemes: generic, lookahead, and correlated in sections 3.2, 3.3, and 3.4 respectively.
Finally, we summarize and briefly compare our scheme with other relevant approaches.

3.1 Motivation

The hardware supporting schemes generate prefetches by taking advantage of theregularity
of memory access patternswhen they exist and prevent prefetching when the access patterns
are unpredictable.

Consider a program segment with m-nested loopsindexed by 14, I2, - - -, Im. Let LP,, be
the set of statements with datareferencesin theloop at level i. Given adatareferencer, we
can divide the memory access patterns into four categories. scalar, zero stride, constant
stride, and irregular as shown in Table 3.1.

The difference between scalar and zero stride is that the latter is a reference to a
subscripted array element with the subscript being an invariant at the inner loop level but
modifiableat an outer level. Obvioudy, standard cacheswork well for scalar and zero stride
references. Caches with large block sizes and simple prefetch strategies (cf. Section 3.4)

16

Table 3.1: Classification of memory access patterns

Pattern Description examples

scalar simple variablereference index, count

) r € LP,, with subscript expres- | A[ly, o] InLP,
zero stride

sion unchanged w.r.t I; TABJI1].off inLP,,
constant sride r_ € ITPIi with subscript expres- | A[l1] iInLP,, |
sion linear w.r.t; Allg,12],All2,11] InLP,
A[B[I]inLP,
irregular none of the above A[LI] inLP,
Linked List

can improve the performance for the constant stride category if the stride is small but will
beof nohelpif thestrideislarge. Our goal isto generate prefetchesin advance for uncached
blocks in the scalar, zero stride, and constant stride access categories independently of
the size of the stride. At the same time, we will avoid unnecessary prefetching for the
irregular accesses. Our scheme will be most appropriate for high-performance processors
with relatively small first-level caches, i.e., those such that they cannot hold the working
set of the application, with asmall block size, and running programs where the data access
patterns are regular but not necessarily of stride 1.

The basis of our design is a Reference Prediction Table (RPT) that holds data access
patterns of load/store instructions. To illustrate the concept, we consider the usual matrix
multiplication loop (for more detail, see Section 3.2.3) and the pseudo-assembly RISC-like
code version of the computational part of the inner loop shown in Figure 3.1. In the code
we assume that the subscripts are kept in registers. At steady state, the RPT will contain
entries for the three load Iw and the store sw instructions. Since each iteration of the inner
loop accesses the same location of A[i,j] (zero stride), no prefetch will be requested for it.
Depending on the block size, referencesto B[i,k] (constant stride) will either be prefetched
at every iteration (block size = 4), or every other iteration (block size = 8), and so on. Load
referencesto C[k,j] (constant stride with a stride larger than the block size) will generate a
prefetch instruction every iteration.

17

int A[100,100],B[100,100],C[100,100]
fori=1t0100
for j =1to 100
for k =1to 100
Ali,j] += BJiK] x C[k,j]

(@) A Matrix Multiplication

addr _ instruction comment

500 Iw r4,0(r2) ; load B[i,k] stride4 B
504 Iw r5,0(r3) ; load C[k,j] stride400 B
508 mul r6,r5,r4 ; B[i,k] x C[k,]

512 Iw r7,0(rd) ;load Afi,j)] strideO
516 addu r7,r7,r6 +=

520 sw r7,0(r1) ; storeA[i,j] strideO
524 addu r2,r2,4 ; ref BJi K]

528 addu r3,r3, 400 ; ref C[K,j]
532 addu r11,r11,1 : increase k
536 bne r11,r13,500 ;loop

(b) assembly code

Figure 3.1: Example of Matrix Multiplication

3.2 Generic Reference Prediction

The most intuitive prediction scheme is to have prefetches for the (i + 1)% iteration be
generated when the i™ iteration is executed. Thus, when the program counter (PC) decodes
a load/store instruction, a check is made to see if there is an entry corresponding to the
instruction in the RPT. If not, it is entered. If it is there and if the reference for the
next iteration is predictable (as defined below), a prefetch isissued. This generic scheme
involves only the PC and the RPT. As shown in Figure 3.4, the hardware requirement
for the generic design is a subset of the more complex lookahead variation that will be

18

described in Section 3.3. We now introduce the design and use of the RPT under the
generic scheme.

3.2.1 ReferencePrediction Table- RPT

The Reference Prediction Table (RPT) isused to keep track of previousreference addresses
and associated strides for load and store instructions. The RPT is organized as a cache.
Each RPT entry has the following format (see Figure 3.2):

e tag: correspondsto the address of the Load/Store instruction

e prev_addr: thelast (operand) address that was referenced when the PC reached that
instruction.

¢ stride: the difference between the last two addresses that were generated.

e state. a two-bit encoding (4 states) of the past history; it indicates how further
prefetching should be generated. The four states are:

-- initial: set at first entry in the RPT or after the entry experienced an incorrect
prediction from steady state.

-- transient: corresponds to the case when the system is not sure whether the
previous prediction was good or not. The new stride will be obtained by
subtracting the previous address from the currently referenced address.

steady: indicates that the prediction should be stable for awhile.

no prediction: disables the prefetching for this entry for the time being.

3.2.2 RPT mechanism

When the PC encounters a load/store instruction with effective operand address addr, the
RPT is updated as follows: (To make it clear, we denote correct by the condition: addr =
(prev_addr + stride) and incorrect by the condition: addr # (prev_addr + stride).)

e A.1l. Thereis no corresponding entry. The instruction is entered in the RPT, the
prev_addr field is set to addr, the stride to O, and the state to initial.

prefetching
TTTTT 2 4+ b= address

tag prev_addr stride | state

L—]

PC -
effective address
() reference prediction table
[ncorrect @
" correct correct
incorrect
(update stride) correct
correct [ncorrect
“incorrect . \"°" pred
(update stride)
(update stride)

(b) state transition by PC
Figure 3.2: Reference Prediction
e A.2. Thereisacorresponding entry. Then:

(&) Trangtion --
When incorrect and state = initial:
Set prev_addr to addr, stride to (addr - prev_addr), and state to transient.

(b) Moving to/being in steady state --

20

When correct and (state = initial, transient, or steady):

Set prev_addr to addr, leave stride unchanged, and set state to steady.
(c) Steady stateis over; back to initialization --

When incorrect and state = steady:

Set prev_addr to addr, leave stride unchanged, and set state to initial.

(d) Detection of irregular pattern --
When incorrect and state = transient:

Set prev_addr to addr, stride to (addr - prev_addr), and state to no prediction.

(e) No prediction state is over; back to transient

When correct and state = no prediction:

Set prev_addr to addr, leave stride unchanged, and set state to transient.
(f) Irregular pattern --

When incorrect and state = no prediction:

Set prev_addr to addr, stride to (addr - prev_addr), and leave state unchanged.

Following the update, a prefetch request can be generated based on the presence and

state of the entry. Note that the generation of a prefetch does not block the execution of
the instruction stream and, in particular, the increment of the PC. There are two mutually
exclusive possibilities:

e B.1. No action.

There is no existing entry or the entry isin state no prediction.

B.2. Potential prefetch.

Thereis an entry in init, transient, or steady state. A data block address (prev_addr
+ stride) is generated. If the block is uncached and the address is not found in
an Outstanding Request List (ORL) (see Section 3.3), a prefetch is initiated. This
implies sending a request to the next level of the memory hierarchy, or buffering it
if the communication channel is busy. The address of the request is entered in the
ORL.

21

3.2.3 Exampleand Discussion

Figure 3.3 illustrates how the Reference Prediction Tableis filled and used when the inner
loop of the matrix multiplication code shown previoudy is executed. We restrict our
example to the handling of the 3 load instructions at addresses 500, 504, and 512. We
assume that the base addresses of matrices A, B and C are respectively at locations 10,000,
50,000, and 90,000.

tag | prev_addr | stride | state tag | prev_addr | stride | state
500 | 50,000 0 init
504 | 90,000 0 init
512 | 10,000 0 init
Initially empty After iteration 1
€Y (b)
tag | prev_addr | stride | dstate tag | prev_addr | stride | state
500 | 50,004 4 | transient 500 | 50,008 4 steady
504 | 90,400 400 | transient 504 | 90,800 | 400 | steady
512 | 10,000 0 steady 512 | 10,000 0 steady
After iteration 2 After iteration 3
(c) (d)

Figure 3.3: Example: Filling RPT entries

Before the start of the first iteration, the RPT can be considered empty since there
won't be any entry corresponding to addresses 500, 504, and 512 (cf. Figure 3.3.8). Let us
assume also that no element of A, B, or C has been cached.

When the PC executes for the first time the load instruction at address 500, there is no
corresponding entry. Therefore, the instruction is entered in RPT with its tag (500), the
prev_addr field set to the address of the operand, i.e., 50,000, the stride set to O, and the
state toinitial (cf. A.1 above). Similar actions are taken for the other two load instructions
(cf. Figure 3.3.b). In all three cases, there will be cache misses and no prefetches.

When the PC executes the load instruction at address 500 at the beginning of the second

22

iteration, we are in the situation described as *‘ transition’’ (cf. A.2.a). The following three
actions are taken:

1. Normal reference access to address 50,004. This results in a cache hit if the block
sizeislarger than 4 and in a miss otherwise.

2. Update of the entry in the RPT. The prev_addr field becomes 50,004, the stride is
set to 4, and the state to transient.

3. Potential prefetch of the block at address (50,004 + 4) = 50,008. A prefetch occursif
the block sizeislessthan 8.

Similar actions take place for the load at address 504 with, in this case, the certainty that
a prefetch will be generated (cf. Figure 3.3.c). For the load at instruction 512, we are in
the situation ‘*moving to steady state’’ (cf. A.2.b). The prev_addr and stride fields are
unchanged and the state becomes steady. Of course, we have a cache hit and no prefetch.

During the third iteration, all three loads should result in cache hits, or in indications
that prefetches for the referenced items are in progress. The RPT entries are updated as
shown in Figure 3.3.d (note the transient to steady transitions); prefetches are generated
for blocks at addresses 50,012 (if needed) and 91,200. Subsequent iterations follow the
same pattern.

As can be observed in Figure 3.2, scalar and zero stride references will pass from
initial to steady state in one transition (instruction 512). The constant stride references
will pass through the transient state to ‘‘obtain’’ the stride and then stay in steady state
(instructions 500 and 504). References with two wrong predictions in a row (not shown
in the example) will be prevented from being prefetched by passing to the no prediction
state; they could re-enter the transient state, provided that the reference addresses become
predictable. For instance, accesses to elements of a triangular matrix may follow such a
pattern. Note that the stride field is not updated in the transition from steady to initial when
thereis anincorrect prediction.

3.3 Lookahead Reference Prediction

The generic scheme has a potential weakness associated with the timing of the prefetch.
If the loop body istoo small, the prefetched data may arrive too late for the next access,

23

and if the loop body is too large, an early arrival of prefetched data may replace (or be
replaced by) other useful blocks before the datais actually used. The lookahead reference
prediction scheme seeks to remedy this drawback.

Anidea timeto issue a prefetch request is to perform the prefetch & cycles ahead of
the actual use, where o isthelatency to access the next level in the memory hierarchy. The
lookahead prediction will approximate this ideal prefetch time with the help of a pseudo
program counter, called the Look-Ahead Program Counter (LA-PC), that will remain as
much as possible & cycles ahead of the regular PC and that will access the RPT in order to
generate prefetches. The LA-PC isincremented as the regular PC. It is used in conjunction
with a Branch Prediction Table (BPT) to take full advantage of the |lookahead feature.

777

|
. |
' 1 Generic Pred : |
1 Ere——
| 1 _ |
: . 7 | LA-PC = :
1 Reference match ?i
L= . 1 mux |
'y Prediction 1 |
_— |
: 1 Table ! inc I
B) !
. | I I
Uy ORL 1 |
: I | ! |
I — L - - _d - =
-
l ggfgge& PC -
Data execution branch target Br.an_c
- = Cache L Prj,lgt*c* o Prediction
Table
Instruction /P
—
Cache

Figure 3.4: Block diagram of data prefetching

An overall block diagram of the target processor is shown in Figure 3.4. The bottom
part of the figure abstracts a common high-performance processor with on-chip data and
instruction caches. The upper-left part shows the Reference Prediction Table (RPT) and the
Outstanding Request List (ORL) that keepstrack of the addressesin progressor outstanding
requests. Under the generic scheme, the RPT is accessed by the PC. In order to implement
the lookahead mechanism, a Look-Ahead Program Counter (LA-PC) and its associated
logic are added to the top part (on the right in the figure). The LA-PC is a secondary PC
used to predict the execution stream. In addition, we assume that a Branch Prediction Table
(BPT) such as branch target buffer (BTB), a branch prediction mechanism for the PC in a

24

high-performance processor, is used for modifying the LA-PC.

Entries in the RPT and BPT, are initialized and updated when the PC encounters the
corresponding instruction. In the lookahead scheme, in contrast to the generic prediction,
itisthe LA-PC rather than the PC that is used to generate potential prefetches according to
rules B.1 and B.2 of the previous section. At each cycle, the LA-PC issmply incremented
by one. When the LA-PC finds an entry in the BPT, it indicates that the LA-PC points
to a branch instruction. In that case, the prediction result of the branch entry in the BPT
is provided to modify the LA-PC. Note that, unlike the instruction prefetch structure in
[Lee et al. 87a] or decoupled architectureq Smith 82b], the system does not need to decode
the predicted instruction stream. Instead, the lookahead mechanism is based on the history
information of the execution stream.

3.3.1 Lookahead Program Counter (LA-PC) and RPT

In the generic prediction scheme, prefetching can occur only one iteration ahead and thus,
as mentioned earlier, the prefetched data might not yet be in the cache there when the real
access takes place. Thissituation will occur when the loop iteration timeis smaller than the
memory latency. With the help of the lookahead mechanism, the LA-PC may wrap around
the loop and revisit the same data instruction when the execution time of aloop iterationis
smaller than the memory latency. In thisway, we may have multiple iterations |ookahead.

An extrafield (times) in the entries of the RPT will keep track of how many iterations
the LA-PC is ahead of the PC (cf. Figure 3.5). Another difference in the design of the
RPT with respect to the generic RPT (cf. Figure 3.2) is that it is the LA-PC that is used
to detect and to generate prefetch requests while the PC is till used to access the RPT
when an effective address is obtained. Now, when the LA-PC hits an instruction with
a corresponding entry in the RPT, the address of a potential prefetch is determined by
computing (prev_addr + stride x times). The times field is incremented whenever the
LA-PC hitsthe entry, while it is decremented when the PC catches up with the entry. The
timesfieldisreset when it isfound that the reference prediction of the corresponding entry
isincorrect.

3.3.2 Lookahead Distance and Limit

The ideal Look Ahead distance (LA-distance), i.e., the time between the execution of the
instruction pointed to by the PC and that of the instruction pointed to by the LA-PC, is

25

- When hit by theLA-PC :

s prefetching
LA-PC | = ~ address times++
g
| | tag | prev_addr |stride | times | state - When hit by the PC :

If the reference predictionis

Pf %L]_—‘L cmp_~ e Correct — times-- --

effective address e Incorrect — times=0

Figure 3.5: RPT with Lookahead mechanism

equal to the latency & of the next level in the memory hierarchy. Clearly this can only
be approximated, since the LA-distance is variable. Initially, and after each wrong branch
prediction, the LA-distance will be set to one, i.e., the LA-PC points to the instruction
following the current PC. When a real cache miss occurs or when a prefetch is not
completed by the time the data is actually needed, the current execution is stalled, i.e., the
value of PC does not change, while the LA-PC can still move ahead and generate new
requests (recall therole of the ORL).

As shown in Figure 3.4, the LA-PC is maintained with the help of a branch predic-
tion mechanism BPT. BPT designs have been thoroughly investigated [Lee & Smith 84,
Perleberg & Smith 89] and we will not repeat these studies here. In our experiments
we use the Branch Target Buffer (BTB) with two-bit state transition design described in
[Lee & Smith 84] and we assume that the BTB has been implemented in the core processor
for other purposes.

As the LA-distance increases, the data prefetch can be issued early enough so that
the memory latency can be completely hidden. However, the further PC and LA-PC are
apart, the more likely the prediction of the execution stream will be incorrect because
the LA-distance is likely to cross over more than one basic block. Moreover, we don’t
want some of the prefetched data to be cached too early and displace other needed data.
Therefore, we introduce a system parameter called Look Ahead Limit (LA-limit d) to
specify the maximum distance between PC and LA-PC. Thus, the LA-PC is stalled (until
the normal execution is resumed) in the following situations: (1) The LA-distance reaches
the specific limit d, or (2) the ORL isfull.

26

3.3.3 Handling Cache Misses

On a cache read miss, the cache controller checks the ORL. If the block has already been
requested, a‘‘normal’’ (but lesslengthy) stall occurs. (We call hit-wait cycles those cycles
during which the CPU waits for the prefetched block to be in the cache) Otherwise, a
regular load isissued with priority over the buffered prefetch requests.

Since we are using awrite-back, write-allocate strategy, a write missin the data cache
will cause the system to fetch the data block and then update the desired word. If the block
size islarger than a single word, we can initiate prefetching as for aread miss. When the
block size is one word, no prefetch needs to be issued but a check of the ORL is needed
for consistency purposes. In case of a match, the entry in the ORL must be tagged with a
discard status so that the data will beignored when it arrives.

When the LA-PC hasto be reset because of an incorrect branch prediction, the buffered
prefetch requests are flushed. Finally, when a prefetch raises an exception (e.g., page
fault, out-of-range violation) we ignore the prefetch. The drawbacks of awrong page fault
prediction would far outweigh the small benefits of a correct prefetch.

3.4 Correlated Reference Prediction

In the previous two designs, reference prediction was based on the regularity between
adjacent data accesses. In general, the schemeswork well for predicting referencesin inner
loops. However, the results are less significant for those execution segments with small
inner-loop bodies or triangle-shaped loop patterns because of the frequent stride changein
the outer iterations. For example, let uslook at Livermore Kernel Loop 6 in Figure 3.6.

While executing the inner loop, accesses to the B matrix have regular strides (e.g.,
B[3,0], B[3,1], B[3,2] and B[3,3] have a stride of 4). This pattern will be picked up by
the two schemes presented above. However, an incorrect prediction will occur each time
the k loop is finished, e.g., when accessing B[4,0] after B[3,3]. We can observe though
that there is a correlation between the accesses due to the termination of the inner loop
(i.e, B[1,0], B[2,0], B[3,0] etc. have a stride of 400). Correlation has led to the design of
more accurate branch prediction [Pan et al. 92, Yeh & Patt 92] and can be equally applied
to data reference prediction.

The key idea behind correlated reference prediction thus is to keep track not only of
those adjacent accesses in inner loops (as in the above two schemes) but also of those

int B[100,100], W[100] 10 11
DO6i=1,n 20 21 22
DO 6 k=0,i 30 31 32 33
W(i) = W(i) + B(i,k)*W(i-k) 40 41 42 43 44
6 CONTINUE
() Code (b) Access pattern of Matrix B

Figure 3.6: Kernel 6

27

correlated by changesin the loop level. Since branchesin theinner loop are taken until the

last iteration, a non-taken branch will trigger the correlation to the next level up.

34.1 Implementation of Correlated RPT

The implementation of a correlated scheme would bring two additions to the lookahead
mechanism: a shift register to record the outcome of the last branches and an extended
RPT with separate fields for computing the strides of the various correlated accesses. In
the most general case, an N-bit shift register can be used to keep track of the results of the
last N branches and to serve as a mask to address the various fields in the extended RPT.

effective

==

times

State

e L tag | p_addro | stride0 | p_addrl: stridel

1\—\

Branch
History

Figure 3.7: Correlated RPT

Since prefetching too far in advance might be detrimental, we restrict ourselvesto the

28

correlation in two-level nested loops. The RPT is extended (cf. Figure 3.7), with a second
pair of prev_addr and stride fields for recording the access patterns of the outer loop.
(Note that at the outer loop level the times and state fields are no longer relevant.) We
also have now a two-bit shift register for recording the outcome of loop-only branches.
Assuming that abit ‘1" encodes a taken branch, the steady state encoding while executing
the inner loop will be “11'. In that case prefetching will be based on the entry in the
RPT corresponding to the inner loop (the *‘right’” part in the figure). When the branch
is not taken, the shift register will contain ‘10" (due to a non-taken inner-loop branch
followed by a taken outer-loop branch) and prefetching will be based on the part of the
entry corresponding to the outer loop (the *‘left’” part). Updating of the left prev_addrO
and stride0, as well as the right prev_addrl, fields will take place at the beginning of an
outer iteration (when the shift register contains ‘10’ or ‘00’) while all the right fields will
be updated for consecutive inner iterations (when the register contains‘11’ or ‘01").

Figure 3.8 shows how the RPT entry for BJ[i,k] would be filled and updated during
execution of the first three iterations of the outer loop of Kernel Loop 6. We have left out
the times field for ease of explanation. Without loss of generality, we can assume that the
initial content of the shift register is ‘10" and that the entry in the RPT is empty. At the
initial access of B[1,0], al fields are filled as in the previous schemes (first row of top
table in Figure 3.8). At the second access (first row of bottom table) only the right fields
aremodified as they would be in the previous schemes (the shift register contains*11'). At
the beginning of the second outer iteration, i.e., first accessto B[2,0], the shift register will
again contain ‘10" (branch non-taken). Thus, prefetching of B[3,0] and B[2,1], if needed,
will be done for accesses in both levels of the loop, and updating of the first pair of fields
and of prev_addr1 will be performed (second row of top table). On subsequent accesses to
B[2,i], prefetching and updating will be based on the right fields (second row of bottom
table). At the beginning of the third outer iteration, we are in steady state (cf. last row
of the table). By that time B[3,0] should have been prefetched (at the end of the second
iteration). A prefetch to B[3,1] would be generated and most likely not activated if the line
sizeislarge enough, i.e., if B[3,0] and B[3,1] arein the same line.

Three issues regarding the implementation of a correlated reference prediction scheme
need to be addressed. In all three cases, we make reasonable assumptions to keep a
design as simple as possible. The first assumption isthat since it is easy for a compiler to
distinguish between end of loop branches and other branches, the former will be flagged,

29

1st inner iteration

outer prev prev
iteration || addrO strideQ | addrl stridel state
1 B[1,0] 0 B[1,0] 0 init

2 B[20] 400 | B[20] 4 | transient
3 B[30] 400 | B[30] 4 steady

2nd inner iteration

outer prev prev
iteration | addrO strideO || addrl stridel | state
1 B[1,0] 0 B[1,1] 4 | transient
2 B[2,0] 400 | B[21] 4 steady
3 B[3,0] 400 | B[3,]] 4 steady

Figure 3.8: Example: Correlated RPT entries

e.g., in the branch prediction table, and the shift register will be modified only when they
are encountered. Thisassumption could beremoved by letting the shift register be modified
on every branch asin [Pan et al. 92]. While some predictable patterns might emerge, it is
not evident that the complexity of implementation is warranted. Second, we assume that
the loop iterations are controlled by backward branches®. Third, we assume that prefetches
for the correlated references (across outer iterations) areissued asin the generic case, since
the LA-PC will be the same as the PC on the incorrect branch prediction. Those prefetches
are generated without any attempt to control the prefetchissue & cyclesahead of the actual
use of the data. The assumption is quite reasonable since accesses in the outer loop are
separated by the execution of al the iterations of the inner loop which, in most likelihood,
will take longer than & cycles.

1 A backward branch always passes execution control to alocation which is before the address of the branch
instruction. The compiler could easily perform a transformation resulting in backward branches for these
programsin which forwards conditional branches are used to control theloopiterations[Ball & Larus 93].

30

3.5 Summary

In this chapter we have proposed a design for a hardware-based prefetching scheme. The
goal of thissupport unit isto reduce the CPI contribution associated with data cache misses.
The basic idea of data prefetching is to predict future data addresses by keeping track
of past data access patterns in a Reference Prediction Table. Based on the various times
when a prefetch is issued, we have investigated three variations. generic, lookahead, and
correlated prefetching schemes.

The basic mechanism isthat accessinstructions are recorded in the RPT associated with
afinite state mechanism to prevent unnecessary prefetches. The generic scheme generates
prefetchesfor the (i + 1) iteration when the i™ iteration is executed. The lookahead scheme
controls prefetches one memory latency time ahead of actual use by a lookahead program
counter. It can have prefetchesissued multipleiterationsin advance. Finally, the correlated
scheme uses a more sophisticated design to detect patterns across loop levels.

The prefetching hardware support unit that we advocate is designed to be close to
the processor without introducing extra gate delays to the critical path. The performance
evaluation in the next chapter will show that this design is effective and applicable to a
chip with limited area. For example, it can be a support unit for an on-chip cache.

It is worthwhile to close this chapter with a brief qualitative comparison of our design
with the two closest approaches [Fu & Patel 92, Sklenar 92] that were reviewed in Section
2.1.1. Fu and Patel [92] present a mechanism which will generate a prefetch request based
on two consecutive accesses by adding the current effective address with the difference
between the current and previous addresses. They do not provide a mechanism to prevent
unnecessary prefetches. Severe data pollution and memory saturation problems could
occur when memory bandwidth is limited. Since there is no state transition mechanism,
this scheme corresponds to a degenerated version of our generic scheme. Sklenar [92]
gives a design for a prefetch unit, which behaves like a co-processor. The prefetch
processor calculates the effective addresses and generates prefetch requests. Although
these two approacheswere proposed later than our original scheme[Baer & Chen 91], they
apparently lack two key ingredients: (1) the prefetch for the next iteration is generated on
current access, and therefore cannot prefetch more than one iteration ahead, and (2) they do
not have a lookahead mechanism to approximately control the arrival time of prefetched
blocks.

Chapter 4

Performance Evaluation of Hardwar e Prefetching
Schemes

In this chapter, we evaluate the three proposed hardware schemes and we examine
several design issues. Our study is performed at the level of instruction simulation in the
context of a RISC uniprocessor model. First, in Section 4.1, we describe the methodology
for evaluating the proposed schemes in an uniprocessor environment. Since memory
bandwidth is one of the vital resources if prefetching is to succeed, we consider three
memory modelswith varying capability for handling concurrent memory requests. We use
‘*cycle per instruction contributed by memory access’ (MCPI) as the main metric instead
of missratio in order to reflect results in a more realistic manner. Then, we present and
discuss the general results of the smulation on ten SPEC benchmarks in Section 4.2. To
better understand the characteristics of the schemes, we examine several design issuesin
Section 4.3, including the effect of memory latencies, block sizes, and the organization of
the reference prediction table. We also consider various placementsfor the prefetched data.

4.1 Evaluation Methodology for Uniprocessors

411 Tracedriven Simulation

We evaluate our proposed architectures using cycle-by-cycle trace generation combined
with on-the-fly smulation. To avoid the overhead of re-running the trace generation for
every configuration, we simulate several configurations ssmultaneoudly. As illustrated
in Figure 4.1, the simulator, written in C++, first reads in a variety of configuration
descriptions and creates ssimulation objects (which models most aspects of the CPU and
the memory system) initialized with various configurations and parameters (such as cache
size and latency time).

Benchmarks are instrumented on a DECstation 5000 (R3000 MIPS CPU) using the
pixiefacility. Asshown in Figure 4.1, the smulator runsthe pixified benchmark programs,
which will generate address traces at the same time. The simulator reads the trace through

32

user program . :
Trace Prog Configurations
Postpr ocessor J/ i
disassembled
:d' addr/data trace
B e Simulator

i

Simulation results

(pipe) ﬁ trace record

stdin — /dev/null

Figure 4.1: Trace-driven simulator using pixie

a pipe facility and feeds the trace records to each ssimulation object. This on-the-fly trace
simulation method is advantageous in the sense that large traces do not need to be saved
and furthermore it provides the flexibility of simulating rescheduled code. Traces include
data and instruction references so that the smulator can emulate the detail behavior of
overlapping computation with dataaccess. The experiment results are collected at the clock
cycle level from the individua configurations.

We use ten SPEC ! benchmarks (see Section 4.1.3) to generate tracesfor our study. The
traces captured at the beginning of the execution phase of the benchmarks are discarded
because they are traces of initial routines that generate the test data for the benchmarks.
No statistical data are recorded while the system simulates the first 500,000 data accesses.
However, these references are used to fill up the cache, the Branch Prediction Table, and
the Reference Prediction Table in order to simulate a warm start. After the initialization
phase and the warm-start period, smulations results are collected for the first 100 million
instructionsfor all programs.

4.1.2 Architectural Modéds

For comparison purposes, a baseline architecture consisting of a processor with perfect
pipelining and direct-mapped D-cache with 32K bytes and a block size of 32 bytes,

1 SPEC isatrademark of the Standard Performance Eval uation Corporation.

33

unless otherwise specified, is aso smulated. The baseline and prefetching caches use a
write-back, write-allocate policy, and an 8-entry write-back buffer for replaced dirty data
lines. We assume that the processor has an idea instruction cache with no instruction
cache miss incurring. The RPT we use is a 512-entry table organized as shown in Figure
3.2. When the schemes with lookahead are evaluated, branch predictions are performed
by a Branch Target Buffer with a two-bit state transition design [Lee & Smith 84]. Both
baseline and prefetching caches will cause the processor to stall on acache miss.

The interface between the processor and the cache can handle one data access at each
cycle and, in case of a hit, the load latency is one cycle (i.e., delayed load with one delay
dot). In the case of awrite hit, an extracycle is required to modify the data block in the
cache. The refilling of a prefetched line will be delayed when it competes with real data
accesses for the cache. Also, real cache misses could conflict with prefetch or outstanding
write requests in the cache interface. We will assume, conservatively, that a fetch in
progress cannot be aborted. However, area read misswill be given priority over buffered
prefetch requests or writes.

Databandwidthisanimportant consideration in thedesign of an architecturethat allows
overlap of computation and dataaccesses since several memory requests (e.g., cache misses,
prefetching requests) can be present smultaneoudly. Inthis study, we present three memory
model interfaces with increasing capabilities of concurrency between caches and the next
level in the memory hierarchy. Since severa requests can be present, either in process or
waiting to be processed, we have associated an Outstanding Request List (ORL) with the
prefetching caches. A requirement for thislist isthat it can be searched associatively.

The three memory interfaces are as follows (cf. Figure 4.2 for timing charts and block
diagrams).

- Non-overlapped(1) : Assoon asarequest is sent to the next level, no other request
can beinitiated until the (sole) request in progressis completed. Thismodel istypical
of an on-chip cache backed up by a second level cache.

This interface supports only one cache request at atime.
- Overlapped(C,N) : The access time for a memory request can be decomposed into

three parts. request issue cycle, memory latency, and transfer cycles. We assume
that during the period of memory latency other data requests can bein their request

fetch A¢ ¢ fetch B

reg A xfer A
Non- | qu | | |
cle
Overlapped <= ¥ > | req B _ xferB }
‘ memory ‘
| - | Iatency | - Xfef A |
Overlapped ! ! ! !
PP reqA ‘ ‘ . xferB ‘
\ra:l B I I 1
]] | fetch A |
Pipelined ‘ | fetch B ‘ |
I 1
Timing of dataaccess
CcPU CPU § CcPU
[i ? ? ’—‘—‘ ORL
1] oRrL | ClioRL | L
<=] OO<POo0o @E
bus | INTERCONNECT |
Secondary econdary Memory
Cache Cach Modules
Non-overlapped(1) Overlapped(C,N) Pipelined(N)

Outstanding Request List of caches
Figure 4.2: Three memory models
issue or transfer phases. However, no more than one request issue or transfer can
take place at the same time.

This model represents split busses and a bank of C interleaved memory modules or
secondary caches. An ORL with N entriesis associated with each module.

- Pipelined(N) : A request can be issued at every cycle. This model is repre-
sentative of processor-cache pairs being linked to memory modules through a
pipelined packet-switched interconnection network. We assume a load through

35

mechanism[Smith 824], i.e., the desired word is available as soon as the first data
response arrives. An N-entry ORL is associated with the cache.

The configurations of the ORLs used in our experiment are Non-overlapped(1),
Overlapped(8,2), and Pipelined(8) respectively. The memory latency & isusualy equa
to 30. The Overlapped model isused as the default model to show general resultssinceitis
the most likely implementation for future high performance processors. The cycle times of
the three phases (requesting, accessing memory, and transferring) are 2, 20, and 8 cycles
respectively.

41.3 Benchmarksand Metrics

As mentioned earlier, we use ten applications from the SPEC benchmarks, which are
compiled by the MIPS C compiler and the MIPS F77 compiler, both with optimization
options. Table 4.1 shows the dynamic characteristics of the workload. The columns below
data references show the proportions of data references (weighted by their frequency) that
belong to the memory access categories mentioned in Section 3.1. They are one indication
of the reference predictability of the ten programs. Scalar or zero stride references are
beneficial to the data cache and, in addition, the prefetching schemes can be useful in
bringing back in advance bl ocksthat were displaced because of asmall cache size (capacity
misses) or a small associativity (conflict misses). Constant stride references, which may
substantially contributeto cache misses, should be helped by the RPT schemes. Prefetching
should be avoided for unpredictable irregular references. The column branch prediction
miss ratio shows the outcome of branch predictionswith a512-entry BPT, which functions
like a 2-state-bit Branch Target Buffer[Lee & Smith 84]. This is a second indication of
the reference predictability, illustrating the possible benefits exploited by the lookahead
approach.

We experimented with the three architectural choices, and varying architectural pa
rameters, described previously. The results of the experiments are presented in terms of
“* cycle per instruction contributed by memory accesses’ (MCPI) asthe main metric. Since
we assume that the processor can execute each instruction in one cycle (perfect pipelining)
and that we have an ideal instruction cache, the only extra contribution of CPI isdueto the
data access penalty. Hence, the MCPI due to data access penalty is obtained as:

total data access penalty

MCPI = i i
data 2ccess ™ number of instructions executed

36

Table 4.1: Characteristics of benchmarks

datareferences branch pred.
Name scalar, zero stride constant stride irregular || missratio
Tomcatv 0.312 0.682 0.006 0.005
Fpppp 0.981 0.006 0.014 0.110
Matrix 0.059 0.921 0.021 0.073
Spice 0.581 0.239 0.180 0.060
Doduc 0.692 0.154 0.154 0.120
Nasa 0.006 0.989 0.003 0.008
Egntott 0.338 0.574 0.088 0.069
Espresso 0.460 0.424 0.116 0.055
Gcee 0.516 0.120 0.365 0.204
Xlisp 0.440 0.078 0.482 0.156

The reason for choosing MCPI as a metric instead of the miss rate or the average effective
access timeisthat MCPI can reflect the actual stall time observed by the processor, taking
both processor execution and cache behavior into account. In the figures, we also give the
percentage of the data access penalty reduced by the prefetching scheme. This percentage
number is computed as:

data penalty acne — data penalty preeicn
data penal tY(:ache

% of penalty reduced = x 100

4.2 General Results

In this section, we present experimental results that show the benefits of the prefetching
schemes. We compare an architecture with a baseline cache with the same architecture
augmented by each of the three prefetching schemes. These comparisons are performed on
all ten SPEC benchmarks.

Figure4.3(a)(b)(c) showstheresults of the ssimulation of the four architectureswith the
data access penaty MCPI as a function of the cache size. The Overlapped memory model
isused, theblock sizeis 32 bytes, and the RPT and the BPT used in the prefetching schemes
have 512 entries. The results show that the prefetching organi zations always perform better

37

than the pure cache scheme since they have the same amount of cache and, in addition,
the prefetching component. When the cache is too small to contain the working set of the
application, the best prefetching scheme can reduce the data access penalty from 16% up
to 97%. The additional cost paid for prefetching isjustified by the significant performance
improvement. This additional cost (RPT and logic) is approximately equivaent to a
4K -byte D-cache (cf. Section 4.3.3).

i Espresso- Cacheonly
M aI” X Sp —o— One-iteration
—— Lookahead
0.9 - LY 1.0 — ~—— —— Correlated
~ N
~ N
. AN
07] e 8 — *
M A mo 08 \
C \ C \
'|° 05 —| \ '|° 05 \
\\ \\
0.2 — \ 0.3 - \
\ \\0 e -
0.0 87% o > 90% Q90
: T 9% 95% 979 o101 0.0 2% —93% T |
8 16 32 64 128 8 16 32 64 128

Cache Size (K) Cache Size (K)

Figure4.3: Simulation Resultsfor & = 30 -- Overlapped

We examine further the performance curves by dividing the ten benchmarks into three
groups:. 1) prefetching performs extremely well, 2) prefetching yields a good or moderate
improvement to the performance, and 3) prefetching’ s contribution to the reduction in data
access penalty is dlight.

The first group is formed by the Matrix and Espresso benchmarks, in which the data
access penalty has been reduced by over 90%. For all practical purposes, the CPI due to
data access is amost completely eliminated. With good reference predictability in these
two programs, the flat performance curves of the prefetching illustrate that a cache of small
size is sufficient to capture most of the locality when compulsory cache misses have been
eliminated by the prefetching.

The second group includes Tomcatv, Nasa, Egntott, and Xlisp in which the prefetching
yields a good performance improvement, a reduction in data access penalty in the range of
35% to 70%. Inthe case of Egntott and Xlisp, the MCPI penalty isabout aquarter of acycle
even for avery small cache. Seeking further improvement is not worthwhile. In Tomcatv
and Nasa, as the cache size increases, the miss penalty of both the pure and prefetching
caches is minimized until the working set is captured (e.g., 32 K for Tomcatv). Notice

38

0.15 —

—e Cacheonly
— —— Lookahead
29 40 o —— Correlated
2.3 — 3.2
M 17 M -
C C 24
P P
I 114 I 16
0.6 — 0.8 —
1% 71% 71%
00 | | | | | 00
8 16 32 64 128
Cache Size (K)
Egntott
0.45 —
0.30
0.36
0.23 —
M 027 M
C C
P P
| |

0.18 —

0.08 —
0.09 —

0.00
l 8 16 32 64 128

0.00 T T T T

Cache Size (K)
Cache Size (K)

Figure 4.3b: Simulation Resultsfor & = 30 -- Overlapped

that the absolute reduction in the MCPI is significant, over one cycle in both cases, and
independent of the cache size. Based on the results of the first two groups, it can be seen
that the performance data at moderate cache size (e.g., 16K and 32K) argues forcefully for
spending some cache real estate on the RPT and BPT rather than increasing the cache size.

The third group consists of Spice, Doduc, Gcec, and Fpppp. For Spice and Doduc
prefetching is still valuable: the data access penalty is reduced by about 30%. For Fpppp,
and to a lesser extent Gcc, a pure cache of 16K has almost captured the working set:
prefetching cannot help much. There are several factors that lead to the small advantage
brought upon by prefetching. First, because the fraction of references in scalar or zero

39

Dodue- cacheonly

—e— One-iteration
—— Lookahead
0.6 — Q —— Correlated
0.7 —
0.4 —
M 05— M
C (o
P P03
| 0.3 — |
0.1+
0.2 —
0.0
0.0
Cache Size (K)
1.0 104
| 0.7 —
Mo 07 M
C C
'r 05 — 'lj 05
0.2 02—
0.0
00 T T T T T
8 16 32 64 128
Cache Size (K) Cache Size (K)

Figure4.3c: Simulation Resultsfor & = 30 -- Overlapped

stride categories dominates (98% in Fpppp and over 50% in the other 3 benchmarks, cf.
Table 4.1), the performance contribution by prefetching accesses with non-zero strides
become less significant. Second, the significant branch prediction missratio (e.g., 20%in
Gcc) precludes successful prefetching. And, third, the RPT may not be capable to hold al
active memory instructions at the same time because of either its limited associativity or
its small number of entries. We examine thislast issue later in this section.

Finally we comparetherelative performancesof thethree reference prediction schemes.
As could be expected, the increased level in hardware complexity pays off. However, the
difference between the lookahead and correlated variations is always small, less than 2%,
with Egntott being the only exception with one data point showing a 10% improvement.
The difference between lookahead and generic is more significant. It is most notable,

40

differences of over 40%, in the benchmarks Tomcatv (large loop body so in the generic
scheme the prefetched data will arrive too early displacing other useful data or being
replaced before its use) and Espresso (small basic block so in the generic scheme the data
will arrivetoo late, generating hit-wait cycles). These results show that the lookahead logic
is worth implementing since it allows the flexibility to prefetch at the correct time while
the complexity required to help data accesses in outer loops as in the correlated scheme
plays amuch less significant role.

In summary, the prefetching schemes are effective in reducing the data access penalty.
A prefetching hardware unit is particularly worthwhile when the chip area is limited and
a choice has to be made between the added unit and dightly increasing the on-chip cache

capacity.

4.3 Effect of Design Variations

In this section, we examine theimpact of several architectural issues on the performance of
prefetching. The issues include memory latencies, memory models, changesin block size,
the organization of the RPT, the lookahead-limit, and various placements of prefetched
blocks. In the remainder of the section, for brevity sake, we restrict ourselves to reporting
on benchmarks with the most salient features (cf. see Appendix A.1 for complete results).
All performance evaluations of prefetching are based on the lookahead scheme.

431 Effect of Memory Modelsand Latencies

Figure 4.4 presents the data access penalties of the baseline cache and the lookahead
scheme with respect to the three memory models and memory latency varying from 10 to
50 cycles for four of the benchmarks (Tomcatv, Espresso, Eqgntott, and Xlisp). Each bar
correspondsto one architecture and one memory latency, with the MCPI dueto aPipelined
access and the overhead coming from the Overlapped and Non-overlapped model s stacked
on top of each other. The two numbers inside the bars of the lookahead prefetching give
the percentages of the penalties reduced by the prefetching for the Non-overlapped model
(worst) and the Pipelined model (best) respectively. The overhead in the case of the
baseline cache comes from the waiting time incurred by a cache miss when a write back
IS in progress since we assume that a request in progress cannot be aborted. Similarly,
the overhead in the prefetching scheme includes the stall time of ‘‘real’’ demand cache

41

o _
AN
S . 20%
Y L
T 28%
O |
= 3) 39%
—
61%
o
S] - 57%
68%
0% [| 71%
Q == 7%
o 4%
cache LA cache LA cache LA cache LA cache LA
only pref only pref only pref only pref only pref
Voo 10 20 30 40 50
Espresso
<] Non-overlapped
—]I Overlapped -
o Pipelined
o |
— 31%
— Q]
5 Z [| 37%
= S
< | | 47%
o
N 67%
o
Q 95% - =l 920 93%
o 97% 9500 9490 II7/0
cache LA cache LA cache LA cache LA cache LA
only pref only pref only pref only pref only pref
Voo 10 20 30 40 50

Figure 4.4a: Effect of memory models and latencies

miss waiting for prefetching or write-back requests in progress. Note that it is not very
meaningful to have a large access time (say 50 cycles) for the Non-overlapped model and
asmall latency of 10 cycles for the Pipelined model. We ssimply intend to show the effect
of the stall penalty when alarge spectrum of memory bandwidth is presented.

As could be expected, a memory interface with restricted bandwidth like that of the
Non-overlapped model will result in poorer relative performanceimprovementswith longer

42

memory latencies. This is quite noticeable in the benchmark Espresso and even more
in Tomcatv, where the MCPI’s are larger than others. A large portion of busy time is
eliminated when passing from the Non-overlapped model to the Overlapped model and
then even more with the Pipelined model. For all four benchmarks, the difference between
the latter two models is less significant than that between the first two models. Thisis
because much of the required parallelism can be exploited by the Overlapped model. The

Egntott

U
° |
3 — 27%
T o — 31%
O 31 - 42%
= 37% A%
o L]
S 41% 47%
49% 49%
o 54%
o
cache LA cache LA cache LA cache LA cache LA
only pref only pref only pref only pref only pref
Vemoy 10 20 30 40 50
s] Non-overlapped
o || overlapped —
7 Pipelined
o
— —
o
— N 40%
G [
O
S S i .
g 57% 62-0/ 9%
S| — 50% 62% ’
o 62% 63%
= 63%
o
cache LA cache LA cache LA cache LA cache LA
only pref only pref only pref only pref only pref
Vemoy 10 20 30 40 50

Figure 4.4b: Effect of memory models and | atencies (Continued)

43

results shown in Figure 4.4 indicate that an adequate interface is necessary to meet the
memory bandwidth demand of prefetching techniques that exploit the parallelism among
several memory requests. Cache missreduction by itself isnot sufficient to assess the value
of aprefetching scheme.

Asthe memory latency increases, the relative access penalty of the prefetching scheme
in all three models aso increase. In the case of the Non-overlapped model, the main reason
isthe lack of concurrency in the requests, resulting both in hit-wait cycles and in the ORL
being full more often. Another reason, common to all three models, is that the lookahead
scheme relies on the branch prediction for the LA-PC. The correctness of the predictionis
senditiveto alargelatency (see aso Section 4.3.4) and therefore wrong prefetches using the
interface can occur more often with larger latencies. The better results obtained with small
memory latencies reinforce our previous claim that the lookahead scheme is beneficial to
high-performance processors with a limited on-chip cache. Such benefits do not degrade
too much even with an interface to a secondary cache with limited concurrency such asthe
Non-overlapped model.

4.3.2 Effect of Block Size

It is well known that for a cache of given capacity and associativity, the block size that
leads to the best hit ratio is a compromise between very large sizes to increase the spatial
locality and small sizes to reduce conflict misses[Przybylski 90]. Given that a prefetching
scheme will increase the spatia locality, we can predict that the best block size for a
prefetching scheme should be smaller than or equal to that of the pure cache.

Figure 4.5 presents the performance of the various architectures as a function of the
block size. The basdline is a 32K-byte direct-mapped cache. The prefetched blocks are
of the same size as the blocks fetched on real misses. Our experiments are based on
the Overlapped model with a transfer rate of 8 bytes per cycle, and request and memory
latency of 2 and 20 cycles respectively. As can be seen in the figure, the best block size
for the baseline architecture is either 32 or 64 bytes and the choice can lead to significant
improvements, for example areduction in MCPI by afactor of 3 in Matrix and a factor of
2 in Egntott when passing from a block size of 8 to a block size of 32. By contrast, the
prefetching scheme is much less sensitive to the block size and the best results are obtained
for ablock size of 32 or less. Thisresult one moretime arguesfor the hardware prefetching
being associated with an on-chip cache since limited bandwidth (small number of pins, i.e.,

Matrix Tomcatv
29 — 3.0 — —e Cacheonly
—o— One-iteration
'Y —w— Lookahead
2.2 — 2.2 —
M M
C C |
p 1.4 — p 15
| |
0.7 — 0.8 —
00 00 T T T T T |
8 16 32 64 128 256 8 16 32 64 128 256
Block Size (byte) Block Size (byte)
Egntott
0.5 4
3.2 —
0.3
M 24 —
S 02— M
(3
I p 16
0.1 + |
0.8
00 T T T T T |
8 16 32 64 128 256 0.0 I I I I I |
Block Size (byte) 8 16 32 64 128 256

Block Size (byte)

Figure 4.5: MCPI vs. block size for 32K cache (Overlapped)

small block size) is not an impediment to its performance.

4.3.3 Organizing the Reference Prediction Table

As discussed in Section 4.2, the benefits incurred by the prefetching schemes depend
primarily on program behavior, more specifically on the amount of predictable references.
A second factor is the organization of the Reference Prediction Table, i.e., itssize and its
associativity.

Let uslook at the cost of implementing a direct-mapped 512-entry RPT. In each entry
of the generic scheme, the prev_addr and stride fields need 4 bytes each, and the tag and
state bits are similar to the tag directory in a cache. For alookahead scheme, we have to
add a few bits per entry for the times field. The correlated scheme requires significantly
more space (maybe 50% more). Therefore, the cost of a 512-entry RPT for the lookahead

45

scheme is roughly equivalent to that of a 4K-byte data cache with block size of 8 bytes.

The hit ratio of instructions referencing the RPT is over 90% in seven out of the ten
SPEC benchmarks. In an eighth benchmark, Fpppp, the hit ratio is very low (as low as
10%) even when we double the size of the RPT. Thisis primarily because the program has
avery large loop body due to along sequence of scalar accesses. Most of the references
recorded in the RPT have been replaced when the loop startsits next iteration. For the two
remaining benchmarks, Gee and Doduc, Figure 4.6 shows the fractions of instructions that
hit in the RPT as a function of the size and associativity of the RPT. In addition, the line
entitled ** prefetch attempt %'’ (below the number of RPT entries) shows the percentage of
accesses hitting entries not in the no-prediction state and with a non-zero stride for which
prefetching was attempted.

Gcec
o - 0,813 0.914
= g N 4-way
T . 2-way
o 1-way
o
s 128 256 512 1024
pEeen 131 138 14.4 14.8
(%)
Doduc
© 0.889
5 S 0.696
. 0.466
2o 0.311 N 4-way
T . 2-way
o 1-way
o
s 128 256 512 1024
pEfach 101 111 12.9 14.4

(%0)

Figure 4.6: Hit ratio and attempted prefetch of RPT

Asshown in the figure, increasing the associativity of the RPT has minimal effect. The
sequential nature of instructions is the reason for this lack of improvement. On the other
hand, increasing the size of the RPT improves the hit ratio since a small RPT cannot hold

46

thereferencing instructions of the most frequently executed loopsin these two benchmarks.
Note also, that the ** prefetch attempt %" increases with the larger hit ratio. It is because it
takes two or three accesses to regain the necessary stride information for those instructions
that have been replaced. When afairly good hit ratio is obtained, the percentage of accesses
with prefetchesis roughly equal to that of data accesses in the constant stride category (cf.
Table 4.1).

A question that might arise is given extra chip capacity, should it be devoted to a
larger or more complex D-cache or alarger or more complex RPT. On one hand, a good
hit ratio in the RPT may not be directly trandated into a smaller miss ratio in the data
cache (depending on the fraction of non-zero stride accesses). On the other hand, adding
complexity to the data cache may yield a better performance, but care should be taken
not to increase the basic cycle time of the cache (e.g., because of extra gate delays due to
comparators and multiplexors). However, on the basis of our experiments we would not
argue for a larger or more sophisticated RPT. A possible solution for improving the RPT
hit ratio without enlarging the table is to not replace those entries with non-zero strides.
While useful patterns might be preserved, there is a problem, namely we are locking in
the RPT entries corresponding to instructions that will be never executed again. A better
approach isto enter in the RPT only those instructions that may have a non-zero stride. A
compiler can easily provide this information. In an experiment on the DECstation 5000,
we simply excluded memory instructionsthat use the stack pointer or ageneral register (sp
or gp) from being entered in the RPT, since in general a non-scalar reference does not use
these two registers as base register. The hit ratios for Fpppp and Doduc were increased up
to 91% for an RPT of 512 entries.

In summary, in most cases, amoderate sized RPT (e.g., 512 entries, roughly equivalent
to a 4K-byte cache) is sufficient to capture the access patterns for the most frequently
executed instructions. A possible optimization that would be useful for programswith very
large basic blocksis to be selective in storing entriesin the RPT.

4.3.4 VaryingthelLookahead Limit

In the lookahead and correlated schemes, the LA-PC is used to control the timing of the
prefetches. Its forward progress is bounded by the Lookahead limit d, i.e., the maximum
number of cycles allowed between LA-PC and PC. Setting d must take into account two
opposite effects. We should certainly issue prefetches early enough and therefore d must

a7

be greater than & so that the number of hit-wait cycles is reduced. This is even more
crucial when the data misses are clustered and the memory model is restrictive like in
the Non-overlapped and to a lesser extent the Overlapped model. On the other hand, d
should not betoo large and cross over too many basic blocks because the branch prediction
mechanism loses some of its reliability with increased d. Also, we don’'t want prefetched
datato replace (or to be replaced by) other useful blocks.

-0l

1.3 —

1.0 —

0.8 —

0.5 —

0.3

Tomcatv

>~———— = —— = — O — O — & —-§

1T 17 17T 17T 17T 1T 1T T T°71
5 10 15 20 25 30 35 40 45 50

—UvO=<Z

0.7 —

0.6 —

0.4 —

0.2 —

Espresso

>~ —— —— — O — O — & —-§

-e- Baseline cache
-~ Lookahead prefetching

0.0

1T 17 1T 17T 1T 1T 1T T T
5 10 15 20 25 30 35 40 45 50

Lookahead limit Lookahead limit

Figure4.7: MCPI vs. LA-limit (d) for & = 30 (Overlapped)

Figure 4.7 shows the performance of the lookahead scheme under the Overlapped
model as a function of the Lookahead limit d for two representative programs. When d is
less than the memory cycletime & (30 cyclesin the figure), each access to the prefetched
block in progress will be a hit-wait access and thus contributes hit-wait cycles to the total
access penalty. The contributed hit-wait cycles are decreasing as d approaches & . A
local minimum for the MCPI happens around d = 35. A further increase in d will result
in a dight MCPI increase because of the two aforementioned factors (incorrect branch
prediction and data replacement). For the Overlapped model, it appears that setting d to a
value dightly above & will give the best results.

435 Alternativesfor the Placement of the Prefetched Data

Up until now, our model architectures have placed the prefetched data directly in the
first-level direct-mapped, 32K -byte cache. This strategy imposes additional complexity to
the design of the primary cache. For example, that cache must be able to serve multiple

48

requests (non-blocking on prefetches) and a priority scheme for *‘real’” misses must be
implemented. Performance factors also come into play: interference between prefetch and
real miss requests as well as data pollution. This potential performance loss could be
aleviated by increasing either the cache size or the associativity. However, this would
further add to the cost and complexity of the first-level cache.

In case of a cache hierarchy, a possibility is to prefetch only in the secondary level
off-chip cache. Placing the prefetched datain the secondary cache simplifies the design of
the primary cache since the extra features mentioned above are moved to the secondary
cache - off the critical path; and the secondary cache is generally large so that the effect
of pollution is decreased. Such a design could be advantageous when the latency to the
secondary cache is not too large. However, when the latency of the secondary cache is
one order of magnitude larger than the hit time in the primary cache, the small reductions
in cache interference and the detrimental effects of data pollution do not balance out with
the increase in the average cache access time due to bringing the prefetched data from
the secondary cache. Mowry and Gupta [Mowry & Gupta 91] study software prefetching
in a secondary-level remote access cache (RAC) in the context of the DASH cluster
architecture. Prefetchingin the RAC isthe default but their results show that prefetchingin
the primary cache would have been more effective. A ssimulation study of prefetching into
a second level cache is performed by Smith et al. [91]. Severa hardware-based schemes
(basically only using OBL), are simulated showing up to a 38% reduction in the penalty of
memory accesses for scientific programs.

In thissection, weinvestigate an alternative to prefetching in the primary cache, namely
prefetching in a separate prefetch buffer. We also contrast the prefetch buffer solution with
avictimcache [Jouppi 90]. The separate prefetch buffer has ablock size the same asthat of
the primary data cache [Klaiber & Levy 91, Chen et al. 91]. Therationaleisto nullify data
pollution effects. However, the hardware complexity of this solution is non-negligible:
requests for data must be sent -- and checked -- simultaneously in the cache and the buffer;
and the buffer itself takes some space and should be fully associative. There is therefore
a danger that accesses to the cache will take longer and be on the critical path for the
determination of the cycle time. While the overall hit access time will usualy be equal
to that of the regular data cache (provided the mechanism can bypass the outcome of the
prefetch buffer), the determination of a miss will be delayed until the comparisons in the
buffer complete. This will take longer since the prefetch buffer has a larger associativity

49

than the data cache. At an equivaent cost of hardware complexity, we can trade the
prefetch buffer for avictim cache, a small fully-associative cache holding the most recently
replaced data lines. The intent here is that instead of using the buffer for the sole use of
storing prefetched data, the presence of the victim cache will reduce the number of conflict
misses among useful and prefetched blocks. At the other extreme of the usage spectrum
of the victim cache is avariation with a 32-entry buffer for nonzero stride data only. The
intuition for this solution is that accesses to the non-scalar data will gradually change and
sweep alarge portion of the data area. The *‘reuse lifetime’’ of non-scalar data should be
shorter than that of scalar data. To put them in a FIFO buffer may be more advantageous
than to place them in a unified cache where they may conflict with other scalar data which
are more likely to be reused. Finaly, we also consider an even cheaper, in terms of the
number of comparators, a two-way set associative cache. For cache hits, the hit access
timein the two-way cache islarger than that of adirect-mapped cache with an extra buffer,
whereas the determination of a cache miss takeslonger in the prefetch buffer. Overall, the
average access time in atwo-way cacheislarger because most references should be cache
hits.

Figure 4.8 presents the results of our simulations using the various alternatives. For
ease in simulation, we assume that the cycle timeisthe samein all solutions. This favors
the buffer and two-way set associative schemes. We show the MCPI with decomposition
of the read penalty into real read miss and hit-wait cycles. We show from left to right: a
baseline cache (direct-mapped), a baseline (direct-mapped) with 32-entry victim cache, a
two-way set associative cache, and then several lookahead prefetching caches. a unified
cache without extra buffer, a unified cache with a 32-entry victim cache, a cache with a
32-entry prefetch buffer, a cache with a 32-entry buffer for nonzero stride data, and finally
a cache with prefetching based on a two-way set associative unified cache.

First we look at the effect of an extra buffer and of the two-way set associativity
without prefetching. As can be seen, both the victim cache and the two-way cache show a
dight performance improvement over the direct-mapped baseline cache. The benchmark
Nasa shows remarkabl e benefits from the extra hardware because there are severe conflict
misses in the program. The two options, victim cache and set-associativity, make similar
contributions to performance improvements.

Then we examine the impact of the extra hardware components on prefetching. As can
be observed in the figure, the cache with a victim cache as well as with prefetch buffers

50

Espresso
[e]
S] 075
074 073 |
S read miss
53
=
N
(@]
o 0.04 0.03 002 0.02 0.03
o
Base Base Base Prefch Prefch Prefch Prefch Prefch
victim 2-way victim pf buf nonzero 2-way
Pref+32-ent buf
Nasa
o _
N | 228
o |
N
o |
g 123 123
s o 1.08
—
|
o
o 002 002 0.02 0.02
o

Base Base Base Prefch Prefch Prefch Prefch Prefch
victim 2-way victim pf buf nonzero 2-way

Pref+32-ent buf

Figure4.8a: Variationsin prefetching placement

does have a better reduction in read penalty than a unified prefetching cache without any
extra hardware. However, the performance improvement in all benchmarks except NASA
is not significant when compared to the overall reduction of the read penaty by effective
prefetching schemes. The benefits of these choices are roughly equivalent to the gains

51

Xlisp

[e.0]
Q -
< | 007 |
§— 0.06 read misg
0.05
T =
23
0.03
y | —
S oo1 Q02 Q02
Q
o
Base Base Base Prefch Prefch Prefch Prefch Prefch
victim 2-way victim pf buf nonzero 2-way
Pref+32-ent buf
Spice
N~
S] 0.66
© 06 061
2 | = 0.5
S 299 046 046 :
I
% o
= 3
N
(@]
|
(@]
Q
(@]
Base Base Base Prefch Prefch Prefch Prefch Prefch

victim 2-way

victim pf buf nonzero 2-way

Pref+32-ent buf

Figure 4.8b: Variationsin prefetching placement

brought upon in the baseline caches when the same features are added. In case of Nasa the
costs of adding an extra buffer eliminates most of the data access penalty. The magnitude
of the performance gain is similar to that in the baseline caches.

When we compare a victim cache, a prefetch buffer or nonzero-stride buffer, we can

52

see that the difference among them is negligible. Basically since the buffer is a temporary
FIFO queue, the lifetime of a block in the buffer does not exceed the length of that buffer.
It does not make much difference regarding what blocks are placed in the buffer instead of
the data cache. As we use alookahead mechanism to control the arrival time of prefetched
data and a state detection mechanism to avoid unnecessary prefetches, conflicts between
non-scalar and scalar data are not significant.

Last, we see that a two-way set associative cache performs about the same as the
direct-mapped cache with the 32-entry buffer. Nevertheless, it requires less complexity in
terms of the number of comparators, when compared with the fully-associative buffer.

Overadl, our experiments suggest that the cache interference and data pollution problem
in prefetching are not critical for those benchmarks with a primary cache of moderate size.
An extra prefetch buffer appears unnecessary.

4.4 Summary

In this chapter we have evaluated the three prefetching schemes presented in Chapter 3
by comparing them with a pure cache design at various cache sizes. These comparisons
were performed using cycle by cycle smulations of the ten SPEC benchmarks. The results
show that the prefetching schemes are generally effective in reducing the data access
penalty. The cost of the hardware unit is not prohibitive; a moderately sized RPT (roughly
equivalent to a4K cache) is generally sufficient to capture the access patterns for the most
frequently executed instructions. We observed that the |ookahead scheme has a moderate
win over the generic scheme, while the performance difference between the lookahead and
correlated schemesisfairly small.

We have also examined the performance of the prefetching scheme when we vary
architectural parameters such as block size, memory latency, and memory bandwidth. The
main results are that the performance of the lookahead prefetching is best for small blocks
(8 or 16 bytes) and that its effectiveness is quite significant with a small memory latency
even when assuming a restricted bandwidth interface to the next level of the memory
hierarchy. These observations lead us to argue that a hardware-based prefetching scheme
would be valuable and cost-effective as an assist to an on-chip data cache backed-up by a
second-level cache with an access time an order of magnitude larger.

Finaly, we examined severa aternatives for target storage devices for the prefetched
data. Comparisons among unified caches, prefetch buffers, and victim caches suggest that

53

the unified cache (direct-mapped or two-way) is the most cost-effective choice since the
cache interference and data pollution due to prefetching are minimal.

We therefore advocate an effective prefetching hardware support unit as an assist to
an on-chip cache. However, hardware prefetching schemes may not be as effective in
higher levels of the memory hierarchy. In that case, when the latencies are two orders
of magnitude larger than the processor cycle time, prefetching data by software-directed
techniques may be more beneficial. The software approach might aso lend itself much
better to multiprocessor environments. The next chapter will give acomparative evaluation
of software and hardware prefetching and will look at possible ways to combine hardware
and software prefetching.

Chapter 5

Compar ative Evaluation of Softwareand Hardware
Prefetching Schemes

5.1 Overview

The previous two chapters have shown that hardware prefetching can be an effective
mechanism for tolerating memory latency. However, as mentioned in Section 2.1,
prefetching techniques can be in the software as well as in the hardware domain. The
choice of whether to apply hardware or software solutions to prefetching is an interesting
guestion for the architecture community. In this chapter, we will discuss the advantages
and disadvantages of both schemes, and try to see how a possible combination of the two
can be achieved.

As seen previoudly, hardware-based prefetching regquires some support unit connected
to the cache but no modification to the processor. Its main advantage is that prefetches
are handled dynamically at run-time without compiler intervention. The drawbacks are
that extra hardware resources are needed and that memory references for complex access
patterns are difficult to deal with. In contrast, software-directed approaches rely on
compiler technology to perform static program analysis and to insert prefetch instructions.
The CPU explicitly executes prefetch instructionsto initiate data fetches for caches. These
schemes may perform prefetching selectively and effectively. The drawbacks are that they
cannot dynamically uncover some useful prefetching (e.g., conflict misses and invalidation
misses) and that there is some non-negligible execution overhead due to the extra prefetch
instructions.

In this chapter, we compare our proposed hardware scheme with the software-directed
prefetching approach in both qualitative and quantitative ways. The qualitative comparison
is performed by contrasting our hardware scheme with the software scheme (mainly
Mowry et al.’s approach [92]) focusing on aspects such as how accesses are identified for
generating prefetches and how prefetches are scheduled within loops. The quantitative
evaluation is performed by a direct-execution simulation of three SPLASH benchmarks

55

and of the Matmat kernel in a shared-memory multiprocessor environment. We emulate
software prefetching by manually inserting prefetches in the codes. The metrics of interest
include the effectiveness of the prefetching schemes in reducing execution time, the side
effect of prefetching schemes such as the increase in network traffic, the performance
sengitivity to a range of memory latencies, and the impact of the memory consistency
model. We al so discuss means of combining both approaches.

Our qualitative comparisons indicate that in the domain of linear array references both
hardware and software schemes are able to generate prefetches to reduce cache misses.
When complex data access patterns are considered, the software approach may have more
compile-time information to perform sophisticated prefetching, whereas the hardware
scheme has the advantage of manipulating dynamic information (such as conflict misses or
input data dependence). While the software scheme may have a code expansion problem,
the predictability that the prefetched data will be used is not as great in the the hardware
scheme. Our performance resultsfrom the simulation of the four benchmarks confirm these
observations. Our results also show that hardware prefetching introduces more memory
traffic into the network than software prefetching and that the performance gains of both
approaches degrade dlightly when the memory latency is getting larger. Our simulations
indicate that an approach combining software and hardware schemes is very promising in
reducing the memory latency with least overhead.

The rest of the chapter is organized as follows. Section 5.2 gives some background
information on software prefetching. In Section 5.3, we compare the two schemes in a
gualitative fashion. Section 5.4 describes the evaluation methodology as well as the model
implementations of the prefetching schemes that we study. Section 5.5 presents simulation
results and explores the impact of varying memory latencies, of the memory consistency
model, and the side effect that prefetching can bring up. Section 5.6 shows an architecture
for combining the software and hardware schemes.

5.2 Software Prefetching

In this section we give an implementation background of software-directed prefetching
schemes in more detail than what has been discussed in Chapter 2. Most software
approaches proposed in the past mainly focus on the loop domain for uniprocessors
and most of them study prefetching based on codes with manually inserted prefetches
[Porterfield 89, Klaiber & Levy 91, Mowry & Gupta91]. Because Mowry et. a.'s [92]

56

scheme is the only one, to our knowledge, that has been automated in an experimenta
compiler, we will basically use their framework as the basis of our comparison.

Software-directed prefetching requires support from hardware and software. On the
hardware side, the processor must provide a specia instruction to initiate prefetches, and
the cache should be able to support servicing multiple memory requests concurrently (as
we have discussed in Section 2.2.1). Also, the system needs a prefetch issue buffer to hold
pending prefetch requests. When the processor executes a prefetch instruction, the address
of the block to be prefetched (as specified in the instruction) will be inserted into the
prefetch issue buffer. Prefetch requests in the buffer will be issued whenever the memory
interface allows it. Once the buffer is full, the processor may either stall until an entry is
available or the prefetch request is simply discarded.

In Mowry et. a’s approach, a compiler algorithm identifies those data references that
are likely to be cache misses, and prefetches are inserted only for them. Specificaly, the
algorithm focuses on array accesses whose indices are linear functions of the loop indices
in scientific programs. The compiler algorithm uses locality analysisto perform datareuse
anaysis, and then derives, based on given cache parameters (e.g., cache size and block
size), aset of accesses that belong to a (so called) localized iteration space in which locality
is preserved among accesses. Once the locality is known, a prefetch predicate for each
reference that would lead to a cache miss is introduced in the loop for determining if the
prefetch should be executed in a particular iteration. However, the cost of the prefetch
predicate can be removed by loop splitting, that is, decomposing the loops into different
sections in which all predicates will be evaluated to the same value. Then, prefetches are
scheduled within the loop by taking into account the memory latency and estimated |oop
execution time. At thislast stage, the concept of software pipelining is used to schedule
prefetches several iterations ahead of their corresponding references.

Since the compiler algorithm isaimed at the domain of linear array references, whichis
similar to where our hardware scheme obtained its motivation, it isinteresting to compare
and contrast the perspective benefits and implementation costs of Mowry et. al.’ s approach
and of our hardware scheme.

5.3 Qualitative Comparison

In this section, we first give a high-level comparison between the software and hardware
schemes from a general point of view, and then we specifically contrast Mowry et. a.’s

57

approach [92] with our hardware scheme in more detail. Lastly, we focus on design issues
in amultiprocessor environment.

5.3.1 High-level Comparison

When compared to hardware-based schemes, software-directed approaches have some
advantages. First, their hardware cost is minimal. In addition to the common requirement
of all prefetching schemes (i.e., alockup-free cache), the only requirement of the software
prefetching in the processor is the extra prefetch instruction. Unlike the hardware scheme,
there is no need for a complex hardware mechanism to detect and perform prefetching.
Second, prefetches for accesses with simple and even with complex patterns, primarily
for loop-domain references, can be identified at compile time. Moreover, more user
information can be exploited so that prefetched data are most likely to be used. And third,
in amultiprocessor environment, more factors such as data coherence, task scheduling, and
task migration can be taken into account. However, software-directed approaches have also
severa disadvantages. First, prefetch instructions introduce an overhead, at the very least
the execution of the prefetch instruction and possibly other computations such as effective
addresses and prefetch predicates. Although an intelligent compiler may be able to reduce
much of the unnecessary overhead, it could still be relatively significant, especially as a
result of code expansion and increasing register pressure, or when the memory latency
is small. Second, dynamic information such as conflict or capacity cache misses (thus
preventing the prefetching of replaced data) and estimates of execution time for loops
calling subroutines (thus not being able to prefetch at the right time) may not be uncovered.
Third, the optimizations are language and compiler dependent while the hardware schemes
do not require any change in the executable code.

5.3.2 Identifying Cache Misses

The success of software prefetching depends primarily on whether the prefetch in-
struction overhead can be significantly reduced. To minimize the number of prefetch
instructions, acompiler should be able to identify those accesses that are most likely going
to be cache misses. Mowry et al.’s agorithm exploits three kinds of reuse: temporal,
gpatial, and group. The temporal reuse occurs when a reference within a loop accesses
the same datalocation in different iterations. A reference preserves spatial reuse when the
same cache line is used in consecutive iterations. Different references have group reuse if

58

(a) Original code
for j = 0to 100
fori=0t0 100
Aljlli] = B[i][Q] + B[i+1][0]
end

(b) Instrumented code (inner loop only)

prefetch(&A[j][0])
fori=0to5by 2
prefetch(&B[i+1][0])
prefetch(&BJ[i+2][0])
prefetch(&A[j][i+1])
end

prologue

fori=0to93 by 2
prefetch(&BJ[i+7][0])
prefetch(&BJ[i+8][0])
prefetch(&A[j][i+7])

Aljlli] = B[i][Q] + B[i+1][0]
A[j][i+1] = B[i+1][0] + B[i+2][Q]
end

main
loop

fori =941to0 100 by 2
Alilli] = Bi][Q] + B[i+1][0]
A[j][i+1] = B[i+1][0] + B[i+2][Q]
end

epilogue

Figure5.1: Example of instrumented loop

they refer to the same location or to the same cache line. Since reuses do not guarantee
locality [Wolf & Lam 91], These reuses are mapped to datalocality by taking into account
the loop iteration count and the cache size. Let us take atypical inner loop as an example
(as shown in Figure 5.1). The accesses of A[j][i] have spatial reuse in the loop. Both
B[i][0] and B[i+1][0] share group reuse and also have temporal reuse when their addresses
are invariant with respect to the outer loop that contains this inner loop. While misses for

59

memory accesses (e.g., A[j][i]) with spatial reuse are easily determined, the identification
of cache misses for accesses with temporal and group reuse is made more complicated by
other factors such as set associativity and replacement policy. Moreover, conflict misses
due to self-interference from the same array references or cross-interference from different
arrays are not predictable at all. Overall, the algorithm can be successful in identifying
most compul sory misses and some of the capacity misses for linear array references, but is
unable to handle conflict misses.

In contrast to the software analysis, the hardware scheme has no information that
allowsit to avoid unnecessary prefetches. Sinceit isasupporting unit for the cache, unlike
the prefetch instruction in the software approach, these extra prefetches do not contribute
any overhead as long as they are not on the critical path of the processor. Although
prefetches are suppressed when the data block is already found in the cache, there remains
the drawback that the additional lookup of the cache tag directory may till delay demand
cache accesses or data refills from memory modules. Furthermore, since the prefetches
have no knowledge of potentia reuse, the hardware scheme is more likely to bring data
which are not useful. On the other hand, the hardware mechanism can prefetch data which
have been replaced due to conflict misses.

5.3.3 Prefetch Instruction and Predicate

If accesses have spatial or group locality in the same cache line, only the first access to the
line will result in a cache miss. For example, if these accesses are with index i, a prefetch
predicate (i mod |) == 0 should be tested before the prefetch is issued, where | is the
number of array elementsin acache line. The execution of such apredicateis costly in the
inner loop, especialy when | islarge. To avoid the overhead of such a prefetch predicate,
the compiler agorithm usualy performsloop splitting and loop unrolling.

Let uslook at the inner-most loop of the previous example in Figure 5.1. Assume that
the memory latency requiresthe prefetch to be scheduled six iterations ahead and that each
data line contains two array elements. By loop splitting, the original loop is decomposed
in three sections. prologue, main, and epilogue loops. The prologue loop prefetches the
initial data set for the first six iterations. The main loop consists of the largest portion
of the loop execution where the loop is in a steady state, that is, the demand of data can
be satisfied by those prefetches occurring several iterations ahead. Finally, the epilogue
loop finishes the last six iterations without any prefetching. After the loop is split, each

60

loop of the prologue and main loops is unrolled by a factor of two in order to eliminate
the execution of the prefetch condition (i mod 2) == 0. Overal, in their study, Mowry
et. a. [92] have reported that the instruction overhead per prefetch instance is low for
those scientific programs they used. Unfortunately, one consequence of loop splitting and
unrolling is that the code will expand significantly, in addition to the inherent increase
caused by the prefetch insertions. It may result in an additional penalty because of the
increase of cache misses in the instruction cache. One may argue that the only important
part is that the steady-state main loop fits in the instruction cache, and that therefore the
overhead of code sizeisnot critical. However, as shown in the example, the loop has been
increased roughly by two times (at most the code is within three times the original code
[Lam 88]), the expansion of outer loops would be more significant and the problem in an
instruction cache would be even more difficult to avoid. The other side effect as a result
of code expansion is an increase in register pressure, which may introduce extra spilling
store/load instructions.

By contrast, the hardware scheme executes the original loop without modification.
However, at least two iterations are required before obtaining correct strides. Unlike
the software approach where prefetches are dumped together in the prologue loop, the
hardware scheme gradually prefetches the initial data set as the LA-PC runs continuously
several iterations ahead of the PC. When the loop in the steady state, i.e., in the main loop,
the prefetching is performed in a similar way in both schemes. One important drawback
of the hardware approach is that the system still continues to prefetch data even in the last
iterations (corresponding to the epilogue loop), since the hardwareis unable to know when
the loop will end.

5.3.4 Scheduling Prefetches

The purpose of prefetching isto bring data ahead of its use, so prefetches should be issued
early enough to hide memory latency. However, they should not be too early so that they
do not displace useful data in the working set or are replaced before use. The software
algorithm usually schedules prefetches ahead by a number of iterations:

g

where o is the prefetch latency and s is the length of the loop body. As a result, the
software scheme prefetches adataitem at least one iteration beforeit is used. The prefetch

61

is usualy placed immediately before or after a corresponding reference to minimize the
computation cost of the effective address.

PC LA-PC
prefetchl l
A. bo)
Hardware; +1 ‘ Q/
A. A. - exec time of
| 4\ L < aniteration
Software;
prefetch 5
Ay % T %
PC LA-PC
prefetch l l
Ai+1 0
Hardware; ‘ \b
A. A. R _ exec time of
-2 i+1 0>= Jniteration
Software;

}
[X?fetch o % T %

Figure 5.2: Scheduling prefetches

Similarly, the LA-PC in the hardware scheme is capable to identify a prefetch several
iterations ahead depending on the prefetch latency. Furthermore, the data will arrive at
the cache at a time closer to the actual use. We illustrate the occurrence of a prefetch
for both schemes in Figure 5.2. As can be seen in the figure, the issue time of the
hardware prefetching depends on the length of memory latency?, and data is expected to
be fetched one memory latency before its actual use. Hence, it happens independently of
the corresponding load, and it may even occur in the same iteration as the actual load. In
contrast, in software prefetching, a compiler aways identifies accesses which are likely
to be cache misses and inserts prefetches around the actual accesses. There is a timing
window T between the arrival time of prefetched data and its actual use. Prefetching
within such a window can be vulnerable to the negative effects of prefetched datathat is

1 To take memory contention into account, the LA-limitisusually slightly greater than one memory latency

62

replaced or that displaces other useful data. The timing mechanism for issuing prefetches
in the hardware scheme has two implications: (1) prefetched data has less side effects on
the cache (such as replacement problems), (2) there will be less clustering of tag lookup
by multiple prefetches and their actual loads. A difficulty with the software scheme is
that & may not always be predictable at compile time; however it does not have a
drawback encountered in the hardware lookahead mechanism, namely relying on good
branch prediction to predict useful lookahead stream.

5.3.5 Prefetchingin Multiprocessors

Thus far we have been focusing on prefetching for uniprocessors. When we consider a
multiprocessor environment, additional factors come into play:

1. prefetchesincrease memory traffic,
2. prefetching of shared dataitems may bring coherence traffic,
3. invalidation misses are not predictable at compiletime, and

4. the cache affinity on which task scheduling and migration policy may depend is
increased.

Since these factors are common to all prefetching approaches, we will not particularly
focus on Mowry et. al.’ s solution and our scheme in the following discussion.

The first factor, additional memory traffic, depends on how many unnecessary data
are prefetched and how much impact they will have on the working set. Although the
same problem may occur in uniprocessors, it becomes more sensitive in multiprocessors,
especialy when there is a possibility of saturating the interconnection network as in a
shared-bus architecture. Ideal prefetching would be such that only data which are most
likely to be used are prefetched and the prefetched data arrive at the cache just in time
of actual use. The software scheme can be more successful with the first goal, while the
hardware scheme may be better at achieving the second goal.

The fact that prefetching may increase coherence traffic is usually difficult to avoid
in al prefetching approaches. The problem arises from two situations: the first is that a
prefetched dataitem may need to be invalidated before it is used, and the second is due to
the fact that an exclusive-prefetch causes invalidation misses on datathat might yet have to

63

be used in other processors. If arelaxed consistency model is assumed, write propagations
are usually delayed until synchronizations. In this case, the first Situation is equivaent to
the attempt at controlling data that arrive at the cache just in time for its use. The second
situation occurs when there is high contention for some shared writable data. Approaches,
such as binding prefetch [Gornish et al. 90], can reduce the problem by conservatively
suppressing prefetches which may have data and control dependencies of accessesin other
Processors.

The fact that invalidation misses are not predictable at compile time is a weak point
of the software approaches, since they lack the dynamic information necessary to initiate
prefetches for missing data which have been invalidated. Hardware approaches should be
able to fetch back the data which were invalidated, if the state information mandates the
prefetching. In case that most invalidation misses are attributed to false sharing, those
misses can be minimized by reorganizing the shared data. As a result, an agorithm
[Jeremiassen & Eggers 92] that restructures shared data to reduce false sharing can be
incorporated in the software prefetching schemes.

Task scheduling and task migration make prefetching in multiprocessors more compli-
cated, because processor assignments may change before the prefetched data in the cache
has been used. Paralel programs based on static task scheduling can still be handled by
the software algorithm. However, afine-grained task scheduling policy will be detrimental
to prefetching, since the prefetching cost cannot be amortized by the insufficient cache
miss reduction. The task scheduling problem is even more critical to the hardware scheme,
which requires past access histories stored in acache-liketable. The table contents, like the
context of data, should be accumulated in the cache affinity parameter used in the decision
of task scheduling.

5.3.6 Other Aspectsand Final Words

In this section, we discuss other issues which are not limited to one particular scheme.
The first thing is the implementation cost. The hardware scheme requires the RPT and its
associated logic (equivalent to a 4K-byte data cache as indicated in Section 4.3.3). The
software solution requires little hardware complexity except the prefetch instruction in the
processor, but a sophisticated compiler should be provided. Both schemes need a cache
which can support multiple concurrent memory requests.

The second issue is whether or not more aggressive program-specific prefetches can be

supported. The software scheme can definitely provide better solutions than the hardware
scheme in taking advantage of program information. Although it has not been shown in
the literature, the software solution may be able to provide more flexible prefetching, such
as pointer-chasing for linked lists, block prefetches (prefetching size being determined in
terms of semantic object instead of cache line size), and data reorganization. Although
Mowry and Gupta [91] have shown the success of several strategies by code-specific and
programmer-directed techniques, it is still unknown if the techniques can be automated for
genera applications without programmers’ intervention and be easily implemented in the
compiler.

To summarize, we have compared software and hardware schemes in the context of
uniprocessors and multiprocessors. In the domain of linear array references, both hardware
and software schemes are able to generate prefetches to minimize cache misses. However,
the software scheme may have a code expansion problem, while the hardware scheme
has less clues on whether prefetching data will be used or not. The software approach
may have more compile-time information to perform sophisticated prefetching such as
program-specific prefetches for complex data patterns, whereas the hardware scheme has
the advantage of manipulating dynamic information (such as conflict misses or input data
dependence). Both of them face the problems of increasing memory traffic and coherence
traffic in a multiprocessor environment. Tullsen and Eggers [93] have shown that the
prefetching benefits are limited if memory bandwidth is a primary resource in the context
of abus-based shared memory multiprocessor. We examine the |atter issues by performing
a smulation evaluation for a multiprocessor with an interconnection network with more
bandwidth.

5.4 Quantitative Evaluation M ethodology

In this section, we first describe the architectural models, the simulation environment, and
the benchmarks. We then present our model implementations of hardware and software
prefetching.

65

5.4.1 Architectural Models

The architecture that we assume is a shared-memory multiprocessor (cf. Figure 5.3).
It includes 16 MIPS R3000-like processors connected to memory modules through an
interconnection network. Each processor has a loca memory for private data and
instructions, and primary caches for shared data. We assume that private or stack data
are allocated in the local memory. Cache coherence is maintained using a full directory
protocol [Censier & Feautrier 78]. Thedirectory is distributed among the memory modules
and dynamically maintains the states of the data blocks. Prefetched data are put into the
caches so that the data still remain visible to the cache coherence protocol.

Processor Processor

——————— Processor
Cache Cache orefetch
‘ buffer
| nterconnection Network
\ \ Cache | | Memory
~~~~~~~

Figure5.3: Model Architecture

Prefetch requests are generated by the processor. For software prefetching, a prefetch
isinitiated by a prefetch instruction. For hardware prefetching, a prefetch is triggered by
an on-chip supporting unit. To handle prefetching, the system has a prefetch issue buffer,
which can hold up to 16 prefetches. The prefetch request will check the tag directory in the
cache and will beinitiated to the memory system if there is no matched cache line. When
the buffer is full, incoming prefetches are just discarded. Each processor has a 64K-byte
data cache, which is direct-mapped and copy-back with a cache line size of 16 bytes. The
caches are lockup-free [Kroft 81], thus allowing multiple outstanding data requests. A
16-entry outstanding request list (ORL) isused to keep track of pending requests, some of
which might then become hit-wait accesses.

As mentioned above, the cache hierarchy is used only for storing shared data.
Instructions and private data references are assumed to hit in the local memory with the
processor incurring no time penalty. Sincethe configuration of the interconnection network
is not of our primary interest, we ssimply assume that the memory bandwidth is sufficient



66

for any application and that afixed latency timeis used when arequest travels through the
network. The one-way latency time between caches and the global memory modules, that
is, the one-way network latency, is 40 cycles. Hence, a reference that misses in caches
incurs a total latency of at least 80 cycles (Ly). A read miss to a dirty block owned by
another cache or a write request to a block that is already cached elsewhere will need at
least two network round trips, i.e., 160 cycles. Although we do not model the contention
in the network, we do take into account interference at the caches and at the memory
directories since each cache and directory module can process only one request per cycle.
Lock/unlock and barrier requests are handled using a queue-based protocol inthe directory.
A request waiting on a synchronization operation will not cause extratraffic for the caches
and the network.

5.4.2 Simulation Environment and Benchmarks

We have developed a direct-execution simulator that simulates important events of
interest in ashared-memory multiprocessor, while the computation instructionsare directly
executed by the host machine. A simulation module is assigned to each component of the
architecture. Processor, cache, memory, and network ssimulation modules are built in the
simulator and are replicated as needed for a given configuration (as shown in Figure 5.4).
Clocks are associated with ssimulation modules. The modules behave like light-weight
threads within asingle UNIX process. A kernel of the smulator always drives the module
with the earliest clock time. When a processor module is ssmulated, a user context of the
simulated benchmark is restored and the corresponding user thread is directly executed
until an operation that may have global effects, like a shared reference or a synchronization
primitive, isencountered. As aresult, the interactions among modulesin the system reflect
the dynamic execution of the user program with the correct actual delays and interleaving
order of the global requests. The number of instructions executed is counted based on the
annotations of basic blocks and global events which are instrumented by a preprocessor.
Hence, the instruction stream is obtained and can be smulated as in the real execution.
The main goal of the simulator is to effectively simulate the execution of “‘parallel’”
programs in a uniprocessor environment. Parallel applications are developed in C using a
set of parallel constructs, such as locks, barriers, forks. The constructs are expanded by
a macro processor and then are trandated to a set of smulator ** system calls’ by a code
instrumenting program. Since the entire simulation and user execution reside in the same



67

vtime vtime

Cache Network

[ Execution Driven Kerne j

Figure 5.4: Direction Execution Simulator

process, when the execution reaches those system calls (parallel constructs), the smulator
kernel will handle the internal context switching. Locks and barriers are implemented by
the kernel synchronization mechanism and fork calls will cause the smulator to create
new user threads running in the process. The advantages of this technique are that an
efficient evaluation can be performedin an uniprocessor environment and that the s mul ated
architecture modules can be easily developed and controlled. The idea of a smulation
where the smulator and user programs execute concurrently appears in several simulators
[Daviset al. 91, Brewer et al. 91, Grunwald et al. 91]. Specificaly, our implementation is
similar to Tango [Brewer et al. 91]. However, the differences are:

1. User synchronizationsare handled in thesimulator kernel, instead of UNIX processes
and semaphores. This can significantly reduce the simulation overhead.

2. Each simulation moduleisrunning independently asan internal thread in the process.
It allowsthe system to efficiently switch from one simulation module to another and
thus reduces the ssimulation time. It also imposes a structured organization for the
development of simulation components.

3. The original instruction stream is captured so that studies of branch prediction and
instruction lookahead are possible in the multiprocessor environment.



68

Because of the execution-driven simulation paradigm, the total number of instructions
executed in some dynamically scheduled programs (e.g., Cholesky -- see below) may vary
across the architectural configurations. In addition, the amount of barrier waiting time can
be quite variable. Thus, to avoid providing miseading statistics on total execution time per
processor, the synchronization times that we will show will not include the time when a
processor stalls for abarrier to complete.

Table 5.1: Benchmarks characteristics - average numbers for a single processor in the 16
processor simulation

Instructions shared shared data
Applications || executed (K) | reads (K) | writes(K) | Locks | Barriers || size (K bytes)
Matmat 8,723 1,355 421 0 82 2109
Mp3d 7,231 1,334 426 10 60 3673
Water 21,173 1,033 72 8,737 25 156
Cholesky 38,233 6,809 524 5671 81 6403

The benchmarkswe used are Matmat and three SPLA SH benchmarks[Singh et al. 92].
To study the architectures with a moderate cache size, we run the benchmark programs
with larger data sets than what are provided in the benchmark. Table 5.1 summarizes the
statistics collected on these benchmarks once their parallel sections are started up until the
program is completed. Only shared references are recorded in the table and the column
below ‘*shared data size'’ indicates the total size of global shared area which is explicitly
allocated in the program. Matmat is a blocked matrix multiplication program, run with
two 300x 300 matrices with proper cache buffer and block setting so that the effects of
cache size and block size can be balanced. MP3D is a particle-based fluid flow simulation
program. We ran MP3D with 100,000 particlesin a 14 x 24 x 7 space array for 10 time
steps. Water, an N-body molecular application, was run with 288 molecules for 4 time
steps. Cholesky performs parallel factorization of a sparse matrix, run with the test set
bcsttk15.



69

54.3 Mode Implementations

In this study, we experimented with three architectural choices. baseline caches, caches
with lookahead prefetching, and caches with software prefetching. In prefetching caches,
prefetching was performed for read misses only. Although write misses or writes on
clean write-shared data can be helped by the use of an exclusive-prefetch, the prefetching
overhead may be still substantial becauseit increasesinvalidation missesin other processors
that are still using the data. Instead, our default consistency model is weak consistency
[Duboiset al. 86], under which the write latency can be mostly hidden.

The baseline cache hierarchy without prefetching was described in Section 5.4.1. In
both the baseline cache and caches with prefetching, we assume that reads are blocking,
that is, a processor stalls on a miss or hit-wait until the data is ready in the cache. Our
model of lookahead prefetching for each processor is the hardware |lookahead prefetching
scheme, which has been described in Section 3.3.

We now describe the methodology that we followed to simulate software prefetching.
To achieve the maximum possible benefits of software prefetching, we try to identify those
accesses which have the highest cache miss rates by profiling the benchmark programs.
The instruction addresses of the cache misses (candidates for prefetching) are recorded by
running each program based on the same configuration of the study with the same data
set. After the accesses for prefetching are identified, we instrument the codes with prefetch
instructions. Since there is no prefetching compiler available to us, we manually insert
prefetch instructions related to these high miss frequency items at the source level based
on the following strategies:

1. We estimate the execution time of an iteration for aloop. A data item accessed in
the loop is prefetched one or more iterations ahead depending on the relative values
of the loop execution time and the memory latency (e.g., 80 cycles).

2. Taking the block size of 16 bytes into account, we may unroll aloop or introduce
a prefetch predicate to avoid unnecessary prefetches. Also, we perform the loop
splitting such that in the prologue loop prefetches are started, and in the epilogue
prefetches for the last final iterations will be suppressed.

3. By default, each prefetch will bring one cache line. We alow the possibility of
block prefetching. If our profiling information detects that prefetching the whole



70

data object at once would be beneficial, we pipeline prefetch requests by a block
prefetch. Asaresult, aprefetch request initiated by a single prefetch instruction may
trigger the cache to issue several data access requests to memory modules.

4. 1If the address of the prefetch can only be determined dynamically, e.g., depending on
result of apreviousload (we call it aload dependent access), we attempt to schedule
the instruction source of the dependence ahead in the instruction stream to provide
as large a non-blocking span as possible.

Based on the above strategies, wetry to keep the overhead associated with each prefetch
in our implementation aslow as possible. We analyze the following possible sources which
may contribute to software prefetching overhead:

e The prefetch instruction itself requires the processor execution. As a result, the
prefetch overhead is at least one cycle per prefetch instance.

e We assume that the data address of the prefetch can be specified in the instruction.
The address computation of prefetch instructions is generally combined with the
corresponding loads and the overhead for address computations is nearly nil, since
we use the compiler to perform all optimizations. Note that when the prefetches are
moved away from their loads due to instruction scheduling, the cost of prefetching
may increase because address expressions cannot be completely eliminated.

e Each prefetch instruction implicitly fetches one cache line. An additional instruction
is needed when the prefetch size is greater than one cache line size to specify the
prefetch size for block prefetching,

e Prefetching may increase register pressure as aresult of loop splitting and unrolling.
The additional spilled code will contribute to the prefetching overhead.

Overall, the overhead in our implementation is relatively low (just over oneinstruction
per prefetch instance) in order to emulate an effective compiler algorithm.

Next we describe the complications and limitations of software prefetching in our
implementation. Adding prefetching to real benchmark programs gave us a different



71

experience from adding to kernel programs, such as Livermore Loops, or Nasa Kernels.
For example, the number of iterations in a loop nest is usualy variable. We need to add
additional code when we perform loop unrolling and loop splitting. Also, the starting
element of a data array in the loop does not necessarily align to a cache line boundary.
This problem is getting complicated when the starting index and the ending index are
depending on previous computations. Although a compiler has information to align data
arrays, most of those difficulties are due to the fact that the execution depends on certain
variables or input data, a problem which a compiler has difficulty to deal with aswell. We
therefore might end up with splitting loopsinto various sections and expanding the code to
compromise any possible run-time results by adding more I F condition statements.

Another noteworthy point is that the codes were inserted with prefetches based on ** as-
IS’ benchmarks. Weinstrument the programsfrom the original SPLASH benchmarks, with
some portion of codes being rewritten to better perform software prefetching. Admittedly,
results could be different if programmers, with prefetching in mind, reorganize the entire
codes so that prefetching insertion would be more effective and efficient by a compiler. A
good solution in compiler design may be that programmers specify more program-specific
hints or constructs, and then the compiler takes care of low-level prefetch insertions.

In summary, the goa of the instrumentation is to emulate a compiler algorithm that
will carefully generate effective prefetches. Although these strategies may soon be within
the realm of current optimizing compiler technology, it is our contention that our results
will be optimistic.

5,5 Simulation Results

In this section, we present experimental results that contrast the hardware and software
prefetching approaches. We first give general comparisons and then examine the bench-
marks in more detail to better understand the effectiveness of prefetching. Section 5.5.3
discusses some negative effects introduced by prefetching. In sections 5.5.4 and 5.5.5, we
study the effect of variations in memory latency and the impact of consistency models.
Then in Section 5.6, we investigate the combination of hardware and software approaches.



72

551 General reaults

Figure 5.5 shows the simulation results of the average execution time from 16 processors
with respect to various approaches. Theleft-most bar showsthe breakdown of the execution
time of the baseline cache (BASE). The next two bars are for hardware-based |ookahead
prefetching (HW-pf), and software prefetching (SW-pf) respectively. We present the data
by normalizing the total execution time with respect to the baseline organization. Each bar
contains several sections. The exec section denotes the time to execute instructions -- it
also includesthe extrainstruction overhead for executing software prefetchinginstructions,
necessary address/size computations, and execution of possible extra spilling loads due to
the increase of register pressure (determined by the compiler optimization); read and write
indicate the fraction of processor stall time for reads and writes ; delay shows the delay of
demand accesses resulting from handling prefetch and tag updates in the cache; and synch
givesthe time waiting for lock and barrier accesses.

We look at the results by examining each stall time component. The instruction
execution time corresponds to the processor utilization. As shown in Figure 5.5, the
processor utilization is between 13% in Mp3d and 75% in Water. There is much room
for improvement on the read access penalty by the lookahead (HW-pf) and software
prefetching (SW-pf). A comparison between the BA SE and the prefetching schemes shows
that hardware prefetching can significantly reduce the read stall time by 10%-39% of the
origina total cycles, while software prefetching also achieves remarkable reduction (by
15%-43% of total cycles). We will dwell on these numbersin more detail in Section 5.5.4.

The next component contributing to CPU stall time is the write penaty. Since the
system is based on the Weak Consistency model, it is not surprising that only a small
portion of the write penalty is seen. Under a weak consistency model, the write portionis
the sum of the time spent at a synchronization point to wait for previous pending writes
to complete, the stall time because of the write buffer being full, and the time waiting for
a read miss which needs the same line as another pending write. However, since those
situations are rare, the sum of the stall times is nearly negligible with respect to the total
CPU «all time.

Asto stall time due to synchronizations, the overhead looks relatively small compared
with other stall contributions. Synchronization delays are dightly visible only in Water
and Cholesky, where synchronization activity is more apparent (c.f., Table 5.1). The
synchronization overheads are not modified significantly by prefetching.



73

Matmat

- 100 §

—
g 8 1 0 1(11
o © 429 & 02 27 07
= 54
8 3 95
&
e
T 57.1 57.1 657
E o |
5 N
=z

o

BASE HW pf SW pf

Q 100
Sy 81
S
- O |
o © 0
E 672 07
‘é’ S 0.1
g 86.8 49 8%
B Q- 533 '
© 34.3
E o |
5 N
= 131 131 14
o
BASE HW pf SW pf

Figure5.5a: Simulation results

Thelast component isthe cacheinterference, an overhead introduced by the prefetching.
It includes the number of processor stall cycles asaresult of the cache handling the requests
and tag updates of prefetched blocks. As seen from the delay section in Figure 5.5, the
number of busy cycles are very small (only 0.05%-0.6%). Hence, this negative effect is
almost negligible.

Extra instruction execution time is yet another overhead, which is present only in
SW-pf. As shown in the exec section of SW-pf, the SW-pf instruction overhead can be



74

Water

0

Q 100 0.1
—_ = Fl)g 905 53 86.5 gé
S o 18 B 19 1
o ® 85 31
E
8 81
&
E Sl 74.6 74.6 76.3
®©
E o |
5 N
=z

o

BASE HW pf SW pf
0

Q 100
B B -
X 80.7
Py 8 1 — 34
£ 476 g.z 03
§ 3 60.L 323 24.7
& 8.2
Ee
®©
€ o 486 486 52.1
s N
=z

o

BASE HW pf SW pf

Figure 5.5b: Simulation results

substantial. The portion of normalized time due to the software overhead ranges from 0.9%
in MP3D to 8.6% for Matmat and may offset part of what was gained in reducing the read
penalty.

In summary, the results show that when the processor utilization is not high, the total
execution time (read penalty) can be significantly reduced by prefetching. Under a weak
consistency model and given sufficient memory bandwidth, writesand synchronizations do
not contribute much to stall time. We aso observe that the side effects of prefetching such



75

as processor interference and cache busy time are insignificant. However, the instruction
overhead in SW-pf is substantial.

5.5.2 Detailed Analysis

We examine further the effectiveness of prefetching by looking in more detail at the
individual behavior of the four benchmarks (cf. Table 5.1).

M atmat

Matmat is a blocked matrix multiplication program in which amost all references are
regular and sequential. Both HW-pf and SW-pf perform aswell on the Matmat benchmark
where dataaccess patternsareregular (read penalty reduced by 77% and 87% respectively).
Even so they do not eliminate all of the read penalty. In HW-pf some of the read penalty
is contributed by a portion of hit-wait cyclesin the first iterations. Another portion of the
remaining read penalty stems from the fact that the blocking technique tries to localize the
referenced domain of inner loops and thus data blocks prefetched at the last iteration of an
inner loop aregenerally unused. Similarly, SW-pf hasaportion of hit-wait cycles. Sincethe
register pressure isaready very tight because of tiling of theinner-most loop, loop splitting
due to prefetching would exaggerate the pressure. By looking in more detail at SW-pf
shows that the execution time of one iteration of the inner-most loop (unrolled by factor
of 2) takes 85 ideal cycles. It has been increased by 11%, compared with the execution
time of the original code (76 cycles for two iterations). The increase comes from the
prefetch instructions and extra spilling code. This explains the magnitude of the instruction
overhead (8.6% of total time) for SW-pf. It indicates that the SW-pf should be more
conservative when taking into account optimizations arising from locality considerations.

MP3D

The two data structures that account for most of the references are particles and space
cells. The particles are statically alocated; the space cells are accessed in a relatively
random manner depending on the location of the particle being moved. In such an
application where data structures are more complex, SW-pf exhibits better performancein
reducing the read penalty than HW-pf (38% for HW-pf in MP3D vs. 60% reduction for
SW-pf). Although HW-pf has no difficulty in prefetching a particle record, it is not good
at dealing with space cells because their locations vary with time. Thus only roughly half



76

of the cache misses are covered through HW-pf. In contrast, SW-pf performs much better
than HW-pf. SW-pf can statically prefetch particle data and use load dependent prefetches
to get the space cell when the address of an associated particle is determined. Moreover,
particle objects and space cells can be prefetched by a single block prefetch instruction.
Consequently, several memory access requests triggered by only one prefetch instruction
can be pipelined to the memory system. The prefetching of space cellsis scheduled so that
it can be performed in parallel with other computations. Therefore the latency of the load
dependent prefetch is further hidden. The use of block prefetches is also the reason that
MP3D has a negligible instruction overhead in Figure 5.5.

Water

The main data structure is an array of molecules where each element holds al the data
for one molecule. Each molecule requires about 38 cache lines. Data accesses preserve
gpatial locality inthe intramolecular computations and data access patterns are predictable
intermolecular computation phases. Since the ratio of the number of shared references
to instructions is very small, the instruction time accounts for a large portion of the total
execution time (cf. Table 5.1). In addition because the cache can ailmost hold the entire
working set, most of the accesses result in cache hits. Thereforetheread penalty contributes
only 18% of the total execution time. While this benchmark has predictabl e access patterns
but with small nested loops, the SW-pf moderately outperforms HW-pf (52% for HW-pf
vs. 83% for SW-pf). The read penalty reduction is remarkable but does not improve
performance that much since the read penalty is relative small. It is easy for both HW-pf
and SW-pf to handle the shared references in the intra and intermolecular computation
phases, with SW-pf being more effective. The main reason is that each computation of
a molecule involves two or three nested small inner loops with only a small number of
iterations in each level of loop. SW-pf smply prefetches data for al the iterations at one
time, whereas the small loops hinder HW-pf from gaining sufficient prefetching distance.
Loop unrolling and blocking techniques in the original code may remove the obstacles for
HW-pf. However, unrolling multiple levels of loops may potentially expand the code by a
significant amount.

Cholesky
Cholesky is dynamically scheduled with coarse task granularity (about 86,000 shared



77

references per task). Each task works on supernodes, which are sets of columns of a
very large but sparse matrix. The input data file is a 3948-by-3948 matrix with only
56934 non-zeros. The primary operation is the column modification which involves the
addition of one column into another in order to cancel a non-zero in the upper triangle.
Since all non-zeros belonging to a certain column are stored contiguously in an array
and the row numbers of the non-zero elements are stored in a compressed manner, the
program iterates on the array of row numbers to find matching rows and then fetch the
non-zero to perform computations. As a result, the starting and ending values of loops
are generally unknown at compile time. In the benchmark, where the data structures are
regular with input-dependent accesses, the hardware scheme performs better than SW-pf
(82% vs. 48%). The HW-pf scheme can benefit from the assignment of large supernodes
to the processors by sequentially prefetching the array and dynamically extracting data
access patterns for the accesses of non-zeros. Similarly, SW-pf can prefetch the data for
accesses to the array holding row numbers. However, it is conservative in prefetching the
non-zeros by using load dependent prefetches only after the row pointer is known. This
will usually cause prefetched blocks to arrive in the cache too late and thus to contribute
a large portion of hit-wait cycles to the read penaty. In addition, because the starting
and ending values are run-time variables, the code is significantly expanded as a result of
loop unrolling and splitting as well as prefetch insertion. For example, an IF statement
is required in the prologue loop to aign the prefetch access on the cache line boundary.
Hence, the instruction execution time isincreased.

To summarize, our data show that SW-pf and HW-pf can achieve good performance
improvements in programs with regular access patterns. HW-pf can handle applications
with input data dependence if the loop granularity is not too small. SW-pf is flexible and
even good at dealing with programs with complicated but well-organized data structures.
However, the benefit of software prefetching may be offset by the extraoverhead it incurs.

5.5.3 Negative Effect of Prefetching

Aswehavediscussed in Section 5.3.5, one of the concernsfor prefetching in multiprocessors
isthe negative effects that may offset the performance benefits. In this section, we examine
the issue of negative effects brought by prefetching, including memory traffic and pressure
on acache for holding the working set.



78

Prefetching typically increases memory traffic. A multiprocessor is generally sensitive
to such an increase in memory traffic, especialy in the case of bus-based shared memory
multiprocessor. The increase usually comes from: (1) prefetches of unused data lines, (2)
extra cache misses due to conflictswith the current working set, (3) extrainvalidates owing
to additional write-sharing by prefetching, (4) the increase of invalidation misses due to
exclusive prefetches. Since we do not perform prefetch for writes, the last problem does
not exist in our study.

o o
<} 112.9 S
§ 100 1071 7.4 § 100 101.2 101.9
g = | &% [ A - 191 g = | 238 on6 24.7
s 8 0 o 8 '
5 B
= 3 647 = 3 1 l 36.1 l 36
g 9 82.1 8 ' g 9 203
2 g Z o] : 384
20.2
o = S8 17 o 28
BASE HW pf SW pf BASE HW pf SW pf
invalidatior
write
8 - 111.8 3
100 100.8
= 81 g o
S 29.7 3.3 29.9 S 9
o =
O & = o |
= | ©
5 o S
S0 ~ 3B
< 5
g9 § 9
g z g
o |
o |

BASE HW pf SW pf

BASE HW pf SW pf

Figure5.6: Network traffic

In Figure 5.6, we present the increase in network traffic. In terms of the number of



79

requests appearing in the network, we consider four kinds of network traffic: read misses,
prefetch requests, write requests (write misses and write hits on clean), and invalidates.
From these results, we observe that the total number of memory requests increases, as
expected, for both types of prefetching for all benchmarks. However, the increase due to
prefetching (especially SW-pf) is relatively insignificant with respect to the total traffic.
Most of the memory traffic increase stems from the fact that the total requests of read
misses and prefetches are greater than those of read misses for the baseline cache. Since
prefetching may fetch write-shared data, a dlight increase of write requests and invalidates
can be aso observed in the figure. In general, SW-pf is more conservative in introducing
memory traffic than HW-pf. The reasons are that HW-pf has less information to avoid
sending unnecessary prefetches to the system and that data blocks prefetched during the
last iterations are usually unused. The traffic increase is more significant in benchmarks
with small iterations, such as Water, where the penalty reduction by HW-pf isless than that
by SW-pf, but where HW-pf brings more network traffic. One exception is Matmat, where
SW-pf resultsin more network traffic than HW-pf. However, theincreaseis mainly because
more writes and invalidates are issued since there is more prefetching of write-shared data.

Table 5.2: Proportions of Conflictsin the direct-mapped sets

Hardware Software
Programs | ws < ws | ws< pf | pf & pf | ws< ws | ws< pf | pf < pf
Matmat 924 076 0 -a - -
Mp3d 976 024 0 925 062 013
Water® - - - - - -
Cholesky .710 174 A17 961 034 .005

a8Missrateistoo small (< 0.001).

b There are very few conflict misses left, sSince most of the data set fitsin the cache and misses are
mainly caused by invalidation misses.

To examine the impact of prefetching on the working set in the cache, we estimate the
negative effect by measuring conflicts between the working set and prefetched data. We
record the information of replaced data lines in a ‘*shadow’’ direct-mapped cache with
the same size as the data cache. If a cache miss finds a matched entry in the shadow



80

cache, we record the status of both replaced and current blocks. It indicates that the miss
is due to a conflict with previous access’. As the prefetching schemes effectively reduce
the number of cache misses, the miss ratios of the four benchmarks are generally low.
Among the remaining misses, we are interested in conflict misses. Table 5.2 gives the
proportions of those conflict misses among three categories: conflicts within the current
working set itself, between the working set and prefetched blocks, and between prefetched
blocks themselves. The results show that a large portion of conflicts occurs among data
in the working set itself. When a prefetched data arrives in cache at a time close to the
actual use, the probability of conflicts with the current working set is small. We aso see
that HW-pf in Cholesky brings more prefetched data than necessary and, thus causes more
conflicts with data in the cache. This can be explained by the evident increase of dataread
(read misses and prefetches) traffic in the network, as shown in Figure 5.6.

To sum up, we observe that the negative effect of prefetching in network traffic and
conflicts with the working set is not severe. The increase of network traffic is very small
for SW-pf, whereas HW-pf may give aslight increase. Most conflict misses are caused by
the working set itself.

5.5.4 Effect of Memory Latency

I n this section we explorehow variationsin the secondary cache and main memory latencies
influence the performance of the three prefetching schemes. We consider three sets of
latencies: the one used previously (L, = 80), one where we consider a processor twice as
dow (L, = 40), and one where the main memory latency is doubled (L., = 160) with the
rationale here that our 16 processor system might be a subset of a larger multiprocessor.
In Figure 5.7, we show the read access times for these three organizations normalized
with respect to the no-prefetch BASE default case (L, = 80). The read access penalty is
decomposed into two sections. read miss, the stall time due to cache misses, and hit-wait,
the waiting time for a prefetch which isissued too late. In order to have afair comparison
for SW-pf, we modified and moved around some prefetch instructions in an attempt to
provide a sufficient prefetching span for large latencies.

As can be seen in Figure 5.7, the reduction in the read penalty dightly degrades as the
memory latency increases. Thisillustratesthat both HW-pf and SW-pf till can be effective,

2 Note that this metric just includes the number of conflicts which the current data have with most recently
replaced data, instead of al of the conflict misses and capacity misses.



81

Matmat

- §f 1945
S
(]
£ Q.
‘% =1
Q
3 g | 100
'g —
E o | 519 51 503
©
£ 222 I I
g ° - ﬁ [ ]

Base HW-pf SW-pf Base HW-pf SW-pf Base HW-pf SW-pf

Latency 40 Latency 80 Latency 160
Mp3d B i
S § 1 1999 read miss
oy
£ o
- ﬁ -
8 123.6
Q
8 g | 100
g - 80
B 501 61.4 |
% B4 = 20 39.5
[ |

£ 198
S L2:C
Z o

Base HW-pf SW-pf Base HW-pf SW-pf Base HW-pf SW-pf
Latency 40 Latency 80 Latency 160

Figure 5.7a: Effect of memory latency

to a lesser extent, in tolerating large latencies by adjusting prefetching to occur severd
iterations ahead of the actual use. Note that since the number of instruction executed is
generaly fixed, the dlight increase in the read penalty in SW-pf is more than compensated
by the relative decrease in the overhead of the prefetch instructions. For example,
when passing from L, = 80 to L, = 160, the overall execution time increases and the
overhead from software prefetching (not shown in the figure), an almost constant number
of instructions for each benchmark, decreases from 8.6% to 6% in Matmat, from 0.9% to



82

Water
—~ 8 7
g N
o 200.2
E 81
8 8 - 100 95.8
g 50.1
N o | 50 463

39.6

g 22.4 R
5 = 65 —
Z o _—

Base HW-pf SW-pf Base HW-pf SW-pf Base HW-pf SW-pf
Latency 40 Latency 80 Latency 160

Cholesky [l nitva

250

g read miss
o 200.1
E 81
110.7
g g | 100
3
N o] 50 52 55.1
®T O
z s W 17.3 I I
g o — o

Base HW-pf SW-pf Base HW-pf SW-pf Base HW-pf SW-pf
Latency 40 Latency 80 Latency 160

Figure 5.7b: Effect of memory latency

0.04% in MP3D, from 1.7% to 0.013% in Water, and from 3.5% to 0.3% in Cholesky.
This leads us to conjecture that software prefetching should be more advantageous as the
prefetch overhead becomes less significant with an increase in latency.

The cost of the hit-wait cyclesis particularly important in prefetching. The read penalty
in HW-pf contains afair amount of hit-wait time. In this scheme, the |ookahead mechanism
needs to be reset to the value of the PC after each incorrect branch prediction. Therefore,
the first few prefetches are not yet one **memory latency time’’ ahead of when their data



83

will be used. This phenomenon tends to be serious in those programs with nested inner
loops with only a few iterations such as Matmat and Water. For SW-pf (cf. Cholesky),
the hit-wait cycles are mostly contributed by the load dependent prefetches, which are
constrained by the data dependencies. While SW-pf is generally able to identify most of
the cache misses, there remains the challenge of scheduling useful computationsto overlap
with the prefetches, atask that becomes more difficult as latencies get larger.

To summarize, we show that the prefetching schemes can still be effective when the
memory latency increases. The stall time due to hit-wait accesses is a significant portion
of the read access penalty when the latency is large and will affect the relative gains of
prefetching.

5.5.5 Impact of Consistency Models

The simulation architecture that we have been using so far assumes weak consistency
(WC). Under this model, memory references between synchronization accesses can be
completed out of order, subject of course to dependencies, and thus WC exploits overlap
among memory accesses. This removes some constraints of Sequential Consistency SC,
the strictest model requiring that both reads and writes be blocking; the processor must
stall on a miss until the data is ready in the cache, athough there may be several non-
blocking prefetchesin progress simultaneoudy. In order to show the impact of consistency
models on the effectiveness of prefetching, we performed experiments under the sequential
consistency model.

Figure 5.8 presents the experimental results comparing prefetching under SC and
WC. We break down the execution time (normalized to the baseline under WC) into
the same five sections as before (recall Figure 5.5). As can be seen from Figure 5.8,
the overal execution time for the baseline architecture under SC (second bar) increases
from 6% to 80% over that of WC (first bar). This increase is because of the significant
portion of the write stall time. Similar results have been observed in the literature
[Gharachorloo et al. 91a, Mowry & Gupta 91, Zucker & Baer 92]. When looking at the
effects of HW-pf (third bar and fourth bar) and SW-pf (fifth bar and sixth bar), the
reductions of the read access penalty under SC are generally similar to those realized under
WC. The only subtle effect (not obvioudly seen in the figure) of consistency models on
prefetching isthat the read stall time dightly increases from SC to WC. Thisis because the
latency of prefetchislikely to be hidden during the time that reads are blocking on pending



o
7 B
106.5
< 8. 100 76 Q
v 80.8 1.
E 8- 4.8 o A 8035 727 [ 88
3 : [ -
5 Q- - - 9.1
8
—_ O
T Y
£ 57.1 57.1 657
o o
Z « 7
o
B B HW pf  HW pf SWpf  SWpf
we & we TP we Y
o
8 -
180.5 8
S 1482
L - - T4
2 80.9 0%
8 g 10 815
3 - 81
g 67.2
T o 86.4 49
5 © 53
: ‘B
° 13.1 13.1 14.4
B B HW pf  HW pf SWpf  SWpf
we & we TP we Y

Figure 5.8a: Prefetching based on weak and sequential consistency

writesin SC. Thisis particularly true of HW-pf, where the LA-PC, under SC, has a good
chance to get far enough in advance of the real PC because of write stalls.

5.6 Combining Hardware and Softwar e Prefetching

I nthissection, we propose acombination of hardware and software solutionsto prefetching.
The main ideais that the compiler inserts prefetches for user’s semantic data objects that



Water

o
81 11215 7
102.6 53
=84 & 188 -— > 99.4
S : 90.5 ]
2 _ . 5 - 2 85 5
£ 81 E s — -
8
& 8-
g
é Sl 746 746 77
S o
Z « 7
o
O T T
9.
= 1289, ¢
9 | =y
S 109.2
S g | 100 21 w34
E S| 88.2 29
3 8 476 ot =
Bl N EEC e
N || 74
g9
9 486 486 521
o
O T T

Figure 5.8b: Prefetching based on weak and sequential consistency

85

can be of any size, not necessarily of acacheline, in amanner more related to the program
information available to the compiler, and that a hardware supporting unit will take care
of accesses in the loop with a closer relation with the hardware organization. In addition
to bringing appropriate data belonging to the working set, software prefetching on data
objects reduces the instruction overhead incurring in the inner loop. Also, the problem of
explosive code expansion in the software prefetching can be avoided by using the hardware
component that handles loop or input-dependent accesses. To achieve maximum gains,



86

g 100
—
S o
\q-_), (o]
S 66.8
= 61.5
% = 105 - 58.2 ]
¥
®
E o 50.4 58 525
O &
pd
o
B HW pf SW pf HW pf+SW pf
e P P coﬁ1binedp
g 100
—
S o
~ 0
£ 66.3
= Qo
3 -
% 48.5
E ? 54.1 325
: N
5 < 194
2 3¢
116 124 124
o
Base HW pf SW pf HW pf+SW pf

combin

Figure 5.9a: Effectiveness of combining HW-pf and SW-pf

the hardware part is amed at prefetching data from the secondary cache to a relatively
small primary cache and the software part is aimed at a large block fetch from memory
modules to the secondary cache. The reasons are that the hardware scheme can collect the
dynamic information and perform well at small latencies and that the software scheme can
be good at predicting the necessary working data that are brought into the larger secondary
cache with only a few prefetch instructions. By adding a special control instruction to
the instruction set, some unnecessary prefetches in the hardware prefetching scheme can



87

be further reduced by using the instruction as a control hint to enable (and disable) the
hardware mechanism. Such control hints can be inserted around a loop body so that the
hardware unit will operate only during the execution of loops.

Previously proposed approaches can be employed to realize the combined scheme. As
we have shown in Chapter 4, our proposed hardware scheme can be effective for small
caches. Gornish et al. [90] have proposed a compiler algorithm to identify the data for
block prefetches. It would be promising if a modification of the algorithm is made for
programs with more complex data structures in the context of non-binding prefetching,
rather than of binding prefetching.

We performed experiments for studying the effectiveness of the HW-pf and SW-pf
combined architecture. In the experiment, we consider asimilar architecture to the earlier
study, except that each processor has a 32K-byte primary cache (C1) backed up by a
256K -byte second-level cache (C2). Both caches are direct-mapped with a cache line size
of 16 bytes and lockup-free. The one-way latency time between C1 and C2 is 5 cycles
and thus the delay for a missin C1 with a hit in C2 is 10 cycles. Misses in C2 trigger
requests to the global memory modules. The one-way network latency is 35 cycles. Hence,
a reference that misses in both caches incurs a total latency of at least 80 cycles. In the
experiment, we modify the strategy for prefetch insertion in software prefetching: we do
not prefetch data in inner-most loops, we do not perform loop unrolling and splitting, we
insert prefetches for user data structuresto be used (regardless of cache size, linesize), and
we move prefetches far ahead of actual use (may even move to alocation before the loop).

Figure 5.9 gives the simulation results of the new architecture with the combined
hardware and software schemes. As can be observed from the results, the read access
penalty has been further decreased when compared to either the hardware approach or
the software approach. This ends up with total reductions of the read penalty in the
baseline by 90% for Matmat, 78% for Mp3d, 88% for Water, 80% for Cholesky. The
ingtruction overhead of the new scheme is relatively small® when compared with the
software approach. The portion of total normalized time due to the overhead ranges from
0.8% in Mp3d to 2.1% in Matmat. Overall, the total execution time can be significantly
improved by the combination of software and hardware schemes.

3 Thereisnearly no decrease in Mp3d. Thisisbecause SW-pf already performed block prefetchingin Mp3d.



88

Water

g 100

- [ 89.7
— ' 85.6 83.4
2o M =0
2 . = 16 - 14
§ 5
&
E g 1 729 75.3 74.2
©
£ o
2 N

o

Base HW pf SW pf HVéIORI;&%\eAé pf

Q 100

CHEN |
S 8 L
£
= 62.6
g 31 | 27.7 _59'5
& 135 10.1
L H I
N <
£
= o | 42.9 46 438
2 «

o

Base HW pf SW pf HVéIORI;&%\eAé pf

Figure 5.9b: Effectiveness of combining HW-pf and SW-pf
5.7 Summary

In this chapter we have studied the performance of hardware-based and software-directed
prefetching schemes. Our qualitative comparisons indicate that in the domain of linear
array references, both hardware and software schemes are able to generate prefetches
for cache misses. However, the software scheme may have a code expansion problem,
while the hardware scheme has less information on whether the prefetched data will be



89

used or not. As to other complex data access patterns, the software approach may have
more compile-timeinformation to perform sophisticated prefetching, whereasthe hardware
scheme has the advantage of manipulating dynamic information (such as conflict misses
or input data dependence).

The quantitative evaluation was performed by running direct-execution simulations of a
shared-memory multiprocessor using four benchmarks. Our experiments confirm the above
observations. We observed that the cache interference incurred by prefetching is almost
negligible. The software approach has less negative effect on network traffic and conflicts
with the working set than the hardware approach. However, the overhead due to the extra
prefetch instructions and associated computations is substantial in the software-directed
approach. The performance gain of reducing the read penalty can be offset by the dight
increase in instruction execution time.

We aso evaluated the impact of varying memory latencies and of consistency models.
Our results show that the effectiveness of prefetchingisdightly degraded by theincrease of
memory latencies. Reductionsin read penalty by prefetching were similar under sequential
and weak consistency.

Finaly, we proposed and examined an alternative of combining the software and
hardware solutions. The main idea is that software will use program user’s semantic to
prefetch data objectsinto asecondary cache and that the hardware supporting unit will take
care of accesses in the loop and fetch the datainto the primary cache. The new approach
can combine advantages of both hardware and software approaches and at the same time
avoid most of their negative effects. Our experimental results show that the new solution
isvery attractive in reducing data access penalty without incurring much overhead.



Chapter 6

Non-blocking Caches

6.1 Overview

So far, we have discussed hardware and/or software prefetching techniques that can
eliminate, or at least reduce, the cache miss penalty by generating prefetch requests to the
memory system to bring the data into the cache before the data value is actually used.
These techniques exploit the overlap of computation with memory accesses prior to an
actual cache miss. In contrast, non-blocking is a technique to take advantage of a post-miss
overlap. A non-blocking cache (also called lockup-free cache) all ows execution to proceed
concurrently with one (or more) cache misses until an instruction that actually needs a
valueto bereturned isreached. The basic ideain both non-blocking and prefetching caches
is to hide the latency of (read and write) data misses by the overlap of data accesses and
computations to the extent allowed by the data dependencies or consistency requirements.

In this chapter, we eval uate the effectiveness of the non-blocking technique on reducing
the memory latency. We consider ways to improve the approaches by compiler-based
optimizations (e.g., code rescheduling, software register renaming). We aso propose a
hybrid design which is a combination of non-blocking and prefetching approaches. From
the simulation of ten SPEC benchmarks, our results show that hardware prefetching caches,
which require extra hardware complexity, generally outperform non-blocking caches and
that the prefetching caches are less sensitive than non-blocking caches to the increase in
memory latency. The compiler optimizations that we propose can significantly improve
the effectiveness of non-blocking caches.

The rest of the chapter is organized as follows. Section 6.2 gives some background
information on non-blocking caches. Section 6.3 describes the processor and memory
architectures under study as well as the evaluation methodology. Simulation results are
presented in Section 6.4. Section 6.5 describes the compiler optimization agorithms and
discusses the results. In Section 6.6, we propose and evaluate a hybrid design. Finally, we
summarize in Section 6.7.



91

6.2 Background and Performance|ssues

We start this section with a brief description of non-blocking caches, including supporting
non-blocking writes in write buffers and non-blocking reads by the processor. We then
discuss performanceissues and the extra hardware requirements.

6.2.1 Non-blocking Caches

Lockup-free caches were originally proposed by Kroft [81]. In his design, the following
three features are included:

1. Load operations are non-blocking.
2. Write operations are non-blocking.

3. The cacheis capable of servicing multiple cache miss requests.

In order to alow non-blocking operations and multiple misses, Kroft introduced Miss
Information/Status Holding Registers (MSHRS) that are used to record the information
pertaining to the outstanding requests. Each MSHR entry includes (1) the data block
address, (2) the cache frame for the block, (3) the word in the block which caused the
miss, and (4) the function unit or register to which the data is to be routed. As we
have indicated in Section 2.2, the terms **lockup-free cache’’ and *‘ non-blocking cache’’
are used interchangeably in the literature. We can somewhat clarify this confusion by
considering two distinct features: (1) a cache supporting multiple outstanding memory
requests, but with a processor stalling on read misses (blocking loads), and (2) a processor
supporting non-blocking loads and writes. Our view isthat non-blocking loads are features
specified in the processor, non-blocking writes are supported by buffering writes, whereas
whether the cache alows multiple pending accesses or not depends not only on the presence
of MSHRs, but also on the available cache bandwidth as defined by the interface between
caches and memory modules. In the discussion of this chapter, we specifically focus on
non-blocking writes and non-blocking reads. We first discuss related designs which have
been proposed to support these two features.

To support non-blocking writes, write buffers are used to eliminate stalls on write
operations. They permit the processor to continue executing even though there may be
outstanding writes. Write buffers in conjunction with write-through caches are especially



92

useful in reducing the processor stalls on writes. For write-back caches (with write-
allocate), write buffersare used to temporarily store the written value until the missing data
lineis returned. Another example is the write-back buffer used for temporary storage of
replaced dirty blocksin awrite-back cache. Asafurther example, the lockup-freecachein
RP3 [Brantley et al. 85] supports non-blocking prefetches and multiple outstanding writes.
The cache allows partial writes, i.e., writesto only parts of aline and bypassing loads, i.e.,
the datumisdirectly forwarded to the CPU when the needed word is availablein the cache,
even though therest of the wordsin the same line may not beready yet. Extensionsto write
buffers have been proposed. For example, write caches [Bray & Flynn 91], organized like
regular caches, hold partial written data lines and allow multiple writes on the same line
to be combined, thus reducing the total number of writes to the next level of the memory
hierarchy.

In addition to the MSHR’ s associated with a non-blocking cache, non-blocking loads
require extra support in the execution unit of the processor. If static instruction scheduling
in pipelinesisused inthe processor, someform of register interlock (likeafull/empty bit for
each register) isneeded for preserving correct data dependencies. For instance, the register
filein theMC88100 [Motorola 90] includes a scoreboard register, which contains one such
bit for each of the general-purposeregisters. In the case of dynamic instruction scheduling,
introducing out-of-order execution, a more complicated scoreboarding mechanism is
required. In addition, both static and dynamic instruction scheduling strategies need
interrupt handling routines that can deal with interrupts generated by the non-blocking
operations [Hennessy & Patterson 90].

A consistency problem can arise when the processor alows non-blocking writessincea
later (in program order) read may be needed before a previous buffered writeis performed.
If these two operations are on the same data block, an associative check in the write buffer
or the MSHRs must be done to provide the correct value to the following read. When the
processor is part of a shared-memory multiprocessor, the problem becomes more complex
and the solution depends on the model of memory consistency that is adopted.

6.2.2 Performances |ssues

As mentioned previoudly, the non-blocking operations exploit the post-miss overlap of
computation and memory access while prefetching exploits the pre-miss overlap. The
following isabrief qualitative view of the expected benefits for both types of overlap.



93

Non-blocking loads delay processor’s stalls until the necessary data dependence is
encountered. Non-blocking loads will become necessary for processors, such as super-
scalar processors, capable of issuing multiple instructions per cycle [Sohi & Franklin 91].
However, the non-blocking distance, which is the number of instructions that can be
overlapped with the memory access (e.g., instructions between the reference and the first
dependent instruction), is likely to be small in the case of static scheduling. It can be
increased when compilers produce code optimized for this potential overlap (see Section
6.5). Dynamic instruction scheduling (out of order execution) obtained at a significant
increased cost in hardware complexity, can provide alarger non-blocking distance. How-
ever, the effectivenessis still subject to data dependence effects, branch prediction, and the
size of the lookahead window provided by the architecture [ Gharachorloo et al. 92].

By comparison, non-blocking writes have more chances to fully hide the write miss
latency because the non-blocking distance is usually equal to the memory access time'.
Moreover, the write buffer, a FIFO queue buffering pending writes, does not need a
supporting unit in the processor. However, the other side of the coin is that even without
a write buffer the write miss penalty may not be a large fraction of the total data access
penalty. In this study, we consider write buffers both with read bypass (i.e., read misses
which have priority over writes can bypass buffering writes) and with no-bypass.

In contrast to the non-blocking distance, the lookahead distance, i.e., the number of
cycles which a prefetch request is generated ahead of the reference instruction, can be
tuned by the designer and be as large as a small multiple of the memory latency. In our
hardware-based scheme, its magnitude is constrained by effects such as the capacity of
the RPT, the amount of regular data access patterns, and the success of branch prediction
techniques. The implementation costs of prefetching caches, additional on-chip support
units and more hardware complexity, are substantially higher than those of non-blocking
caches.

Another noteworthy point isthat the scoreboarding mechanism for non-blocking loads
would increase the critical path time, whereas the prefetching cache, a supporting unit to
the processor, will have less impact on the critical cycle. A final point to mention is that
in the case of non-blocking loads, the binding of aregister with a certain value starts at the

L In other words, the processor does not stall on most write misses. A stall would occur only if awrite miss
is followed by aread miss on a different word in the same block. In that case, the stall is attributed to the
read miss.



94

moment the non-blocking load isinitiated. In contrast, the prefetch request is non-binding;
it isonly ahint to bring a data line close to the processor without involving any register
binding.

6.3 Architectural Models and Evaluation M ethodol ogy

In this section, we first describe the architectural models on which we will base our
evauation of non-blocking and prefetching caches. We then present our simulation
methodology and the benchmarks used in the evaluation.

6.3.1 Processor-cache Models

As in our previous experiments, the baseline system consists of a CPU with a load/store
architecture similar to the MIPS R3000 and an ideal instruction cache (thus no I-cache
misses). The CPU has an instruction decoding unit, a fixed point unit (FXU), a floating
point unit (FPU), and a cache interface. The decoding unit issues an instruction per clock
cycle and the FXU can execute an integer operation in one cycle (perfect pipelining).

Because we need more precise comparisons between the pre-miss and post-miss
overlaps, we refine the model to include timings on floating-point operations. The FPU,
which behaves like a co-processor, can accept one floating-point operation at every cycle
until a data dependency on an unfinished instruction occurs. In this case, the dependent
instruction needs to wait until the conflicting operation terminates. The FPU will handle
FP operations in a multicycle pipeline with the execution times shown in the following
table:

FP operations | # of cycles
Fadd 2
Fsub 2

Fmultiply 4
Fdiv 12
Fevt 2

The cache interface can handle one data access at each cycle and, in case of a hit, the
load latency is one cycle (i.e., delayed load with one delay dot). In the case of a write
hit, an extra cycle is required to modify the data block in the cache. The refilling of a
prefetched line will be delayed when it competes with real data accesses for the cache.



95

Also, real cache misses could conflict with prefetch or outstanding write requests in the
cache interface. As before we will assume, conservatively, that a fetch in progress cannot
be aborted. However, areal read misswill be given priority over buffered prefetch requests
or writes.

All caches used in this study are direct-mapped with 32K bytes and a block size of
16 bytes, unless otherwise specified. These caches use a write-back, write-allocate policy.
The prefetching cache we studied is based on the implementation of our lookahead scheme
as described in Chapter 3. In both the baseline architecture and the prefetching cache, read
and write operations are aways blocking.

When studying non-blocking loads, we assume a static scheduling of the pipeline. A
status bit is associated with each register. On a cache miss, the target register status bit is
set and the outstanding information is recorded. When the miss is resolved, the register
status bit is cleared. If an instruction requires a register that isto be read or written to, the
status bit is checked for the availability of that register. An instruction needing the value
from a register with its status bit set will cause the processor to stall until the value is
returned from memory. If a cache miss occurs when one (or more) request isin progress,
the cache controller will check to ascertain that the same block is not requested twice.

When studying non-blocking writes, we assume a full-associative write buffer with 8
entries. Each entry consists of a data block and associated *‘valid’’ bitmap. A write miss
will alocate an entry in the write buffer, update the word in the entry, set the corresponding
valid bit, and then initiate a data access to memory whenever the memory interface is
available. Subsequent accesses check the write buffer. A read miss finding a matched
valid word in the write buffer is treated as a cache hit. Since the buffer isfully-associative,
a subsequent write on a matched entry in the write buffer can be merged by writing the
datain the buffer and setting the corresponding valid bit. When the block is returned from
memory, those words with valid bits set in the buffer entry replace the corresponding ones
returned from memory before the entire block iswritten into the cache.

As we have shown in Chapter 4, we consider three memory models: Non-overlapped,
Overlapped, and Pipelined, with each model showing an increasing possibility of concur-
rency of access to the next level of the memory hierarchy.

We experimented with various architectural choices summarized in Table 6.1. Since
the above techniques for reducing the data access penalty are not mutually exclusive,
each choice of architecture is based on the combination of components described earlier.



96

This allows us to study the effect and contributed performance gain of various techniques,
including prefetching caches (PREFETCH), write buffer (WB), prefetching caches coupled
with write buffer (PREFETCH/WB), non-blocking caches (NBC), and whether allowing
bypassing of writes by reads or not.

Table 6.1: Architectural Choices

Non-blocking Ordering

Cache | Prefetch | write | read | no bypass | bypass
BASELINE X
PREFETCH X X
wWB X X X
PREFETCH/WB X X X X
NBC X X X X
wWB X X X
PREFETCH/WB X X X X
NBC X X X X
HYBRID X X X X X

6.3.2 Simulation Method

The ssimulator we used is similar to what has been described in Chapter 4. We evaluated
our proposed architecturesusing cycle-by-cycletrace generation combined with on-the-fly
simulation. To simulate the interlock mechanism for non-blocking reads, the simulator
needs to read the object code of the benchmark program and decodes instructions so that it
isaware of which registersareinvolved in each instruction as well as boundary information
on basic blocks. This knowledge is vital to ssmulate the detail behavior of non-blocking
operations.

Then the ssimulator runs the pixified benchmark programs, which will generate address
traces at the same time. The simulator reads the trace through a pipe facility and feeds
the trace records to each simulation object. The experiment results are collected at the
clock cycle level from the individual configurations. This on-the-fly trace simulation
methodology provides the flexibility of simulating a rescheduled code.



97

Once again, we use the SPEC Benchmarks, which are compiled by the MIPS C compiler
and the MIPS F77 compiler, both with default options. Table 6.2 shows some reference
characteristics for the applications. The data is collected based on the smulation of our
32K -byte baseline cache. The number of writesissmaller than the number of reads and the
proportion of write missesis considerably smaller than the proportion of read misses.

Table 6.2: Statistics of benchmarks (for first 100 million instructions on 32K baseline
cache)

ratio over total instructions || miss | proportion of cache miss (%)
Name datarefs | reads | writes || ratio | read miss write miss
Matrix 0461 | 0307 | 0.154 | 0.087 929.1 0.9
Espresso | 0.182 | 0.167 | 0.015 | 0.184 99.5 0.5
Tomcatv | 0418 | 0.326 | 0.092 | 0.063 824 17.6
Spice 0.258 | 0.209 | 0.049 | 0.116 98.7 1.3
Doduc 0301 |0.223| 0.078 | 0.017 58.7 41.3
Nasa 0.303 |0.152 | 0.151 | 0.281 84.9 15.1
Xlisp 0467 |0315| 0.151 | 0.014 65.5 345
Egntott 0299 | 0.265| 0.035 | 0.033 79.2 20.8
Fpppp 0567 | 0449 | 0.118 | 0.004 62.2 37.8
Gcee 0.338 | 0.223| 0.115 | 0.018 65.3 34.7

In the following sections, we will use MCPI as a metric to present the results of our
experiments. When an average reduction of MCPI is summarized, a geometric mean is
used to average the percentages of the penalty reduction for the benchmarks [Jain 914a].
In the figures, we present a breakdown of the data access penalty as follows: the bottom
section (light grey area) of each bar represents the stalls for reads, the black section shows
the write miss penalty, and the section on top of that (grey area) represents the stalls due to
the memory interface being busy or waiting due to the ORL or the write buffer being full.



98

6.4 Smulation Results

In this section, we present a comparative analysis of the performance achieved by the
various architectural choices and show the impact of memory latency. In the discussion,
wewill show only aset of representative results. Therest of datacan be found in Appendix
A2

6.4.1 Effect of Architectural Variations

Figure6.1 showstheresultsfor the benchmarkswhen simulated on thevariousarchitectures.
In this first set of experiments, we used the Pipelined memory model so that we could
temporarily ignore bandwidth limitations. Thus, there is no busy time penaty. We
examine the data of Figure 6.1 according to three groups of architectures: (i) processors
aways stalling on amiss (blocking caches. BASE and PREFETCH), (ii) architectureswith
non-blocking writes and no bypass, and (iii) architectures with non-blocking writes and
bypass of writesby reads. Inthelast two categories, we consider abaseline cache with non-
blocking writes (WB), a prefetching cache with non-blocking writes (PREFETCH/WB),
and a non-blocking cache (NBC) (cf. Table 6.1).

A comparison between the baseline and the prefetching cache (the first two barsin the
figures) was already done in Chapter 4. Since our model is dightly different, we repeated
the experiment. The results are consistent with those of Chapter 4 and show a moderate
to very significant reduction in the penalty for data access when the prefetching facility is
added to the baseline cache. As can be seen in Figure 6.1 (only six of ten benchmarks are
shown), the access penalty isreduced by 96% for Matrix, 96% for Espresso, 41% for Xlisp,
19% for Spice, 12% for Doduc, and 36% for Nasa (66% for Tomcatv, 4% for Fpppp and
Gcc, and 19% for Egntott, see Appendix A.2). The geometric mean of the MCPI reduction
from these ten applications is 23%. As we have aready demonstrated, the prefetching
scheme can achieve reasonable gains at the cost of the RPT and the additional logic. The
effectiveness of the prefetching technique relies mostly on the presence of regular data
access patterns. Also since the prediction occurs for both reads and writes, the prefetching
has a proportion of write miss similar to that of the baseline case.

The effect of non-blocking writeson the baseline architectureisshown by the difference
between thefirst, third (for no-bypassing), and sixth (bypassing) barsin the figures. Recall
that in the baseline architecturethe processor stallson awrite missuntil the writecompletes.



99

Matrix

<
—
o | 12 121 12
i
1.06 1.06
o |
—
@ |
E o
= 3
< |
o
N
o
0.04 0.04 0.04
o 0.04
o
BASE Prefetch WB Prefetch+ NBC WB Prefetch+ NBC
WB WB
No-bypassing Bypassing
busy
ESpresso = wrie
read
w -
© | 075 0.75 0.72 0.74 0.72
© |
o
o
O S
=
N
o
0.05 004 0.04
O- —_
o
BASE Prefetch WB Prefetch+ NBC WB Prefetch+ NBC
WB WB
No-bypassing Bypassing

Figure 6.1a: Prefetching vs. Lockup-freefor & = 30 (Pipelined)

In the non-blocking writes (WB) implementations, the write is put in the write buffer and
the processor will stall at the next read operation in the case of no-bypass. In the case
of bypass, the only case where stalls occur is on a read miss -- and the read will have
priority over buffered writes -- or if the write buffer is full. As can be seen, the WB with
no-bypass has amost no improvement on the write penalty (Nasa has a small gain). This
is because the writes are most often followed by a read within a very small number of



100

o _
| 09 0.9 0.89
© 0.81 0.8
= 0.73 073 T 0.73
© |
E o
O
= <
o
N
o
o
o
BASE Prefetch WB Prefetch+ NBC WB Prefetch+ NBC
WB WB
No-bypassing Bypassing
S busy
S ] Bl vite
0.17 read

0.15

0.16
0.15
0.1 01 11

o o
—
s ° H
0.07
To}
C)_ 4
(=}
o
o
BASE Prefetch WB Prefetch+ NBC WB Prefetch+ NBC
WB WB

No-bypassing Bypassing

Figure 6.1b: Prefetching vs. Lockup-freefor & = 30 (Pipelined)

instructions. When the restriction of stalling on a subsequent read is lifted, i.e.,, WB with
bypass, the penalty due to write missesisin essence totally avoided (cf. Tomcatv, Doduc,
and Nasa). However, such a reduction by the WB may not contribute to a significant
overall performanceimprovement over the total penalty when the fraction of write missis
very small (cf. Table 6.2). A surprising but subtle result is that a write buffer may even
reduce dlightly the read miss penalty (e.g., 12% reduction for Nasa). This reduction is a



101

o
(\! .
© busy
0.16 El  wiite
Lo
iy 0.14 0.14 read
I 013
o o
S 0.09
S S I I 008
0.07
Lo
O_ -
o
=
o
BASE Prefetch WB Prefetch+ NBC WB Prefetch+ NBC
WB WB
No-bypassing Bypassing
o bug/
™ write
o | 256 read
'l
2.2
S . =
N
T 164
o
QO <7 . 1.29
= B i 116
o | : 0.93
i [ ] .
w0 |
o
o
o
BASE Prefetch WB Prefetch+ NBC WB Prefetch+ NBC
WB WB
No-bypassing Bypassing

Figure 6.1c: Prefetching vs. Lockup-freefor & = 30 (Pipelined)

consequence of forwarding data from a write to subsequent reads.?

Wenow look at the performance of WB in conjunctionwith prefetching (PREFETCH/WB,
fourth and seventh bars) and non-blocking caches (NBC, fifth and eight bars). The purpose
of showing PREFETCH/WB isto give afair base of comparison to contrast the effect of

2Thereisalso asmall chance of increasing the read miss penalty since the penalty of awrite miss followed
by aread on the same line, but on a different word, is charged to the read miss penalty.



102

the read penalty reduction between the pre-miss overlap and the post-miss overlap. We
focus only on WB with bypass. The results for no-bypass are qualitatively similar. The
relative performances of NBC and PREFETCH/WB can be divided into three groups: i)
PREFETCH/WB performs extremely well, ii) PREFETCH/WB has moderate improve-
ment and also outperforms NBC, and iii) the performance of NBC is better than that of
PREFETCH/WB.

The Matrix, Espresso and Tomcatv benchmarks belong to the first group. These
programs have very good reference predictability. Although a non-blocking cache
contributes to some penalty reduction (12% for Matrix, 4% for Espresso, and 31% for
Tomcatv), prefetching still significantly outperforms NBC since alarge portion of the data
access penalty has disappeared.

Spice, Xlisp and Egntott are the benchmarks in the second group. The effectiveness of
NBC iseven lessthan that in thefirst group (reductions of 10%, 8% and 12% respectively)
but also is PREFETCH/WB'’s. Aswe shall seein Table 6.3 (Section 6.5), the average size
of the basic blocks in these two programs is smaller than that of basic blocks in the other
programs. The small size usually restrictsthe prediction of referencesfor PREFETCH/WB
(due to the impact of branch prediction) and also implies a limited non-blocking distance.
Therefore, for Spice PREFETCH/WB has some moderate gains over the baseline WB, and
NBC is only dightly better than WB. Also, WB does not help much since the fraction of
write missesisfairly low.

Doduc and Nasa form the third group where NBC becomes more attractive than
PREFETCH/WB. NBC isquite efficient for the two programs and the reductions are larger
than those attained through PREFETCH/WB. The weak performance of PREFETCH/WB
in Doduc can be related to the size (or associativity) of the reference prediction table.
Doubling the size of the table, or making it of larger associativity, would remove the large
number of conflicts (35% with a 256-entry direct-mapped RPT). In the case of Nasa, both
schemes lead to afair amount of performance gain, with NBC showing an advantage.

For Fpppp and Gece, PREFETCH/WB and NBC have little performance improvement
over WB. Since Fpppp has already alow missratio and alarge loop size (as we discussed
in Section 4.3.3), the improvement due to a prefetching scheme is very marginal. Geecisa
big program with many conditional branches. Since its predictability is very poor and the
basic block size is small, prefetching will not be done often.



103

6.4.2 Effect of LargeLatency

B \sc (100
BN nBC(30)
Q Prefetch+WB (100)
S 196.59.9
< = 94.5 Prefetch+WB (30)
~ o |
g @ 72.2
- 63.5
3 3 %5.953 2
g 46.1 45 438
5 Q| 38.1
g
= o 18
5 ~ 11.859
: 3.9
Matrix Espresso Tomcatv Nasa

Figure 6.2a: Effect of alarger latency (for & =30vs. & = 100 Pipelined)

Figure 6.2 shows the experiment results of eight benchmarks® when the memory latency is
larger. The figure plots percentages of reduction in data access penalty of PREFETCH/WB
and NBC over WB with bypassing when the memory latency & is either 30 (left bars) or
100 cycles(right bars). In general, the effectiveness of PREFETCH/WB isdlightly sensitive
to the (large) memory latency and ismore stablethan NBC' s. Thisis because the |ookahead
distance of the prefetching can be dynamically as large as the memory latency so that data
may be prefetched early enough to hide the latency. In contrast, the non-blocking distance,
which is statically determined by the programs, becomes relatively small when the latency
increases. Thus NBC's relative effectiveness is reduced significantly (almost a factor of
6 in Doduc). Note, however, that the predictability will decrease as the latency increases
mostly because branch prediction becomes less reliable. The program Espresso, where the
average size of basic blocks is 5.6 instructions, has significant performance degradation
when there is an increase in the memory latency. As can be seen, the PREFETCH/WB'’s
effectivenessis cut by one-third when & increases from 30 to 100.

3 Fpppp and Gee are not shown because comparisons of the marginal improvement could be misleading.



104

B \BC (100
BN  NBC(30)
g . Prefetch+WB (100)
s - Prefetch+WB (30)
28
O
3 8-
[
S 5
3 ¥ 31.4
3 26.9 255
= o | 18.617.9
: - 4.4
= In § ia I i
Egntott Xlisp Spice Doduc

Figure 6.2b: Effect of alarger latency (for & =30vs. & = 100 Pipelined)

6.5 Compiler Assistancefor Non-blocking L oads

In this section, we consider optimizations in the code generation phase for non-blocking
loads. We examine two kinds of optimization: instruction scheduling for exploiting
a possibly large non-blocking distance within a basic block and register renaming for
removing fal se dependencies before the instruction scheduling is applied.

6.5.1 Instruction Scheduling and Register Renaming

Withtheadvent of RI SC architectures, compiler optimization techniqueshave becomemore
important so that CPU performance can be increased. Instruction scheduling is a compiler
optimization phase which schedules as many operations as possible in parallel on separate
functional units. Severa instruction scheduling techniques based on the architecture
of a specific target machine have been proposed in the literature [Krishnamurthy 90].
Those traditional schedulers focus on instruction scheduling subject to machine resource
constraints. More recently, Kerns and Eggers [92] have proposed ‘ ‘ balanced scheduling,”’
where instructions are scheduled based on an estimate of the amount of instruction-level
paralelism in the code. Their goal is to tolerate a wide range of variance in operation
latency. The agorithm would be useful in scheduling code when the latency is unknown
at compile time.



105

The purpose of register renaming, similar to that of dynamic instruction scheduling, isto
remove write-after-read (WAR) and write-after-write (\WAW) dependencies, thus allowing
greater freedom in moving instructions around. Register renaming at compile time has
been used in conjunction with software pipelining [Jain 91b]. The advantage of register
renaming at compile time over dynamically renaming at run time is that the compiler
can take more advantage of increased instruction paralelism (as aresult of renaming) by
distributing the parallelism more effectively in the code. Obvioudly, software renaming
requires no hardware complexity.

6.5.2 Algorithm for Non-blocking L oads

The instruction scheduling that we study here, based on the scheme given by Gibbons and
Muchnick [86], is performed after register alocation. The goal of the scheduling algorithm
isto create as much distance as possible between aload and the first instruction dependent
on that load. At the same time, we want to intersperse the loads so that the lack of memory
bandwidth does not become too much of a constraint. As discussed previoudly, we define
the non-blocking distance as the number of instructions that can be overlapped with the
memory access, i.e., instructions between a reference and the first dependent instruction.

The algorithm schedules instructions only within basic blocks. Instructions within the
block are the nodes of a weighted directed acyclic graph (DAG). As shown in Figure
6.3, edges represent dependencies and are labeled with latencies. The latency of an edge
between two dependent nodes is one except when the first instruction is a load. In the
latter, in order to achieve as large as possible a non-blocking distance and to avoid the
clustering of loads at the beginning of a schedule, we estimate the latency of aload edge as
the minimum of either the size (in number of instructions) of the basic block size divided
by the number of loadsin the basic block, or the actual memory latency. Once the latencies
of the edges have been determined, we assign weights to the nodes of the DAG, with the
weight of a node being the number of child nodes plus the maximum (over its children)
of the sum of the weight of a child and of the weight of the edge leading to the child.
The purpose of calculating the weight is to implement the heuristic of first picking the
instruction with the greatest number of successors along the longest path from the node to
aleaf node.

After theweighted DAG isbuilt, we apply alist scheduling algorithm (shown in Figure
6.4) to derive the final schedule. The scheduling algorithmisavariation on list scheduling.



106

1. Build DAG G(V, E) for abasic block:

Each instructionisavertex v; € V; an edge ev;,V;) € E if v; dependson v;.
[(vi,V;) isthe estimated latency between nodes v; and v;:

Vi Vi e(Vi, vj)
basic block size a
{ % of loads J load any other? true dependency
I(vi, v) = 1 any other any  true dependency
1 any any  false dependency
1 |eaf branch  control dependency

a Any instruction node other than load

2. Defineweight(v)):

0 if vi isaleaf node
weight(vi) = {1 n— 1+ MAX {|(y;, v, ) +weight(v;)}
wherev; hasn child nodesv;,, ... ,vi,

Figure 6.3: Building the DAG for abasic block

Several sets of nodes are maintained: Seady (aset of verticesthat have all their predecessors
aready scheduled) and Syqi) wherei variesfrom 1 to thelargest estimated latency. Initially
Seady CONtains the nodes which are ready to schedule, including the first instruction and
other independent instructions. The scheduler always picks up in the set Seaqy the node
which has the largest weight and assigns it as the next instruction. After a node v; from
Seady is scheduled, if it was the only unscheduled predecessor of its child node v;, then v
isincluded in the set Syoi(vvy- This alows at least (v, v;) instructions to be interspersed
between them. When an instruction is scheduled, all Syqyij sets are shifted “‘left” by one
dot with Sye) joiNing Seady, because the latency of every node in Syq; (to be scheduled)
has been decreased by one. When thereisno instruction availablein Seaqy, we do not insert
aNOP, but simply keep moving Syeiip Until Seagy 1S NOt empty. In this case, the processor



107

procedur e reorder (G)
initialize Syoip With empty pointer
Seady = {Vi|Vi has no parent nodein DAG}
new_order =1
while new_order < length of BB
while Seaqy IS empty
St'eady <~ Sslot[l] == Sslot[n]

choose anodeV; in Seaqy, Where weight(v;) islargest.
order(v;) = new_order™*
for each child v; of v; (with an edge latency | = I(vi, Vj))
if vi has no other unscheduled parent then
Siot = Sy UV}

St'eady = St'eady U Sslot[l]
Sioqy <= -+ <= Son
end
end

Figure 6.4: Instruction Scheduler on the DAG

is expected to stall on the interlock, since there is no independent instruction available.

Figure 6.5 gives an example of abasic block code of 11 instructionsincluding 3 loads
and illustrates the corresponding code DAG. Nodes labeled L x represent load instructions
and nodes labeled i represent other instructions. After dependencies between nodes are
determined, we first build a DAG for the code. We estimate the average latency of aload
instruction as {%J = 3 and then compute the weight of each node on a bottom-up basis as
shown in the right part of Figure 6.5. Referring to the new code schedule shown in Figure
6.6 and Figure 6.7, we demonstrate how the instructions are scheduled by the algorithm.
At the very beginning, Seaqy contains three independent instructionsLa, Lb, and 11. The
instruction scheduler picks up the instruction Lb, since it has the largest weight. At the



108

Origina code
7 ,
1. add r7,r4,4 8 ? °

[2: mul  r4,r7,999

13 div r7,r7,13 5‘ 6@ és

La Iw r6,0(r20) \ _ % -

Lb:  Iw r8,8(r20) 4
14 add 166,99 , @0

I5: dl r8,r8,2

/

|6 add r9,r8,r7 3
|7: add r10,r8,r6
Lc: I
w r7,0(r10) o
I8: SwW r9,0(r7) \
total NB dist =2 DAG for the original code

Figure 6.5: DAG of an example

Step  Scheduled  Sedy  Sioqy Sioz  Svo3

0 Lalb,l1

1 Lb Lall 15
2 La 11 15 14
3 11 12,13 15 14

4 13 12,15 14

5 15 12,14,16

6 14 12,16,17

Figure 6.6: Scheduling the example

same time, it adds the instruction 15 to the set Syoq3 because 15 has no other predecessor
node. The instructions in Syqyip Will be gradually shifted “‘left’”” once an instruction is



109

La La

New code schedule  After reg renaming / |
4
Lb Lb 8 i \®
:

total NB dist=7 total NB dist=8

DAG after register renaming

Figure 6.7: Instruction scheduling and register renaming

scheduled and eventually be included in Seaqy. Consequently, the agorithm continues to
schedule the remaining instructionsLa and | 1 in Seagy. Scheduling La will add 14 to Syeq3)-
Scheduling 11 will add its dependent instructions |2 and |13 to Syoqy) and then 12 and 13
will be moved to Seaqy- Hence, 13, the one with the largest weight, is chosen after the first
three instructions are scheduled. After that, the instruction |5 is available in Seaqy, Since
there are aready threeinstructionsfilling the latency dots following the previousload L b.
At this point, Seaqy contains 12 and I5. However, 15, instead of 12, is chosen because
|5 has a larger weight. Although 12 has been in Seaqy for awhile, it will not picked up
until the last load L ¢ is scheduled, since its wweight is 0. Thisillustrates our strategy that
we try to distribute the independent instructions among loads by estimating an equal |oad
latency. In the same way, the algorithm schedules the rest of the instructions and obtains
the new schedule as given in the left part of Figure 6.7. Overall, the new code has a total
non-blocking distance of 7, compared to a non-blocking distance of 2 in the original code.

The way to estimate equal latencies of loads within a basic block could be improved



110

through program analysis by a compiler. The software prefetching techniques that we
have discussed previoudly are able to identify accesses that are likely to have misses.
For instance, a load of an array element with a large stride is likely to be a cache miss
while accesses to the stack area will most often result in cache hits. An intelligent
compiler could take thisinto account when assigning edge latencies. Balanced scheduling
[Kerns & Eggers 92] can aso be incorporated in the compiler for distributing instruction
parallelism only to the accesses which have been determined as misses.

Beforeinstruction scheduling, we may perform software register renaming on the code
so that the instruction scheduler would have more freedom to move instructions. The
algorithm we use first identifiesthe liveranges (from anew definition to the last use before
the next definition) for each register to be renamed (local registers). Then, for the live
ranges entirely falling within the basic block, except the last live range, the destination
register used in aload operation is replaced by a new register. This renamingis carried on
for those instructions using the same register within the live range. Since the scheduling
is performed after register allocation, we assume that there is a set of ‘‘spare’’ registers
available. Thisisin order to keep the algorithm simple. Otherwise, we would have to
identify temporary registers and unused registers in the basic block and our algorithm
would become global rather than being restricted to the basic block level. After theregister
renaming process, we apply the instruction scheduling described above on the new DAG
from which some fal se dependence edges have been removed.

Referring again to Figure 6.5 and Figure 6.7, we note that the relationship between 16
and L c isdue to awrite-after-read (WAR) dependency. We may simply remove this false
dependency by replacing the usage of ‘‘r7'’ in the instructions Lc and I8 with another
register available to the scheduler. Removing such a false dependence makesit possible to
move |6 to fill the latency dots of L c. Such arenaming will result in different weightsina
new DAG from those in the original DAG. Hence we schedul e the code based on the new
DAG asillustrated in Figure 6.7 and the average non-blocking distance has been increased
by one.

A potentia criticism of our study isthat we adversely increase the register pressure in
abasic block. A compensating factor isthat WB may help, by buffering writes, the extra
spilling store/load instructions that could be generated. Our point is that we give priority
for register use to a load operation with a large latency, even at the cost of adding spill
code. Although the results of our register renaming procedure are optimistic since we do



111

not limit the number of registers, the approach is still feasible if the compiler identifiesthe
unused registers or performsapriority-based register allocation [Chow & Hennessy 90] by
taking into account the cost of the data access penalty.

6.5.3 Effect of Instruction Scheduling

Table 6.3 shows the effect of the reordering of data accesses. All the dataisin *‘weighted
average’’ form where the weight is the execution frequency of the individual basic blocks.
The data in the columns ** non-blocking distance’’ are the average numbers of instructions
between a read access and the subsequent instruction dependent on the value being read,
regardless of whether the read is a cache miss or not. In general, the non-blocking distance
based on the original code is fairly small.* A comparison between the second and third
columns of the table shows that the instruction scheduling algorithm is very effective
for increasing the non-blocking distance for Matrix and Tomcatv. This indicates that in
these two benchmarks there are severa data loading phases followed by computations on
that data. The scheduling algorithm reorganizes the instructions to allow more overlap
between the independent loading phases. For the other benchmarks® that do not have this
characteristic, the distance is moderately increased.

When register renaming is added to instruction scheduling, the compiler has more
flexibility to optimize the code reordering. As shown in Table 6.3, a significant increase
in non-blocking distance is achieved in Doduc and Nasa with the use of a small number
of extraregisters (less than one per block on the average). On the other hand Matrix and
Tomcatv need more registers with not much improvement for the latter. Note that the
number of registers required for renaming is overestimated, since two live ranges, which
are originally far apart, arelesslikely to be live at the same time after renaming because of
other dependence chaining between them. Thiswas not taken into account in our algorithm
but could be checked out by the compiler.

Figure 6.8 and Figure 6.9 show the relative performance of the optimizations for the
NBC architecture. The data access penalty for the two code optimization agorithmsis
normalized to the penalty of the original code. The results of the Non-overlapped model

4 Note that the original M1PS compiler should striveto yield a non-blocking distance greater than one since
the R3000 has a delayed load of one cycle.

5 Inthefollowing discussion, we omit the results of the other benchmarks because the effects of Xlisp (4.97)
and Eqgntott (3.84) with small average block sizes are similar to those of Espresso and Spice.



112

Table 6.3: Average of basic block size, non-blocking distance, and extraregisters needed
(weighted by frequency of execution)

Original code || scheduling only || Renaming + scheduling
Basic block || non-blocking || non-blocking || non-blocking | extraregs

Name Sze distance distance distance needed
Matrix 39.15 2.23 8.33 15.14 8.65
Tomcatv 54.47 3.38 10.03 11.91 12.13
Spice 7.79 2.46 3.27 3.83 0.05
Espresso 5.63 1.47 2.25 293 0.11
Doduc 10.01 3.44 4.88 8.14 0.77
Nasa 27.49 2.09 4.89 8.17 0.28

- Sched+Renaming
- Scheduled

Origina

100 982 99.4 100 98.9 98

I

Matrix Tomcatv Spice Espresso Doduc

Normalized Data Penalty
0 20 40 60 80 100

Figure 6.8: Effect of instruction scheduling on NBC for & = 30 (Non-overlapped)

in Figure 6.8 show that only those programs with low miss ratios (Matrix, Tomcatyv,
and Doduc) can benefit from instruction scheduling. This is not surprising because the
Non-overlapped model does not provide sufficient bandwidth to fully exploit the advantage
of the overlap. Also, register renaming does not contribute much performance gain to
the NBC in the Non-overlapped model and might even degrade the performance dightly
(cf. Matrix). Instruction scheduling tends to increase the clustering of read accesses.



113

Scheduling instructions which have no false dependencies by applying register renaming
causes the read accesses to be more clustered.

- Sched+Renaming
- Scheduled

Origina

, 100 100 g7.7 100 982 g7.3 100

Wt I

Matrix Tomcatv Spice Espresso Doduc

Normalized Data Penalty
0 20 40 60 80 100

Figure 6.9: Effect of instruction scheduling on NBC for & = 30 (Pipelined)

When the Pipelined model is assumed (shown in Figure 6.9), the clustering of reads
becomes an advantage that can be exploited by the NBC. In all cases except Espresso and
Spice, the experiments show significant gains from instruction scheduling (improvement
varies from 2% for Espresso to 35% for Tomcatv). Even better results are achieved when
register renaming is applied before instruction scheduling (improvement varies from 3%
for Espresso to 67% for Matrix but recall that the results are optimistic). The geometric
mean of penalty reduction by instruction scheduling for those benchmarksis 9.5% over the
original code and when register renaming is added, this geometric mean is up to 24% over
the original code. Thisillustratesthat instruction scheduling and register renaming provide
an inexpensive solution to help hide the large memory latency for non-blocking loads in
processors whose design is based on static instruction scheduling. However, techniques of
instruction scheduling across basic block boundaries should be further investigated.

6.6 A Hybrid Design

Since prefetching and non-blocking caches are not mutually exclusive, a further enhance-
ment would be to combine the two schemes: a prefetch hint is provided prior to the load
instruction and the binding of a loaded value with a register is delayed until the value is
actually used. This hybrid design is attractive since the combined scheme can tolerate the



114

drawbacks of poor predictability and of short non-blocking distance. Moreover, the cost
is not dramatically increased from either the prefetching cache or the non-blocking cache.
For the prefetching cache, in addition to an RPT and associated logic, the register interlock
mechanism is added in the processor. At the same time, an ORL (or MSHRS), which is
searched associatively, must be extended to record the information of function unitswhich
iswaiting for amiss data item.

—e— Basedata cache (s)

Matrix —— Prefetch(9 Nasa
—— Nonblocking read/write (w)
—— Hybrid (W
15 - — Hybrid+rescheduled (w) 4.27 —
11 v 32
M ' C
C
P _
I|3 0.7 — | 214 \
04 1.07
- Y ok
00 | : : : : 0.00 | | | | |
8 16 32 64 128 8 16 32 64 128
Cachesize (K) Cachesize (K)

Figure 6.10: Hybrid design on varying cache size & = 30 (Pipelined)

In figure 6.10, we present the results of the ssmulation of such a hybrid scheme with
and without instruction rescheduling when compared to the baseline cache, a prefetching
only scheme, and a non-blocking cache with bypass. We vary the cache size from 8K bytes
to 128K bytes and show only two benchmarks: Matrix where prefetching is performing
much better than NBC, and Nasawherethe converseistrue. In Matrix, the prefetch scheme
aready had reduced the data access penalty to only a few hundredths of a cycle. The
hybrid design has now nearly ideal performance. The performance of the hybrid scheme
has more dramatic effectsin Nasa. The data access penalty that isfar from being negligible
if either prefetching or NBC is applied alone becomes small even at the smallest cache
size. Code optimization helps the hybrid combination further so that only 4% of theinitia
penalty incurred with abaseline cache remains. These resultsindicate that the length of the
overlap from pre-miss to post-miss can be large enough to cover the memory latency to a
great extent. The additional cost paid for the hybrid design is justified by the significant
performance improvement.



115

6.7 Summary

In this chapter, we have evaluated the effectiveness of write buffers, and non-blocking
caches in exploiting the overlap of data accesses with computation. These evaluations are
made using the SPEC benchmarks and simulations are performed on acycle by cycle basis.
We confirm previous studies showing that buffering writes while allowing bypass of reads
can eliminate entirely the write miss penalty. The results show that when the non-blocking
write with bypass is used as a basis, the average percentage of read penalty reduction by
prefetching caches was 37%, whereas the average percentage of read penalty reduction
by non-blocking caches was 16%. Also, the effectiveness of prefetching caches is less
sensitive to alarge memory latency than that of non-blocking caches.

Code optimization via instruction scheduling can reduce prominently the data access
penalty in the case of non-blocking caches. We have presented alocal (at the basic block
level) algorithm that, on the average, reduced the penalty by 9.5%. With the addition of an
(optimistic) renaming scheme, this reduction went up to 24%. These results illustrate that
a non-blocking cache assisted by a good code optimizer and associated with a statically
scheduled processor can achieve remarkable gains at a cost of less complicated hardware
complexity than what is needed for a dynamically scheduled processor.

Finaly, we have proposed a hybrid design incorporating features from both prefetching
and non-blocking caches. We have showed that the combination of pre-miss overlap and
post-miss overlap present in such a scheme can be very effective in hiding large memory
latencies.



Chapter 7

Conclusion

7.1 Summary of Results

In thisdissertation, we have addressed i ssues concerning the design and analysis of caching
techniques for tolerating memory latency in high-performance processors. Under the usual
caching mechanism, the processor will stall on a cache miss. In order to make further
progress towards the reduction in memory latency, memory accesses must proceed in
parallel with processor execution. We have examined two techniques: data prefetching
and non-blocking caches. The goal of the prefetching is to reduce the processor stall time
by bringing data into the cache just before its use. A non-blocking cache allows execution
to proceed concurrently with one (or more) cache misses until an instruction that actually
needs the missed value is reached. Prefetching exploits the overlap of computations prior
to an actual cache miss, whereas non-blocking takes the advantage of the post-miss overlap

We have proposed a hardware-based data prefetching scheme. The basic idea of the
scheme is to keep track of data access patterns in a reference prediction table (RPT)
organized as an instruction cache. Each entry in the RPT is associated with a finite state
mechanism to prevent unnecessary prefetches. We have investigated three variations of the
design of the RPT and associated logic. They differ mostly on the timing of the prefetching.
In the ssimplest way, the generic scheme generates prefetches one iteration ahead of actual
use. The lookahead scheme takes advantage of a look-ahead program counter that ideally
stays one memory latency time, i.e., potentially several loop iterations, ahead of the red
program counter. The pseudo program counter is aso used as the control mechanism to
generate the prefetches. Finally the correlated scheme uses a more sophisticated design to
detect patterns across loop levels.

We have evaluated the three prefetching schemes by comparing them with a pure
cache design at various cache sizes. These designs are evaluated by simulating the ten
SPEC benchmarks cycle-by-cycle in a uniprocessor environment. The results show that
the prefetching schemes are generally effective in reducing the data access penalty. The



117

cost of the hardware unit is not prohibitive; amoderately sized RPT (roughly equivalent to
a 4K cache) is generally sufficient to capture the access patterns for the most frequently
executed instructions. We observed that the |ookahead scheme has amoderate win over the
generic scheme, while the performance difference between the lookahead and correlated
schemes is fairly small. The benefits of prefetching are greater when the hardware assist
augments small on-chip caches.

We further examined the substantive performance gains that can be achieved with
hardware-controlled and software-directed prefetching. Our qualitative comparisons
indicate that on the domain of linear array references, both hardware and software schemes
are able to generate prefetches for cache misses. However, the software scheme may have
a code expansion problem, while the hardware scheme has less information on whether
prefetching data will be used or not. When dealing with complex data access patterns,
the software approach may have more compile-time information to perform sophisticated
prefetching, whereas the hardware scheme has the advantage of manipulating dynamic
information (such as conflict misses or input data dependence).

Then we quantitatively evaluated these two schemes through direct-execution ssm-
ulation in a shared-memory multiprocessor environment. Our experiments confirm the
previousobservations. We al so observed that the cacheinterferenceincurred by prefetching
is aimost negligible given sufficient memory bandwidth. The software approach has less
of anegative effect on network traffic and conflicts with the working set than the hardware
approach. However, the overhead due to the extra prefetch instructions and associated
computations is substantial in the software-directed approach. In that scheme, the per-
formance gain of reducing the read penaty will be offset by the increase in instruction
execution time. Consequently we proposed and examined an alternative for combining the
software and hardware solutions. The main idea is that through software prefetches we
bring into the secondary cache data objects of the size determined by the user’ s semantics
and let the hardware supporting unit take care of cache line size accesses in the loops and
fetch the corresponding data into the primary cache. The new approach can combine the
advantages of both hardware and software approaches and at the same time avoid most of
their negative effects. Our experimental results show that the new solutionisvery attractive
in reducing the data access penalty without incurring much overhead.

Finally, we discussed and evaluated the effectiveness of non-blocking caches and
compared it with that of the lookahead prefetching hardware scheme. The results show



118

that when non-blocking writes with bypass are used as a basis, the average percentage
of the read penalty reduction by non-blocking caches is 16%, compared to a average
reduction of 37% by prefetching caches. The effectiveness of prefetching caches is less
sengitive to a large memory latency than that of non-blocking caches. We considered
compiler-based optimizations to enhance the effectiveness of non-blocking caches. We
have shown that instruction scheduling and register renaming can reduce significantly the
data access penalty in the non-blocking paradigm. Then we proposed a hybrid design
based on the combination of prefetching and non-blocking schemes. We showed that the
combination of pre-miss overlap and post-miss overlap present in such a scheme can be
very effective in hiding large memory latencies.

7.2 FutureResearch

In this dissertation, we mainly focused on techniquesfor tolerating memory latency. Aswe
believe that caches are crucia components in high-performance systems, we would like to
further pursue the following issues regarding cache memory:

e Cache memory support for multithreading

Multithreaded architectures have been shown to be effective for tolerating long
memory latencies. A fast context switch mechanism is an essential requirement
in those architectures. Caches can be used in these architectures (note that not all
threaded architecturesuse caches, e.g., the Teramachine[Alverson et al. 90]) butitis
important to realize their vulnerability. The problem stems from the dual functions of
the cache: hiding memory latency and preserving locality for all the threads that can
be activated. As too many threads share the cache, capacity and conflict misses will
increase. Interesting research topics include a design of register-cache organization
for fast task switching and conserving locality, compiler effortsin scheduling and
protecting vulnerable pending threads from switching, and the study of granularity
of thread parallelism with scheduling affinity in the register-cache complex.

e Programmable cache controller

As multiprocessor architectures are getting more complicated, the role that caches
play in these architectures becomes increasingly important and sophisticated. Co-
herence protocol, choice of block size, and associativity are a non-exhaustive list



119

of design issues. Severa researchers have proposed various solutions to address
those issues and performance results showed that no particular approach absolutely
dominates the others. A good way to take advantage of various approaches is to
allow adaptive mechanisms in the controller. Our research efforts will focus on the
efficient interaction between processor and controller and a well-defined framework
for dynamic adjustment in the controller.

Efficient smulation environments

We have implemented a trace-driven simulator for uniprocessors and an execution-
driven simulator for multiprocessor architectures. We are investigating an adaptive
time sampling technique to improve simulation run-time. This technique is expected
to reduce trace size and ssimulation time for long traces that are generated from the
complete execution of applications. Future research work may include:

-- extending the sampling technique to allow on-the-fly decision-making so that
trace reduction can be achieved in one pass,

studying sampling techniques coupled to the execution-driven environment,

building aformal validation of proposed architectures, and

-- building up a complete smulation environment and testbed for evaluating
parallel computer systems.

Cache memory systems for data-processing programs

So far, most of the quantitative research on cache systems in the literature is based
on evaluations of scientific codes or general purpose programs. Another extremely
important application domain for high-performancesystems, namely data-processing
programs and database systems, may illustrate different program characteristicsfrom
what had been derived from scientific programs. For example, the grain size of data
sharing depends on the type of transactions, and computations in one processor may
require more interactions with other processors. Some preliminary measurements
should be performed on contemporary database systems. Current memory design
may not be a suitable environment to perform such a study. We should characterize
and abstract the features of memory accesses in those programs and then investigate
the applicability of current memory caching techniques on these features. Overall,



120

observations which are made on a different application domain may lead to different
views of the memory systems and may result in new approachesin exploring efficient
caching technigues for high-performance systems.



Bibliography

[Adve & Hill 90] Adve, S. and Hill, M. (1990). Wesak ordering - a new definition. In
Proc. of the 17th Annual Intl. Symp. on Computer Architecture, pages
2--14.

[Agarwa etal. 90] Agawal, A., Lim, B.-H., Kranz, D., and Kubiatowicz, J. (1990).
APRIL: A processor architecture for multithreading. In Proc. of the 17th
Annual Intl. Symp. on Computer Architecture, pages 104--114.

[Alverson et al. 90] Alverson, R., Callahan, D., Cummings, D., Koblenz, D., Porterfield,
B., and Smith, B. (1990). The Tera computer system. In Proc. 1990 Intl.
Conf. on Supercomputing, pages 1--6.

[Archibald & Baer 86] Archibald, J. and Baer, J. L. (1986). Cache coherence protocols:
evaluation using a multiprocessor simulation model. ACM Transactions
on Computer Systems, 4(4):273--298.

[Baer & Chen91] Baer, J-L. and Chen, T.-F. (1991). An effective on-chip preloading
scheme to reduce data access penalty. In Proc. of Supercomputing '91,
pages 176--186. Also TR 91-03-07, Department of Computer Science and
Engineering, University of Washington.

[Baer & Wang 89] Baer, J-L. and Wang, W.-H. (1989). Multi-level cache hierarchies:
Organizations, protocols and performance. Journal of Parallel and Dis-
tributed Computing, 6(3):451--476.

[Ball & Larus93] Ball, T. and Larus, J. R. (1993). Branch prediction for free. Technical
Report #1137, Computer Science Department, University of Wisconsin -
Madison.



122

[Boothe & Ranade 92] Boothe, B. and Ranade, A. (1992). Improved multithreading
techniquesfor hiding communication latency in multiprocessors. In Proc.
of the 19th Annual Intl. Symp. on Computer Architecture, pages 214--223.

[Brantley et al. 85] Brantley, W. C., McAuliffe, K. P., and Weiss, J. (1985). RP3
processor-memory element. In Proc. of the Int. Conf. on Parallel Pro-
cessing, pages 782--789.

[Bray & Flynn 91] Bray, B. K. and Flynn, M. J. (1991). Writes caches as an aternative
to write buffers. Technical Report CSL-TR-91-470, Stanford University.

[Brewer et al. 91] Brewer, E. A., Delarocas, C. N., Colbrook, A., and Weihl, W. E.
(1991). PROTEUS: A paralé-architecture simulator. Technical Report
LCS/TR-516, MIT.

[Censier & Feautrier 78] Censier, L. and Feautrier, P. (1978). A new solutionto coherence
problems in multicache systems. |EEE Transactions on Computers, C-
27(12):1112--1118.

[Chenetal.91] Chen, W. Y., Mahlke, S. A., Chang, P. P., and Hwu, W.-M. (1991).
Data access microarchitectures for superscalar processors with compiler-
assisted data prefetching. In Proceedings of the 24th International Sym-
posium on Mircoarchitecture.

[Chenetal.92] Chen, W. Y., Mahlke, S. A., and Hwu, W.-M. (1992). Tolerating data
access latency with register preloading. In Proc. 1992 Intl. Conf. on
Supercomputing.

[Chow & Hennessy 90] Chow, F. C. and Hennessy, J. (1990). The priority-based coloring
approach to register alocation. ACM Transactions on Programming
Languages and Systems, 12(4):501--536.

[Daviset al. 91] Davis, H., Goldschmidt, S., and Hennessy, J. (1991). Multiprocessor
simulation and tracing using Tango. In Proc. of the Int. Conf. on Parallel
Processing, pages |l 99 -- 107.



123

[DEC 92] DEC (1992). Alpha Architecture Handbook. Digital Press.

[Duboiset al. 86] Dubois, M., Scheurich, C., and Briggs, F. (1986). Memory access
buffering in multiprocessors. In Proc. of the 13th Annual Intl. Symp. on
Computer Architecture, pages 434--442.

[Duboiset al. 88] Dubois, M., Scheurich, C., and Briggs, F. A. (1988). Synchronization,
coherence, and event ordering in multiprocessors. Computer, 21(2).

[Duboiset al. 91] Dubois, M., Wang, J.-C., Barroso, L., Lee, K., and Chen, Y .-S. (1991).
Delayed consistency and its effects on miss rate of parallel programs. In
Proc. of Supercomputing ' 91, pages 197--206.

[Fu & Patel 91] Fu, J. W. C. and Patel, J. H. (1991). Data prefetching in multiprocessor
vector cache memories. In Proc. of the 18th Annual Intl. Symp. on
Computer Architecture, pages 54--63.

[Fu& Patel 92] Fu, J. W. C. and Patel, J. H. (1992). Stride directed prefetching in scalar
processors. In Proc. of the 25th Int'l Symp. on Microarchitecture, pages
102--110.

[Gharachorloo et al. 91a] Gharachorloo, K., Gupta, A., and Hennessy, J. (1991a). Per-
formance evaluation of memory consistency models for shared-memory
multiprocessors. In Proc. of the 4th Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems, pages 245--259.

[Gharachorloo et al. 91b] Gharachorloo, K., Gupta, A., and Hennessy, J. (1991b). Two
techniques to enchance the performance of memory consistency models.
In Proc. of the Int. Conf. on Parallel Processing, pages |:355--1:364.

[Gharachorloo et al. 92] Gharachorloo, K., Gupta, A., and Hennessy, J. (1992). Hiding
memory latency using dynamic scheduling in shared-memory multipro-
cessors. In Proc. of the 19th Annual Intl. Symp. on Computer Architecture.



124

[Gibbons & Muchnick 86] Gibbons, P. B. and Muchnick, S. S. (1986). Efficient instruc-
tion scheduling for a pipelined architecture. In Proc. of SGPLAN Symp.
on Compiler Construction.

[Gornish et al. 90] Gornish, E., Granston, E., and Veidenbaum, A. (1990). Compiler-
directed data prefetching in multiprocessors with memory hierarchies. In
Proc. 1990 Intl. Conf. on Supercomputing, pages 354--368.

[Grunwald et al. 91] Grunwald, D., Nutt, G. J,, Wagner, D., and Zorn, B. (1991). A
parallel execution evaluation testbed. Technical report, University of
Colorado.

[Hennessy & Patterson 90] Hennessy, J. L. and Patterson, D. A. (1990). Computer
Architecture: A Quantitative Approach. Morgan Kaufmann, San Mateo,
CA.

[Hum & Gao 91] Hum, H. J. and Gao, G. R. (1991). Efficient support of concurrent threads
in a hybrid dataflow/von neumann architecture. Technical Report 35,
McGill University.

[Jain 914 Jain, R. (19914). The Art of Computer System Performance Anaylsis. John
Wiley & Sons, Inc.

[Jain 91b] Jain, S. (1991b). Circular scheduling: anew techniqueto perform software
pipelining. In Proc. SGPLAN Conf. on Programming Language Design
and Implementation, pages 219--228.

[Jeremiassen & Eggers92] Jeremiassen, T. E. and Eggers, S. J. (1992). Computing
per-processor summary side-effect information. In Proc. of workshop on
Language and Compilers for Parallel Computing.

[Jouppi 90] Jouppi, N. P. (1990). Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers. In Proc.
of the 17th Annual Intl. Symp. on Computer Architecture, pages 364--373.



125

[Kerns & Eggers92] Kerns, D. R. and Eggers, S. (1992). Balanced scheduling: instruction
scheduling when memory latency isuncertain. Technical Report 92-11-03,
Department of Computer Science, University of Washington, Seattle WA.

[Klaiber & Levy 91] Klaiber, A. C.and Levy, H. M. (1991). An architecturefor software-
controlled data prefetching. In Proc. of the 18th Annual Intl. Symp. on
Computer Architecture, pages 43--53.

[Kowalik 85] Kowalik, J. S. (1985). Parallel MIMD Computation: the HEP Supercom-
puter and its application. MIT Press.

[Krishnamurthy 90] Krishnamurthy, S. M. (1990). A brief survey of paperson scheduling
for pipelined processors. SSGPLAN Notices, 25(7):97--106.

[Kroft 81] Kroft, D. (1981). Lockup-free instruction fetch/prefetch cache organiza-
tion. In Proc. of the 8th Annual Intl. Symp. on Computer Architecture,
pages 81--87.

[Kuriharaet al. 91] Kurihara K., Chaiken, D., and Agarwal, A. (1991). Latency tolerance
through multithreading in large-scale multiprocessing. In Proc. of Int.
Symp. on Shared Memory Multiprocessing, pages 91--101.

[Lam 88] Lam, M. S. (1988). Sotfware pipelining: An effective scheduling tech-
nique for VLIW machines. In Proc. ACM SIGPLAN 88 Conference on
Programming Language Design and I mplementation, pages 318--328.

[Laudon et al. 92] Laudon, J., Gupta, A., and Horowitz, M. (1992). Architectural and
implementations tradeoffs in the design of multiple-context processors.
Technical Report CSL-TR-92-523, Stanford University.

[Lee & Smith 84] Lee, J. K. F. and Smith, A. J. (1984). Branch prediction strategies and
branch target buffer design. Computer, pages 6--22.

[Leeetal.87a] Lee R.L., Yew, P.-C., and Lawrie, D. H. (1987a). Data prefetching in
shared memory multiprocessors. In Proc. of the Int. Conf. on Parallel
Processing, pages 28--31.



126

[Leeetal.87b] Lee R.L., Yew, P.-C., and Lawrie, D. H. (1987b). Multprocessor cache
design considerations. In Proc. of the 14th Annual Intl. Symp. on Computer
Architecture, pages 253--262.

[Motorola90] Motorola (1990). MC88100 RISC Microprocessor User’s Manual. Pren-
tice Hall.

[Mowry & Gupta9l] Mowry, T. and Gupta, A. (1991). Tolerating latency through
software-controlled prefetching in shared-memory multiprocessors. Jour-
nal of Parallel and Distributed Computing, 12(2):87--106.

[Mowry et al. 92] Mowry, T., Lam, M. S,, and Gupta, A. (1992). Design and evaluation
of a compiler algoritm for prefetching. In Proc. of the 5th Intl. Conf.
on Architectural Support for Programming Languages and Operating
Systems, pages 62--73.

[Murakami et al. 89] Murakami, K., Irie, N., and Tomita, S. (1989). SIMP (single
instruction stream / multiple instruction pipelining): A novel high-speed
single-processor architecture. In Proc. of the 16th Annual Intl. Symp. on
Computer Architecture, pages 78--85.

[Nikhi et al. 91] Nikhi, R. S., Papadopoulos, G. M., and Arvind (1991). *T: A multi-
threaded massively parallel architecture. Technica report, MIT Computer
Science.

[Oehler & Groves90] Oehler, R. R. and Groves, R. D. (1990). IBM RISC System/6000
processor architecture. IBM J. Res. Development, 34(1):23--36.

[Panetal. 92] Pan, S-T., So, K., and Rahmeh, J. T. (1992). Improving the accuracy
of dynamic branch prediction using branch correlation. In Proc. of the
5th Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems, pages 76--84.

[Perleberg & Smith 89] Perleberg, C. H. and Smith, A. J. (1989). Branch target buffer
design and optimization. Technical Report UCB/CSD 89/552, University
of California, Berkeley.



127

[Porterfield 89] Porterfield, A. K. (1989). Software methods for improvement of cache
performance on supercomputer applications. Technical Report COMP TR
89-93, Rice University.

[Przybylski 90] Przybylski, S. (1990). The performance impact of block sizes and
fetch strategies. In Proc. of the 17th Annual Intl. Symp. on Computer
Architecture, pages 160--169.

[Rogers & Li 92] Rogers, A. and Li, K. (1992). Software support for speculative loads.
In Proc. of the 5th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, pages 38--50.

[Scheurich & Dubois91] Scheurich, C. and Dubois, M. (1991). Lockup-free caches in
high-performance multiprocessors. Journal of Parallel and Distributed
Computing, 11(1):25--36.

[Singhetal. 92] Singh, J. P., Weber, W.-D., and Gupta, A. (1992). SPLASH: Stanford
parallel applications for shared-memory. Computer Architecture News,
20(1):5--44.

[Sklenar 92]  Sklenar, 1. (1992). Prefetch unit for vector operations on scalar computers.
Computer Architecture News, 20(4):31--37.

[Smith 82a] Smith, A. J. (1982a). Cache memories. ACM Computing Surveys,
14(3):473--530.

[Smith 82b] Smith, J. E. (1982b). Decoupled access/execute computer architectures.
In Proc. of the 9th Annual Intl. Symp. on Computer Architecture, pages
112--119.

[Smith et al. 90] Smith, M. D., Lam, M., and Horowitz, M. A. (1990). Boosting beyond
static scheduling in a superscalar processor. In Proc. of the 17th Annual
Intl. Symp. on Computer Architecture, pages 344--254.



128

[Smithet al. 91] Smith, R., Archibald, J, and Nelson, B. (1991). A timing based
simulation study of prefetching in asecond level cache. Technical Report
TR-A105-91.3, Brigham Y oung University.

[Sohi & Franklin91] Sohi, G. S. and Franklin, M. (1991). High-bandwidth data memory
systems for superscalar processor. In Proc. of the 4th Intl. Conf. on Ar-
chitectural Support for Programming Languages and Operating Systems,
pages 53--62.

[Stenstrom et al. 91] Stenstrom, P., Dahlgren, F., and Lundberg, L. (1991). A lockup-
free multiprocesso cache design. In Proc. of the Int. Conf. on Parallel
Processing, pages I--246 -- 1--250.

[Tullsen & Eggers 93] Tullsen, D. M. and Eggers, S. J. (1993). Limitation of cache
prefetching on a bus-based multiprocessor. In Proc. of the 20th Annual
Intl. Symp. on Computer Architecture.

[Weber & Gupta89] Weber, W.-D. and Gupta, A. (1989). Exploring the benefits of
multiple hardware contexts in a multiprocessor architecture: Preliminary
results. In Proc. of the 16th Annual Intl. Symp. on Computer Architecture,
pages 273--280.

[Wolf & Lam 91] Wolf, M. E. and Lam, M. (1991). A datalocality optimizing algorithm.
In Proc. ACM SIGPLAN 91 Conference on Programming Language
Design and Implementation, pages 30--44.

[Yeh & Patt 92] Yeh, T. and Patt, Y. N. (1992). Alternative implementation of two-level
adaptive branch prediction. In Proc. of the 19th Annual Intl. Symp. on
Computer Architecture, pages 124--134.

[Zucker 92] Zucker, R. N. (1992). Relaxed Consistency and Synchronization in
Parallel Processors. PhD thesis, Department of Computer Science and
Engineering, University of Washington.



129

[Zucker & Baer 92] Zucker, R.N.and Baer, J.-L. (1992). A performance study of memory
consistency models. In Proc. of the 19th Annual Intl. Symp. on Computer
Architecture, pages 2--12.



Appendix A
Supplemental Data

A.1 Evaluation of Data Prefetching

Matrix

< ] Non-overlapped
= ||l Overlapped
o Pipelined N
wn © |
g - —
Q
R
i —_
8 © |
S S
— ﬂ' N
S S 75%
g i . 83%
o 95% 94% % I
S 96% 96% 9% 95% o7
cache LA cache LA cache LA cache LA cache LA
only pref only pref only pref only pref only pref
Voo 10 20 30 40 50

Figure A.1a: Effect of memory models and latencies (continued from Figure 4.4)



131

Nasa
Bl \onovel apped

@ -
] Overlapped
w - Pipelined
l 163

10%

g <«
8
‘N __
g 30%
_ O
ES - 37% . 51%
53%
| w370/ - 54%
[ ] 53%
o 56%

cache LA cache LA cache LA cache LA cache LA
only pref only pref only pref only pref only pref

Vemey 10 20 30 40 50

Spice
11%
= 1% 16%
16%

13%
—

16%

— 14%

16%
o 9%

17%

CPI (data access)
00 02 04 06 08 10 12

cache LA cache LA cache LA cache LA cache LA
onI};/ pref onR/ pref only pref only pref only pref

Voo 10 20 30 40 50

Figure A.1b: Effect of memory models and latencies (continued from Figure 4.4)



132

Doduc

© ] Non-overlapped
< || overlapped
g . Pipelined
B =
5 ] - 7%
O o
§ e . 14%
o
2 BE BE
o oS 13% 0
5 _— 17%
S — 16% 18%
o 18%
o
cache LA cache LA cache LA cache LA cache LA
only pref only pref only pref only pref only pref
Vemoy 10 20 30 40 50
~
o
© |
o
’g S - 3%
8 «
§ S 5% .
g3 L
Py 8% 21%
S o . ] 21%
g 4 — _16% 22%
o 23%
o
cache LA cache LA cache LA cache LA cache LA
onI};/ pref onR/ pref only pref only pref only pref
VSnoy 10 20 30 40 50

Figure A.1c: Effect of memory models and latencies (continued from Figure 4.4)



—1v0O<l

—1v0O<

Espresso
1.0 —
/N
/AN
0.8 —| / X
/ \\ M
/ N\
| / \ C
05 / \.~ =)
‘ ~~ |
~
o
A ) ) ) ‘/<
0.0 T T T T T |
8 16 32 64 128 256
Block Size (byte)
Spice
1.1 o
A
0.8 -
CPl
0.6 — (data
access)
03
0.0 T T T T T |

8 16 32 64 128 256

Block Size (byte)

133

X||Sp —e Cacheonly
0.18 — Q —e— Generic
\\ —e Lookahead
\
0.14 — N
A ]
N
N
0.09 - AN
\\
0.04 Tem——eF
0.00 T T T T T |
8 16 32 64 128 256
Block Size (byte)
Doduc
0.7 —
0.5 —
0.3
\\\
0.2
0.0 T T T T T |
8 16 32 64 128 256

Block Size (byte)

Figure A.2: MCPI vs. block size for 32K cache (continued from Figure 4.5)



134

—v0O<

—v0O<

Matrix
*-—— —0—0——0——0——0—0—0o—-0
0.7
0.5
0.3
0.2
OOT—T—T T 1T 1T 1T T T T T
5 10 15 20 25 30 35 40 45 50
Lookahead limit
Egntott
*-———0—0——0————¢——+—-
0.22 1
0.20 -
0.17
0.15
0.13

1T 1T 17T 17T 1T 1T T T 1
5 10 15 20 25 30 35 40 45 50

Lookahead limit

—1v0O<l

—1v0O<l

Nasa

O Y Y e O e O e — -
2.8 —
-o- Baseline cache
24 — Lookahead prefetching
2.0 —
1.6 —
L2771 7 1T 717 1T 17T 1T T 11
5 10 15 20 25 30 35 40 45 50
Lookahead limit
Xlisp
——r—0—0——"0——0—0¢—0—9—-0
0.07 —
0.06 —|
0.04 —|
0.03 —
0.02 —

1T 1T 17T 17T T 1T T T 1T
5 10 15 20 25 30 35 40 45 50

Lookahead limit

Figure A.3: MCPI vs. LA-limit (d) for & = 30 (continued from Figure 4.7)



Matrix
@ _
o
O 67 - hit-wait
= 0.59 read miss
53
=
N
o
5 008 002 o001 o001 on
o
Base Base Base Prefch  Prefch Prefch Prefch  Prefch
victim 2-way victim pf buf nonzero 2-way
Pref+32-ent buf
Tomcatv
™~
o
©| 06
(@]
o |
(@]
— X
% o
™
= o 025 024
S 0.18
|
(@]
o 001 001 o001 003
o

Base Base Base
victim 2-way

Figure A.4a Variationsin prefetching placement (continued from Figure 4.8)

Prefch  Prefch Prefch Prefch  Prefch
victim pf buf nonzero 2-way

Pref+32-ent buf

135



136

Doduc

Lo
N
Z 0.22 |
AN
o - read miss
4
O
s S 0.09
o
Lo
g - 0.03 I I
Qo |
o
Base Base Prefch  Prefch Pr ch Prefch  Prefch
victim 2-way victim pf uf nonzero 2-way
Pref+32-ent buf
Egntott
g 0.2
¥ 7 0.24
° 022 022
o
S
o
Te}
-
o ©
O
s 9
o
3 |
o
Qo |
o

Base Base Base Prefch  Prefch Pr ch Prefch  Prefch
victim 2-way victim pf uf nonzero 2-way

Pref+32-ent buf

Figure A.4b: Variationsin prefetching placement (continued from Figure 4.8)



A.2 Evaluation of Non-blocking Caches

Tomcatv
busy
I 1.19 118 Bl i
read
S . 0.97
© | 0.81
. |
o 0.6
Q8
< | 0.4
© — 0.29 0.27
c\! | I
o
o
o
BASE Prefetch

I I
- N

N

N

MCPI
0.0 0.05 0.10 0.15 0.20 0.25 0.30

WB Prefetch+ NBC
WB

No-bypassing

Egntott

WB Prefetch+ NBC
WB

Bypassing

0.24
02 021

BASE Prefetch

Figure A.5a: Prefetching vs. Lockup-freefor 6 = 30 (continued from Figure 6.1)

WB Prefetch+ NBC
WB

No-bypassing

WB Prefetch+ NBC
WB

Bypassing

137



138

Fpppp

9 busy
S 71 oo 007 Bl vite
' 007 (07 read
8 | 0.06
o
I 005 005
o < 0.04
o
S s
N
O_ -
o
=
o
BASE Prefetch WB Prefetch+ NBC WB Prefetch+ NBC
WB WB
No-bypassing Bypassing
& .
o | 019 0.18
0.17 0.16
9 0.15
o
012 012
=~ 0.11
5 3
s o
Lo
O_ -
o
=
o
BASE Prefetch WB Prefetch+ NBC WB Prefetch+ NBC
WB WB
No-bypassing Bypassing

Figure A.5b: Prefetching vs. Lockup-freefor 6 = 30 (continued from Figure 6.1)



-0l

—1v0O<

Tomcatv
2.2 —
1.7 — M
C
P
11 I
0.6 — \
00 =Tt
16 32 64 128
Cachesize (K)
Doduc
0.5 —
0.4 —
M
C
0.3 P
I
0.1 —
0.0

Cachesize (K)

1.7 —

1.3 —

0.9 —

0.4 —

0.0

139

Espresso

Base data cache (s)

—o Preload (s)

Nonblocking read/write (w)
- Hybrid (w)

1.2 —

0.9 —

0.6 —

0.3 —

0.0

Cachesize (K)

Figure A.6: Hybrid design on varying cache size = 30 (continued from Figure 6.7)



140

MCPI

MCPI
0.0 0.2 04 0.6 08 1.0 1.2 14

00 02 04 06 08 10 12

MCPI

004 0.08 012 0.16

0.0

1.23
1 1.12

0.21

Matrix

121
1.07

0.06 0.06

12
1.06

0.04 0.04

Prefetch  WB Prefetch NBC
+WB

Nonoverlapped

1.07 104

0.44

Prefetch WB Prefetch NBC
+WB

Overlapped

Espresso

0.81 0.8

0.06 0.05

Prefetch  WB Prefetch NBC
+WB

Pipelined

busy
- write

read

0.74 0.72

0.05 0.04

Prefetch WB Prefetch NBC
+WB

Nonoverlapped

1014

0.13 0.12

0.11

Prefetch WB Prefetch NBC
+WB

Overlapped

Xlisp

0.14 0.14

0.13
0.11

Prefetch  WB Prefetch NBC
+WB

Pipelined

0.12
0.11

0.08

Prefetch WB Prefetch NBC
+WB

Nonoverlapped

Prefetch WB Prefetch NBC
+WB

Overlapped

Prefetch  WB Prefetch NBC
+WB

Pipelined

Figure A.7a: Effect of memory models: Prefetching vs. Lockup-free



MCPI MCPI
0.0 0.2 04 0.6 08 1.0 1.2 14

MCPI

0.0 05 1.0 15 20 25 3.0 35

005 010 015 0.20

0.0

1.2

0.87
R 0.75

Tomcatv

1.06
0.88

0.36

141

0.97

0.6

0.27

Prefetch WB Prefetch NBC
+WB

Nonoverlapped

0.17

0.11 01
1 0.09

Prefetch WB Prefetch NBC
+WB

Overlapped

Doduc

0.14

I 009 0s
0.07

Prefetch  WB Prefetch NBC
+WB

Pipelined

busy
Bl wite

read

0.14

I 0.09 0.08

0.07

Prefetch  WB Prefetch NBC
+WB

Nonoverlapped

132 319

271
2.22

Prefetch WB Prefetch NBC
+WB

Overlapped

Nasa

2.42

161
117

Prefetch  WB Prefetch NBC
+WB

Pipelined

211

0.93

Prefetch  WB Prefetch NBC
+WB

Nonoverlapped

Prefetch WB Prefetch NBC
+WB

Overlapped

Prefetch  WB Prefetch NBC
+WB

Pipelined

Figure A.7b: Effect of memory models: Prefetching vs. Lockup-free



142

MCPI

00 02 04 06 08

MCPI

005 010 015 0.20

MCPI

1.0

0.0

0.25

0.15

0.0 0.05

0.91

0.83 082 08

0.81
0.74

0.89

0.8
0.73

Prefetch  WB Prefetch NBC
+WB

Nonoverlapped

4 0.19

0.13
0.12 011

Prefetch WB Prefetch NBC
+WB

Overlapped
Gcee
0.2

013 0.13
0.11

Prefetch  WB Prefetch NBC
+WB

Pipelined

busy
Bl ite

read

0.17

011 011
0.1

Prefetch WB Prefetch NBC
+WB

Nonoverlapped

1 0.29

l 025 (., 023

Prefetch WB Prefetch NBC
+WB

Overlapped

Egntott

Prefetch  WB Prefetch NBC
+WB

Pipelined

0.24
0.2 0.2

Prefetch WB Prefetch NBC
+WB

Nonoverlapped

Prefetch WB Prefetch NBC
+WB

Overlapped

Prefetch  WB Prefetch NBC
+WB

Pipelined

Figure A.7c: Effect of memory models: Prefetching vs. Lockup-free



Vita

Tien-Fu Chen was born in Kaohsiung, Taiwan, Republic of China on August 14,
1961. He graduated from Kaohsiung High School in Kaohsiung, Taiwan in 1979 and
received a B.S. degree in Computer Science from National Taiwan University in 1983.
After completed his military services, he joined Wang Computer Ltd., Taiwan as a
software engineer for three years. From 1988 to 1993 he attended the University of
Washington, receiving his M.S. degree in Computer Sciencein 1991 and his Ph.D. degree
in Computer Science and Engineering. He will join the Department of Computer Science
and Information Engineering at the National Chung Cheng University, Chiayi, Taiwan
after completing his study at the University of Washington.



