
Speci�cation, Simulation, and Veri�cation of Timing Behavior

by

Tod Amon

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

University of Washington

1993

Approved by

(Chairperson of Supervisory Committee)

Program Authorized

to O�er Degree

Date

Doctoral Dissertation

In presenting this dissertation in partial ful�llment of the requirements for the Doctoral

degree at the University of Washington, I agree that the Library shall make its copies

freely available for inspection. I further agree that extensive copying of this dissertation

is allowable only for scholarly purposes, consistent with \fair use" as prescribed in the

U.S. Copyright Law. Requests for copying or reproduction of this dissertation may be

referred to University Micro�lms, 1490 Eisenhower Place, P.O. Box 975, Ann Arbor, MI

48106, to whom the author has granted \the right to reproduce and sell (a) copies of

the manuscript in microform and/or (b) printed copies of the manuscript made from

microform."

Signature

Date

University of Washington

Abstract

Speci�cation, Simulation, and Veri�cation of Timing Behavior

by Tod Amon

Chairperson of the Supervisory Committee: Professor Gaetano Borriello

Department of Computer Science

and Engineering

Temporal behavior needs to be formally speci�ed, validated, and veri�ed, if systems that

interface with the outside world are to be synthesized from high-level speci�cations. Due

to the high level of abstraction, the work presented in this thesis applies to systems that

ultimately can be implemented using hardware, software, or a combination of both.

In the area of speci�cation, a generalization of the event-graph speci�cation paradigm

is presented. The model supports the expression of complex functionalty using an oper-

ational semantics and cleanly integrates structure into the event-based paradigm. Tem-

poral relationships between systems events are speci�ed using a denotational semantics

that relies on both chronological and causal relationships to identify the discrete event

occurrences being constrained.

It is of critical importance that a design representation support user validation. A

simulator, called OEsim, has been implemented to support validation. The simulator can

report timing constraint violations, and detect inconsistencies between the operational

and denotational speci�cations.

Synthesis algorithms can exploit guarantees regarding temporal behavior to produce

e�cient implementations, and often need timing information in order to properly syn-

thesize designs from abstract speci�cations. Two veri�cation tools are presented in this

dissertation. The �rst demonstrates the feasibility and bene�ts of performing symbolic

timing veri�cation, in which variables are used in place of numbers. The second ad-

dresses a fundamental problem: determining how synchronization a�ects the temporal

behavior of concurrent systems.

Table of Contents

List of Figures : v

Chapter 1: Introduction : 1

1.1 Importance of Timing Behavior : 3

1.2 Contributions : 4

1.2.1 Speci�cation and Validation : 5

1.2.2 Timing Veri�cation : 6

1.3 Top-Down vs. Bottom-Up : 7

1.4 Dissertation Overview : 8

Chapter 2: Speci�cation : 10

2.1 Important Properties of Speci�cation Languages : : : : : : : : : : : : : : 11

2.1.1 Formality : 11

2.1.2 Expressiveness : 12

2.1.3 Designer's Needs : 14

2.2 Related Work : 15

2.2.1 Timing Diagrams and Tables : 15

2.2.2 Formal Logics and Related Algebras : : : : : : : : : : : : : : : : : 18

2.2.3 Automata and Trace Algebras : 21

2.2.4 Hardware Description Languages : : : : : : : : : : : : : : : : : : : 23

2.3 The Event Paradigm : 26

2.3.1 Existing Event-Based Speci�cation Languages : : : : : : : : : : : : 26

2.3.2 Problems with Existing Event-Based Speci�cation Languages : : : 28

2.3.3 Extending the Basic Model : 29

Chapter 3: A New Model : 32

3.1 The Operation-Event Graph : 32

3.1.1 Formalizing the Semantics : 34

3.1.2 OEgraphs: A Textual Speci�cation Language : : : : : : : : : : : : 38

3.1.3 Incorporating Structure : 39

3.2 Timing Constraints : 43

3.2.1 Event Logic : 45

3.2.2 Restricted event-logic for OEgraphs : : : : : : : : : : : : : : : : : 47

3.2.3 Examples : 49

3.3 An Illustrative Example : 51

Chapter 4: Validation : 57

4.1 OEsim: A Simulator for OEgraphs : 58

4.2 Incremental Constraint Checking : 61

4.2.1 Identifying which Constraints to Check : : : : : : : : : : : : : : : 62

4.2.2 Instantiating Discrete Events and Evaluating the Context : : : : : 63

4.2.3 Other Optimizations : 65

4.3 An Illustrative Example : 66

4.4 Discussion : 71

Chapter 5: Veri�cation : 73

5.1 Symbolic Simulation : 74

5.2 Interactive Proof Managers : 75

5.3 Exploration of the State Space : 76

5.4 Timing Veri�cation : 77

ii

Chapter 6: Symbolic Timing Veri�cation : 80

6.1 Veri�cation Model : 81

6.1.1 Timing Constraints : 83

6.2 Veri�cation Methodology : 84

6.2.1 Delay Operations : 85

6.2.2 Implementation : 87

6.2.3 Transformation Rules for Join and Branch Operations : : : : : : : 88

6.2.4 Zero Delay Semantics : 92

6.3 Example : 94

6.4 Extensions : 96

6.4.1 Iterative behavior : 96

6.4.2 Additional Inequalities : 98

6.4.3 Communicating Processes : 98

6.5 Discussion : 102

Chapter 7: Analyzing Concurrent Systems : 105

7.1 Problem Formalization : 107

7.1.1 The Process Graph : 108

7.1.2 Execution Model : 109

7.1.3 Problem De�nition : 111

7.1.4 Algorithm for a Finite Unfolded Process Graph : : : : : : : : : : : 111

7.1.5 Informal Justi�cation of the Algorithm : : : : : : : : : : : : : : : : 112

7.1.6 Determining � : 115

7.1.7 Examples : 115

7.2 Functional Solution : 118

7.2.1 Introducing Functions : 118

7.2.2 Decomposition : 121

7.2.3 Repetition of the m-values : 122

7.2.4 Identical S Matrices : 124

iii

7.2.5 Example : 126

7.2.6 E�ciency Considerations : 127

7.3 Practical Applications : 127

7.3.1 Memory Management Unit : 127

7.3.2 Asynchronous Microprocessor : 128

7.4 Discussion : 130

Chapter 8: Conclusions and Contributions : 131

8.1 Summary of Contributions : 131

8.1.1 Speci�cation : 132

8.1.2 Validation : 132

8.1.3 Synthesis : 133

8.1.4 Veri�cation : 134

8.2 Directions for Future Research : 135

8.3 Closing Comments : 136

Bibliography : 136

Appendix A: The Ethernet Protocol Example : 148

A.1 Timing Behavior expressed Functionally : : : : : : : : : : : : : : : : : : : 148

A.2 Timing Behavior expressed using Timing Constraints : : : : : : : : : : : : 150

Appendix B: The SN74LS222 Example : 153

B.1 Speci�cation of the LS222 : 153

B.2 Simulation of the LS222 : 156

iv

List of Figures

1.1 The design representation space is divided between behavior and structure

and, orthogonally, between functional and timing aspects. : : : : : : : : 2

2.1 Interface constraints for the Intel Multibus expressed using an annotated

timing diagram and an accompanying table of separation times. : : : : : : 16

2.2 Two timing diagrams from [Borriello 88b] that specify the master read

operation on the Intel Multibus. : 18

2.3 A four phase communication protocol and its speci�cation in temporal logic. 19

2.4 Timing constraints expressed using HardwareC : : : : : : : : : : : : : : : 25

3.1 Graphical and textual versions of a simple single phase clock in the OE-

graph representation : 34

3.2 Two di�erent speci�cations for an inverter, a behavioral one that operates

on events, and a structural one that operates on wires. : : : : : : : : : : : 40

3.3 A clocked edge-triggered D
ip
op represented using OEgraphs. : : : : : : 41

3.4 Structural transformations of the single phase clock in Figure 3.1 : : : : : 42

3.5 An operation-event graph fragment with an event on a loop. : : : : : : : : 44

3.6 A setup constraint for the D input to the
ip
op in Figure 3.3. : : : : : : 50

3.7 A sequential logic constraint requiring two events to be one cycle apart. : 51

3.8 Three possible clock signals for a circuit that should be clocked at \10 -

20 Mhz." Two versions of a constraint that describes an acceptable clock

signal are given; one includes one of the waveforms, the other excludes it. 52

v

3.9 The Ethernet protocol for data transmission. : : : : : : : : : : : : : : : : 53

3.10 Two di�erent operation event graphs for a wire obeying the Ethernet

protocol. : 54

3.11 Hypothetical communication protocol with variable length preamble and

a timing constraint stating that the data portion has a maximum length. 55

4.1 A sample simulation of the
ip
op in Figure 3.3, including a violation of

the setup constraint of Figure 3.6. : 59

4.2 An OEgraph fragment containing two timing constraints : : : : : : : : : : 62

4.3 A portion of the databook speci�cation for the Texas Instruments SN74LS222

16 element FIFO storage bu�er. : 67

4.4 The LS222 uses a 4 phase handshake and requires minimum separation

times for correct operation : 68

4.5 Two LS222 chips connected together. : 69

4.6 The OEgraph speci�cation for two LS222 chips connected together. : : : : 69

5.1 Combinational logic demonstrating the purpose of formal veri�cation. : : 73

6.1 A de�nition of symbolic timing veri�cation. : : : : : : : : : : : : : : : : : 81

6.2 The veri�cation model consisting of �ve basic types of operation nodes. : 82

6.3 Series-parallel and a non-series-parallel graphs. : : : : : : : : : : : : : : : 83

6.4 A graph consisting of three delay operations : : : : : : : : : : : : : : : : : 86

6.5 A simple process graph used to illustrate problems with regards to our for-

mal semantics and operations with zero delay such as the parallel branch

and the parallel join. : 93

6.6 Two process graphs demonstrating symbolic timing veri�cation. : : : : : : 95

6.7 An operation that supports iterative behavior. : : : : : : : : : : : : : : : 97

6.8 An operation that supports inter-process communication. : : : : : : : : : 99

6.9 An example of two processes with one way communication : : : : : : : : : 101

6.10 An example of two processes and interlocked communication : : : : : : : 102

vi

7.1 A concurrent system synchronizing over two channels (a and b) with in-

ternal computation (delay ranges speci�ed in brackets). : : : : : : : : : : 105

7.2 The concurrent system of Figure 7.1 expressed as an operation-event graph.107

7.3 The concurrent system of Figure 7.1 expressed as a process graph. : : : : 108

7.4 Three process graphs demonstrating the importance of the occurrence

index o�set : 109

7.5 Part of the unfolded process graph for the process graph in Figure 7.3. : : 110

7.6 Sample execution of the �nite acyclic graph algorithm. : : : : : : : : : : : 113

7.7 Informal explanation of �nite acyclic algorithm if t

�

= root . : : : : : : : : 113

7.8 Informal explanation of �nite acyclic algorithm if t

�

has only one incident

edge. : 114

7.9 Informal explanation of �nite acyclic algorithm if t

�

has only one incident

edge and v

k

; s

���

. : 115

7.10 A process graph that represents two coupled pipelines. : : : : : : : : : : : 116

7.11 A process graph with unusual timing behavior. : : : : : : : : : : : : : : : 117

7.12 Two processes synchronizing at c. : 117

7.13 Fragment of unfolded process graph annotated with functions correspond-

ing to each edge. : 120

7.14 Decomposing an unfolded process graph into segments. : : : : : : : : : : : 121

7.15 Maximize pro�t over an n-day voyage. : 123

7.16 A portion of an unfolded process graph illustrating the behavior of the

m-values. : 124

7.17 A decomposed unfolded process graph corresponding to the process graph

in Figure 7.3 : 126

7.18 Process graph for a memory management unit. : : : : : : : : : : : : : : : 129

vii

Acknowledgments

I would �rst like to thank my wonderful advisor, Gaetano Borriello, who o�ered sup-

port and guidance for which I am most grateful. He helped develop and encourage my

interest in this area of research, and he gave me a great deal of his time, an invaluable

contribution. I have bene�ted greatly from his ability to see the bigger picture, and his

insights about conducting research.

I sincerely appreciate the e�orts of the other members of my supervisory committee,

Steve Burns, Ted Klastorin, and Alan Shaw, for the time and e�ort they have spent

reading my work and helping me with this dissertation. Three good friends, Pai Chou,

Henrik Hulgaard, and Ross Ortega, read the very rough drafts and deserve utmost praise

for their patience and fortitude.

Two years ago I contemplated trying to �nish in one year. I am so glad that I did

not. Working closely with Steve and Henrik on the material of Chapter 7 has been very

rewarding. I learned so much, and had so much fun doing so. Both deserve many thanks

for so very many things.

I have been fortunate enough to receive assistance from two technical sta� members,

Wayne Winder, and Karen Bartlett, who wrote some of the code and more importantly

helped me with the endless stream of mysterious bugs that I was so adept at generating.

The Department of Computer Science at the University of Washington is a most

friendly place. As a result, there are many other people, past and present, that shared

this experience with me, whom I will remember with great fondness, for they made my

time here most enjoyable and memorable.

Finally, I wish to express special thanks and gratitude to a dear friend and companion,

my wife Karen. She was with me at the very beginning, inspiring me to turn my dreams

and goals into this reality. She and I are heading in di�erent directions soon, but her

love and support helped me make it through, and she more than anyone is deserving of

my thanks.

viii

To my family, especially Carey.

ix

x

Chapter 1

Introduction

Design automation can be loosely divided into four major areas:

� Speci�cation. Systems must be described and speci�ed formally if they are to be

analyzed or manipulated by other design tools.

� Validation. Speci�cations need to be natural, formal, and correct|they should

capture the system envisioned by their human designer (\Did I specify what I

wanted?"). Simulation, i.e., execution of the speci�cation, helps users validate a

speci�cation with respect to both functionality and performance.

� Synthesis. Designs can be synthesized and transformed from abstract speci�cations

into physical implementations.

� Veri�cation. Veri�cation tools formally analyze designs and requirements and pro-

vide assurance that designs have been properly implemented and that they will

always work correctly.

The growing complexity of digital circuits and other real-world systems requires that

design automation tools work at increasingly higher levels of abstraction. Abstraction

helps manage complexity because systems can be speci�ed by their behavior instead of

their structure. Behavior is a high-level description of what a system should do, whereas

2

structure is a low-level description of how a system will be implemented. For example,

a digital circuit can be described as an algorithm (a behavioral perspective) or as a

set of interconnected transistors (a structural perspective). There are, of course, many

di�erent levels of abstraction and there exists a large body of software to help automate

the design process at each level.

Most computer-aided design tools focus on a system's functional characteristics.

Functional speci�cations emphasize data transformations and the sequence of operations

that are performed when system inputs are translated into system outputs. Temporal

characteristics are often considered by design tools that work with speci�c low-level ab-

stractions (e.g., in synchronous digital circuits, synthesis algorithms concentrate on setup

and hold times). At higher levels of abstraction, however, design tools have often ignored

system timing.

Behavior Structure

Functional abstract concurrent program register-transfer

(not necessarily implementable) level descriptions

Timing real-time constraints propagation delays

(context dependent) setup/hold times

Figure 1.1: The design representation space is divided between behavior and structure

and, orthogonally, between functional and timing aspects.

There are many reasons for this omission. At higher levels of abstraction, systems

should be speci�ed without concern for the speci�c timing discipline which will be used

in the system implementation. Performance may be important (e.g., optimize for delay)

but a common belief has been that timing issues do not a�ect system correctness. This

assumption has been especially valid for the systems for which high-level digital circuit

synthesis techniques have been developed (e.g., processor and data path intensive de-

signs). These designs are often based on a simple synchronous timing model and are not

constrained by complex timing issues.

Timing issues have certainly been a focus of attention in the real-time systems com-

munity. Many of the the problems addressed by the real-time community are outside

3

even the general scope of this dissertation, because probabilistic information is used to

analyze stochastic behavior, or because the problems involve complex real-time systems

running on sophisticated processors (e.g., for airline reservations,
ight control, etc.).

However, since process control is becoming increasingly more distributed, smaller embed-

ded systems are receiving more attention. New technologies are blurring the traditional

line between software and hardware, and reactive hard real-time systems are becoming

important to both the real-time systems and the design automation communities.

1.1 Importance of Timing Behavior

Why has the speci�cation and analysis of timing behavior (the subject of this disser-

tation) become such an important area of research? One contributing factor is the

realization that many aspects of a system's behavior are not under the control of the

designer. Systems must conform to the environment in which they will be placed. The

environment may demand that particular timing relationships be respected. If synthe-

sized designs need to be integrated into pre-exising systems, then synthesis tools must

accommodate the environment and the timing relationships that need to be satis�ed.

Since design automation tools are working with higher levels of design abstraction,

timing issues are becoming especially important. When a design is speci�ed at a high

level, many important trade-o�s are made during synthesis. There are many possible

implementations and it may be that part of the design can be in hardware and part in

software. One important criterion that can be used in making decisions is an analysis

of the resulting timing behavior of a system and whether or not it will meet the tim-

ing constraints provided by the designer. For example, given information about input

rates, a synthesis algorithm could appropriately choose between a fast expensive high

performance component or an inexpensive and slower alternative.

Formal veri�cation is becoming an area of renewed interest as designs are becoming

increasingly more complicated. Veri�cation tools are used to formally reason about sys-

tem correctness, and reasoning about complex system behavior often involves reasoning

4

about time. The complexity of current systems has also led to interest in executable

speci�cation languages for performing design validation. If a speci�cation contains tim-

ing information, then users need to validate the timing behavior of their speci�cation as

well as its functionality.

Design automation tools need to take timing behavior into account. This is by no

means an easy task, because time adds a new dimension of complexity to problems that

in many cases are already quite di�cult. It cannot be ignored, however, because many

of the problems that need to be automated are constrained or driven by timing concerns.

1.2 Contributions

All four areas of design automation (speci�cation, validation, synthesis, and veri�cation)

are discussed in this dissertation. However, synthesis methodologies and algorithms will

not be presented, even though much of this work has been motivated by the goal of

being able to synthesize designs speci�ed at high levels of abstraction. We need to be

able to specify timing behavior in order to achieve this goal, and synthesis algorithms

need to use formal analysis techniques that can determine (verify) the timing behavior

of speci�cations. This analysis provides information which can be used to guide the

synthesis process and establish the formal correctness of synthesis transformations. Thus,

this dissertation does not address the synthesis problem directly, but tackles many of its

prerequisites.

Some areas of design automation are well developed, and current research is focused

on developing incremental improvements to existing techniques. In contrast, the inclu-

sion of timing issues into design automation is still in its infancy. For example, the

characteristics of a good speci�cation language for timing behavior are still being iden-

ti�ed. Thus, the concepts and philosophies espoused in the area of speci�cation are as

important as the syntax, semantics, and design tools that are presented.

In the area of veri�cation, the contributions are more concrete. A fundamental

problem in timing veri�cation is solved and we present a complete theory, with proofs

5

and e�cient algorithms. This work is tightly focused on analyzing the timing behavior of

systems that are speci�ed as synchronizing concurrent processes. The results are general

and in fact have very little direct relationship to digital circuits. This is because the

abstraction level is quite high, and the system being described could be implemented as

hardware, software, or a combination of both.

The major contributions are brie
y described in the following two subsections, which

summarize the content of this dissertation as a whole. Various aspects of this work have

been presented to the research community and reported in the literature: [Amon et al.

91], [Amon & Borriello 91a], [Amon & Borriello 91b], [Amon & Borriello 92], [Amon

et al. 93].

1.2.1 Speci�cation and Validation

The primary contribution is the presentation of a formal and general representation

for timing speci�cation based on a bipartite graph model augmented with a restricted

�rst-order predicate calculus to specify timing relationships between signal events. It

can be viewed as a natural extension of event-based representations, with support for

higher levels of functional abstraction, and the recognition that timing constraints are

relationships between occurrences of circuit events, and should not be represented simply

as edges in event graphs.

A simulator has been implemented for the representation and provides validation

capabilities by incrementally checking timing constraints for violations as the simula-

tion progresses. The representation is suitable for rapid prototyping because circuits

can be represented by either an abstract speci�cation of their interface behavior or by a

detailed description of their internal logic structure (or by a mixture of both). Experi-

mentation with the simulator permits the user to study the interaction of complex timing

behaviors. With respect to synthesis and veri�cation, this new representation serves as

an exploratory framework to help identify the problems that timing issues introduce

without a priori restricting the classes of circuits or behaviors that can be described.

6

1.2.2 Timing Veri�cation

The primary contribution is the presentation of non-stochastic veri�cation techniques to

determine minimum and maximum separation times between constrained system events

(in any possible execution). The timing behavior of the system is speci�ed by providing

lower and upper bounds on delays between causally related events. Timing analysis is

required in order to determine how concurrency, communication, and synchronization

a�ect the system's temporal behavior. Two very di�erent veri�cation methodologies are

presented.

Symbolic timing veri�cation is a powerful extension to traditional constraint checking

in which delays and constraints can be expressed using variables instead of numbers. The

techniques are quite powerful because they yield not only simple bounds on delays (e.g.,

set X > 20 if the system is to work) but also relationships between variables, which

expose design trade-o�s (e.g., if X is small then Y can be large). Our symbolic timing

veri�er uses symbolic linear programming and a rule based veri�cation strategy. The

veri�er can handle non-deterministic conditional behavior and multiple processes that

communicate in a single direction. Rules have been developed to support pessimistic

veri�cation (in that weak assumptions can be used in the veri�cation process) of two-

way communication, however veri�cation is rarely successful because the veri�cation

rules do not adequately address this complicated problem.

Our second veri�er was designed speci�cally to solve the problem of verifying com-

municating concurrent processes. Communicating processes are modeled as a cyclic

connected graph. The nodes of the graph represent events and the arcs dependencies

(propagation delays) between these events. This model permits the representation of

both blocking and non-blocking communication. In the blocking case, two interacting

processes wait for a pair of synchronizing events (one in each process) to occur and then

both proceed past the synchronization point. In the non-blocking case, only the receiv-

ing process waits while the sender can proceed. The blocking model is popular in the

software community as well as in self-timed circuit synthesis. The non-blocking model

7

is popular in the hardware community and is used in interface and asynchronous circuit

speci�cation.

Depending on the level of abstraction in the speci�cation, events may represent low-

level signal transitions at a circuit interface or control
ow in a more abstract behavioral

view. We describe algorithms that determine exact bounds on the separation in time

between system events. We present a theoretical framework for solving this problem for

strongly connected process graphs without conditional or iterative behavior, and develop

an e�cient algorithm based on this theoretical foundation.

1.3 Top-Down vs. Bottom-Up

There exists a natural tension between the expressivity of speci�cations, and the amount

of automation which can be provided. Simple speci�cations are easier to analyze than

complicated ones, but simple speci�cations may not be expressive enough to specify sys-

tems (and allow analysis) that designers want automated. Research that extends design

automation's ability to take timing behavior into account can approach the problem from

one of two directions:

� From the top-down, emphasizing expressivity and solving problems that designers

face (of course the complexity of this problem means that the solutions may not

be optimal), or,

� From the bottom-up, emphasizing exact and e�cient solutions to fundamental prob-

lems that may serve as a foundation upon which practical design tools can be built.

Neither approach is inherently better than the other. One advantage of bottom-up

is that, over time, exact solutions to complex problems can be developed. However,

because there are many di�erent directions that can be taken, the research may be

purely theoretical and not lead towards the solution of real-world problems. Top-down

research is more closely aligned with current needs, but often must rely on heurestics and

8

other non-optimal strategies to solve complex problems. Top-down research, however,

can provide a target for the bottom-up approach.

1.4 Dissertation Overview

This dissertation is divided into two major parts. The next three chapters take a top-

down approach, and addresses the speci�cation of complex timing behavior. Chapter 2

presents related work in this area and provides an in-depth examination of the event-

based representation paradigm and the features that a good representation for timing

behavior should possess. Chapter 3 introduces a new representation, operation-event

graphs (OEgraphs), which have many of these features. Chapter 4 presents OEsim, a

simulator which can be used to validate designs speci�ed as OEgraphs. The simulator

performs constraint checking during simulation and is an example of the bene�ts of the

top-down approach, in that it can be used for rapid prototyping.

Simulation can be used to analyze behavior, but only for one speci�c set of inputs and

propagation delays. More powerful techniques are needed in order to establish bounds

on all possible system behaviors. Chapters 5 through 7 are based on a more bottom-

up approach, and present work in analyzing the timing behavior of a restricted class

of concurrent processes. Chapter 5 presents related work in this area and provides an

overview of the veri�cation/analysis task. OEgraphs are capable of expressing complex

timing behavior but, due to this complexity (as discussed in Chapter 3), veri�cation is

not generally feasible. In Chapter 6 we present novel work in symbolic timing veri�ca-

tion for a restricted form of OEgraphs. Veri�cation can be performed even if some of

the propagation delays remain unspeci�ed (as symbolic variables). Chapter 7 considers

a very restrictive set of timing behavior for which a precise formal semantics, analytical

techniques, proofs, and algorithms are provided. The analysis computes the time separa-

tion of events in communicating concurrent processes. It is an example of the bene�ts of

the bottom-up approach, in that the solution to this problem may serve as a foundation

upon which other design tools can be built.

9

In Chapter 8 we conclude and discuss some limitations to our speci�cation and veri-

�cation methodologies. Future directions of possible research are also discussed.

Chapter 2

Speci�cation

Speci�cation languages are, in many ways, the cornerstones upon which design tools

are built. They constitute a medium through which a human designer and a design

tool communicate. A speci�cation language provides a notation (a syntactic domain)

and an interpretation (a semantic domain) which are used by a designer to express the

characteristics, requirements, and properties of an envisioned design.

Speci�cation languages have a domain of applicability|some are tightly focused on

speci�c systems while others are more general. For example, a speci�cation language

used for telecommunication circuits implemented using commercial DSP chips would

have a small domain of applicability. A general purpose language might support more

abstract descriptions of both parallel and sequential activity and not assume any partic-

ular implementation strategy.

In the next three chapters, we loosely restrict our domain to speci�cation languages

for digital circuits with the primary emphasis being the speci�cation of their timing be-

havior. Because we are concerned with speci�cations that are potentially quite abstract,

e.g., speci�cations that do not de�ne the circuit structure, much of this work may also

relevant to other domains like software. In later chapters, we will analyze the timing

behavior of systems speci�ed at very high levels of abstraction and the focus on digital

circuits will be even further diminished.

11

Most speci�cation languages restrict the class of digital circuits (or behaviors) that

can be described. This is perfectly reasonable when the emphasis is on the accompa-

nying design tools and their use in design automation. Our emphasis is on a general

speci�cation language for timing behavior as opposed to the creation of a speci�c design

tool. We are interested in a language that can serve as an exploratory framework to help

expose and examine the complex issues that arise when design automation attempts to

take timing behavior into account.

The remainder of this chapter is divided up into three sections. First, we examine the

basic elements and properties that we believe should be present in a general speci�cation

language for timing behavior. Next, we review related work, and discuss some of the

strengths and weaknesses of existing representations and speci�cation paradigms. The

last section is devoted to one speci�c paradigm which we believe is particularly well

equipped to meet our objectives.

2.1 Important Properties of Speci�cation Languages

We need to identify what qualities we want in a speci�cation language if we are going

to be able to evaluate existing representations, and provide su�cient justi�cation for

the creation of yet another new speci�cation language. The overall goal, of course, is

to support the development of design automation software that can deal with timing

behavior. We are interested in speci�cation languages that support synthesis, valida-

tion, and veri�cation. In this section, we present a general set of speci�cation language

requirements: formality, expressiveness, abstraction, and support for validation.

2.1.1 Formality

Of all the properties that a speci�cation language should have, formality is undoubtedly

the most important. A speci�cation needs to have a sound mathematical basis since it is

a piece of communication akin to a contract between a human designer and the formal

methods which operate upon the design.

12

Informal speci�cations are by their very nature ambiguous. One of the primary

bene�ts of formalizing a speci�cation is that any ambiguity can be resolved. Speci�ca-

tion languages thus need to be structured so that every \well formed" speci�cation is

inherently unambiguous.

There are many other bene�ts of formal speci�cation. We refer readers to [Meyer

85] for a more detailed discussion. We also refer readers to [Wing 90] for a summary of

formal methods and formal design speci�cation.

2.1.2 Expressiveness

Speci�cation languages are designed for a particular domain of applicability, and need

to have enough expressive power to represent designs from that domain. Our domain is

a very large one: digital circuits, and we are speci�cally interested in the speci�cation

of timing relationships.

Timing relationships must be speci�ed at many di�erent levels of abstraction. Al-

though our primary interest is the speci�cation of timing constraints at high levels of

abstraction, lower-level timing relationships are also of interest. This is because many

di�erent levels of abstraction may be present in a single speci�cation. At all levels of

abstraction, many timing relationships are conceptually quite similar. For example, out-

puts are delayed with respect to inputs, and propagation delays need to be speci�ed.

Relationships can often be expressed by specifying minimum and/or maximum separa-

tion times between system \events." For example, at low levels of abstraction, setup and

hold times can be speci�ed. At higher levels of abstraction, required sampling rates and

response time latencies can be de�ned.

Some timing constraints are tightly coupled with the abstraction level. For example,

various clocking methodologies should be speci�able. This includes designs that are

asynchronous, synchronous (single or multi-phase), edge-triggered, level-sensitive, etc.

At higher levels of abstraction, timing constraints are often context dependent. For

example, di�erent constraints might apply depending upon the priority of a request or

13

the current \mode" of operation.

We are particularly interested in being able to express timing relationships at higher

levels of abstraction. As mentioned in the introduction, higher levels of abstraction are

needed in order to manage the growing complexity of digital circuits. It should be possible

to specify the behavior of a design without imposing an implementation bias. The design

tools that operate upon the speci�cation can then make use of the available freedom to

produce an e�cient implementation. The ability to specify timing relationships is of

utmost importance if this freedom is to be exploited. Re-use of existing designs is, of

course, another important way to help manage complexity, and speci�cation languages

need to support multiple levels of abstraction.

We are interested in specifying and analyzing non-stochastic temporal behavior. With

respect to circuit structure, delays are often speci�ed by providing minimum, typical,

and maximum values. This is presumably a safe abstraction for a very complex prob-

lem (actual component delays are dependent upon many factors including resistance,

capacitance, fabrication parameters, temperature, etc.). At higher levels of abstraction,

response time constraints and communication protocols require that constraints must

always be met, i.e., it is not acceptable to meet the constraints \97% of the time." Our

emphasis is thus on non-stochastic models, and not on queueing networks and quantita-

tive performance evaluation (e.g., [Lazowska et al. 84]).

The expressive power of a speci�cation language greatly a�ects the complexity of the

formal methods for which it is the base. For example, consider a speci�cation language

for circuits that will be implemented using a microcontroller. Simple compilation tech-

niques may be all that is needed to synthesize the design from a sequential speci�cation.

If the speci�cation language contains constructs for specifying parallel behavior then the

synthesis algorithms will need to serialize (i.e., schedule) the behavior before compila-

tion or at run-time. The ability to express complex timing relationships will thus create

complex (and possibly intractable) problems for the formal methods that will use the

speci�cation. In the �rst half of this dissertation, we refrain from making many restric-

14

tions to our domain of applicability because we are interested precisely in identifying the

characteristics of an expressive speci�cation language and wish to explore some of the

problems that design automation tools would then have to face.

2.1.3 Designer's Needs

Some speci�cation languages are used primarily as interchange formats or internal repre-

sentations. They are often concise and structured so as to improve design tool e�ciency.

Other speci�cation languages contain \syntactic sugar" to help make design speci�ca-

tions easier to use by human designers. Speci�cation writers want speci�cation languages

to be natural and esthetically pleasing. Ideally, the language will be tailored to the de-

signer's speci�c application area. Users may not need all of the expressive capabilities

of a speci�cation language, and they will not want to be encumbered as a result of

complexities that are not relevant to their designs.

One approach to solving this problem is to have a general and expressive speci�cation

language that is augmented with application speci�c compilers to provide natural inter-

faces for designs and timing constraints that are typically of interest. These interfaces

will have a more restrictive semantics, but the underlying representation can be used (by

experienced designers) to express more complex functional and temporal relationships

when necessary.

It is also of critical importance that a design representation support user validation.

Checking that what was speci�ed is what was desired is the �rst step in verifying a

design and cannot be automated. A simulator provides the user with the capability

to try out the circuit and make sure it behaves as expected (at least for a subset of

all possible inputs). Although simulation has traditionally been used to validate design

implementations, at higher levels of abstraction it is a valuable tool for prototyping

and for \debugging" speci�cations. Most speci�cations are created iteratively through a

process of re�nement. If users can only simulate synthesized designs, they are forced to

understand and work with \bugs" at low levels of abstraction even if the problems are a

15

result of errors in the high-level speci�cation.

Abstraction is not the only e�ective way to manage complexity. Speci�cation lan-

guages need to be modular and hierarchical so that designers can decompose large designs

into smaller subcomponents. Hierarchy and modularity help manage complexity and fa-

cilitate the reuse of design speci�cations. For example, consider a design that uses several

identical subcomponents. Designers should be able to specify the subcomponent once

and instantiate four instances in their design. They should not have to duplicate and

rename the individual elements of their speci�cation.

Finally, designers want to be able to use their validated formal speci�cations and

subject them to a variety of analysis tools for synthesis and veri�cation. Unfortunately,

there exists a natural trade-o� between the expressive power of speci�cation languages,

and the amounts of design automation that can be provided. Designers would like to be

able to express complex systems and perform complex analysis, but often must give up

one of the two.

2.2 Related Work

In this section, we present an overview of the di�erent speci�cation paradigms and

examine some of the more well known representations. Since timing relationships usually

describe separation times between circuit events, the event-based speci�cation paradigm

is of particular interest. The premise being that timing constraints are more easily

described using an event-based representation, because the events being constrained are

elements of the speci�cation. The event-based paradigm will be discussed in further

detail in the next section. There are, however, many other speci�cation paradigms that

can be used to specify timing behavior.

2.2.1 Timing Diagrams and Tables

Designers typically use timing diagrams and tables to specify timing relationships. Tim-

ing diagrams are easy to understand because they correspond to \execution snapshots"

16

and the time axis is explicit. Transition times are not �xed, rather, timing constraints

specify how \close" two events can be pushed together, or how \far" they can be stretched

apart. More complex timing requirements can be speci�ed by annotating the diagram

with a textual description of the constraint. Since most timing constraints specify sep-

aration times between ordered signal transitions, tables are often used to specify the

required minimum and maximum separation times. Figure 2.1 contains an example

speci�cation for the Intel Multibus, as described by the bus's documentation.

BCY
100ns MIN

BREQL
35ns MAX

BUS IS

BY NEW
REQUESTED

MASTER

PRIORITY GIVEN TO
NEW MASTER

BPRNS
22ns MIN

BCLK/

BREQ/

BPRN/

BUSY/

BPRQ/

BUSY
70ns MAX

BUSY
70ns MAX

BUSYS
25ns MIN

TAKEN BY
NEW MASTER

RELEASED
BY MASTER
PREVIOUSLY
IN CONTROL

BUSYS
25ns MIN BPRNH

BPRNS
22ns MIN

BREQH
35ns MAX

BUSY
70ns MAX

NEW MASTER

BPRNO
30ns MAX

BPRO
40ns MAX

ADDRESS
LINES

AD

BPRO
40ns MAX

BPRNO
30ns MAX

IF USED BY NEXT
MASTER IN
PRIORITY CHAIN

PD + BPRNS

BW 0.5 t NOMBCY

 BPRN/

t t

t

t

t

t

t

t

tt t

t

tt

t

t
t

tt

RELEASED BY

XACK
CMD
ID
XACKA
XACKB
AD
INTA
CSEP
BREQL
BREQH
BPRNH
BPRNS
BUSY
BUSYS
BPRO
BPRNO
CBRQ
CBRQS

0 µs
100 ns
0 ns
IAD + 50ns
5 ns
0 ns
250 ns
100 ns
0 ns
0 ns
 5 ns
22 ns
0 ns
25 ns
0 ns
0 ns
0 ns
35 ns

8 µs
TOUT
100 ns
1500 ns
8 µs

35 ns
35 ns

70 ns

50 ns
30 ns
60 ns

Minimum MaximumParameter

Figure 2.1: Interface constraints for the Intel Multibus expressed using an annotated

timing diagram and an accompanying table of separation times.

Speci�cations of this nature are not formal. They are used primarily by designers

to communicate and document the temporal aspects of their designs. Timing diagram

editors have recently been developed to help designers create timing diagrams. These

editors typically are commercial products (e.g., dV/dt available for DOS and Macintosh

[Doc 89]) or are part of in-house CAD systems (e.g., BNR's Shadow). These editors typ-

ically operate like spreadsheets, and often provide some form of constraint propagation

and consistency checking. For example, if two signal transitions are constrained relative

to a common transition, it is possible that a constraint between the two signals could

result in an inconsistency. Timing diagram editors have also been developed for use as

an interface to circuit testers [Arnold 85, Lai 83].

Timing diagrams constrain circuit behavior in a speci�c context, i.e., they represent

17

one possible execution, assuming that a particular sequence of signal transitions occur. In

real circuits, many di�erent sequences can occur as a result of di�erent inputs or di�erent

transition times, and thus multiple diagrams are needed in order to specify a complete

system (e.g., a diagram for bus arbitration, bus read, bus write, etc.). The composition of

these individual diagrams speci�es all possible circuit behavior. Additional information

is needed to describe when the circuit's behavior will correspond to that of a speci�c

diagram (e.g., How are the diagrams interconnected? Which situations correspond to

which parts of the diagrams?).

Formalized timing diagrams address these problems by providing a more complete

speci�cation language in which the interconnection between timing diagrams can be

speci�ed. Figure 2.2 contains two interconnected diagrams that together formally specify

the master read operation on the Intel Multibus. These timing diagrams were produced

by the editor WAVES, which is a part of an interface synthesis tool that uses formalized

timing diagrams as an input speci�cation language [Borriello 88b]. Formalized timing

diagrams have also been used in timing veri�cation to specify timing constraints which

should be checked during simulation [Khordoc et al. 91].

Even though few existing tools use timing diagrams as a speci�cation language, the

paradigm has the potential to be very well accepted by designers. However, many chal-

lenging user-interface problems will need to be addressed in order to allow these languages

to be expressive without sacri�cing the simplicity of the basic paradigm. Designers cur-

rently specify complex timing relationships by annotating diagrams with informal text.

These constraints need to be formally speci�ed, but there are many complex timing re-

lationships that cannot be speci�ed using the languages of [Borriello 88b] or [Khordoc

et al. 91]. These languages and their underlying internal representations lack the nec-

essary expressive power. Furthermore, timing diagrams specify signal waveforms, not

circuit functionality or structure. As such, they provide a level of abstraction that is

appropriate for describing a circuit's interface (they encourage working at this higher

level of abstraction) but they do not constitute a complete speci�cation language.

18

Figure 2.2: Two timing diagrams from [Borriello 88b] that specify the master read oper-

ation on the Intel Multibus: \The top diagram is the synchronous arbitration sequence

while the bottom diagram is the asynchronous data transaction. The diagrams are linked

at the events labeled A, B, and C. The links are used to specify common points in time

across the two diagrams so that the sequences of events can be merged. Start (S) and

end (E) events for the sequence are also speci�ed. Labels on two of the waveforms (e.g.,

(NOT Address)) specify the
ow of data values across the interfaces."

2.2.2 Formal Logics and Related Algebras

Temporal Logics are a speci�cation language based on �rst order logic with special logical

operators for reasoning about time [Pneuli 77, Rescher & Urquart 71]. They have been

used by many di�erent researchers for specifying and verifying hardware (e.g., [Bennett

86], [Bochmann 82], [Browne et al. 86], [Clarke et al. 86], [Dill & Clarke 85], [Fujita

et al. 83], [Fusaoka et al. 84], [Malachi & Owicki 81]). Figure 2.3 contains a four phase

communication protocol speci�ed using the linear-time propositional temporal logic of

Bochmann. The �rst four assertions state safety properties, i.e., \nothing bad ever

19

happens," because they constrain the two signals from changing in a way that would

not be consistent with the protocol. The last three assertions are livenesss properties,

which state that \something good eventually happens," namely that every request will

eventually be acknowledged. Most temporal logics have a temporal operator \next"

which provides a discrete unit-delay model of time. These logics are used primarily for

expressing relative ordering constraints because specifying exact timing requirements is

tedious and in some cases not possible.

Request (R)

Acknowledge (A)

 R → R while ~A
~R → ~R while A
 A → A while R
~A → ~A while ~R
 R → ∇ A
 A → ∇ ~R
~R → ∇ ~A

Figure 2.3: A four phase communication protocol and its speci�cation in temporal logic.

\5 A" states that A will be true at some future time.

Interval temporal logics have been developed to address the problem of specifying

that an action should occur in a speci�c time interval [Allen 83, Moszkowski 85]. They

have been used to reason about MOS VLSI circuits at the transistor level [Leeser 89], but

many other logics which address the problem of modeling timing behavior have recently

been developed: [Alur & Henzinger 89], [Alur & Henzinger 90], [Alur et al. 89], [Coen

et al. 90], [Hansen et al. 92], [Harel et al. 90], [Koymans 89], [Koymans 90], [Lewis 90],

[Narain et al. 92], [Ostro� 90]. Many of these logics use a continuous model of time

and emphasize realistic modeling, others use a more restricted model to obtain feasible

veri�cation procedures. Work in this area is proceeding at a very rapid pace, and readers

are referred to [Alur & Henzinger 92] for a summary of some of the more recent work.

Higher order logics (e.g., HOL [Gordon 86]) are popular languages that can be used

to express complex timing relationships. Unlike the temporal logics, in which time is

represented implicitly, time is usually represented by an explicit variable. For example

(see [Leeser 89]), consider the de�nition of an inverter having a propagation delay of m

20

time units:

invert(In; Out;m) � 8t �Out(t +m) = :In(t):

Time is explicitly quanti�ed in this formulation. These languages are in fact quite
exible

and are used extensively for formal veri�cation. Their complexity, however, requires

that proofs be constructed by hand, with the assistance of \theorem provers," which are

essentially proof managers augmented with some automated reasoning capabilities. A

related formalism is Waveform Algebra [Augustin 89], which extends Boolean algebra

to include time. Waveform Algebra is applicable to a smaller subset of behavior than

that of temporal or higher-order logic (which was used to formalize the algebra). It is,

however, a very elegant and simple speci�cation language which, like timing diagrams,

is more natural and appealing. Another interesting language that should be mentioned

is PHRAN [Granacki 86], a formal language designed to read like English.

One characteristic of all of these speci�cation languages is their focus on signal levels.

If there are m possible levels for each signal, and there are n signals, there are m

n

di�erent assignments, each of which can be thought of as de�ning a particular system

state. These languages often describe which states are legal or should be reachable from

other system states. This focus can be a problem when di�erent timing constraints apply

during di�erent execution contexts. For example, an acknowledge signal may need to go

high within 500 ns. after a request for a low priority data transfer but may need to be

acknowledged much sooner when a higher priority request is handled. With respect to

timing diagrams, constraints sometimes apply to only speci�c transitions on signals, not

every transition. Identifying which speci�c transitions are being constrained is di�cult

in these languages because levels and not events are the focus of the speci�cation.

Many of these languages are used to specify the temporal behavior of a circuit de�ned

using another speci�cation language. For example, computation tree logic (CTL) [Dill

& Clarke 85], is used to specify temporal behavior with respect to a state graph which

can be derived from a circuit speci�cation. Temporal logic has been used to specify and

verify the temporal behavior of Statecharts [Harel et al. 88], and Waveform Algebra has

21

been used to annotate VHDL [Augustin et al. 88]. There are various timing relationships

that cannot be speci�ed using the di�erent formalisms (e.g. fairness constraints are not

easily speci�ed in CTL) and there are many well known limitations to the expressiviness

of propositional temporal logic (see [Wolper 81]). Comparisons of the formal expressive

power of some of these logics have been made (e.g., for a comparison of branching vs.

linear-time temporal logic see [Lamport 80] or [Emerson & Halpern 86]).

2.2.3 Automata and Trace Algebras

As in the case of temporal logics, simple automata models can be used for abstract tem-

poral modeling, in which only the sequence of events is important. The formal language

accepted by these automata de�nes the set of legal/possible system behaviors. Because

legal system behaviors are often in�nite, automata that accept in�nite strings (e.g., !-

automata) are often needed. We refer readers to an introductory text on automata

theory (e.g., [Eilenberg 74] or [Hopcroft & Ullman 79]) for a more complete discussion

of the models that support only sequencing relationships. An example of their use can

be found in [Katzenelson & Kurshan 86] in which several commercial communication

protocols are veri�ed. These techniques have also been used to produce �nite automata

models for analog circuits [Kurshan & McMillan 91].

Timed Automata are a class of �nite automata de�ned by [Alur & Dill 90] that

can express hard real-time constraints, e.g., \the acknowledgment should occur within

5 seconds." They are based on !-automata augmented with a �nite set of timers that

record the passage of time. Timers can be reset by a state transition (e.g., when a request

is made) and a timer's value can be compared to a time constant and this comparison

can be used to constrain state-transitions (e.g., an acknowledge is only accepted if the

timer shows that �ve seconds or less have elapsed).

The Input/Output Automata of [Lynch & Tuttle 89] have been extended to support

more exact timing requirements by [Bestavros 90], [Merritt et al. 91], and [Lynch &

Attiya 92]. One advantage of this speci�cation language is that complex systems can be

22

speci�ed by composing together simpler system components. A new model for concurrent

systems, behavior �nite-state machines (BFSMs) [Leeser et al. 91] has special language

constructs for specifying communication between interacting automata. Communication

allows designers to work at a higher level of abstraction and is a feature that helps

automata models avoid the state explosion that would otherwise occur when multiple

automata (that are essentially independent) are composed and expressed using a single

automata.

Trace Theory is a general framework for speci�cation where system behavior is de-

scribed by a set of traces. A trace is an ordered sequence of system activities (e.g.,

transitions on input and output wires). For example, a legal trace of the four cycle com-

munication protocol of Figure 2.3 would be: \R" ;A" ;R# ;A# ;R" ;A" ;R# ;A# : : :"

Trace theory has been used extensively to verify asynchronous speed-independent cir-

cuits [Dill 88], [Rem et al. 83], [van de Snepscheut 85], [Ebergen 87]. There are a variety

of extensions to this body of theory that handle more detailed timing requirements. One

approach introduces a �ctitious clock and a special tick transition that is used to measure

elapsed time. The number of tick transitions that occur between two other transitions

in a trace speci�es the delay between the two transitions. This model is not completely

accurate. For example, it is not possible to state that two transitions are separated

by exactly 2 seconds; the presence of two ticks could indicate that the transitions are

separated by at least 1 but no more than 3 seconds. The granularity of a tick can be

changed (e.g., one tick equals .001 seconds) to obtain a suitable degree of accuracy. A

more realistic approach based on a continuous model of time uses timed traces in which

every transition is labeled with a real number. A summary of the many di�erent timing

models (i.e., quantized vs. continuous, interleaving vs. simultaneity, etc.) can be found

in [Burch 92] which presents a unifying theory for trace algebras that are used to specify

temporal behavior.

There are close relationships between �nite automata, trace theory (algebra), and the

formal logics and algebras described in the previous subsection. For example, the tableau

23

method is a well known decision procedure for propositional temporal logic that is based

on the translation of a logic formula into a �nite automaton on in�nite sequences. A set

of traces can be viewed as a formal language which can often be speci�ed as a regular

set or a �nite automata. Algebras, logics, and automata are fundamental mathematical

concepts which can be used to provide a formal semantics for a speci�cation language.

Many speci�cation languages for timing behavior are based on direct extensions of these

models.

With respect to the criteria outlined in Section 2.1, several general comments about

these paradigms can be made. First, these representations are quite formal and there is

often an associated body of theory that can be used to solve design automation problems

(e.g., language containment for veri�cation). The expressive power of these formalisms

is in many cases well understood (e.g., trace algebra cannot be used to adequately model

branching time properties [Burch 92]), but more theoretical work relating the formalisms

to the speci�cation of timing behavior needs to be done. Some of these speci�cation lan-

guages are limited with regards to their expressiviness (e.g., the �ctitious clock models,

and BFSMs in which only simple linear timing constraints can be speci�ed). In some

cases, the languages are clearly not suitable for use by designers, and higher levels of

abstraction are needed. Some of these formalisms in fact require that higher level spec-

i�cation languages be built on top of them. For example, how does a designer specify

a set of acceptable transition sequences/traces? Almost all of these languages provide

very little with respect to user validation of the speci�cation. There are, of course, some

notable exceptions (e.g., the simulator Tempura for Interval Temporal Logic [Moszkowski

86]), and in many cases there is no reason that a validation tool could not be built, it is

just that this area has yet to reach maturity.

2.2.4 Hardware Description Languages

Our next paradigm of interest is quite dissimilar, in that the speci�cation languages

are weak with regard to formality, but strong with respect to user validation. Much like

24

programming languages are used to describe pieces of software, hardware description lan-

guages (HDLs) are used to create textual \code like" speci�cations for hardware. Many

of these languages have, in fact, been derived from existing programming languages:

AHPL from APL, VHDL from ADA, HardwareC from C, etc. Hardware description

languages characteristically include very little support for the speci�cation of timing re-

quirements. Most are based on a synchronous model that limits the circuits that can be

described. HDLs are typically used to generate data-
ow graphs which have formed the

basis of most high-level synthesis research (see [McFarland et al. 90]).

Because HDLs have been designed to express circuit functionality, temporal con-

straints are often simply embedded in the design speci�cation. In order to describe the

constraints on an interface, a speci�cation that exhibits proper behavior is speci�ed. For

example, the language SLIDE [Parker & Wallace 81] has delay and delay until state-

ments which can be used to specify the interface from a functional perspective. This

seriously restricts the types of constraints that can be speci�ed (because constraints must

be functionally speci�ed), and embedding the constraints into the speci�cation can cre-

ate problems with respect to design synthesis. For example, if a signal transition must

occur after another transition, hardware that checks that this condition is met may be

synthesized because the constraint was speci�ed functionally (e.g., using a delay until)

and is indistinguishable from required parts of the design.

Correct behavior can also be speci�ed by writing program code to check for incor-

rect behavior. For example, in VHDL, a separate process can monitor the two signal

transitions and report an error (during simulation) when a timing violation occurs. This

approach is, however, very ad-hoc, and a more structured and organized method for

expressing constraints is clearly needed.

Behavioral Synthesis with Interfaces (BSI) [Nestor 87] is an extension to ISPS [Bar-

bacci 81] and the Value-Trace [McFarland 78] that has a higher-level construct for spec-

ifying timing constraints. Minimum and maximum separation times between system

activites are speci�ed using labels attached to program statements. A similar approach

25

(see Figure 2.4) is used by the more recent language HardwareC [Ku & de Micheli 90].

{
 tag rd, wr, op;

 /* perform tasks */
 rd: data = read(input_port);
 op: result = some_function(data);
 wr: write output_port = result;

 /* specify timing constraints */
 constraint mintime from rd to op = 3 cycles;
 constraint maxtime from op to wr = 5 cycles;
 constraint maxtime from rd to wr = 10 cycles;
}

Figure 2.4: Timing constraints expressed using HardwareC

Since these speci�cations are used for synchronous synthesis, the basic unit of mea-

surement is a clock cycle. Scheduling algorithms are used to assign each program state-

ment to a speci�c control step (cycle). The algorithm used for HardwareC is quite novel

in that it can handle external synchronizations and unbounded delays between system

activities [Ku 91]. Of course, in both cases, the timing constraints need to be taken

into account in order to produce a valid schedule. Iterative and conditional behavior

are speci�ed using hierarchy. One serious limitation is that timing constraints are not

allowed to cross the hierarchy and must be local with respect to each basic block (i.e.,

each acyclic data
ow graph). More complex constraints can be speci�ed in languages

that use some other form of annotation. For example, VAL [Augustin et al. 88] is an

annotation language based on Waveform Algebra that can be used to specify timing

constraints for VHDL.

Hardware description languages are very popular. One of their main bene�ts is that

they usually provide a simulator which allows designers to execute their speci�cations

and interact with their designs. This facilitates rapid prototyping and speci�cations can

include low-level structural components (e.g., gate-level schematics of an existing chip)

as well as more abstract implementation independent descriptions (e.g., a high-level al-

gorithmic description of matrix inversion). This popularity and concerns for simulation

e�ciency have led to the development of language features designed speci�cally to sup-

26

port simulation (e.g., management of the event queue).

Unfortunately, some existing hardware description languages have no formal seman-

tics, and rely on the behavior of the simulator to de�ne the semantics. This can lead to

di�erent semantics based on di�erent implementations/interpretations of the language's

syntax. For example if two calendar events in a discrete event simulation are scheduled

to occur at the `same time' it is possible that their execution order will impact future

behavior. One implementation may choose an event at random, whereas another may

always use a �rst-in �rst-out scheduling priority. Uses of the speci�cation for purposes

other than simulation (i.e., synthesis and veri�cation) clearly indicate that the formal

semantics should not be solely driven by the needs of simulation.

2.3 The Event Paradigm

The event-based speci�cation paradigm is based on the premise that timing constraints

specify relationships between circuit \events" and that these events should be elements of

speci�cation languages that are used to describe temporal behavior. The representations

we have described above emphasize signal values and not signal events.

With respect to circuit structure, an event is a convenient abstraction for interesting

aspects of a circuit's operation. An event can be thought of as a signal transition { a

change in signal value. In this case, an event is an abstraction for a meaningful change

in voltage. In some cases, events are abstractions of a temporal nature, e.g., an event

corresponding to a signal's transition from \invalid" to \valid" because the signal's value

is sampled and interpreted as data only during particular intervals of time. At higher

levels of abstraction, events can be used to specify behavior, and represent messages or

sequencing constructs, e.g., \start new mode of operation."

2.3.1 Existing Event-Based Speci�cation Languages

Including events in a speci�cation leads, quite naturally, to graph based representations

(i.e., event graphs) in which nodes are used to represent events, and edges are used to

27

represent causal or temporal relationships between events. Most of the existing event

graph representations are acyclic and represent one execution of a particular system

behavior. Some of the representations using this paradigm include: [Borriello 88a],

[Gahlinger 90], [Hayati et al. 88], [Khordoc et al. 91], [Martello et al. 90], [Sherman

88], [Zahir & Fichtner 90]. Cyclic event graphs are far less common, and have been

used primarily to represent asynchronous circuits, e.g., [Chu 87], and to analyze their

performance, e.g., [Burns 91].

A closely related and well known representation is the Petri net, which has been

used extensively to model concurrent systems (see [Murata 89] or [Brauer et al. 87]

for a summary). Many di�erent models of time have been de�ned for Petri nets, the

most popular being stochastic delays used for probabilistic performance evaluation (see

[Ajmone Marsan 89]). A number of timed Petri net models have been developed that

incorporate non-probabilistic (e.g., �xed or bounded) delays, e.g., [Ramamoorthry & Ho

80], [Ramchandani 74], [Merlin 74], [Coolahan & Roussopoulos 85], [Cohen et al. 89],

[Andre 91], [Zuberek 91].

Some speci�cation languages are based on the event paradigm but are also closely

related to the paradigms previously discussed. Timing diagrams are, in fact, essentially

event-based speci�cations { event graphs are used to provide a formal underlying se-

mantics (e.g., [Borriello 88b, Khordoc et al. 91]). In order to capture more complicated

timing constraints (e.g., ones that appear as annotations to timing diagrams) event

graphs are not su�cient, and thus more powerful speci�cation languages are needed.

An approach that uses timing diagrams and annotated event structures is presented in

[Subramanyam 90].

Real-Time Logic [Jahanian & Mok 86] is a formal logic based on the event paradigm

that is quite unlike the temporal logics previously described. The logic has been used to

model real time systems and software, where an event is \a temporal marker, i.e., the

occurrence of an event marks a point in time which is of signi�cance in describing the

behavior of the system." The following Real-Time Logic formula speci�es a response

28

time constraint:

8i @(start sampling; i) > @(button pressed ; i) ^

@(�nish sampling; i) < @(button pressed ; i) + 20

The notation @(e,i) represents the time of the i

th

occurrence of event e. This constraint

states that \sampling" should start only after a button is pressed, and should complete

no later than 20 time units later. The logic supports both existential and universal

quanti�cation of integer variables that are used to identify events by their occurrence

index. This indexing approach is also used in the language ATCSL [Doukas 91]. The

language CPA [McFarland 90] is another formal logic based on the event paradigm. It

uses a fully declarative semantics to describe a large class of system behaviors. Because

the semantics is declarative, CPA provides nice mechanisms for expressing functional

transformations between inputs and outputs.

2.3.2 Problems with Existing Event-Based Speci�cation Languages

Event-based representations also present unique problems, the most serious limitation

being that they are often not su�ciently expressive. Many representations are well

suited to describing particular types of hardware, but there are often behaviors or timing

constraints that they cannot express. This is particularly problematic since in many cases

the exact nature of what is and is not expressible does not correspond well with particular

classes of circuits. Many representations can express most aspects of a particular circuit's

timing behavior, but �nd that there are some speci�c timing constraints or functionalities

they cannot express (e.g., [Borriello 88b], [Khordoc et al. 91], [Martello et al. 90]).

Another serious problem is that structure cannot be explicitly represented in the

speci�cation. Events are \logical transitions on wires," but there are a number of prob-

lems resolving the basic issue that a wire is a continuous entity, not a collection of discrete

events. Most existing representations are thus ill-suited for specifying gate-level func-

tionality since the only allowed elements are events. Structural elements (e.g., gates)

29

that operate on signal values instead of signal transitions are not well-integrated into

these representations which are focused on very speci�c levels of abstraction.

Existing event-graph representations have overly simpli�ed notions of both function-

ality and timing constraints. Functionality is often embedded into the semantics of an

event node (e.g., an event doesn't happen until all of the incident events happen) and

di�erent types of nodes are used to express di�erences in functionality (e.g., two di�er-

ent nodes, one in which out-degree represents choice and the other in which out-degree

represents parallelism). Timing constraints are often syntactically represented as edges

in the graph, with an underlying restrictive semantics that does not account for the com-

plex issues surrounding the speci�cation of timing behavior. Of course, one advantage

of these restrictions is that the timing constraints are simple and easy to understand.

Timing analysis algorithms can then be borrowed from graph theory, e.g., longest paths,

PERT analysis, compaction, etc. ([Borriello 88b], [Khordoc et al. 91], [Martello et al.

90]).

2.3.3 Extending the Basic Model

An expressive event-based representation must contain three important elements:

� the ability to express a rich functional semantics,

� a clean integration of structural aspects into the speci�cation, and

� a syntax to describe timing constraints between events.

We believe that these three elements can be combined into an expressive event-based

representation. However, before presenting the details of a new representation that

possesses these characteristics (in the next chapter) we discuss how the need to include

these elements a�ects some of the basic tenants of event-based representations.

An event-based representation must contain a rich notion of functionality. Func-

tionality describes how events are interrelated; how new output events arise from input

30

events. A circuit's functionality can be described using low levels of abstraction by pro-

viding details that spell out all internal events and their interconnection. Functionality

can also be described at a high level of abstraction by specifying only the behavior of

the circuit with respect to its interface. This is important if the speci�cation method is

to be scalable.

To describe structural functionality, many complex issues need to be addressed: Can

input events overwhelm the circuit components by arriving faster than they can be

processed? What are the characteristics of the propagation delays (e.g., inertial or

transport)? Is an event observable even if it really didn't change the value of a wire

(e.g., `quiet' vs. `stable' in VHDL)? Probably the most fundamental issue is simply how

much to include: multi-valued wires, bundled wires, buses, delay models, don't-cares,

etc.

Many complex issues regarding behavioral functionality also have to be addressed:

Can one specify a zero-time propagation delay? If two di�erent events need to occur

before an action is taken, what happens if one of the events happens twice? Are events

stored or bu�ered? Is there a notion of local or global state? Global state may be

desirable from a user's perspective but has serious implications with respect to modu-

larity. Clearly, events can be generated in complex ways, and thus any truly expressive

representation must provide a good mechanism for specifying arbitrary functionality.

Although parts of the representation may be synthesized, the representation should

not be restricted due to the need for synthesis. The speci�cation serves to describe

what is desired, or what will be observed. If the representation is being used to describe

an already existent piece of hardware (for simulation), a high-level representation is

necessary. The representation will need to capture the full functionality of the device even

if the internal structural implementation is not known. Modularity from a behavioral as

well as structural perspective is thus also quite important. Some existing representations

are not expressive because their development has been too closely guided by synthesis

concerns. For example, in State Transition Graphs (STGs) [Chu 87], there can only be

31

one rising and falling transition on each signal (e.g., one A+ and one A{ in the graph).

From a high-level perspective, however, there may be two unique independent contexts

in which a signal should be raised, and thus two distinct events are needed. Synthesis

algorithms have been the focus for the development of STGs and therefore STGs have

not evolved into a general high-level representation.

Although simple timing constraints often have an obvious representation (e.g., a la-

beled directed edge representing the di�erence in time between two events) the represen-

tation of constraints between events nested within loops, forks, conditional branches, and

concurrent structures requires a more comprehensive mechanism. The problem is that

constraints are relationships between discrete events|not event nodes (see Section 3.2

for a clarifying example).

In order to describe timing constraints, a means of identifying the discrete events

being constrained is needed. Chronological relationships can often be used to identify

the discrete events involved. However, constraints may be relative to a particular exe-

cution path in a complex graph, and chronological relationships alone are not su�cient.

Constraint speci�cation must include a way of getting at this history so as to describe

the context (execution path) in which the constraint applies. For example, timing dia-

grams often specify constraints that apply only during a particular mode of operation

(in Figure 2.1, some of the constraints apply only if a particular arbitration mechanism

is used).

Of course, one solution to the problem of identifying the discrete events being con-

strained is to have the events in the speci�cation represent individual discrete instances

of signal transitions. This approach is of limited use in a speci�cation language since

it assumes that the circuit's behavior can be statically described. This approach may

have some use in validating simulations with known expected behavior [Khordoc et al.

91]. However, if circuit behavior is repetitive then the representation will be cyclic.

Thus, event nodes inevitably represent more than one signal transition and the problems

described above must be addressed.

Chapter 3

A New Model

We have developed a new speci�cation language for timing behavior that meets most of

the criteria and goals outlined in the previous chapter. The representation is based on the

event graph paradigm with an operational semantics for specifying design functionality.

Timing constraints are expressed using a formal logic that is also event-based and that

enables the expression of complex timing behavior.

3.1 The Operation-Event Graph

An operation-event graph is a bipartite

1

directed graph G(O;E;A) with dependency arcs

A and nodes O [E where O is a set of operations and E is a set of events. We refer to

the components of the graph as arcs and nodes instead of edges and vertices in order to

avoid the potential confusion that would otherwise arise given our choice of notation (E

denotes a set of vertices, not edges). The topology of the graph is restricted such that

each event has an in-degree of either 0 (the event is an external input), or an in-degree

of 1 (the event is an internal output of a single operation). Events may have arbitrary

out-degree.

For each event e 2 E there is an associated pair hs; vi where:

1

In a bipartite graph, the nodes are partitioned into two disjoint sets (O and E in this case) and the

arcs connect nodes in one set to nodes in the other set.

33

s = signal(e) is a signal , and

v = value(e) is a signal value, and we restrict v to be an element of V , where

V = fhigh; low; dc; valid; tri; unde�nedg:

The association of a signal and a value to each event in E is technically a one-way

mapping, because we allow di�erent events to have the same hs; vi pair. This is necessary

because there may be two or more unique contexts in which a signal should be raised.

For example, a speci�cation could contain two di�erent operations: one that handles

high priority requests, the other low priority requests, and both operations might need

to raise an acknowledgment signal. An event may be associated with a �ctitious signal

and unde�ned signal value. This is necesary because events can represent behavioral

abstractions which do not correspond to signal transitions (e.g., control events, such as

an event indicating the completion of an activity, or a reset message).

Operation-event graphs are a generalization of the event-graph model described in

the previous chapter. This generality is a result of the introduction of operations to

specify how events are causally related to one another. In other models, this information

is typically embedded into the semantics of an event node, and is not explictly de�ned.

Instead, we associate with each operation o 2 O a piece of program code, which describes

the functionality of an operation. The program code is evaluated whenever an input

event occurs. The evaluation may conditionally generate output events (which usually

incur some delay) and/or change internal state. An example of an operation node is

a logic gate that generates an output event whenever an input event occurs. A more

abstract example of an operation is one that arbitrates between two processes: the

operation decides which of two output events to generate, thereby permitting one of the

processes to proceed. The two events, in this case, are not logic transitions and instead

represent control
ow.

Our model is quite general because operations permit abstract speci�cation of in-

put/output behavior. For example, an operation could count the number of input events

34

that it has seen, and generate an output event only when the number of observed events

is prime. The program code, in this case, would contain an algorithmic description of

how to determine whether or not a number is prime. By restricting the semantics of

an operation-event graph, a model equivalent to that of a more restrictive event-graph

model can be created. For example, operation program code could be restricted such

that only the semantics of STGs (i.e., an output event may occur only when all inputs

events have occurred) is allowed. Figure 3.1 contains a sample operation-event graph

represented both graphically and textually.

oe_wire ck("ck");
oe_event F("F",ck,LOW);
oe_event R("R",ck,HIGH);
fall_code(oe_trigger trigger) {
 if (trigger==R) cause(F,25);}
rise_code(oe_trigger trigger) {
 if (trigger==F) cause(R,25);}
main {
 oe_operation fall("fall", fall_code);
 oe_operation rise("rise", rise_code);
 connect(fall,F);connect(R,fall);
 connect(F,rise);connect(rise,R);}Event Node

Dependency Arc

Operation Node

F 〈ck, low〉

R 〈ck, high〉

fall

rise

Figure 3.1: Graphical and textual versions of a simple single phase clock in the OEgraph

representation (from a behavioral perspective). The clock has a cycle time of 50 time

units and a 50% duty cycle.

3.1.1 Formalizing the Semantics

An operation-event graph is a framework which can be used to construct a speci�cation

language given a particular formalization of the syntax and semantics of the program

code. The semantics should, however, be operational, in that the code essentially de-

scribes what an operation does with its inputs. An operation-event graph is used to

provide a global view of system functionality, each operation conceptually being a small

independent piece of functionality. Events interconnect operations, carry data, and de-

�ne control
ow. Operations thus may not have access to any global information. The

program code can not contain shared global variables and operations should not have

35

access to information such as the time of a discrete event's occurrence, the value of a

signal which is not incident to the operation, or knowledge about other facets of the

operationalized semantics (e.g., knowledge about simulation event queues, etc.). This is

not to say that an operation cannot measure the \elapsed time" between input events

or use the \value of a signal" to perform a computation. Rather, such actions are not

accomplished directly by an operation's program code. They can be explicitly de�ned

using events, i.e., an operation can implement a timer with a tick event feedback and

thus keep track of the number of ticks it has seen, or an operation can know the value

of a signal by having every event associated with a particular signal (wire) as an input.

The operation program code semantics is best de�ned by relating the syntactic el-

ements of the code to the set of executions that describe all of the possible systems

behaviors that could be exhibited by the operation-event graph. An execution is a po-

tentially in�nite set of discrete events .

One of the major points of emphasis in this dissertation is that there is a di�erence

between a discrete event (a member of an execution) and an event node (a member of

E). This di�erence is of fundamental importance with respect to the event paradigm

and event-based speci�cation languages for timing behavior. An event node represents

an event that could occur many times during system execution, e.g., an event on a cycle

in an operation-event graph. A discrete event is an actual occurrence of an event node,

at a speci�c instant of time.

Formally, we associate with each discrete event d a quadruple:

hevent(d); value(d); �(d); ancestry(d)i

where:

e = event(d) is an event, i.e., d is a discrete occurrence (an instance) of event e,

value(d) is a signal value,

�(d), a non-negative integer, is a time-stamp that denotes the time of d's occurrence,

36

ancestry(d), a set of discrete events, is an ancestry-stamp used to capture informa-

tion about the causality of d.

For an operation-event graph G(O;E;A) with operations O, events E, and depen-

dency arcs A, let X denote an arbitrary execution of G. Although we will not provide a

complete and formal de�nition of our semantics (because we have not de�ned the syntax

of the operation program code), we can futher clarify our semantics by describing some

constraints on X :

d 2 X) event(d) 2 E, i.e., only instances of events in E may occur,

d 2 X)

(value(event(d)) 6= valid) value(d) = value(event(d))) ^

(value(event(d)) = valid) value(d) 2 fhigh; low;validg)

I.e., event nodes and their discrete occurrences must both be associated with the

same signal value except that discrete occurrences of valid events can be associated

with high or low transitions|see Section 3.1.3 for more information about the

signi�cance of valid,

d 2 X) 8d

0

2 ancestry(d); �(d) � �(d

0

); i.e., d cannot occur before any of its

ancestors occurred.

d 2 X) 8d

0

2 ancestry(d) ho; event(d)i 2 A) hevent(d

0

); oi 2 A i.e., the

ancestors of d are occurrences of events that are incident to the operation that

generated d.

Our model of time is now apparent from our de�nition of �(d). The time at which

a discrete event occurs is not an in�nite precision real, but instead is an integer. Fur-

thermore, multiple events may occur at the same time, but because an execution is

an unordered set of discrete events, it is not known which occurred �rst. We believe

that this model of time is appropriate because a granularity problem also exists in the

37

physical world which we are modeling, i.e., at some level of detail it is not possible to

determine which of two discrete events actually occurred �rst. We believe that a total

order with respect to chronology is thus not realistic, nor do we wish to deal with true

simultaneity. Using integers (as opposed to a dense set) is e�cient and helps to mini-

mize the amount of space used to store a discrete event. Operations execute atomically

and instantaneously due to the occurrence of a single input event. If two input events

occur at the same time, two evaluations of the operation will occur, and each evaluation

will have a di�erent triggering event (which of the two discrete events triggers the �rst

evaluation is deliberately not de�ned).

We have developed the concept of event ancestry to address the issue of specifying

timing constraints that are dependent on an execution context. This is the motivation

for associating an ancestry-stamp with each discrete event. Whenever an operation

decides to generate a discrete event, the new event has as immediate ancestors the most

recent discrete occurrences of the input events named as ancestors. Intuitively, the

immediate ancestors of a discrete output event are the discrete input events that were

used to determine that the output event should be generated. For example, in Figure 3.1,

discrete occurrences of F have discrete occurrences of R as ancestors, and vice-versa.

In order to be able to decompose operations into more primitive elements, operations

need to be able to capture ancestry information internally. Consider an operation that

stores the signal value of an input discrete event on a queue (of state variables). When

the value is removed from the queue and \attached" to an output discrete event (see the

discussion of valid in the next section) the output event's immediate ancestor should be

the input discrete event that originally caused the value to be placed on the queue. The

event that caused its removal from the queue should, of course, also be an ancestor, as

it too was responsible for generating the output event.

Note that both the time-stamp and the ancestry-stamp are used to de�ne the se-

mantics of an operation, they are not used to specify functionality. An operation cannot

decide what to do based on the time-stamp or ancestry-stamp of one of its inputs.

38

3.1.2 OEgraphs: A Textual Speci�cation Language

We have developed a textual speci�cation language, OEgraphs, that is an instance of an

operation-event graph. The single phase clock in Figure 3.1 was textually speci�ed using

OEgraphs. We make a distinction between our speci�cation framework, the operation-

event graph, and our textual speci�cation language, OEgraphs. Both the language and

the framework were developed in parallel, and in some sense the framework simply

isolates and identi�es the unique and important elements of our speci�cation philosophy.

OEgraphs are based on the programming language C++ augmented with data struc-

tures and other language constructs that support the operation-event graph speci�cation

paradigm. We do not intend to present a complete syntax and semantics for OEgraphs;

our examples should, however, be quite readable. The language contains declarative

constructs used to specify the operation-event graph's components (e.g., types oe_event

and oe_operation for events and operations). These declarations have arguments which

specify the associated values, e.g., an event's signal value, or an operation's program code.

The program code for each operation consists of a procedure that is invoked each

time an incident event occurs. The cause statement is used to generate events (i.e., see

Figure 3.1). Ancestry information can optionally be speci�ed for each cause. By default,

i.e., if ancestry information is not speci�ed (as in Figure 3.1), the most recent occurrences

of all input events are immediate ancestors. Ancestry information can also be captured

via the use of special state variables which have ancestry stamps.

The delay information for each discrete event that will be generated by an operation

is speci�ed either by a �xed non-negative integer or an unspeci�ed delay value. The

delay is relative to the time of the triggering event (the discrete event that caused the

operation to be evaluated). Unspeci�ed delay values may be bounded, and in this case,

a distribution function can also be speci�ed (e.g., the delay is uniformly distributed

between 10 and 20 nanoseconds). Timing constraints can be used to specify proper

temporal behavior of circuits containing operations with unbounded unspeci�ed delays.

Such speci�cations are not particularly well suited to simulation, e.g., the user must

39

provide the delay value every time one is needed, but these speci�cations are useful for

specifying functional behavior which will be temporally constrained using a di�erent

formalism, namely the constraint logic of Section 3.2.1.

3.1.3 Incorporating Structure

Designers need to be able to specify the components of a design using di�erent levels of

abstraction. If a single speci�cation language can capture a design at all of these di�erent

levels of abstraction, many bene�ts, both tangible and intangible, accrue. One signif-

icant bene�t is that synthesis can be viewed as a transformational process; behavioral

speci�cations are transformed, through a series of steps, into structural speci�cations. In

Section 2.3, we argued that a clean integration of structure into event-based speci�cation

languages was thus needed, and that representations should allow structural components

to be speci�cation elements.

We believe that operation-event graphs provide a good formal basis for expanding the

expressiveness of event-based speci�cation languages. We have included and integrated

structure into the OEgraph speci�cation language. Operations are allowed to operate

on signals, e.g., to have signals as inputs and outputs. We have de�ned a new node

type, a wire which is really a convenient syntactic extension. Operation-event graphs

are quite capable of modeling structure. In OEgraphs, we simply extend the syntax

of an operation's program code to operate on signal values. This is, in some sense,

merely a perspective, a way of encapsulating and viewing the structure. Figure 3.2 shows

behavioral and a structural perspectives of an inverter.

Both speci�cations make use of the special properties of the signal value valid (al-

though this is explicit only in the behavioral version). We allow event nodes to be

associated with a transition to valid and their discrete events to be associated with

transitions to either high or low depending upon the dynamic behavior of the opera-

tions generating the events (i.e., statically valid, at run-time either high or low). This

facilitates the notion of data, in that operations may obtain the signal value for a dis-

40

oe_wire In("In");
oe_wire Out("Out");
inv_code(oe_trigger trigger) {
 cause(Out,10,not(In);}
main {
 oe_operation
 inv("inv", inv_code);
 connect(In,inv);
 connect(inv,Out);}

oe_wire In("In");
oe_wire Out("Out");
oe_event InH("InH",In,HIGH);
oe_event InL("InL",In,LOW);
oe_event OutV("OutV",Out,VALID);
inv_code(oe_trigger trigger) {
 if (trigger==InH) cause(OutV,10,low);
 if (trigger==InL) cause(OutV,10,high);}
// or, cause(outV,10,not(valueOf(trigger));
main {
 oe_operation inv("inv", inv_code);
 connect(InH,inv);
 connect(InL,inv);
 connect(inv,OutV);}

InH 〈In, high〉

OutV 〈Out,valid〉

InL 〈In, low〉 In

Out

Wire Node

Figure 3.2: Two di�erent speci�cations for an inverter, the left speci�cation is behavioral

and operates on events, the right speci�cation is structural and operates on wires.

crete input event and decide what value a discrete output event should then assume. For

example, the program code for the inverter could also be speci�ed as noted by the tex-

tual comment in the left speci�cation of Figure 3.2. Note that we purposely have made

no distinction between data and control, i.e., events can represent and carry both data

and control information. This will allow optimization and synthesis algorithms greater

exibility.

Conceptually, an operation with a structural input signal s should have all of the

events that occur on s (i.e., fe j signal(e) = sg) as inputs. The operation should not

distinguish between the di�erent input events; rather, all of the events should be treated

the same way, because it is the value of the signal that is important, not the occurrence

of a speci�c named event on the signal. Likewise, an operation with a structural output

should be the only operation generating events for a particular signal.

Thus, although operation-event graphs do not contain structure (signals are not

nodes in the graph), our speci�cation language OEgraphs allows speci�cations to \look

41

like structure." In essence, the presence of a wire merely indicates the presence of an

implicit internal event|either an input or an output, e.g., see Figure 3.3.

oe_wire ck("ck");
oe_wire D("D");
oe_wire Q("Q");
ff_code(oe_trigger trigger) {
 if (trigger==ck && ck==HIGH)
 cause(Q, uniform_delay(5,10),valueOf(D);}
main {
 oe_operation flipflop("flipflop", ff_code);
 connect(ck,flipflop);
 connect(D,flipflop);
 connect(flipflop,Q);}

ck

Q

D

flipflop

Implicit
Internal Events

FR

Resolution Operation

Figure 3.3: A clocked edge-triggered D
ip
op represented using OEgraphs. Note that

the propagation delay is uniformly distributed between 5 and 10 time units. The
ip
op

operation does not hold state; Q is set to the value of D on every rising clock edge. The

transitions on the clock (wire ck) are event nodes (e.g., F and R from Figure 3.1) but

the
ip
op has ck (and D) as an input and doesn't care about the speci�c event nodes

that \make up" the wire.

Every wire has a physical model which is used to determine how events a�ect wires

(e.g., a resolution function in VHDL). Structural details are essentially handled by chang-

ing the structure of the resolution operation that collects all of the events for a partic-

ular wire, e.g., the operation in Figure 3.3 that collects the events R and F . We de�ne

resolve(s) to be the name of the internal event that collects all of the events occurring

on s (for when s is an input wire to an operation), and output (s; o) to be the name of

the internal event that is used when operation o has the wire s as an output.

Operations having wire inputs and outputs represent functionality from a structural

perspective. Operations having event inputs and outputs represent functionality from a

behavioral perspective. Mixed perspectives are also possible, e.g., an operation having

wire inputs carrying data and event inputs signalling
ow of control. Figure 3.4 contains

two representations of our simple single phase clock (Figure 3.1). We �rst \fold" our

clock into a single operation, and then since all of the events on the clock are inputs and

outputs of this single operation, we can transform the operation into a purely structural

speci�cation using only wires.

Of course a good speci�cation language for structure will need to include support for

42

oe_wire ck("ck");
oe_event F("F",ck,LOW);
oe_event R("R",ck,HIGH);
f_code(oe_trigger trigger) {
 if (trigger==R) cause(F,25);
 if (trigger==F) cause(R,25);}
main {
 oe_operation folded("folded", f_code);
 connect(folded,F);connect(folded,R);
 connect(F,folded);connect(R,folded);}

R 〈ck, high〉

folded

F 〈ck, low〉

oe_wire ck("ck");
ck_code(oe_trigger trigger) {
 cause(ck,25, not(ck));}
main {
 oe_operation clock("clock", ck_code);
 connect(clock,ck);
 connect(ck,clock);}

ck

clock

Figure 3.4: Structural transformations of the single phase clock in Figure 3.1

a variety of structural properties: bundled wires (busses), transport and inertial delay

models, etc. Some of these issues have been addressed by our speci�cation language.

However, our emphasis has been on expressing temporal and not structural properties.

We do believe that operation-event graphs are a framework within which these issues

can be suitably addressed. For example, in most cases, the e�ect of an event on a signal

corresponds exactly to the transition that the event represents. For a bus, however, this

is not necessarily the case. With two or more operations driving a bus, an event asserting

a tri-state value may leave the bus connected to ground (and not disconnected) because

another operation connected to the bus keeps it low. Normally, any wire that has an

indegree of more than one is a bus (i.e., two or more operations are driving the wire

via multiple internal events). Two or more events on the same wire may or may not

represent a bus, depending upon whether or not synthesis transforms the events into wire

outputs of one or several physical components (represented as operations). In OEgraphs

we keep track of this information using partition labels which can be attached to events.

Two events (on the same wire) with di�erent partitions represent events interacting on

a bus.

In summary, OEgraphs support structure by allowing users the freedom to write

structural speci�cations which are then appropriately interpreted within the context

43

of the operation-event graph model. Users are able to work at their desired level of

abstraction. Events can be generated on wires without the need to name them explicitly.

3.2 Timing Constraints

The semantics of operation-event graphs is operational. Operations describe outputs by

explicitly stating how the inputs are transformed. The relationships between the various

parts of the speci�cation are explicitly represented using events and dependency arcs.

If the speci�cation consisted merely of a list of requirements it would be more di�cult

to view the design as a collective entity. The operational semantics by its very nature

facilitates design validation. Speci�cations can be executed and the response to a given

set of stimulus can be easily computed because the system's functionality is operationally

speci�ed.

However, timing constraints by their very nature are denotational

2

. Constraints are

annotations which further constrain the temporal behavior of the system, i.e., they spec-

ify acceptable input/output behavior without describing how the inputs are transformed

into the outputs. Thus, constraints are typically expressed using formalized timing dia-

grams, tables of separation times, or other annotations (e.g., labeled edges between event

nodes in event graphs). Complex timing relationships can be di�cult to express due to

the presence of complex control structures, i.e., loops and conditional branches, coupled

with the repetitive nature of these systems (because event nodes represent events that

may occur multiple times). The fundamental issue that must be addressed in order to

specify a timing constraint is that the discrete events being constrained must be identi�ed

(timing constraints are relationships between discrete events|not event nodes).

One approach to this problem is to restrict the semantics of constraint speci�cation

so that specifying event nodes implicitly identi�es the discrete events being constrained.

For example, consider the operation-event graph fragment shown in Figure 3.5. Three

2

Temporal behavior can, of course, be speci�ed by describing the set of all possible system behaviors

using an operational semantics. This is often cumbersome and not nearly as natural as providing a

description of the required behavior.

44

of the event nodes (X , Y , and Z) have been identi�ed by name. The event Y is on a

loop, and thus there will potentially be many more occurrences of Y than of either X or

Z during any execution of the system. The restricted semantics might assume (e.g., as

in [Borriello 88b]), that a constraint \from X to Y " relates X to the �rst Y occurring in

the loop, and that a constraint \from Y to Z" relates the last Y occurring in the loop

to Z.

X

Y

Y

Z

oe_event X("X");
oe_event Y("Y");
oe_event Z("Z");
loop_code(oe_trigger trigger) {
 int count;
 if (trigger==X) count=0;
 if (trigger==Y) count++;
 if (count < n) cause(Y) else cause(Z);}
main {
 oe_operation loop("loop", loop_code);
 connect(loop,Y);connect(loop,Z);
 connect(X,loop);}

loop

Figure 3.5: An operation-event graph fragment, the event Y is on a loop.

An alternative approach relies on indexing. Each occurrence of an event has an index,

and this index can be used to specify which discrete events are being constrained. In

this case, (e.g., Real-Time Logic [Jahanian & Mok 86], or ATCSL [Doukas 91]) one could

specify a constraint \from X to the 2

nd

occurrence of Y in the loop" by constraining

the i

th

occurrence of X with the ((i � 1)n + 2)

th

occurrence of Y where n is the �xed

iteration count for the loop (n � 2). However, if the number of Y events that can occur

during every execution of the loop is not �xed (e.g., a while loop) then indexing is of

limited value, because the indices themselves do not adequately serve to identify which

discrete events should be constrained. Real-Time Logic and other languages based on

indexing can sometimes express constraints such as this but the constraints are di�cult

to construct because only indices can be quanti�ed, and the constraints are thus very

complicated.

Both methods seriously restrict the types of timing relationships that can be speci�ed

45

because neither provides an expressive mechanism for identifying which discrete events

are being constrained. For example, existing speci�cation methods often introduce a

special semantics to handle timing constraints for synchronous systems, e.g., a special

unit of delay, the \cycle," is needed because the basic speci�cation mechanisms are not

powerful enough to specify synchronous constraints.

3.2.1 Event Logic

Our solution to the problem of expressing more complicated timing relationships is to

use event-logic, a �rst order logic which relies on the quanti�cation of discrete events, and

not the quanti�cation of time variables (as in HOL), or event indices (as in Real-Time

Logic). The essential elements of the logic can best be illustrated with a simple example:

8d

1

8d

2

�(d

1

) > �(d

2

)) �(d

1

)� �(d

2

) > 10

This timing constraint states that no two discrete events occur within 10 time units

of one another, unless they occur at the same time. Note that �(d) is a function that

represents the time of occurrence of the discrete event d. Similar functions exist for

event(d), value(d), and ancestry(d). Thus, we could write a constraint stating that the

rise to fall delay for a behaviorally speci�ed clock (with events R and F denoting rising

and falling edges, as in Figure 3.1) should be exactly 25:

8r 8f event(r) = R ^ event(f) = F)

((�(f) > �(r) ^ :9f

2

(event(f

2

) = F ^ �(f

2

) > �(r) ^ �(f

2

) < �(f))))

�(f)� t(r) = 25)

The constraint is complicated because it speci�es a separation time between a rising edge

r and the very next falling edge f (i.e., the second line of the constraint ensures that f

occurs after r, and that f is the very next falling edge|the constraint does not apply if

there exists another occurrence of F in between r and f).

Discrete events are identi�ed by relating the events either chronologically or causally

with one another, so as to specify a context (e.g., f is the next falling edge after r) within

46

which the constraint applies. Constraints usually require a separation time between two

of the quanti�ed events. Causality is an informal relationship between a discrete event

x and another discrete event y that occurred because of x, i.e., x directly or indirectly

caused y. Formally, this relationship is speci�ed using a new predicate, ancestor, the

transitive closure of the discrete event's immediate ancestors (recall that the immediate

ancestors of a discrete event d are members of the set ancestry(d)). An ancestor of a

discrete event is any previously occurring discrete event that led to the generation of its

descendant through its e�ect on a series of operations. We use the binary relation x � y

to indicate that x is an ancestor of y:

x � y , x 2 ancestry(y) _ (9z z 2 ancestry(y) ^ x � z)

Both event-logic and operation-event graphs can be used to describe system behavior,

i.e., to specify the possible set of executions and the discrete events they contain. For

example, the statement:

8x signal(x) = In) (9y (signal(y) = Out ^ �(y) = �(x) + 10 ^

(value(y) = high ^ value(x) = low) _ (value(y) = low ^ value(x) = high)))

is a structural speci�cation for the inverter of Figure 3.2. The behavioral speci�cation

would not refer to the signals, and would rely only on the events, i.e.,

8x (event(x) = InH _ event(x) = InL)) (9y (event(y) = OutV ^ : : :

One could argue that both speci�cations are not yet complete; they specify the correct

output response, but do not disallow incorrect behavior (e.g., other transitions on the

signals). Our point, however, is that event-logic could perhaps be used by itself as a

speci�cation language, replacing the need for operations.

We have not formally examined the expressive power of event-logic, nor have we for-

mally explored its relationship to other logics. However, it appears to be quite expressive,

and is capable of handling a wide variety of temporal relationships. We have found that

47

most complex databook annotations can be speci�ed. One limitation is discussed in

Section 3.3.

The logic is quite elegant, but quanti�ers can appear anywhere, and complex con-

straints are unfortunately di�cult to read. This is a general characteristic of denotational

speci�cation languages, in which speci�cations inevitably consist of a large number of

statements that relate the outputs to the inputs. Unfortunately, the interrelationships

between the statements are often di�cult to grasp, and the overall required functionality

is hidden by the speci�cation. We believe that supporting both an operational seman-

tics for functionality and a denotational semantics for constraining temporal behavior

allows users the
exibility to work with both methods of speci�cation. Thus, in many

ways, the event logic is too expressive with respect to our needs. Furthermore, the logic

presents a number of di�culties with respect to user validation (these will be discussed

in Chapter 4).

3.2.2 Restricted event-logic for OEgraphs

Our textual speci�cation language OEgraphs uses a timing constraint syntax that is a

highly restricted form of event-logic. Constraints are speci�ed by:

1. Naming the discrete events involved in the constraint, then

2. Specifying the Context (identifying the particular events in a particular relationship

to one another), and �nally,

3. Specifying the Requirement|the timing relationship that must hold.

The restricted event-logic formula has the following form:

8x

0

8x

1

: : : 8x

n�1

0

@

^

i=0:::n�1

id(x

i

; r

i

)

1

A

| {z }

Naming

) (Context) Requirement)

Where x

i

denotes a quanti�ed discrete event, and r

i

denotes a restriction (de�ned below,

as is the function id).

48

The naming of events corresponds to a series of universal quanti�cations of discrete

events and a conjuncted series of quanti�er-free formulas which further constrain the

identity of each quanti�ed event. Universal quanti�cation does not in any way identify

the events being constrained. Naming the events can be thought of as a process in which

the identities of the events are established by static properties, e.g., specifying that the

quanti�ed event x

i

represents an occurrence of the event R (e.g, event(x

i

) = R), or

represents a high transition (e.g., value(x

i

) = high). Formally, we associate with each

quanti�ed discrete event a restriction which can be an event, a signal, a signal value, or

a conjunction or disjunction of restrictions. Each restriction is used to further constrain

the identity of each quanti�ed event. The function id maps a quanti�ed discrete event

(x

i

) and its associated restriction (r

i

) to an event-logic formula:

id(x

i

; r

i

) �

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

event(x

i

) = r

i

if r

i

2 E

event(x

i

) = resolve(r

i

) if r

i

2 fsignal(e) j e 2 Eg

value(x

i

) = r

i

if r

i

2 V

id(x

i

; r

1

) ^ id(x

i

; r

2

) if r

i

= r

1

^ r

2

id(x

i

; r

1

) _ id(x

i

; r

2

) if r

i

= r

1

_ r

2

After quantifying the events, the correct temporal behavior is speci�ed via a for-

mula which has been divided into two parts (the Context and the Requirement) so that

constraints are more easily written and understood. If the Context is satis�ed for a

particular instantiation of discrete events, the Requirement must also be satis�ed. (e.g.,

Context) Requirement). Both expressions are quanti�er free, but in order to capture

much of the expressibility of event-logic we de�ne the following three relations (which

implicitly quantify events) which can appear in either formula. Let x and y be discrete

events and let r be a restriction associated with x. The formal semantics of each relation

is described via event-logic:

mra(y; r; x) to test whether y's most recent r ancestor is x:

x � y ^ :9z (id(z; r) ^ z � y ^ �(z) > �(x))

49

i.e., x is an ancestor of y and no other r ancestors of y occur after x.

pco(y; r; x) to test whether the previous chronological occurrence of an r with

respect to y is x:

x 6= y ^ �(x) � �(y) ^ :9z (id(z; r) ^ �(y) > �(z) ^ �(z) > �(x))

i.e., x occurs before y and no other r events occur in between x and y

3

.

nco(y; r; x) to test whether the next chronological occurrence of an r with respect

to y is x:

x 6= y ^ �(x) � �(y) ^ :9z (id(z; r) ^ �(x) > �(z) ^ �(z) > �(y))

i.e., x occurs after y and no other r events occur in between x and y.

These three relations encapsulate, in a more e�cient and compact form, concepts

which are essential for timing constraint expression. These relations can appear anywhere

in the context or requirement and may also be negated. This syntax is more closely

aligned with our original goal of providing a logic for the formal description of timing

(and not functional) behavior. Discrete events are identi�ed by their properties (e.g.,

event(f) = F) and by contextual relationships of a chronological or causal nature (using

nco, pco, or mra). Once the events have been suitably identi�ed, the timing constraint

is then stated.

3.2.3 Examples

Figure 3.6 contains the speci�cation of the simple setup constraint for the D input to the

ip
op of Figure 3.3. Most constraints, like this one, have a simple semantics (e.g., setup

and hold) and parameterized subroutines for constraint speci�cation can be de�ned using

OEgraphs. Other higher-level speci�cations (e.g., timing diagram editors [Borriello 88b])

3

We also allow x to occur at the same time as y. Note that if multiple events occur at the same time

it is possible that multiple x events will satisfy the relation, i.e., if more than one event is tied for the

role of previous occurrence (or most-recent or next occurrence) then all of the events satisfy the relation.

50

... inserted into main{} of D flipflop

oe_constraint setup("setup");
discrete_name D0("D0",D);
discrete_name R0("R0",R);
setup.quantify(D0,R0);
setup.context(nco(D0,R,R0));
setup.require(timeOf(R0)-timeOf(D0) >10);

setup (D to R) > 10

R F R F

ck

D

Figure 3.6: A setup constraint for the D input to the
ip
op in Figure 3.3. The textual

representation is based on the restricted event-logic discussed in Section 3.2.2. In the

restricted logic, this constraint would be expressed as:

8d

0

8r

0

(event(d

0

) = D ^ event(r

0

) = R)) (nco(d

0

; R; r

0

)) �(r

0

)� �(d

0

) > 10)

and in the unrestricted logic the nco would be expanded:

8d

0

8r

0

(event(d

0

) = D ^ event(r

0

) = R)) ((r

0

6= d

0

^ �(r

0

) � �(d

0

) ^

:9z (event(z) = R ^ �(r

0

) > �(z) ^ �(z) > �(d

0

)))) �(r

0

)� �(d

0

) > 10)

could also be integrated with this representation providing a more user-friendly syntax

for (less complicated) constraint speci�cations.

Of course, some constraints which appear to be simple in nature actually have a

complicated semantic meaning. For example a constraint stating that \two events occur

one cycle apart" is subject to many interpretations. Timing diagrams and tables attempt

to convey the semantics of such constraints but are informal and often ambiguous. Our

representation allows such constraints to be formally speci�ed.

Figure 3.7 contains a constraint that states that events A and B are required to

occur exactly one cycle apart whenever A and B occur from the same request event

(REQ). For some request events the B event is not generated and the A event should

not be constrained. The constraint is also complicated by the fact that A and B occur

synchronously to the falling edge of the clock (F) and may occur anywhere within the

shaded region shown in Figure 3.7. Requiring an exact separation time between A and

B would thus be incorrect. If this constraint in a di�erent representation consisted of

an edge from A to B labeled \one cycle," then the formal semantics would be hidden

because what should happen when there are no B events would be very unclear.

Our next example provides two di�erent formal semantics for the informal statement

\This circuit can be clocked at 10 to 20 Mhz." Figure 3.8 contains three possible clock

waveforms, and two possible constraints. The �rst version does not require that the

51

A
ck

R F R F

B

BA

F

R

REQ Benable

...
oe_constraint cycle_apart("cycle_apart");
discrete_name A0("A0",A);
discrete_name B0("B0",B);
discrete_name F0("F0",F);
discrete_name F1("F1",F);
discrete_name REQ0("REQ0",REQ);

cycle_apart.quantify(A0,B0,F0,F1,REQ0);
cycle_apart.context(pco(A0,F,F0) & pco(B0,F,F1) &
	 	 	 mra(A0,REQ,REQ0) & mra(B0,REQ,REQ0));
cycle_apart.require(pco(F0,F,F1) | pco(F1,F,F0));
cycle_apart.error("A and B should be one cycle apart");

1 cycle

Figure 3.7: A sequential logic constraint requiring two events (A and B) to be one cycle

apart. The context of the constraint establishes the identities of the quanti�ed events:

F0 is the clock edge prior to A0; F1 is the clock edge prior to B0; and A0 and B0 share

the same REQ ancestor. The requirement is that F0 be the clock edge prior to F1 or

that F1 be the clock edge prior to F0.

period be a constant, and thus the circuit presumably could have a dynamically changing

clock. An alternative requirement might be that the period not vary (e.g., the third

13.3 Mhz. waveform would be illegal) in which case the formal speci�cation should be

amended as shown in the second version.

3.3 An Illustrative Example

In this section, we consider a circuit with an input wire X that obeys the Ethernet

protocol (see Figure 3.9). Since the protocol consists of both functional and temporal

properties, we can specify the behavior of the input wire with a cyclic OEgraph (for de-

scribing functionality) and a set of timing constraints (for describing temporal behavior).

Much of the complexity of the Ethernet protocol is due to electrical properties which we

cannot specify; however, the protocol does serve as a good illustrative example.

One of the major points which we will demonstrate using this example is that there

is no clear distinction between functional and temporal behavior. Although we restricted

52

0 100 20050

20 Mhz.

10 Mhz.

13.3 Mhz.

/* version 1 */
oe_wire CK("CK");
oe_constraint clock_cons("clock_cons");
oe_restriction CK_HIGH(CK ^ HIGH);
/* used to identify C1 and C2 as events with
 signal = CK and signal value = HIGH */
discrete_name C1("C1",CK_HIGH);
discrete_name C2("C2",CK_HIGH);
setup.quantify(C1,C2);
setup.context(nco(C1,CK_HIGH,C2));
setup.require((timeOf(C2)-timeOf(C1) >= 50)&
 (timeOf(C2)-timeOf(C1) <= 100));

/* version 2 */
...
discrete_name C3("C3",CK_HIGH);
setup.quantify(C1,C2,C3);
setup.context(nco(C1,CK_HIGH,C2) & nco(C2,CK_HIGH,C3));
setup.require((timeOf(C2)-timeOf(C1) >= 50)&
 (timeOf(C2)-timeOf(C1) <= 100)&
 timeOf(C2)-timeOf(C1)==timeOf(C3)-timeOf(C2));

Figure 3.8: Three possible clock signals for a circuit that should be clocked at \10 -

20 Mhz." |the third waveform is a composite produced from an available 2-phase

clock and may or may not be a valid clock waveform for the circuit. Two versions of a

constraint that describes an acceptable clock signal are given; the �rst one includes the

third waveform, the second one excludes it.

event-logic and weakened its expressive power, the ability to specify a constraint that

only applies in a speci�c context allows statements about functionality to be speci�ed.

For example, a constraint that only applies when the wire X is not high:

: : :^ : X is high) timing requirement

can easily be restated:

: : :) X is high _ timing requirement

The classi�cation of behavior into functional and temporal aspects is thus certainly a

loose one, and it should not be surprising that the Ethernet protocol can be speci�ed in

53

300 min
2000 max

1 1

50 100

0 11 0 1 ... 0 1 ... 0 0

Preamble Data IdleIdle

Figure 3.9: The Ethernet protocol for data transmission. The protocol consists of a

preamble (which allows receivers to synchronize to the clocks of the sender) followed by

data. Manchester encoding is used for both the data and the preamble (which is a �xed

64 bit alternating sequence of 1s and 0s terminating with 11). The transition from idle

(tri-state) is to low and the transition to idle is from high (and must occur within 300 {

2000 ns.).

many di�erent ways using OEgraphs.

The OEgraph on the left in Figure 3.10 contains six operations which completely char-

acterize the Ethernet protocol. Operations one and two produce the �rst two transitions

of the preamble, and operation three is on a loop with operation four that generates the

alternating ones and zeros of the preamble. The preamble terminates with operation �ve

and the data is generated by operation six .

The OEgraph on the right in Figure 3.10 simply states that some number of valid

transitions will occur on X before a tri-state transition occurs and the behavior repeats.

All of the temporal information (and a great deal of the functionality) is speci�ed via

timing constraints (the OEgraph is needed because the restricted constraint semantics

cannot specify that events must occur). This is accomplished using unspeci�ed values

(see Section 3:1:2) which may appear in places other than propagation delays (e.g., un-

speci�ed iteration counts for loops). There are seven timing constraints which essentially

state that X obeys the Ethernet protocol. The complete formal speci�cation for both

examples can be found in the Appendix A.

Now consider a hypothetical protocol which is very similar to the Ethernet proto-

col except that the preamble can be of variable width. Let us also assume that the

data should be of bounded length. This constraint is easy to specify if the preamble

54

one

 〈X, high〉

two

three

fourfive

six

 〈X, high〉 〈X, high〉

 〈X, valid〉
 〈X, valid〉 〈X, tri〉

 〈X, low〉 〈X, low〉

 〈X, low〉

 〈X, tri〉

 〈X, valid〉

Figure 3.10: Two di�erent operation event graphs for the wire X obeying the Ethernet

protocol. Complete details for both speci�cations appear in the appendix.

is bounded, we would simply constrain the total separation time between the tri-state

to low and high to tri-state transitions. However, if the preamble is not bounded, we

need to specify a maximum separation between the end of the preamble, and the high

to tri-state transition. This constraint will be easy to specify for the OEgraph on the

left because there is an event (the output of operation �ve) corresponding to the last

transition of the preamble (the event's name does not appear in the �gure).

For the OEgraph on the right, we cannot refer to the event by name, but must use

the expressive power of the representation to specify the constraint. We can quantify

and, via the context, identify four consecutive transitions characteristic of the \11" at

the end of the preamble (e.g., rising, falling, rising, falling each separated by 50ns). We

also quantify and identify the tri-state-to-low transition and the next high-to-tri-state

transition that surround the \11" transitions. The requirement would then state an

55

upper bound on the time between the last rising transition of the preamble and the

high-to-tri-state transition at the end of the data.

This constraint does in fact specify an upper bound on the length of the data. How-

ever, it also speci�es an upper bound for any \11" that occurs in the data portion|see

Figure 3.11. This is a good example of a useful constraint that actually constrains more

events than necessary. Of course, if the distance from the �rst \11" to the end of the

data has an upper bound, then specifying the same bound for other \11"s to the end of

the data is perfectly acceptable even if it is redundant. If we wanted to specify a lower

bound on the amount of data, however, we would not be able to do so. The constraint

would erroneously insist that no \11" transitions occur near the end of the data (i.e., it

is no longer redundant, and in fact creates a problem).

300 min
2000 max

1 1

Preamble Data Idle

 ... 0 0 ... 1 1 0 ... 1 0

constraint bounding
size of data

redundant
constraint

Figure 3.11: Hypothetical protocol with variable length preamble and a timing constraint

stating that the data portion has a maximum length. The constraint is from \11" to

the high to tri-state transition, and thus a redundant constraint from a \11" in the data

would also exist.

The constraint cannot be formally speci�ed (with respect to our simple OEgraph and

the restricted event-logic) because the �rst \11" on X (after a transition from tri-state)

cannot be identi�ed. This example demonstrates why introducing hierarchy into the

model is desirable. We could identify the \11" sequence of events as a hierarchical event

and then trivially specify the constraint using the nco relation. At present, hierarchy is

not supported, and the OEgraph would need to be modi�ed so that the last event on

the preamble was an event node in the speci�cation.

56

The ability to describe behavior using both an operational and a denotational spec-

i�cation language allows designers to work at convenient point somewhere between the

alternative approaches described by this example. In some cases both styles are valuable.

For example, all of the timing constraints on the wire X in the second speci�cation could

also be attached to the �rst speci�cation. Each speci�cation would then serve as a check

on the other.

Chapter 4

Validation

Speci�cation languages allow designers to specify systems which can later be synthesized

or analyzed by a variety of design automation tools. One critical problem, is to ensure

that the speci�cation captures the system that the designer wanted to specify. If the

speci�cation is inherently incorrect, the resulting formal analysis or implementation will

be
awed with respect to the goals of the designer. Moreover, �xing problems of this

nature can often be very time consuming because the relationship between the speci�-

cation and the design tool's unexpected/undesired results can be di�cult to understand

(a process akin to debugging optimized code).

In order to remedy this problem, designers need to be able to visualize and explore

their speci�cations; gaining an understanding of their speci�cation as a separate and

distinct entity. This process is referred to as design validation | speci�cations are

validated with respect to the designer's informal conceptualization of the design. As

discussed in Section 2.1.3, the ability to simulate a design (execute the speci�cation)

constitutes a very powerful form of design validation. The user emulates the system's

environment and observes the speci�cation's responses.

Many di�erent bene�ts arise from the ability to execute an abstract speci�cation.

Users can correct errors in their speci�cation and observe its operation under a number

of di�erent input scenarios. In some cases, the speci�cation may be correct, in that it

58

captures the intended system, but simulation may uncover unknown and unexpected pat-

terns of behavior that are indicative of conceptual errors in the design itself. Typically,

these errors would otherwise be discovered only after the design has been implemented,

or, at the very least, after a great deal of time and energy has been expended. Speci�-

cations can be executed at various points in their development, and thus simulation also

helps facilitate the process of speci�cation, wherein the design is �rst crudely speci�ed

and then iteratively re�ned. One additional bene�t is that the individuals that intend to

use the design (the \customers") can interact with the designer and the design early on,

and bene�t from the extensive prototyping that simulation provides. Executable speci�-

cation languages have recently become quite popular, because the bene�ts of simulation

have become quite apparent. Readers may want to consult [Harel 92] for a more in-depth

discussion.

4.1 OEsim: A Simulator for OEgraphs

OEsim is a compiled simulator that takes as input an OEgraph (our textual speci�cation

language based on operation-event graphs) and generates an executable program linked

to a simulation front-end. Users run this program, and step through the execution of the

OEgraph: operations respond to input events by generating output events and changing

internal state variables. Events generated by the simulation incur propagation delays

that are randomly sampled from the speci�ed upper and lower delay bounds for each

cause statement (usually a uniform random distribution is used, but any distribution

function can be speci�ed). This allows the simulator to model hardware and other de-

vices whose temporal behavior is not completely �xed (i.e., propagation delays often vary

based on temperature changes, power
uctuations, etc.). The simulator contains com-

mands which support user control (e.g., single stepping, setting breakpoints, scheduling

events, etc.) and access to internal data structures (e.g., ancestry information, time of

occurrence, etc.). The simulator is implemented in C++ and consists of approximately

2000 lines of code. By virtue of being a compiled C++ program, an operation node can

59

include arbitrary C++ code that can be used to provide special interactions with the

user (e.g., read and write data �les, update customized windows or graphics, etc.). The

functional simulation relies on standard discrete event simulation techniques.

A novel and interesting aspect of OEsim is its ability to report timing constraint

violations. A violation indicates that the operational speci�cation (the operation-event

graph) describes an execution which the denotational speci�cation (i.e., timing con-

straints described using the restricted event-logic) does not allow. Violations are found

by observing the temporal and causal relationships that arise between the input and out-

put events during a speci�c execution of the speci�cation. The reporting of constraint

violations often allows a user to detect design or speci�cation
aws, or it may indicate

that the user has incorrectly emulated the environment (e.g., a constraint from one input

event to another is violated). Figure 4.1 contains a sample simulation that contains a

constraint violation.

Welcome To Simulation v1.3, Mon Nov 5 15:13:43 1990

oesim-0> schedule-event F 0

oesim-0> schedule-wire D HIGH 60

oesim-0> schedule-wire D LOW 120

oesim-0> run-to 150

event_occurs at time: 0 event F

event_occurs at time: 25 event R

event_occurs at time: 50 event F

event_occurs at time: 60 event D$<external>(D*HIGH)

event_occurs at time: 75 event R

event_occurs at time: 100 event F

event_occurs at time: 120 event D$<external>(D*LOW)

event_occurs at time: 125 event R

** Constraint Violation: setup:

r0 d0 : nco(d0, R, r0) ==> ((t(r0) - t(d0)) >10)

r0 = unique event: R occurrence: 3 at time: 125

d0 = unique event: D$<external> occurrence: 2 at time: 120

stopped at time: 150

oesim-120>

Figure 4.1: A sample simulation of the
ip
op in Figure 3.3, including a violation of the

setup constraint of Figure 3.6.

60

In simulation, new discrete events occur and a speci�c execution (e.g., whose tem-

poral properties may be based on randomly chosen delay values) is incrementally con-

structed. Each execution is, of course, potentially in�nite, and timing constraints specify

relationships with respect to this potentially in�nite set. When constraints (expressed

using event-logic) universally quantify discrete events, violations can be reported when a

particular instantiation of discrete events causes a constraint violation. Thus, violations

can be detected by analyzing a subset of the execution (e.g., a simulation in progress).

With existential quanti�cation, violations often cannot be reported because the events

that satisfy the constraint may not yet have occurred. We could report the satisfaction

of (and then dismiss) constraints with existentially quanti�ed events but in simulation

(i.e., for validation purposes) constraint violations are of primary interest.

We believe that constraint violations should be reported as soon as they can be

detected. Users should not have to decide when to analyze a partial execution for

constraint violations, nor should they be required to analyze a large \simulation dump"

that contains a list of constraint violations and a trace of the model's execution. In order

to understand a constraint violation, users may need to access internal data structures

and issue simulation queries. Thus, post mortem analysis is often either di�cult or

expensive (because a large amount of data must be stored) and we believe that users

often �nd it to be both awkward and wasteful as a constraint violation that occurs early

during simulation may render the results of further simulation meaningless.

OEsim thus supports interactive simulation and reports constraint violations as soon

as they occur. Unless directed otherwise, OEsim analyzes each partial execution for

constraint violations. One of the motivations for our restrictions with respect to tim-

ing constraint speci�cation in OEgraphs (see Section 3.2.2) was to enable the e�cient

analysis of constraint violations during simulation. Without our restrictions, analyzing

event-logic formulas after each new discrete event occurrence would have been extremely

ine�cient. Our restrictions allow OEsim to perform incremental constraint checking in

a more e�cient manner without in practice weakening the expressiveness of our speci�-

61

cation language for the purposes of timing constraint speci�cation.

4.2 Incremental Constraint Checking

Incremental constraint checking is a mechanism that allows constraint violations to be

reported as soon as they occur. The process is incremental, in that the timing constraints

are examined each time a new discrete event occurs, yet each constraint is only checked

once for each possible assignment of unique discrete events

1

. When a new discrete event

occurs, constraint violations are detected using a three step process:

1. Based on the characteristics of the newly occurring event, identify the constraints

which could possibly be violated. For each identi�ed constraint,

2. Check to see if there are other previously occurring discrete events which, together

with the newly occurring event, establish and satisfy the context of the constraint.

For each set of discrete events that satisfy the context,

3. Check to see if the requirement for the constraint is violated.

For example, in a simulation of Figure 4.2, let us assume that X events had previously

occurred at time 5 and 12 and that a new Y event occurred at time 17. The �rst con-

straint (\example1") would need to be checked because it universally quanti�es discrete

events which are occurrences of Y (i.e., the discrete name Y0 's restriction is the event

Y). The second constraint (\example2") only quanti�es events that are high transitions

on the wire W and would thus not need to be checked. We then instantiate Y0 to \Y at

17" and evaluate the context with X0 instantiated to \X at 5" and also \X at 12" and,

since in neither case is the context true, no constraint violation would be reported. If a

new X event then occurred at time 20, we would need to check the constraint again with

X0 instantiated to \X at 20" and Y0 instantiated to \Y at 17" and, since the context

1

Technically, if a constraint has more than one quanti�ed discrete event associated with the same

restriction, OEsim will evaluate the constraint multiple times when one or more of the quanti�ed discrete

events both instantiate the newly occurring event. In this case, detecting and removing this slight

duplication of e�ort would be more costly than simply repeating the analysis.

62

oe_wire W("W");
oe_event X("X");
oe_event Y("Y");
...
discrete_name X0("X0",X);
discrete_name Y0("Y0",Y);
discrete_name WH0("WH0",W ^ HIGH);
discrete_name WH1("WH1",W ^ HIGH);
...
oe_constraint example1("example1");
example1.quantify(X0,Y0);
example1.context(timeOf(X0) > timeOf(Y0));
...
oe_constraint example2("example2");
example2.quantify(WH0, WH1);
...

Figure 4.2: An OEgraph fragment containing two timing constraints

is true, we would report a constraint violation if the requirement was false. We now

examine each of these steps in more detail and present several important optimizations

which improve e�ciency.

4.2.1 Identifying which Constraints to Check

Whenever a new discrete event d occurs, the �rst step in checking for a constraint

violation is to determine a set of constraint/discrete name pairs which need to be further

examined. For each unique restriction r in the OEgraph, if id(d; r) is true, then we

need to examine each constraint containing one or more discrete names associated with

r. For our example, if a high transition on wire W occurs, then we need to check the

second constraint with WH0 instantiated to the new event, and with WH1 instantiated

to previously occurring high transitions on W (and vice versa, with WH1 instantiated

to the new event, and WH0 instantiated to previously occurring events).

If a constraint's context strictly orders the time of occurrence of two quanti�ed events

(e.g., the context requires �(Y 0) < �(X0)) then we can avoid checking the constraint

when the earlier event occurs, because we know that the context will be false (the later

event has not yet occurred). In our example, we can thus ignore new occurrences of

Y because we know a priori that there are no instantiations of discrete events which

can satisfy the context. This static optimization is easily implemented, we analyze each

63

constraint before running the simulation and detect which discrete names quantify events

that must occur before other quanti�ed events if the context is to be true. Note that we

can apply the optimization to constraints involving ancestry relationships (mra) because

an ancestor must always occur before its descendant.

The optimization can also be applied to constraints involving the chronological re-

lations (pco and nco) although in this case our checking methodology must be slightly

altered. These relations can be true if the two discrete events occur at the same time.

Thus, if the context of our �rst constraint was \nco(Y0 ;X ;X0)" we would know that

any X0 satisfying this context must occur no earlier than Y0 . We would like to evaluate

the constraint only after occurrences of X , but we need to ensure that every Y0 that

could satisfy the context has occurred. Thus, we delay the second step of our constraint

evaluation until all of the discrete events that will occur at a particular time stamp have

occurred. This is a slight deviation from our principle of reporting constraint violations

as soon as they occur, but in practice the optimization improves e�ciency and has little

adverse impact because it is uncommon for more than a few events to occur at the same

time.

4.2.2 Instantiating Discrete Events and Evaluating the Context

Conceptually, during simulation, we incrementally construct X

p

, a partial execution con-

taining every discrete event that has occurred. For each unique restriction r, we incre-

mentally construct the set of discrete events that are instances of r:

instances(r) = fd j d 2 X

p

^ id(d ; r)g

When a new discrete event d occurs, the �rst constraint checking step (described above)

provides a constraint/discrete name pair. The event d will be instantiated into the

given discrete name, and in the second step of constraint evaluation, we determine if

the context can be satis�ed by instantiating previously occurring discrete events into

the other discrete names speci�ed in the constraint. Thus, we need to examine each

element of instances(r) for every r corresponding to one of the other discrete names. All

64

combinations of instantiations are tried, and if the context is ever true, the requirement

is checked.

One problem with this approach is that the analysis takes an exponential amount of

time with respect to the number of discrete names that appear in each constraint. For ex-

ample, a constraint quantifying n occurrences of an eventX will require n(jinstances(X)j

n�1

)

context evaluations whenever a new X occurs. For example, if a constraint quanti�es

X0 , X1 , and X2 and a new X occurs at time 50 with previous occurrences at times 10,

20, 30, and 40, the constraint would require 25 evaluations with X0 instantiated to \X

at 50" and

X1 X2

Xat10 Xat10

Xat10 Xat20

Xat10 Xat30

Xat10 Xat40

Xat10 Xat50

Xat20 Xat10

�

�

�

Xat50 Xat50

A total of 75 new evaluations will result because we also need to evaluate the constraint

with X1 instantiated to \X at 50" and with X2 instantiated to \X at 50".

An optimization akin to lazy evaluation can easily be used to improve e�ciency. We

evaluate the context without fully instantiating each discrete name, i.e., in our exam-

ple, we could evaluate the context with X0 instantiated to \X at 50" and with X1

instantiated to \X at 10" and with X2 uninstantiated. If the evaluation of the con-

text returns false we can proceed by instantiating X1 to \X at 20", etc. | otherwise

(the evaluation returns true or maybe), we instantiate X2 to \X at 10" and proceed.

The choice of which discrete names to instantiate can be made either statically (e.g., in

the order they appeared when quanti�ed by the user) or by examining each constraint

and using heuristics to establish a good order (e.g., if the context for our example was

\nco(X0 ;X ;X2) ^ nco(X2 ;X ;X1)" our choice of instantiation order, e.g., X0 ;X1 ;X2 ,

65

would be a poor one, since X0 and X1 are not directly related to one another in the

context).

4.2.3 Other Optimizations

Other more sophisticated approaches could be implemented. One obvious method would

be to attempt to �nd which sets of discrete events satisfy the context. We are given a

constraint/discrete name pair and thus know one discrete name which is instantiated

with only one event (i.e., the given discrete name is instantiated to the newly occurring

event d). We could then attempt to �nd the other discrete event(s) that must be related

to this event if the context is to be satis�ed. For example, if the context contains

a pco relationship involving d, we could attempt to �nd the discrete event(s) that is

the previous chronological occurrence, and avoid the computationally expensive task of

stepping through every discrete event that is in instances(r)). Unfortunately, because

the context is a Boolean formula, this approach is essentially the Boolean satis�ability

problem (SAT) for which there is no e�cient solution (SAT is NP-complete). However,

in many cases, the context may simply be a series of conjuncted relationships, and

specialized strategies for these cases could result in e�ciency improvements.

The optimizations we have described help reduce the amount of time required for con-

straint checking. However, as the simulation progresses and new events occur, constraint

checking becomes more time consuming because more events need to be instantiated each

time a constraint's context is evaluated. This problem is related to another e�ciency

concern: the amount of space required to store past events in instances(r) and maintain

the directed acyclic ancestry graph. This is particularly troublesome in that larger sim-

ulations usually generate many events, and some events (e.g., clock edges) occur very

frequently. However, it should be pointed out that larger simulations (i.e., large OE-

graphs) are not inherently less e�cient to simulate. Timing constraints apply to a small

number of events, irrespective of graph size, and the e�ciency of the simulation engine

is related to the amount of parallelism inherent in the graph, not the graph size.

66

One approach to the problem of the simulation progressively slowing down due to

constraint checking involves discrete event removal. Discrete events can be removed from

instances(r) if it can be shown that they are no longer needed for constraint checking.

Before removing the discrete event, the ancestry information contained in the discrete

event needs to be pushed outward. Note that we can trivially avoid storing any event d

for which there does not exist a restriction r such that id(d; r) is true. Many constraints

involve simple chronological relationships that do not require storing complete histories

(e.g. instead of storing every clock edge, only the two most recent edges are stored since

they are the only ones involved in constraints). Thus, it might be possible to determine

a priori how many events need to be stored. With respect to causality, often only the

more recent causal chains are important, and in this case an event removal technique

akin to dynamic garbage collection could operate periodically and e�ectively prune the

ancestry graph. Optimizations of this nature have not been implemented in OEsim, and

need to be further explored.

4.3 An Illustrative Example

In this section, we present an example to illustrate the use of OEsim. We assume the

role of a designer needing to integrate a storage queue into a design. There are certainly

a large number of commercial ICs we could choose from, and in this example we will

use the Texas Instruments SN74LS222 FIFO. Ideally, a speci�cation for the chip would

already exist in a library of OEgraph speci�cations, and we would simply integrate it

into our design and begin prototyping. However, if the speci�cation is not in the library,

we will need to specify the chip before we can explore whether or not it is a suitable

choice for our design.

The ability to work at a high level of abstraction is quite desirable. We have no

knowledge of exactly how the SN74LS222 is implemented, and we wish to specify its be-

havior as quickly and as succinctly as possible. Our primary source of information will

be the databook speci�cation, part of which appears in Figure 4.3. The databook spec-

67

Figure 4.3: A portion of the databook speci�cation for the SN74LS222 16 element FIFO

storage bu�er (used by permission,
c

 1986 Texas Instruments, all rights reserved).

68

LD↑

LD↓

UN↓

UN↑

LD↓

UN↑

Dv

LD↓

LD↑

UN↑

UN↓

UN↓

LD↑

LD↓

60

15

30

30

50

50

50

MINto

C↓ C↑ 20

Timing Constraints

load (LD)

input-ready (IR)

data-in (D) data-out (Q)

unload (UN)

output-ready (OR)

reset (C)

Figure 4.4: The LS222 uses a 4 phase handshake and requires minimum separation times

for correct operation

i�cation is informal, and it is quite possible that errors will arise when the speci�cation

is formalized via OEgraphs. OEsim can be used to detect these errors and help iter-

atively re�ne the speci�cation, until its behavior (during simulation) corresponds with

the expected behavior of the LS222. A complete OEgraph speci�cation for the LS222

appears in the Appendix (see B.1), the input and output signals are shown in Figure 4.4.

Our speci�cation captures both functional and temporal properties. There are several

minimum delay separation constraints which must be respected if the circuit is to work

properly, and estimates for the minimum and maximum propagation delays for the cir-

cuit are obtained from the databook (our speci�cation makes use of a parameterized

timing constraint subroutine, \pulse min," which is used to simplify the speci�cation of

the timing constraints).

We use modularity to simplify the process of creating an additional instantiation of

the LS222 for our design. Our speci�cation, unlike the examples in Chapter 3, de�nes

a new operation class (a new library element), which can be instantiated into a design.

Both the timing constraints and the dependency arcs are encapsulated within the spec-

i�cation of the LS222 library component. For example, the LS222 only holds 16 data

69

LD1

IR1

D1 Q1

UN1

OR1

C

LD2

IR2

D2 Q2

UN2

OR2

Figure 4.5: Two LS222 chips connected together.

elements, but is composable | we can obtain a 32 element FIFO by joining two of the

chips together (see Figure 4.5). The complete speci�cation appears in Figure 4.6 | we

simply instantiate two instances of the LS222.

include "runtime.h"
include "LS222.h"
oe_wire not_CLR("not_CLR");
oe_wire LD1("LD1");
oe_wire D1("D1");
oe_wire IR1("IR1");
oe_wire Q1_D2("Q1_D2");
oe_wire OR1_LD2("OR1_LD2");
oe_wire UN1_IR2("UN1_IR2");
oe_wire UN2("UN2");
oe_wire OR2("OR2");
oe_wire Q2("Q2");

main(int argc, char* argv[]) {

oe_operation_sn74ls222 fifo1("fifo1",
not_CLR, LD1, UN1_IR2, IR1, OR1_LD2, D1, Q1_D2);

oe_operation_sn74ls222 fifo2("fifo2",
not_CLR, OR1_LD2, UN2, UN1_IR2, OR2, Q1_D2, Q2);

oesim(argv[0], options(argc,argv));
}

Figure 4.6: The OEgraph speci�cation for two LS222 chips connected together. Note

that the speci�cation simply instantiates two copies of the LS222 chip (see Appendix

B.1). The timing constraints are encapsulated within the speci�cation of the LS222

library component.

A simulation log demonstrating the use of the LS222 (e.g., containing requests to

load and unload the queue) appears in the Appendix, see B.2. The simulation reports a

timing constraint violation: the data being moved from the �rst chip to the second (signal

70

D2 Q1) is not valid 50 nanoseconds before the signal to load the second chip is issued

(OR1 LD2 is lowered). This constraint violation indicates that a simple composition of

the two chips will not always work correctly. Indeed, the databook speci�cation shows a

schematic diagram of two chips being interconnected and includes a 10 nanosecond delay

element inserted between the two interior signals (OR1 and LD2) which apparently solves

this problem. We can easily insert this delay element into our speci�cation and observe

that the simulation does not report any constraint violations.

This, of course, does not guarantee correct operation of our new design. We would

need to exhaustively simulate the circuit for every possible propagation delay using a

comprehensive set of environmental stimulii (e.g., choosing load and unload requests

that fully exercise the circuit). Alternatively, we could use formal veri�cation techniques

(the subject of the next two chapters) to detect the original problem and verify that the

proposed solution is correct. This is precisely the approach taken by [Martello et al. 90]

from which we have taken this example. We should point out, however, that veri�cation

is not a substitute for simulation. Simulation allows us to validate our speci�cation

and to understand how to use the LS222 in our design. One other interesting result

of simulation is the discovery that the timing constraints for the composed circuit are

not identical to that of a single LS222. For example, in the original circuit, a request to

unload the FIFO must occur at least 50 nanoseconds after a load request. This constraint

must be satis�ed for each LS222 in the composed circuit, and thus an unload request

(to the second FIFO) occurring 75 nanoseconds after a load request (to the �rst FIFO)

may lead to a timing constraint violation, because the load (of the �rst FIFO) may

generate an internal request to load the second FIFO. This request incurs a propagation

delay with respect to the original load, and thus the two signals (the load and unload

request for the second FIFO) can be too close together. Thus, although the circuit will

work correctly (if the load and unload requests are su�ciently separated), the timing

constraints do not compose modularly as one might assume.

71

4.4 Discussion

We have used OEsim to describe a wide range of examples derived from real circuits

or extracted from the speci�cation and synthesis literature | the largest being the

speci�cation and simulation of the Intel Multibus (see [Amon et al. 91]) for which

we were able to include all of the constraints described in the databook speci�cation,

many of which can not be expressed using more restrictive event-based speci�cation

languages (such as the event-graphs of [Borriello 88b]). At the University of California

at Berkeley, OEsim has been used to represent and simulate the abstract interfaces of

complex components that are interconnected on a printed circuit board or multi-chip

module (see [Sun & Brodersen 92]). A modi�ed form of our restricted event-logic has

also been incorporated (see [Ortega 92]) into the heterogenous simulation framework of

Ptolemy [Buck et al. 91] to support the speci�cation and checking of timing constraints

when working within its event-driven simulation domain.

We have not analyzed the performance of OEsim in detail, but have found it to

be e�cient and capable. Most timing constraints require a separation time between

two events, and thus many timing constraints contain only two quanti�cations because

a simple chronological or causal relationship is su�cient to identify the events being

constrained. When speci�cations contain mostly events (and not wires) it is often the

case that only two events will need to be quanti�ed since the constrained events can be

referred to by name. When timing constraints apply only to some transitions on signal

wires, timing constraint speci�cation is often more di�cult since the events must be

identi�ed via complex contexts (which often quantify additional events). This point was

illustrated by the Ethernet example in Chapter 3 which also demonstrates (see constraint

\c2" in Appendix A.2) that, in some cases, a large number of simple constraints can be

equivalently expressed as a single more complicated constraint (e.g., 63 constraints that

quantify 3 events vs. one constraint that quanti�es 4 events).

OEgraphs were designed with simulation in mind. A clear simulation semantics was

a requirement for all the features of the model. An important goal consisted of modeling

72

general timing constraints expressed using both chronological and causal relationships.

The challenge was ensuring that the calculus used for timing constraint speci�cation had

a clear simulation semantics and would support incremental constraint checking. This

was accomplished by restricting the event-logic and adding the three new primitives

(mra, nco, and pco). OEsim was developed to help explore the operation-event graph

speci�cation paradigm, and faithfully adheres to the underlying semantics of OEgraphs.

For example, when multiple events occur at the same time, OEsim randomly chooses

which event to remove �rst from the event calendar in the simulation engine.

OEsim, as illustrated by our example, supports both modularity and encapsulation

and constitutes a useful design automation tool for prototyping, especially when temporal

relationships must be speci�ed and taken into account. A novel feature is its support for

both operational and denotational speci�cations, and its ability to check for consistency

between the two speci�cations during simulation. Timing constraints need to be formally

speci�ed, and OEgraphs provide a more structured and natural methodology as opposed

to the current ad-hoc approach of simply hand-coding an operational speci�cation to

look for and report constraint violations. It is unlikely that OEsim or a derivative will

soon be adopted by the design community (due to the popularity of VHDL, Verilog,

and other existing HDLs for which simulators have been built). However, the inherent

strengths of the operation-event graph paradigm and the practicality of validating such

speci�cations using simulation have been demonstrated.

Chapter 5

Veri�cation

Veri�cation is a procedure that compares two formal speci�cations. In some cases, one

speci�cation represents a design and the other speci�es properties that need to be veri�ed.

Frequently, the speci�cations represent designs at two di�erent levels of abstraction, i.e.,

a design speci�cation is compared to a design implementation. Veri�cation techniques

are then used to establish that the implementation satis�es the requirements de�ned

by the speci�cation. For example, in combinational logic veri�cation (see [Bryant 86]),

the Boolean function that speci�es the functionality of a piece of combination logic is

compared with the gate level implementation (see Figure 5.1).

f(a,b,c) = a b + b c

a
b

c

Figure 5.1: Veri�cation is a formal procedure in which two speci�cations are compared.

For example, we could formally prove that the combinational logic on the right imple-

ments the functionality of the Boolean equation on the left.

Veri�cation is inherently a more di�cult problem to solve than validation. In val-

idation, a speci�c instance of behavior exhibited by the speci�cation is generated. In

veri�cation, all possible behaviors of the speci�cation must be taken into account. For

74

example, in Figure 5.1 we could observe that the Boolean function and the circuit imple-

mentation have the same output value (zero) when all of the inputs are assigned to zero.

In order to formally verify that the circuit and function are equivalent, we need to check

and make sure that the outputs of both are identical for every possible combination of

input values. Unfortunately, even for simple veri�cation problems like this one (e.g.,

there is a discrete set of input values and we have ignored temporal issues) exhaustive

simulation is not computationally feasible because of the large number of computations

which must be performed (i.e., given n inputs there are 2

n

possible input assignments).

In this remainder of this chapter, we examine three very di�erent methodologies that

can be used to help automate the process of design veri�cation: symbolic simulation,

interactive proof managers , and exploration of state space. We then discuss and examine

interface timing veri�cation, the focus of the subsequent two chapters.

5.1 Symbolic Simulation

One general technique for performing veri�cation is based on exhaustive validation (sim-

ulation). Symbolic variables are used to represent multiple input values or ranges of

operating conditions. In one simulation, a symbolic simulator can compute results that

would require many simulation runs using a conventional simulator because each input

would need to be completely speci�ed.

This technique is quite adequate for verifying combinational logic circuits [Bryant

86]. A Boolean function is obtained from the gate-level implementation via symbolic

simulation, and veri�cation is successful if the resulting function is equivalent to that

of the speci�cation. If propagation delays of the gates are taken into account, hazards

can be detected using a symbolic simulation technique in which the propagation delays

are considered to be symbolic variables (see [Ishiura et al. 89]). A related technique

involves the use of an extended value system, in which special values are used to indicate

unknown or indeterminate values (e.g., the value X is used to indicate inputs which are

either zero or one). Veri�cation tools based on this methodology can disregard aspects

75

of the design which are not important (e.g., in some cases data values can be ignored if

only temporal correctness is being veri�ed). This approach has been used to improve the

e�ciency of veri�cation techniques for synchronous systems (see [Bryant & Seger 91]).

Due to the inherent complexity of veri�cation, some veri�cation tools are incom-

plete, in that they verify a design's speci�cation against an incomplete set of all possible

behaviors of the implementation. Incomplete veri�ers formally compare the results of

simulation with the design speci�cation. If some of the inputs (such as data) are not

fully speci�ed, and some support for symbolic simulation is included, these tools can

analyze a large set of system behaviors.

Most incomplete veri�ers (e.g., SCALD [McWilliams 80], and TDS [Kara et al. 88])

provide little support for specifying and verifying temporal properties other than simple

setup and hold constraints. One incomplete veri�er that supports a more expressive

speci�cation language is CLOVER [Doukas & LaPaugh 91], which uses an event-based

speci�cation language (ATCSL) that relies on event indexing to identify the discrete

events being constrained.

OEsim could be classi�ed as a veri�er because it compares two di�erent speci�ca-

tions: the operational speci�cation described by the operation-event graph, and the

denotational speci�cation described using event-logic. It is an incomplete veri�er, be-

cause it only examines a very small subset of all possible behaviors (namely, the one

begin simulated). In fact, most simulation and analysis tools could be classi�ed as in-

complete veri�ers, and the use of the term `veri�cation' in this context is somewhat

misleading. Incomplete veri�ers cannot be used to formally argue for the correctness of

a design because the complete set of system behaviors is never examined or taken into

account.

5.2 Interactive Proof Managers

Another misleading term: theorem provers, is used to describe a general class of veri�ca-

tion tools that establish the correctness of a design through the use of formal theorems

76

and proofs. Ostensibly, theorem provers are given a theorem and then automatically de-

termine whether or not this theorem is true (e.g., they prove that \implementation)

specification", where implementation and specification are formal mathematical

statements describing the speci�cation and implementation of the design).

In practice, theorem provers are essentially proof managers that help users manage

the complexities of a proof which is constructed by hand. They are highly interactive,

and help users decompose large proofs into smaller manageable components. Once users

are familiar with the formal syntax and semantics that the prover supports, they are

able to easily construct new proofs (at the same level of abstraction) using techniques

learned from experience, as well as templates and tactics that were used in previous

proofs. Learning to use a theorem prover requires a signi�cant investment of time and

energy. Therefore, most individuals use only one theorem prover. Although the formal

di�erences between the various provers are in many cases well understood, there is little

practical di�erence between them. Theorem provers used for circuit veri�cation include

HOL [Gordon 88], LP [Garland & Guttag 89], LAMBDA [Fourman 90], and Boyer-Moore

(see [Hunt 85]).

The primary advantage of this approach to veri�cation is the
exibility and expres-

siveness of the speci�cation paradigm. Temporal issues can be fully taken into account,

and complex circuits can be veri�ed through the use of modularity and abstraction. The

primary disadvantage, of course, is that the techniques are not fully automated, and

require a large investment on the part of the user.

5.3 Exploration of the State Space

One way to examine the space of all possible system behaviors is to explicitly generate

a description of the state space and then examine this description in order to verify

properties of the system. For example, reachability analysis can be used to determine

whether or not anomalous behavior can arise (e.g., \Can signal x ever go high without

y having previously gone high?"). This methodology has been used for a variety of

77

veri�cation tools. The major limitation is that the state exploration algorithms become

computationally infeasible as the number of states becomes very large.

One well known approach, model checking, veri�es properties expressed using tempo-

ral logic. For example, [Burch et al. 90] use the temporal logic CTL [Dill & Clarke 85] to

verify properties of sequential circuits. Recent work in this area relies on symbolic state

encoding using Binary Decision Diagrams (BDDs) [Bryant 86]. This allows systems with

large numbers of states to be veri�ed (e.g., systems with 10

20

or in some cases even 10

120

states [Burch et al. 91]). Model checking has typically been used to verify systems in

which propagation delays between circuit elements do not vary and are assumed to be

unit delays.

Many veri�cation problems can be expressed and solved using algorithms for lan-

guage containment. In this approach, a formal language is used to express both the

speci�cation and the implementation. Trace theory has been used quite succesfully to

verify speed independent asynchronous circuits [Dill 88], and in [Burch 92], timed asyn-

chronous circuits are veri�ed using extensions to the veri�er of [Dill 88]. Finite automata

are used to specify the sets of acceptable traces, and the veri�cation algorithms are also

state based.

Another approach to the veri�cation of systems with variable propagation delays is

based on the idea of bifurcation. This technique creates a state transition graph, but

only creates new states when the operation of the system will change based on di�erent

choices for propagation delays. Examples of this approach are [Devadas et al. 92] and

[Martello & Levitan 93].

5.4 Timing Veri�cation

Timing veri�cation is able to provide guarantees about the temporal behavior of a system

and is thus very useful in design synthesis, because these guarantees can be used to help

guide the process of transforming a design from an abstract speci�cation into a realizable

implementation. Implementations need to meet a given standard of performance (e.g.,

78

operate fast enough) while minimizing implementation costs (e.g., power consumption,

area, etc.). Guarantees about timing behavior are quite valuable because designs usually

have a great deal of freedom with respect to temporal behavior. Timing information can

help ensure that resources are only allocated where they are needed. If performance

constraints can be met without additional resources, they should not be unnecessarily

wasted.

Many design tools have been created to help analyze the performance of a design with

respect to its timing behavior. For example, tools exist to help determine the rate at

which a circuit can be clocked, or if the setup and hold time constraints will be satis�ed.

Although these tools can be considered veri�ers, they are usually referred to as timing

analyzers. Most work at low levels of abstraction, e.g., on combinational or sequential

logic circuits. Because of the very limited semantics of both the system and the behavior

that is veri�ed, analytical techniques which do not require state-based exploration or

symbolic simulation often su�ce. Some of these tools require human assistance (e.g., in

CRYSTAL [Ousterhout 85] users need to identify the direction of current
ow for some

transistors) but most are fully automated. Many interesting problems with respect to

timing analysis have been explored (e.g., the false-path problem, see [McGeer & Brayton

91]) and we will not attempt to further categorize work in this area.

Our interests with respect to timing analysis are in the area of interface veri�cation,

which relies on event-based abstractions as opposed to gates and transistors. The events

of the system being veri�ed (e.g., an interface between a processor and a memory chip)

correspond to system activities and logic transitions (e.g., clock edges, time intervals

of valid addresses on busses, positioning of read and write strobes, etc.). Interface

veri�cation algorithms attempt to determine minimum and maximum separation times

between system events given the propagation delays of the speci�ed system (e.g., to

verify that data will appear on the bus shortly after a read request). An event graph

(see Section 2.3) is used to capture the events and propagation delays of the system.

Shortest path algorithms have been used to solve problems that contain only linear

79

constraints, e.g., [Borriello 88b] and [Brzozowski et al. 91]. Both [McMillan & Dill 92]

and [Vanbekbergen et al. 92] provide an overview of the various types of event graphs and

timing constraints for which veri�cation algorithms have been developed (both authors

present algorithms for handling non-linear constraints).

Most of the analysis in this area has dealt with acyclic event graphs, and unfortu-

nately even apparently simple classes of veri�cation problems are NP-complete [McMillan

& Dill 92]. In [Martello et al. 90] a cyclic system representing the LS222 of Section 4.3

is veri�ed, but the veri�cation technique is of limited applicability due to a restricted

semantics that requires systems to be speci�ed using a very simple event-graph.

In the next two chapters, we explore two di�erent interface veri�cation techniques

based on the event-based speci�cation paradigm. In Chapter 6 we present a veri�cation

tool for a restricted class of operation-event graphs and event-logic. The most inter-

esting aspect of this work is that the veri�er supports the use of symbolic variables

for representing propagation delays and timing constraints. In Chapter 7 we present

a fundamental timing analysis problem that is a prerequisite to extending the work of

Chapter 6 to handle more complex concurrent systems.

Chapter 6

Symbolic Timing Veri�cation

Symbolic timing veri�cation is a powerful extension to traditional constraint checking in

that it allows propagation delays to be bounded by variables as well as �xed values. The

veri�er then determines actual allowable delay bounds | constraints on the values of

the variables, taking into account the interface, throughput, and latency constraints (see

Figure 6.1). Veri�cation of this sort is valuable for timing-directed synthesis algorithms

because it provides a clear picture of how changes to a speci�cation a�ect both per-

formance and constraint satisfaction. If propagation delays are fully speci�ed, but the

timing constraints are expressed using symbolic variables, veri�cation can be thought of

as an analysis procedure because it will determine the constraints on performance that

can be satis�ed.

In this chapter, we present an approach to symbolic timing veri�cation using con-

straint logic programming techniques. Our veri�cation tool handles a small subset of the

OEgraph speci�cation language presented in Chapter 3. Unfortunately, formal timing

veri�cation is a di�cult problem, and the expressiveness of OEgraphs makes verifying

a general speci�cation intractable. By restricting the functionality (i.e., via a �xed set

of operations) and by restricting the timing constraint syntax and semantics, timing

veri�cation is feasible.

81

⇒ “yes” or “no”Specification

20

15
6–12

42

13
1

19

7
14–30

Timing Constraints

² 14

² 600
³ 10

= 13

² 45³ 0

³ 30
= 20

+

⇒ “yes if. . .” or “no”Specification

20

15
6–12

X

13
Y

19

7
L–H

Timing Constraints

² 14

² P
³ 10

= 13

² 45
³ 0

³ 30
= 20

+

constraints on variable values,
including relationships between variables

Figure 6.1: Timing veri�cation traditionally (top) provides a \yes" or \no" answer to

the question: \Will every execution of the speci�cation always satisfy the timing con-

straints?" If symbolic variables are used for propagation delays and/or timing constraints

(bottom), veri�cation will be dependent upon the value of these variables, and might be

successful only if some of these variables are constrained.

6.1 Veri�cation Model

We model our behavioral speci�cations using a bipartite directed graph whose two node

types are events and operations . Events serve as reference points for timing relation-

ships, and operations encapsulate di�erent ways to interconnect events. Events can

represent changes in logic level on circuit wires (from a structural perspective) or data

and control
ow in a hardware description language (from a behavioral perspective).

Operations represent circuit functionality by taking events as inputs and determining

which event outputs to generate. For the purposes of timing veri�cation, we use a subset

of operation-event graphs consisting of �ve basic types of operations and each type has

a �xed indegree/outdegree and a simple semantics (see Figure 6.2).

delay operations model the passage of time. Each occurrence of the output event is

delayed by some real number in the closed interval [d;D], where d and D are either

integers or integer variables, constrained such that 0 < d � D.

82

parallel-branch and parallel-join operations are used to model the initiation and com-

pletion of parallel activity. A branch immediately causes both output events to

occur; a join waits for both input events before immediately causing the output.

conditional-branch and conditional-join operations are used to model non-deterministic

choice, a branch immediately causes one of the two output events to occur after

the input event occurs; a join waits for either input to occur before immediately

causing the output event.

delay (parameterized by [d, D]):
 if (trigger==in)
 cause(out, uniform_random(d, D));

in

out

delay

in1 in2

out

in

out2

branch

out1

conditional branch:
 if (trigger==in) {
 if (uniform_random(0,1)==0)
 cause(out1,0);
 else cause(out2,0);}

parallel branch:
 if (trigger==in) {
 cause(out1,0); cause(out2,0);}

join

conditional join:
 if (trigger==in1 || trigger==in2)
 cause(out,0);

parallel join:
 if (trigger==in1 || trigger==in2) {
 if (flag) {
 cause(out,0); flag = FALSE; }
 else flag = TRUE; }

Figure 6.2: Our veri�cation model consists of �ve basic types of operation nodes. A

fragment of the OEgraph operation code for each operation is shown.

The events (E) and the operations (O) are connected in a bipartite graph (G) to

form a single process (the cyclic graph). All events have an indegree and an outdegree of

one, and the graph is strongly connected. A process is a useful construct that restricts

control
ow by disallowing multiple activations of an operation, i.e., when an input to a

delay operation occurs, another input cannot arrive before the output occurs. We also

83

require the graph to be series-parallel , i.e., every branch has a matching join of the same

type (conditional or parallel), and there is an event in the graph such that on every

forward path back to the event, if a join is visited, then its matching branch must have

already been visited (see Figure 6.3).

Figure 6.3: The graph on the left is not series-parallel. Our veri�cation model requires

graphs to be series parallel, like the graph (process) on the right.

6.1.1 Timing Constraints

Timing constraints specify minimum and maximum separation times between events in

the graph, and are expressed using a very restricted form of the event-logic notation in-

troduced in Section 3.2.2. Formally, a constraint is a 5-tuple: hfrom ; to; type; comp; sepi,

where:

from and to are events and elements of E,

type is used to specify which discrete occurrences of from and to are being constrained,

i.e., type 2 fmra ; nco; pcog,

84

comp speci�es the separation time comparison operator, i.e., comp 2 f�;�;=g,

sep is either an integer or an integer variable.

The formal semantics of each constraint is de�ned using an event-logic formula:

1

8f 8t Identify) (Context) Requirement)

where

Identify = (event(f) = from) ^ (event(t) = to)

Context =

8

>

>

>

>

<

>

>

>

>

:

nco(f; to; t) if type = nco

pco(t; from; f) if type = pco

mra(t; from; f) if type = mra

Requirement = (�(to)� �(from) comp sep)

6.2 Veri�cation Methodology

Given a graph G and a set of constraints we need a veri�cation methodology capable of

answering the fundamental question: \Will all of the constraints be satis�ed during every

execution of G?" Furthermore, the veri�cation technique must operate symbolically so

that the symbolic variables used in specifying propagation delays and required separation

times (i.e., d, D, and sep) are taken into account.

One obvious approach to veri�cation would be to examine each constraint and de-

termine whether or not it will be satis�ed during any execution of G. The presence of

symbolic variables could result in an inequality (involving some of the variables) that

must be met if veri�cation is to be successful. If there is no feasible solution to the

entire set of inequalities generated from all of the constraints, veri�cation would fail.

Unfortunately, the inequalities may be non-linear (due to the presence of minimum and

1

This is a very small subset of the restricted logic discussed in Section 3.2.2. Only two discrete events

appear in each constraint, they are related via a simple nco, pco, or mra relationship, and the requirement

speci�es a minimum or maximum separation time between occurrences of the two events.

85

maximum functions introduced by the conditional and parallel branches) and thus de-

termining whether or not there is a feasible solution is non-trivial. The methodology we

present in this chapter combines these two steps (generating inequalities and looking for

a feasible solution) into a single integrated approach.

We use a constraint transformation technique which reduces timing constraints to

other simpler constraints and possibly one or more additional linear inequalities. The

transformation strategy essentially consists of a list of rules which specify how to decom-

pose constraints. The methodology is best understood via an example.

6.2.1 Delay Operations

Only two basic transformation strategies (rules) are used for constraints with a to event

(recall that constraints are of the form hfrom; to; type; comp; sepi) that is the output

of a delay operation. The strategies do not need to take the constraint type into ac-

count because the di�erent semantics are identical with respect to constraints span-

ning delay operations. The strategies do vary based on the constraint comparison. We

present the rules used for a maximum separation time constraint, i.e., given a constraint

hfrom; to; type;�; Xi

1. If there is a delay operation with input from and output to, i.e.:

from

to

delay [d , D]

then transform the constraint into the inequality D � X .

2. Else if there is a delay operation with input other and output to, i.e.:

86

other

to

delay [d , D]

then transform the constraint into the inequality D + T

1

� X and the constraint

hfrom; other ; type;�; T

1

i (the variable T

1

is a new symbolic variable created as a

result of this transformation).

Now consider a graph consisting only of delay operations, e.g., the graph in Figure 6.4,

and the constraint ha; c; type;�; 20i. The second rule will be applied �rst yielding the

inequality: D

b;c

+ T

1

� 20, and the new constraint: ha; b; type;�; T

1

i. This new con-

straint is transformed by the �rst rule into the inequality: D

a;b

� T

1

. We can then

report a symbolic result by removing internal variable T

1

(i.e., D

a;b

� T

1

� 20 �D

b;c

)

yielding: D

a;b

+D

b;c

� 20. Of course if these delays are speci�ed as integers and not as

symbolic variables, we can report whether or not this inequality is true (and thus wether

veri�cation is successful).

a

b

delay [da,b , Da,b]

c

delay [db,c , Db,c]

delay [dc,a , Dc,a]

Figure 6.4: A graph consisting of three delay operations

87

6.2.2 Implementation

Our symbolic timing veri�er based on this methodology has been implemented using a

constraint logic programming language. See [Cohen 90] for a comprehensive introduction

and overview of this programming paradigm. We chose the language CLP(R) because

it provides an ideal framework for exploring this methodology. CLP(R) incorporates an

incremental version of the standard simplex linear programming algorithm and a goal

based programming language akin to Prolog. Its use has enabled us to focus attention

on the veri�cation rules instead of the mechanics of the symbolic linear programming,

uni�cation, and search/backtracking aspects of the methodology. It is possible that a

more e�cient version of the veri�er could be constructed but the version of CLP(R) that

we have used [Ja�ar et al. 92] has proven to be quite adequate.

The veri�cation tool takes as input a description of the process and a list of constraints

to be veri�ed. An initialization step constructs data structures that will be used by

some transformation rules (e.g., information from static graph analysis) and adds default

constraints requiring all delay range minimums to be greater than zero, and all delay

range maximums to be greater than or equal to their respective minimums (i.e., 0 < d �

D).

The veri�er currently consists of over 2500 lines of CLP(R) code implementing well

over one hundred transformation rules. A large number of rules are needed to account for

the quality of the veri�cation tool (i.e., its ability to detect and correctly process complex

behaviors), the di�erent types of operations (and the resultant behaviors which they

allow), and the di�erent types of constraints and their semantics. Much of the complexity

is due to extensions to the basic operations which will be discussed in Section 6.4. Some

of the complexities arise due to the formal semantics of our constraints, others arise due

to the inherent complexity of the constraint with respect to the functional speci�cation

(e.g., a constraint from an event in one side of a parallel branch to an event on the other

side).

88

6.2.3 Transformation Rules for Join and Branch Operations

In this section, we present additional rules which demonstrate some of the features of

our approach and a few of the subtle issues that the rules must take into account.

In Chapter 3 we argued that both chronological and causal relationships are needed

to support timing constraint expression. Most of the rules are dependent upon the type

of relationship used to identify the discrete events being constrained. Thus, most of

the rules apply only for constraints of a speci�c type (nco, pco, or mra). The easiest

type to deal with is the mra because it constrains pairs of events based on ancestry

(causal) relationships, and thus the constraints correspond directly to paths in the graph.

The chronological relationships (nco and pco) require, in general, more sophisticated

reasoning.

These two types are used to specify how constraints are interpreted in execution

sequences such as: a; a; a; b; b; b (i.e., three discrete occurrences of a followed by three

discrete occurrences of b). An nco constraint from a to b would constrain every a with the

next chronological occurrence of b, i.e., the time of the �rst occurrence of b is important

and the times of the second and third occurrences of b are irrelevant. A pco constraint

from a to b would constraint the previous chronological occurrence of an a with respect

to every occurrence of b, i.e., the time of the last (third) occurrence of a is important

and the times of the �rst and second a's are not relevant.

The rules for a conditional branch/join are quite dependent upon whether the con-

straint is an nco or a pco. Recall that the conditional branch is nondeterministic, and

therefore it is unknown to the veri�er which of the two branches will be taken for a

particular pass through the branch. This makes it impossible to verify a constraint

hfrom; to; nco;�; sepi when from is outside the branch/join and to is inside on either

the left or right side of the conditional operation. The constraint requires a maximum

separation time between every from and the next chronologically occurring to, but there

is no guarantee that when the conditional branch's input event occurs that it will lead to

the event to (i.e., the other side of the branch could be chosen). Thus, there is no upper

89

bound on the separation time (a minimum time separation/lower bound can easily be

obtained). A similar rule applies to pco constraints when from is inside the conditional

branch/join and to is outside.

At present, our veri�cation methodology is restricted to handling non-deterministic

conditional branches. Ideally our model should make use of additional information re-

garding when and how often a branch is taken in order to properly verify more complex

systems. However, even if these extensions are implemented, there is clearly a di�erence

between the nco and pco relationships that must be taken into account.

We now consider transformation strategies for constraints whose to event is the out-

put of a parallel join operation. Two di�erent transformation rules are used, depending

upon whether or not the from event is inside or outside the parallel branch.

Given a constraint hfrom; to; nco;�; Xi if there is a parallel join operation with out-

put to, and if from is outside of (and not the input event to) the matching parallel

branch, i.e.,

branch (parallel)

join (parallel)

from

to

top

left-branch right-branch

left-join right-join

90

then (assuming the other events are named as in the diagram) transform the constraint

hfrom; to; nco;�; Xi into:

1. the constraint hfrom; top; nco;�; T

1

i

2. and either:

the new inequality T

1

+ T

2

� X , and

the new constraint hleft-branch; left-join; nco;�;T

2

i.

3. or alternatively:

the new inequality T

1

+ T

3

� X , and

the new constraint hright-branch; right-join; nco;�;T

3

i.

Since to will not occur until both right-join and left-join occur, a minimum separation

time may be ensured even if only one path is su�ciently slow. This represents an implicit

choice for the veri�er, which must determine which path to constrain. If veri�cation is

successful (i.e., the path can be slowed down without adversely a�ecting the veri�cation

of other constraints) it need not constrain or examine the other path. If veri�cation fails

(i.e., slowing the path down is not possible) the other path will need to be examined,

and the veri�er will need to backtrack.

The constraint could be expressed as an inequality involving a maximum function

(e.g., the maximum of the two path delays must be su�ciently large). The veri�cation

problem is thus inherently nonlinear, although it can be formulated as a potentially ex-

ponential number of linear programming problems. Our methodology relies on a search

paradigm | the search space being the many linear solutions to the non-linear formula-

tion. Our approach is more e�cient than the alternative generate and test methodology,

which converts constraints into nonlinear inequalities and then solves each expansion of

the nonlinear inequalities until a solution is found or all expansions fail. In our method-

ology, an incremental linear programming algorithm is used. This means that solutions

which fail can be detected without requiring a full expansion of the nonlinear inequalities

(i.e., failure can occur even if many of the constraints have not yet been transformed).

91

This early termination can prune large segments of the search space for which there is

no solution. The incremental transformation process is also easy to understand (and

extend) since it consists of a small number of simple rules used for di�erent constraint

semantics and di�erent operations.

Returning to our constraint, we now consider the case where from is inside the branch

(without loss of generality we will assume it is on the left branch), i.e.,

branch (parallel)

from

top

left-branch right-branch

join (parallel)

to

left-join right-join

then (assuming the other events are named as in the diagram, and from is not equal to

left-branch or left-join) the constraint hfrom; to; nco;�; Xi is transformed into:

1. the new constraints:

hright-branch; right-join; nco;�;T

1

i,

hleft-branch; from; pco;�;T

2

i, and

hfrom ; left-join; nco;�;T

3

i

92

2. and either:

the new inequality T

1

� T

2

+ T

3

, and

the new constraint hfrom; left-join; nco;�;X i.

3. or alternatively:

not(T

1

� T

2

+ T

3

), i.e., this inequality must fail, and

the new inequality T

4

+ T

1

� (T

2

+ T

3

) � X , and

the new constraint hfrom; right-join; nco;�;T

4

i.

The rule for when from is inside the parallel branch uses two strategies: if right-join

will always occur earlier than left-join (occurring via from) then the constraint may be

transformed into a constraint from from to left-join, otherwise we must take into account

how much later right-join could occur with respect to left-join. One interesting aspect of

this rule is that the original nco constraint is transformed into a number of constraints,

one of which is a pco. This is necessary since from could be inside an inner fork and the

constraint hleft-branch; from; nco;�;T

2

i would then fail and lead to veri�cation failure

even though the original constraint can be sucessfully veri�ed (because we are assuming

that a from event occurred).

6.2.4 Zero Delay Semantics

Constraints that span operations with zero delay (e.g., branch and join) create addi-

tional problems for our veri�cation methodology because of our choice of semantics. For

example, consider the constraint: ha; b; nco;�; 10i with respect to the process graph of

Figure 6.5. Although it would be natural to assume that this constraint is trivially

satis�ed because there is no delay in the parallel branch operation which generates a

b after seeing an a, the constraint is in fact not satis�ed and veri�cation should fail.

The problem is that our notion of \next chronological occurrence" is based solely on the

times at which the discrete events occur. Since a and b occur at the same time, our

formal de�nition of nco (see Section 3.2.2) concedes that the order of a and b cannot be

93

disambiguated and thus the next b with respect to a might in fact be interpreted as a

later occurring b. Since there is no guarantee that the next b will occur within 20 time

units (because of the delay before event a) the constraint fails.

[5,10]

(parallel)

(parallel)

branch

join

c

b

a

delay

delay[5,30]

Figure 6.5: A simple process graph used to illustrate problems with regards to our formal

semantics and operations with zero delay such as the parallel branch and the parallel

join.

Although this result is unexpected, it is consistent with our semantics and our decision

to base the semantics only upon the times of the event occurrences, and not on the

notion that a caused b. Other semantics (e.g., mra) are used for expressing constraints

between events that are causally related. A problem, however, develops with regard to

the constraint ha; c; nco;�; 20iwhich is clearly satis�ed. Our methodology will essentially

transform this constraint into the constraint ha; b; nco;�; 10i which, as we have just

discussed, fails.

The problem is that we have lost temporal information, namely that some delay

between a and c exists, when we transformed the constraint from a to c into the constraint

94

from a to b. One solution to this problem would be to require branch and join operations

to also incur some non-zero delay and to incorporate this delay into our transformation

rules. However, zero delay elements are very valuable because they support modularity

(i.e., the ability to hook two components together) and abstraction. Many speci�cation

languages support the speci�cation of zero delay elements. Zero delay semantics are often

quite subtle (e.g., see [Ishiura et al. 90]) yet removing them can create other problems.

For example, the language VHDL does not support a zero time delay. This has caused

problems for translation schemes from domain speci�c application languages with zero

time delay into VHDL [Vahid & Gajski 91].

Our solution to this problem is to create additional rules to handle constraints when

the from event is an input to a zero delay operation. In these cases, the constraint is

analyzed with respect to the graph topology to determine if a zero delay path to the to

event exists. Based on this analysis, the constraint is then appropriately transformed.

6.3 Example

We now present results of symbolic timing veri�cation to demonstrate the types of anal-

ysis which can be performed using the rules discussed above. Our veri�cation tool is

asked to verify a single constraint: hg; a; nco;�; 30i with respect to the process graphs

shown in Figure 6.6.

Two di�erent sets of propagation delays were used. The solution to the �rst set of

propagation delays (shown on the left) is a linear inequality, D

g;h

+ D

j;k

+D

m;a

� 30,

that closely resembles the constraint being proven, in that the delay operations along

the path from g to a are constrained. This solution was obtained by detecting that k

will always occur after l (when k occurs via g).

The second solution (for the graph on the right) is an inequality, d

b;c

� 20, that

speci�es a minimum bound for the delay operation connecting b to c. This result is

not intuitively obvious, because the delay operation from b to c is not on the path from

g to a, and moreover in order to make g to a be fast, we must ensure that b to c is

95

(parallel)branch

join (conditional)

delay delay

delay delay

branch (conditional)

d

a

b

c

e f

i

delay

g

h

l

(parallel)join

delay

m

delay

j

k

[dm,a , Dm,a]

[50 , 50][db,c , Db,c]

[70, De,g] [df,i , Df,i]

[dg,h , Dg,h]

[dj,k , Dj,k]

(parallel)branch

join (conditional)

delay delay

delay delay

branch (conditional)

d

a

b

c

e f

i

delay

g

h

l

(parallel)join

delay

m

delay

j

k

[db,c , 30]

[5, 5]

[5, 5]

[50 , 50]

[5, 5]

[5, 5]

[df,i , Df,i]

Figure 6.6: Two process graphs for which the veri�cation tool analyzed the constraint

hg; a; nco;�; 30i. Veri�cation was successful for both graphs, and yielded the linear

inequalities: D

g;h

+D

j;k

+D

m;a

� 30 (for the graph on the left) and: d

b;c

� 20 (for the

graph on the right, which is identical to the graph on the left except that the propagation

delays are di�erent).

96

su�ciently slow. The solution can, however, be easily explained. In this case, it is not

possible to show that k will always occur after l (if it was, the constraint from g to a

would be satis�ed since the delay along that path adds up to 15 which is � 30). The

solution requires that g not occur too early with respect to l since k will end up waiting.

This is accomplished by delaying event c (and thus delaying g). Note that some of the

propagation delays speci�ed as variables do not appear in the two solutions (e.g., the

delay from f to i). This indicates that these delays are irrelevant with respect to the

timing constraints being veri�ed.

One bene�t of performing symbolic timing veri�cation that is not evident from this

example is that our veri�er can handle multiple constraints and multiple symbolic vari-

ables, and provide results that relate the constraints and the propagation delays with

one another. These relationships (which in our tool must take the form of linear inequal-

ities) can provide insight into the speci�cation as well as provide valuable information

for other design tools.

6.4 Extensions

In this section, we present three extensions to the veri�cation model described in Sec-

tion 6.2, and discuss both the strengths and weaknesses of our model.

6.4.1 Iterative behavior

One obvious limitation of the model is that it does not support the expression of iterative

behavior. This is easily remedied by adding a new operation (depicted in Figure 6.7).

A loop operation is used to model iterative behavior and has two parameters that specify

lower and upper bounds on the number of iterations that any given execution of

the loop might execute. The lower bound is a non-negative integer, and the upper

bound is either 1 (i.e., there is no upper bound) or a positive integer greater than

or equal to the lower bound.

97

loop (parameterized by lower and upper bounds on the 	
	 number of iterations):
 if (trigger==in) {
 count = 0;
 last = uniform_random(lower,upper);}
 else if (trigger==it1)
 count = count + 1;

 if (count < last)
 cause(it2,0);
 else
 cause(out,0);

in

out

loop

it2

it1

Figure 6.7: An operation that supports iterative behavior.

New transformation rules are needed in order to handle the loop operation. In some

cases, the number of iterations need not be taken into account (e.g., pco and nco con-

straints that are always to or from the �rst or last occurrence of an event inside a loop)

and in others the upper and lower bound provides information which is used with (mul-

tiplied by) the delay incurred during one iteration to determine lower and upper bounds

on the total amount of time that can be spent in the loop. Incorporating the loop opera-

tion into our veri�cation model was quite easy, and demonstrates the inherent
exibility

of our approach, especially in this case, where a small number of additional rules are

able to extend the expressiveness of the model.

One limitation we did not address is that symbolic variables cannot be used to con-

strain the number of iterations. Thus, it is not possible to determine via symbolic anal-

ysis the number of iterations that can be executed without violating any constraints.

This information could be used by synthesis algorithms to determine, for example, how

frequently data can be sampled without incurring any delay penalty (e.g., to improve

the performance of one part of a design when the overall performance is constrained

by another parallel activity). Unfortunately, the bounds on the number of iterations

are multiplied by other symbolic variables (representing delay information from it2 to

it1) and if the bounds were expressed using symbolic variables then non-linear equations

would result. At present, our symbolic veri�cation methodology is limited to handling

linear constraints, and thus speci�c integer bounds are required.

98

In fact, the solutions that we report are always linear constraints on the symbolic

variables (or, of course, simply success or failure). For many problems, there may be

multiple solutions to symbolic veri�cation and we will report only a linear subset (e.g., we

will never express a solution using a minimum or maximum function | instead, we will

pick one of the two potentially feasible solutions). In theory, because our methodology

is based on a search (i.e., Prolog), we can ask the veri�er to backtrack and obtain other

solutions. In practice, however, this is an additional limitation of our methodology,

because some of our veri�cation rules make use of the ability to cut the search space,

and thus a retry will not always succeed in producing other alternative linear solutions.

6.4.2 Additional Inequalities

Our constraint syntax and semantics is, as we observed, quite limited compared to the

expressiveness of OEgraphs. One feature of our methodology that can sometimes be used

advantageously to express more complicated constraints is the ability to specify linear

inequalities with respect to the symbolic variables. These inequalities further constrain

veri�cation, which, in order to be successful, must �nd a feasible solution that also

satis�es the additional constraints. These inequalities can be quite useful, for example,

in relating two timing constraints to one another. A constraint stating that one event

has to happen after another event can be speci�ed using two mra constraints (when the

events are causally related via a common ancestor) with symbolic separations and an

inequality that constraints the two symbolic variables.

6.4.3 Communicating Processes

One serious limitation of the veri�cation model is that it does not handle multiple pro-

cesses. It is quite likely that from a behavioral perspective most concurrent systems are

expressed not as a single process (with parallel activity) but rather as a set of commu-

nicating processes.

In this section we examine a simple extension that allows limited inter-process com-

99

munication and is also useful for modeling clocked systems. The issues that arise from

introducing this new operation (see Figure 6.8) are indicative of the complexities inher-

ent in handling more general inter-process communication operations and cross-process

constraints.

waitnext:
 if (trigger==in)
 active = TRUE;
 else if (trigger==w && active) {
 cause(out,0);
 active = FALSE;
 }

in w

waitnext

out

Figure 6.8: An operation that supports inter-process communication. The event w has

no indegree and is an external event.

The waitnext operation blocks when the input event occurs and waits for the next

occurrence of an external event before generating an output. Any external events (which

can be any event in another process) occurring when the waitnext is not blocked are

ignored. The semantics are similar to the Verilog \wait" statement.

This new operation allows processes to communicate and our veri�cation method-

ology is augmented with new rules that allow constraints between events in di�erent

processes to be veri�ed. New rules are also needed for constraints between events in the

same process. For example, we present a rule used for propagating constraints across a

waitnext operation:

Given a constraint hfrom; to; pco;�; Xi if there is a waitnext operation with external

input w and with output to and input other then (assuming from and to are both in the

same process and from is not equal to other) transform the constraint into:

1. the new inequality T

1

+ T

2

� X ,

2. the new constraint hfrom; other ; pco;�; T

2

i, aand

3. the new constraint hother ; w; nco;�; T

1

i.

This rule results in a cross-process constraint being generated which essentially asks

\How long might the operation wait for the external event?"

100

For the single process constraints described in the previous sections, the veri�cation

methodology is never pessimistic. The veri�er never fails to report success if a feasible

solution exists (this has not been formally proven, see Section 6.5). This is not the

case for cross-process constraints where higher degrees of concurrency complicate the

transformation rules. We have implemented a number of rules which serve to identify

delay bounds which can result in successful veri�cation. However, in many situations

these bounds can be further tightened by noticing properties of the speci�cation and

the behavior of the circuit. It may be possible to analyze and detect these behaviors

but some complex situations may prove quite di�cult to verify. Thus our veri�cation

tool will be pessimistic, capable of verifying most constraints but occasionally failing to

verify constraints which can in fact be satis�ed.

Two simple rules demonstrate how bounds may be achieved, albeit pessimistically.

Consider the cross process constraint hother ; w; nco;�; T

1

i. One simple way to determine

an upper bound on T

1

is to assume that other could have occurred just after a w event

and thus must wait for the process generating w to complete a full cycle of operation,

i.e., we pessimistically transform the constraint into hw;w; nco;�; T

1

i. This worst case

strategy is useful in the case of operations waiting for clock edges. Frequently such

operations have to wait an entire clock cycle before receiving the required edge, and the

worst case strategy is appropriate. If we change the separation such that we need to

establish a lower bound on T

1

, i.e., for hother ; w; nco;�; T

1

i, we can trivially assume a

pessimistic lower bound of zero.

If two processes communicate, it is likely that the points of interconnection between

them can provide information to help tighten the pessimistic bounds described above.

Consider the process fragment shown in Figure 6.9. The constraint ha; g; nco;�; Xi can

be veri�ed by determining upper bounds on the amount of time that a and f might

have to wait for a tick and bounding the delay from b to f . A naive approach would

be to assume that both a and f have to wait an entire tick cycle. A better result can

be obtained by noticing that the two tick inputs to the waitnext operations are related.

101

tick

waitnext

waitnext

g

tick

delay

a

b

f tick

Figure 6.9: An example of two processes with one way communication

For example, if a tick is generated every 10 time units, and there is a delay of at least 5

(and less than 10) from b to f , then f will have to wait at most 5 for the next tick (not

10). Of course, uncertainty in both the delay between tick events and the delay between

b and f may need to be taken into account, and this uncertainty if large enough could

result in the pessimistic assumption being the best result.

In some situations, communicating processes adversely a�ect veri�cation strategies

by introducing circularities into the worst-case veri�cation methodology. This can be

seen in the process fragment shown in Figure 6.10. In order to calculate an upper bound

on the delay from w to the next w we need to know the delay from x to the next a,

which in the worst-case can be computed as the delay from a to a. This computation

will require the delay from b to w which is pessimistically the delay from w to w, and

we have a circularity. The two processes are mutually dependent, and the pessimistic

strategy is not applicable (and in fact we must add rules to the veri�er to detect and

prevent circularities).

Although we have implemented various rules for dealing with a limited class of cross-

102

waitnext

a

b w w

waitnext

xa

Figure 6.10: An example of two processes and interlocked communication

process constraints and inter-process communication, process synchronization introduces

complexities that should be studied independently of the other aspects of our veri�cation

model (e.g., iterative constructs, conditional behavior, etc.). This is the subject of the

next chapter.

6.5 Discussion

In summary, we believe that symbolic timing veri�cation is a critical tool in the de-

velopment of higher-level synthesis tools. The information obtainable from a symbolic

veri�cation process has three principal uses: implementation veri�cation, obtaining con-

straints for synthesis, and design evaluation. Implementation veri�cation con�rms that

an implementation of a design and its associated delays will meet the constraints in the

original speci�cation. Synthesis tools can use symbolic delay values to determine the

degree of
exibility that is available while still satisfying the timing constraints. This

can lead to much more e�cient use of resources in the �nal implementation. Design eval-

uation can be performed by using symbolic values in the constraints and determining

bounds on the values of these variables given circuit delays. This can provide information

about how well a design will perform and also relate the constraint variable to circuit

103

delays.

In this chapter we have presented a veri�cation tool that uses a new programming

paradigm, constraint logic programming, to perform symbolic veri�cation for a restricted

class of system behaviors and timing constraints. Although we believe that extensions

to the model are clearly needed, it can be used to model a variety of concurrent systems

and to verify a large class of temporal relationships. Our veri�er has been used to

analyze several real-world examples containing inter-process communication and cross-

process constraints. The largest being a partial speci�cation of the Intel Multibus which

consisted of �ve communicating processes containing a total of 75 events, 65 operations,

and 35 timing constraints (this example is discussed in [Amon & Borriello 92]).

The computational complexity of our methodology has not been studied in great

detail. In the worst case, our approach is no more e�cient than simply generating the

non-linear set of inequalities for each constraint, and then exploring this space using an

exponential search for a feasible linear solution. Most of the examples we have veri�ed

were quite trivial, and veri�cation was quite e�cient (e.g., the examples in Figure 6.6

took 4 seconds of CPU time on a Sparc II). We believe that execution speed will scale well

to larger speci�cations due to the fact that most constraints describe relationships that

are local and interrelate a small number of symbolic delays. Of course, some constraints

can be quite complicated, but it is unlikely that larger speci�cations will contain many

such complex interrelated constraints. In any case, the complexity of our approach is

dominated not by graph size, but by the complexity of the interrelationships and how

they a�ect the solution space. Veri�cation of the Multibus took 2 minutes of CPU time

on a Sparc II.

It should be emphasized that we have made little attempt to optimize execution

speed. Some e�ciency issues were addressed. For example, putting the new inequalities

before the new constraints in every rule because this can prevent needless generation of

constraints when the inequalities cannot be satis�ed. Execution speed could be dramat-

ically improved through the use of caching. At present, the results of graph analysis are

104

not being re-used. This results in an excessive amount of execution time being devoted

to repeating analyses that have already been performed, especially when the veri�er is

forced to backtrack.

One issue that we have not addressed is that of formally establishing the correctness

of our veri�cation rules. This would clearly need to be done if the veri�er were to be

used for anything other than exploring the feasibility of veri�cation using our model

and methodology. The correctness of the rules, at present, is based only upon a very

careful analysis of the rules with respect to our constraint syntax and the types of

behaviors allowed by the veri�cation model. Some errors in the veri�cation rules have

been discovered through extensive testing, but it is of course quite possible that other

errors exist.

In many ways, our methodology is similar to that which could have been employed

using a theorem prover capable of performing e�cient symbolic linear programming.

With such a tool, each rule would constitute a theorem, and the transformation strate-

gies would correspond to tactics for breaking up complex proofs (constraints) into less

complicated ones. Our rules were created manually by taking into account both the

semantics of our constraints and the possible behaviors of the model. However, the pres-

ence of synchronizations and cross-process constraints su�ciently complicates the model

such that a deeper and more theoretical analysis of the core issues is needed.

Chapter 7

Analyzing Concurrent Systems

In this chapter, we consider a very restricted class of concurrent systems and examine

a fundamental temporal analysis problem. Consider a simple concurrent system con-

taining three processes that synchronize over two channels (a and b) and performs some

internal computation. Such a system might be described textually using a concurrent

programming language, as in the following �gure:

Process 1 ::

repeat f

Synchronize a;

Compute [4, 10];

g

Process 2 ::

repeat f

Synchronize a;

Compute [1, 2];

Synchronize b;

Compute [1, 6];

g

Process 3 ::

repeat f

Synchronize b;

Compute [5, 20];

g

Figure 7.1: A concurrent system synchronizing over two channels (a and b) with internal

computation (delay ranges speci�ed in brackets).

There are many questions regarding the temporal behavior of this system that we

might ask: \How slowly might the �rst process cycle?", or \How long might the sec-

ond process be idle waiting on the third process?", or \How can we best speed-up the

performance of our system?" and \Which delays impact performance the most?" To

answer such questions we need to be able to determine how the inter-process synchro-

106

nizations a�ect the temporal behavior of our concurrent system. For example, the �rst

process could obviously cycle with a period of at least 10 time units (the upper bound

on the computation time) but how much more delay might be incurred as a result of the

synchronization with the second process?

In this chapter, we derive an exact algorithm that determines tight upper and lower

bounds on the separation in time of an arbitrary pair of system events , where an event

can be thought of as an execution point in the system (i.e., the completion or initiation

of computation or synchronization). Depending on the level of abstraction in the spec-

i�cation, events may represent low-level signal transitions at a circuit interface or may

represent control
ow in a more abstract behavioral view. We model a concurrent system

(with no conditional or iterative behavior) as a cyclic connected graph. The nodes of

the graph represent events and the arcs are annotated with lower and upper bounds on

delays between events.

Our model permits the representation of both blocking and non-blocking communi-

cation. In the blocking case (used in Figure 7.1), two interacting processes wait for a

synchronizing event to occur and then both proceed past the synchronization point. In

the non-blocking case, only the receiving process waits while the sender can proceed.

Other approaches to the problem of �nding bounds on the separation in time of

two events have either been inexact or based on a more restrictive graph topology.

Loose bounds that may not enable all possible optimizations were obtained by [Myers

& Meng 92] who used the analysis to optimize the implementation of speed-dependent

asynchronous circuits (see Section 7.3). Both [McMillan & Dill 92] and [Vanbekbergen

et al. 92] handle only acyclic graphs. However, they provide a theoretical foundation

upon which our solution is built. Both [Cohen et al. 89] and [Burns 91] use cyclic graph

models but they deal only with �xed delays between events.

107

7.1 Problem Formalization

We could express our concurrent system as an operation-event graph using two di�er-

ent operations for modeling synchronization and computation, e.g., see Figure 7.2. The

Process 1 Process 2 Process 3

4,10 5,201,2

1,6

synch

synch

Figure 7.2: The concurrent system of Figure 7.1 expressed as an operation-event graph.

The four delay operations have been annotated with lower and upper bounds on the

computation time.

separation time analysis could be cast as a veri�cation problem; we need to verify that

in any execution of the system the separation in time between related occurrences of

two events will not be longer or shorter than a speci�ed value. As discussed in the pre-

vious chapter, exact timing veri�cation cannot be accomplished using the methodology

described in Section 6.2 because the synchronizations introduce mutual dependencies.

Thus the need for the work presented in this chapter, where we develop a body of theory

108

and algorithms that are capable of addressing this fundamental analysis problem. How-

ever, due to the inherent simplicity of the model, we will abandon our operation-event

graph speci�cation paradigm and use a simpler event-graph representation.

7.1.1 The Process Graph

We represent the system as a directed graph, called the process graph, where the vertices

represent events (synchronizations) and the edges are annotated with delay information.

The process graph for our example (see Figure 7.1) is shown in Figure 7.3.

[1; 2]

b

a

[1; 6]

[4; 10] [5; 20]

Figure 7.3: The concurrent system of Figure 7.1 expressed as a process graph. The

number of lines drawn through an edge indicates the value of the occurrence index

o�set.

To formalize the problem we use a simple modi�cation of the event{rule system

developed in [Burns 91]

1

. Let G

0

= hE

0

; R

0

i denote a process graph composed of

� a �nite set of (repeatable) events E

0

, the vertices of the graph.

� a �nite set of rule templates R

0

, the edges of the graph.

Each edge is labelled with two objects, the delay range [d;D] (integers with 0 � d � D),

and the occurrence index o�set ". For our example, we have

E

0

= fa; bg

R

0

=

�

a

[4;10];1

7�! a; a

[1;2];0

7�! b; b

[1;6];1

7�! a; b

[5;20];1

7�! b

�

:

1

[Myers & Meng 92] introduced a similarly modi�ed system. The model can also be viewed as an

extension of [McMillan & Dill 92] and [Vanbekbergen et al. 92], where we consider cyclic max-only or

type-2 graphs. To remain consistent with the notation of [Burns 91] we introduce G

0

before G, E

0

before

E, etc., i.e., primed variables are introduced before unprimed variables.

109

The occurrence index o�set is used to specify how much the occurrence index is incre-

mented when the edge is executed|see Section 7.1.2. The o�set also de�nes the initial

state of the processes, and can be viewed as a marking of the edges that can initially

execute. Figure 7.4 shows three identical process graphs with di�erent markings. The

rightmost process graph is deadlocked, because the initial marking does not allow any

further activity to occur. Note that there is a cycle in this graph without any marked

edges.

b

a

c

b

a

c

b

a

c

Figure 7.4: Three process graphs with di�erent occurrence index o�sets. The o�set

can be viewed as a marking of the edges that can initially execute. Thus, the leftmost

graph would exhibit behavior that can be described by the regular expression (acb)

�

because a will occur (both of its incident edges are marked), followed by c, etc. The

middle graph exhibits behavior (abc)

�

and the rightmost graph is deadlocked.

In the remainder of this chapter, we restrict our analysis to well-formed graphs, that

is, process graphs that are strongly-connected and have "(c) > 0 for all cycles c in the

graph, where "(c) is the sum of the " values for all edges in the cycle c.

7.1.2 Execution Model

We denote the k

th

occurrence of event v 2 E

0

as v

k

, and refer to k as the occurrence

index of v

k

. Let E be the set of all event occurrences (in�nite in one direction, i.e.,

k � 0). To model the initial startup behavior of a process, we also include in E a single

event occurrence named root . Thus,

E =

n

v

k

�

�

�
v 2 E

0

; k � 0

o

[frootg:

110

The set R consists of the rules generated by instantiating each rule template of R

0

at

each occurrence index,

R =

�

u

k�"

[d;D]

7�! v

k

�

�

�
u

[d;D];"

7�! v 2 R

0

; k � "

�

[R

0

:

Special startup rules are included in the non-empty �nite set R

0

,

R

0

�

�

root

[d;D]

7�! v

k

�

�

�
v

k

2 E � frootg

�

:

We call the in�nite directed graph constructed from the vertex set E and the edge set R

the unfolded process graph. Figure 7.5 shows the unfolded process graph for the example

in Figure 7.3.

root

a

0

b

0

a

1

b

1

a

2

b

2

a

3

b

3

[0, 0]

[0, 0]

[4, 10] [4, 10] [4, 10] [4, 10]

[5, 20] [5, 20] [5, 20] [5, 20]

[1,6][1,6][1,6] [1,6]

[1,2] [1,2][1,2] [1,2]

Figure 7.5: A portion of the unfolded process graph for the process graph in Figure 7.3.

Two startup edges have been added, specifying that both a

0

and b

0

must occur after

time 0.

An execution of a process graph is the consistent assignment of time values to event

occurrences. A timing assignment, � , maps event occurrences to global time, thus �(v

k

)

is the time of the k

th

occurrence of event v. The delay information in R restricts the

set of possible timing assignments. Formally, we de�ne constraints on the time values

introduced by each event occurrence:

�(v

k

) � max

�

�(u

k�"

) + d

�

�

�
u

k�"

[d;D]

7�! v

k

2 R

�

�(v

k

) � max

�

�(u

k�"

) +D

�

�

�
u

k�"

[d;D]

7�! v

k

2 R

�

The constraints on �(v

k

) embody the underlying semantics of a process graph's execution,

i.e., events correspond to synchronizations and an event can occur only when all of its

111

incident events have occurred. Each incident event is delayed by some number in a

bounded interval ([d;D]). Thus, the earliest time at which v

k

can occur is constrained

by d values, the latest by D values.

7.1.3 Problem De�nition

Given two arbitrary events s and t in E

0

and an integer �, the problem we address is

determining the strongest bounds � and � such that for all � � max(0; �)

� � �(t

�

)� �(s

���

) � �:

For example, to determine tight bounds on the time separation between two consecutive

a events, we would set s = t = a and � = 1, and consider the bounds on �(a

�

)� �(a

��1

)

for all � � 1. The bounds are tight (i.e., � is maximal and � is minimal), in that they

represent separations which could occur during an execution of the system.

We address only the problem of �nding the maximum separation �, since � can be

obtained from the transformation �(s

�

) � �(t

��(��)

) � �� (i.e., by swapping s and t,

negating �, and negating the solution �).

7.1.4 Algorithm for a Finite Unfolded Process Graph

We build our solution to this problem on a variation of a graph algorithm developed

in [McMillan & Dill 92] that applies only to �nite unfolded graphs. In Section 7.2 we

will generalize this algorithm to in�nite unfolded graphs.

Let �

�

be the strongest bound for the separation problem given an �, i.e.,

�(t

�

)� �(s

���

) � �

�

:

We can determine �

�

by analyzing a �nite acyclic graph created by only including the

vertices in our unfolded process graph for which there is a path to either t

�

or s

���

.

Name the resulting graph hE

�

; R

�

i.

112

The algorithm consists of two simple steps. First, we compute m-values backwards

from s

���

for all event occurrences,

m(v

k

) = max

n

d(h)

�

�

�
all paths v

k

h

; s

���

o

where d(h) is sum of the d values of the edges on the path h from v

k

to s

���

(denoted

by v

k

h

; s

���

). We can compute these values in linear time in the size of R

�

by a

reverse topological traversal from s

���

. If there is no path from v

k

to s

���

, denoted by

v

k

6; s

���

, we can assign an arbitrary constant value to m(v

k

)|we use m(v

k

) = 0.

We then compute �

�

= M(t

�

) � m(t

�

) by assigning M(root) = 0 and then for all

other occurrences in (normal) topological order:

If v

k

; s

���

M(v

k

) = max

�

min

�

M(u

k�"

) +D �m(u

k�"

) +m(v

k

) ; 0

�
�

�

�

u

k�"

[d;D]

7�! v

k

2 R

�

�

If v

k

6; s

���

M(v

k

) = max

�

M(u

k�"

) +D �m(u

k�"

) +m(v

k

)

�

�

�
u

k�"

[d;D]

7�! v

k

2 R

�

�

(7.1)

Figure 7.6 contains a sample application of the algorithm for the computation of �

2

for

the example in Figure 7.3. We will not provide a formal proof of this algorithm (see

[McMillan & Dill 92]) but do provide an informal explanation.

7.1.5 Informal Justi�cation of the Algorithm

Informally, to maximize the value of �(t

�

)��(s

���

) we need to \�nd an execution" that

maximizes �(t

�

) and minimizes �(s

���

). Consider a special case, namely when t

�

= root

(see Figure 7.7). By de�nition we would have �

�

= �m(root), i.e.,

�

�

= M(t

�

)�m(t

�

) = M(root)�m(root) = 0�m(root)

In this case, the maximum separation is always non-positive because m(v

k

) is always

non-negative. This is to be expected, because whenever there is a path from t

�

to s

���

113

root

a

0

b

0

a

1

b

1

a

2

a

2

b

1

a

1

b

0

a

0

root

44

5

11

1 1

0

0

04 0

01

4

10

20

10

0

0

2 2

6 6

18�1

0 240

0

(a) (b)

Figure 7.6: Sample execution of the �nite acyclic graph algorithm for obtaining �

2

for the process graph in Figure 7.3 given the parameters t = s = a and � = 1, i.e.,

s

���

= a

1

and t

�

= a

2

. In (a), the edges are labeled with the d values, and the

vertices are labelled with the m-values obtained in the �rst step of the algorithm.

In (b), the edges are labeled with the D values, and the vertices are labelled with the

M -values obtained in the second step. We obtain �

2

= M(a

2

)�m(a

2

) = 24�0 = 24.

(i.e., t

�

; s

���

) then �

�

will be negative due to the fact that t

�

has to occur before

s

���

can occur. Whenever t

�

actually constrains s

���

we can compute a maximum

separation by �xing �(t

�

) and minimizing �(s

���

). In this case, since t

�

= root , we

minimize �(s

���

) by picking an execution in which all of the delays are d. If we assume

that �(root) is zero, then �(s

���

) will be m(root), yielding our result.

t

�

= root

s

���

Figure 7.7: To determine �

�

we essentially maximize �(t

�

) and minimize �(s

���

).

If t

�

= root , then to minimize �(s

���

) we pick d for all edges and then compute the

weight of the longest d path from root to s

���

, i.e., �

�

= �m(root). The result is

negative because s

���

always occurs after root .

Now consider another special case, namely when t

�

= v

k

and v

k

is an arbitrary event

occurrence except that it has only one incident edge, u

k�"

[d;D]

7�! v

k

(see Figure 7.8). In

this case, �

�

= M(v

k

)�m(v

k

) and if we assume that v

k

6; s

���

then (because there is

114

only one incident edge) from Equation 7.1 we have:

M(v

k

) = M(u

k�"

) +D �m(u

k�"

) +m(v

k

)

By subtracting m(v

k

) from both sides of the equation, we see that this equation is simply

stating that:

M(v

k

)�m(v

k

) = M(u

k�"

)�m(u

k�"

) +D (7:2)

In other words, we calculate a maximum separation between s

���

and v

k

, i.e., M(v

k

)�

m(v

k

), using the maximum separation between s

���

and u

k�"

, i.e., M(u

k�"

)�m(u

k�"

).

The separation is changed by D to account for the fact that v

k

occurs after u

k�"

and we

always want to maximize �(t

�

).

s

���

u

k�"

v

k

= t

�

[d;D]

Figure 7.8: To compute �

�

in this case, we use the maximum separation computed

between s

���

and u

k�"

. Since we always maximize �(t

�

) we add D (i.e., to compute

the maximum separation between s

���

and v

k

we take into account the maximum

delay between u

k�"

and v

k

.

If v

k

; s

���

(see Figure 7.9), then it may be that with respect to u

k�"

we cannot

delay v

k

by D without also delaying s

���

. If this happens, the maximum separation

between s

���

and v

k

will be �m(v

k

). We argued this result when t

�

= root , i.e., because

t

�

constrains s

���

we simply �x �(t

�

) and minimize �(s

���

). If v

k

does not constrain

s

���

, then the maximum separation between s

���

and v

k

can be computed from the

maximum separation between s

���

and u

k�"

, i.e., from Equation 7.2. This is precisely

what the minimization with zero in Equation 7.1 is accomplishing if v

k

; s

���

. When

M(u

k�"

) + D � m(u

k�"

) + m(v

k

) is positive, v

k

constrains s

���

, and the maximum

separation is set to �m(v

k

) by setting M(v

k

) to zero.

In the general case, we compute M(v

k

) by examining the maximum separation that

115

s

���

u

k�"

v

k

= t

�

[d;D]

Figure 7.9: To compute �

�

in this case, we again use the maximum separation

computed between s

���

and u

k�"

to compute the maximum separation between s

���

and v

k

(i.e., we add D). However, in this case, we must ensure that the assumption

that the delay between u

k�"

and v

k

is D is not inconsistent with the calculation of

the maximum separation between s

���

and u

k�"

(which might assume that it is d).

can be obtained for each occurrence u

k�"

that is incident to v

k

. This is the reason for

the maximization in Equation 7.1.

7.1.6 Determining �

To compute �, the maximum separation in time over all event occurrences of s and t,

separated in occurrence by �, we maximize �

�

over all values of �:

� = max

n

�

�

�

�

�
� � max(0; �)

o

:

Applying the algorithm to the example in Figure 7.3 yields the following maximum

separations:

� (a

�

) � � (a

��1

) � �

�

�

1

�

2

�

3

�

>3

10 24 25 25

and thus �

�

= 25. The problem, of course, is that this requires an in�nite number of

applications of the algorithm. Before we present an algebraic solution that allows us to

analyze the in�nite unfolded graph, we illustrate the di�culties of this analysis with a

few examples.

7.1.7 Examples

Our �rst example, in Figure 7.10, is a process graph that represents two coupled pipelines.

If the pipelines were not coupled at c, the maximum separation between a and e would

116

be unbounded. This is because the �rst pipeline (choosing the delay between consecutive

a's as being 2) could be arbitrarily slower than the second pipeline (choosing the delay

between consecutive e's as being 1). The coupling of the pipelines forces one pipeline to

wait for the other if it gets too far ahead.

a

[1; 2]

e d

c

[1; 2]

b

Figure 7.10: A process graph that represents two coupled pipelines. All unspeci�ed

delay ranges are [0; 0].

We start the pipeline by rooting all of the initial occurrences at zero, i.e., we have

startup rules:

root

[0;0]

7�! a

0

; root

[0;0]

7�! b

0

; root

[0;0]

7�! d

0

; root

[0;0]

7�! e

0

For all � � 0, it can be shown that �(a

�

)� �(e

�

) � 4:

�

0

�

1

�

2

�

3

�

4

�

>4

0 1 2 3 4 4

This arises because we can have �(a

0

) = 0, �(a

1

) = 2, �(a

2

) = 4, �(a

3

) = 6, �(a

4

) = 8,

�(a

5

) = 10 along with �(e

0

) = 0, �(e

1

) = 1, �(e

2

) = 2, �(e

3

) = 3, �(e

4

) = 4 but we

cannot have �(e

5

) = 5 because of the dependency requiring �(e

5

) to occur no earlier

than �(a

3

) = 6. Adding more stages to both pipelines (before the synchronization)

would allow e to get even further ahead of a.

Our second example, in Figure 7.11, exhibits interesting behavior. We root all of the

initial occurrences at zero. If � = 6 then �(a

�

)� �(a

��1

) � 8:

�

1

�

2

�

3

�

4

�

odd

�

even

4 8 4 8 4 8

117

f

e

[�; �]

d

c

b

a

[3; 3]

[3; 3]

[3; 3]

[3; 3]

Figure 7.11: A process graph with unusual timing behavior. All unspeci�ed delay

ranges are [1; 1].

If we change � = 9 then �(a

�

)� �(a

��1

) � 9:

�

1

�

2

�

3

�

4

�

5

�

6

�

7

�

8

�

>8

4 8 4 8 4 8 8 9 9

b

a

d

e

c

[10; 10] [10; 10][5; 5]

[1; 3]

[1; 2] [1; 2]

[5; 5]

[1; 3]

Figure 7.12: Two processes synchronizing at c.

Our �nal example, in Figure 7.12, corresponds to two simple processes that synchro-

nize at the event c. Clearly, the startup rules can a�ect the initial timing behavior of the

processes. However, this example demonstrates that the initial startup rules also can

determine the maximum separation at every point in the in�nite execution. We have

two startup rules: root

[�

1

;�

1

]

7�! b

0

and root

[�

2

;�

2

]

7�! d

0

and they determine every �

�

for

118

�(e

�

)� �(a

�

):

�

�0

�

2

� �

1

� 3 �

2

� �

1

= 2 �

2

� �

1

= 1 �

2

� �

1

3 2 1 0

As the process graph is a repetitive system, presumably the �

�

values will eventually

reach a steady state, for example, �

�+1

= �

�

for large �. Unfortunately, as our examples

illustrate, the behavior of the �

�

values can be non-monotonic and periodic, and might

even start out periodic and then later stabilize to a constant value. Thus, no simple

criteria for determining when steady state has been reached can be derived based on the

behavior of the �

�

values.

7.2 Functional Solution

Our solution to the problem is based on a structural decomposition of the unfolded

process graph that exploits its repetitive nature. By dividing the unfolded process graph

up into segments and representing the computation of the �nite graph algorithm in a

symbolic manner we can reuse the computations for each segment.

7.2.1 Introducing Functions

We introduce a symbolic execution of the acyclic algorithm presented in Section 7.1.4.

Instead of computing the numeric M -values in Equation 7.1, we compute functions

that relate M -values with one another. We present an algebra for representing and

manipulating these functions.

Functions are represented as sets of pairs. A singleton set, fhl; wig, represents the

function f(x) = min(x+ l; w). In general, the set

fhl

1

; w

1

i; hl

2

; w

2

i; : : : ; hl

n

; w

n

ig (7:3)

corresponds to the function

f(x) = max fmin(x+ l

i

; w

i

) j 1 � i � ng : (7:4)

119

We associate two operators with functions: function maximization, f max g, and

function composition, f � g. It follows from Equation 7.4 that function maximization is

de�ned as set union: f max g = f [g. The following observation leads to an important

e�ciency optimization:

Pruning Rule Given a function represented as fhl

1

; w

1

i; hl

2

; w

2

i; : : : ; hl

n

; w

n

ig, if l

i

�

l

j

and w

i

� w

j

, we can prune the pair hl

j

; w

j

i since for all x, min(x+ l

i

; w

i

) � min(x+

l

j

; w

j

).

Thus, a function (7:3) can always be represented such that

l

1

< l

2

< : : : < l

n

and w

1

> w

2

> : : : > w

n

: (7:5)

Function composition, f = g � h, is de�ned as f(x) = h(g(x)). Notice that we use

left-to-right function composition [Herstein 64]. For g = fhl

1

; w

1

ig and h = fhl

2

; w

2

ig

we have

(g � h)(x) = h(g(x)) = min(g(x) + l

2

; w

2

)

= min(min(x+ l

1

; w

1

) + l

2

; w

2

)

= min(x+ l

1

+ l

2

;min(w

1

+ l

2

; w

2

))

= fhl

1

+ l

2

;min(w

1

+ l

2

; w

2

)ig

If g or h contain more than one pair then

g = g

1

max � � � max g

n

and

h = h

1

max � � � max h

m

;

where g

i

and h

i

are singleton sets. Function composition is performed using distributiv-

ity, i.e.,

g � h = max fg

i

� h

j

j 1 � i � n; 1 � j � mg :

120

We can now express the M -values using functions. We associate a function, f , to

each edge u

k�"

[d;D]

7�! v

k

in the unfolded process graph: u

k�"

f

7�! v

k

, where

f =

8

>

<

>

:

fhD �m(u

k�"

) +m(v

k

); 0ig if v

k

; s

���

fhD �m(u

k�"

) +m(v

k

);1ig if v

k

6; s

���

The function f incorporates the min-part of Equation 7.1, and the max-part of Equa-

tion 7.1 corresponds to function maximization of the functions for the incoming edges.

Using function composition and function maximization, we can create a function F

v

k

that relates M(root) to M(v

k

), i.e., M(v

k

) = F

v

k

(M(root)), where

F

v

k

= max f F

u

k�"

� f j u

k�"

f

7�! v

k

2 R

�

g

root

a

0

b

0

a

1

b

1

a

2

f

7

f

4

f

6

f

3

f

5

f

9

f

8

f

2

f

1

Figure 7.13: Fragment of unfolded process graph annotated with functions corre-

sponding to each edge (the m-values are given in Figure 7.6 (a)).

For the example in Figure 7.6 (see Figure 7.13), we relate M(root) to M(b

0

) with

the function

F

b

0

= f

1

� f

3

max f

2

= fh0; 0ig � fh�1; 0ig max fh�3; 0ig

= fh�1;�1i; h�3; 0ig

Evaluating the function (using Equation 7.4) at M(root) = 0 yields

F

b

0

(0) = max (min(0 +�1;�1);min(0 +�3; 0)) = �1

which is exactly the value obtained for M(b

0

) in Figure 7.6 (b). The functions F

b

0

and F

a

0

are then used to relate M(root) to M(a

1

), etc., until a function that relates

121

M(root) to M(t

�

) is created. In our example, t

�

= a

2

and the construction produces

F

a

2

= fh22; 25i; h24; 24ig.

We can �nd the separation between s

���

and t

�

as �

�

= M(t

�

) � m(t

�

) where

M(t

�

) = F

t

�

(M(root)) = F

t

�

(0). For our example, we get �

2

= F

a

2

(0)� 0 = 24, where

F

a

2

is evaluated using Equation 7.4.

7.2.2 Decomposition

Instead of forming a single function relating M(root) to M(t

�

), we can perform this

construction in segments, that is, determine the functional relationship betweenM(root)

and theM -values at some interior nodes, and compose those functions with the functions

relating the M -values at the interior nodes with M(t

�

). We will see that this process is

akin to matrix multiplication.

Consider an unfolded process graph used to determine �

�

. We decompose the graph

into three segments: an initial segment,R, containing the root event, a terminal segment,

T, containing s

���

and t

�

, and an interior segment, S (see Figure 7.14 (a)).

root

s

���

t

�

(a)

root

(b)

s

���+

t

�+

v

k

R S T

v

k

T

S

0

R

0

S

v

k+

X Y X Y

Z

Figure 7.14: Decomposing an unfolded process graph into segments.

A cutset is a set of event occurrences such that every path from the root to t

�

goes

122

through an element of the cutset. Let X and Y be two cutsets such that

v

k

2 X if and only if v

k+

2 Y :

We say that Y is X shifted to the right by
. We can construct a square matrix S that

maps theM -values of the events in X to theM -values of the events in Y , i.e., to the same

events
 occurrences later (
 > 0). Similarly, we can construct a matrix R that maps

M(root) to the M -values of the events in X , and a matrix T that maps the M -values

of the events in Y to M(t

�

). We can now restate the maximum separation problem in

matrix form. Using (max ; �) matrix multiplication, that is, function maximization for

scalar addition, and function composition for scalar multiplication, we can form RST,

a 1� 1 matrix containing a single function relating M(root) to M(t

�

), which is used to

obtain �

�

.

For the graph in Figure 7.13, a possible decomposition is X = fa

0

; b

0

g and Y =

fa

1

; b

1

g yielding

RST =

�

f

1

f

1

� f

3

max f

2

�

0

B

@

f

4

f

4

� f

8

f

5

f

5

� f

8

max f

6

1

C

A

0

B

@

f

7

f

9

1

C

A

Now consider �nding �

�+

. We add another S segment to the graph, de�ned by the

cutsets Y and Z, where Z is Y shifted to the right by
 (see Figure 7.14 (b)). We get

the matrix product R

0

S

0

ST where S and T are the same as above, but R

0

and S

0

may

di�er from R and S since the m-values are now computed from s

���+

instead of s

���

.

This decomposition is only useful if we can arrange the symbolic computation such that

R

0

= R and S

0

= S, i.e., such that adding an S segment will not change the functional

representation. The next section characterizes the behavior of the m-values that allows

us to utilize this decomposition e�ectively.

7.2.3 Repetition of the m-values

Since the m-values are constructed from a repetitive system (the process graph) the

values eventually are determined by the maximum ratio cycles in the process graph. A

123

maximum ratio cycle c is a cycle with ratio d(c)="(c) equal to that of the maximum ratio

r

?

:

r

?

= max

c a simple cycle in G

0

d(c)

"(c)

:

The behavior of the m-values is best illustrated by a classical graph problem [Lawler 76].

port1 day circuit
1 day circuit

$1101 day circuit
 $10

$100

Figure 7.15: Maximize pro�t over an n-day voyage.

Consider a cargo steamer whose purpose is to maximize pro�t over an n-day voyage.

In the graph of Figure 7.15, the cycle to the right is the one that maximizes the pro�t per

day, however, to get there and return, the steamer needs to spend a day in the low-pro�t

cycle of $10. Thus for short trips (n < 10) it is more pro�table to use the leftmost

cycle, and for long trips (n > 10) it is worth su�ering a \low-income" day so that more

pro�t can be obtained using the rightmost cycle. The break-even point is for a 10 day

voyage. To relate this to the m-values, note that for a given cycle, c, in the graph, the

pro�t corresponds to d(c), the number of days is "(c), and r

?

is the maximum pro�t

obtainable per day. The maximum pro�t for the entire voyage (m(v

k

)) is computed

assuming that the cargo steamer leaves one port (the event s) and ends the voyage at

a new port (the event v), and maximizes pro�t over n-days (where n = � � � � k, the

number of unfoldings required to reach v

k

from s

���

).

The m-values repeat precisely when the values for all events are determined repeti-

tively using maximum ratio cycles. Formally, there exists integers k

?

and "

?

such that

for all k, "

?

� k � �� k

?

and all v 2 E

0

m(v

k�"

?

)�m(v

k

) = r

?

"

?

; (7:6)

124

where k

?

is the number of unfoldings of the process graph (relative to s

���

) before all

of the m-values repeat and "

?

is the occurrence period of this repetition. If there are

multiple cycles with maximum ratio then the m-values computed for di�erent events

may use di�erent maximum ratio cycles. Thus, a simple upper bound on "

?

is the least

common multiple of "(c) for each maximum ratio cycle c.

Figure 7.16 illustrates the behavior of them-values for the process graph in Figure 7.3.

Both k

?

and "

?

are values speci�c to a particular process graph. For example, changing

the delays [4; 10] and [5; 20] to [999,1000] and [1000,1000], respectively, changes k

?

from

3 to 998. Note that only the lower delay bounds a�ect k

?

.

b

6

b

7

a

7

a

8

b

8

a

9

b

9

a

10

a

6

0481217

16 11 6 1

a

5

b

5

21

22

Figure 7.16: A portion of the unfolded process graph for the process graph in

Figure 7.3 labeled with m-values (s

���

= a

10

). The m-values repeat when

m(a

6

) � m(a

7

) = 5 which occurs after three unfoldings relative to a

10

, thus k

?

= 3.

The occurrence period of the repetition is one, making "

?

= 1.

7.2.4 Identical S Matrices

After k

?

unfoldings of the process graph, the m-values are repeating. Let T be the

matrix obtained from the cutsets X

k

?

and ft

�

g, where cutset X

k

?

has the property that

the m-values for the vertices topologically left of X

k

?

repeat (with an occurrence period

of "

?

). Thus, Equation 7.6 implies that for all edges u

j

[d;D]

7�! v

k

where v

k

is topologically

left of X

k

?

:

m(u

j�"

?

)�m(v

k�"

?

) = m(u

j

)�m(v

k

):

This makes the M -values independent of k. Therefore, after k

?

unfolding of the process

graph (relative to s

���

), the functional representations of R and S remain the same

independently of the number of unfoldings.

Let the matrix product RT solve �

�

?

. We can �nd �

�

?

+"

?

by adding an S segment,

125

i.e., RST. By repeatedly adding S segments to the graph, we can compute �

�

?

+n"

?

for

n � 0 from RSS � � �S

| {z }

n

T. The maximum over all n � 0 can be found from

RT max RST max RSST max : : :

which by matrix algebra can be rewritten as

R(I max S max S

2

max S

3

max : : :)T; (7:7)

where I is the identity matrix. The elements of I, 0 and 1, are the identity elements for

function maximization and composition, respectively. We have 0 = fh�1;�1ig and

1 = fh0;1ig (note that 0 is an annihilator for function composition).

A matrix closure algorithm [Aho et al. 74] can be used to compute S

�

, the middle

part of (7.7), because in this context, function maximization and composition form a

closed semi-ring. This is the key observation that allows us to implicitly compute an

in�nite number of �

�

values.

To compute S

�

we need to be able to compute the closure of the diagonal elements

of S. For f = fhl

1

; w

1

i; : : : ; hl

n

; w

n

ig, the scalar closure operation

f

�

= 1 max f max f

2

max f

3

max : : :

can be e�ciently computed by:

f

�

=

8

>

<

>

:

f1; h1; w

q

ig if l

n

> 0

f1g if l

n

� 0

where the pairs are ordered as in (7:5) and w

q

corresponds to the �rst positive l, i.e.,

l

q

> 0 and if q > 1 then l

q�1

� 0. We can form the closure of an n � n matrix in O(n

3

)

scalar semi-ring operations (n = O(E

0

)).

RS

�

T is used to compute the maximum of the �

�

values for only a subset of the

integers � � max(0; �). If "

?

= 1, we need only compute the maximum of a �nite number

of additional �

�

, precisely for those � < �

?

, since RT is used to compute �

�

?

. This is

done by applying the �nite graph algorithm for each � such that max(0; �) � � < �

?

.

126

If "

?

> 1, we need to also compute those � such that "

?

does not divide ���

?

. This

can be accomplished by choosing "

?

di�erent initial matrices, named R

0

, R

1

, : : :, R

"

?

�1

,

corresponding to 0; 1; : : : ; "

?

�1 additional unfoldings of the process graph. Thus we can

compute the maximum of �

�

for all � � �

?

by creating the function

(R

0

max R

1

max : : : max R

"

?

�1

)S

�

T

7.2.5 Example

We now apply the details of the decomposition method to the example in Figure 7.3. We

decompose the unfolded process graph into matricesR, S, and T as shown in Figure 7.17.

The size of the T segment is determined as k

?

= 3 unfoldings relative to the s

���

node,

and the size of the S segment is "

?

= 1 unfoldings. The functions in S relate M(a

0

) and

M(b

0

) to M(a

1

) and M(b

1

). For this example

s

���

t

�

b

1

b

2

a

2

a

4

b

4

a

0

b

0

root

a

5

b

1

a

1

a

1

b

0

a

0

a

3

b

3

TSR

Figure 7.17: A decomposed unfolded process graph corresponding to the process

graph in Figure 7.3.

R =

�

fh0; 0ig fh1; 0ig

�

S =

0

B

@

fh5; 0ig fh6; 0ig

fh2; 0ig fh15; 0ig

1

C

A

T =

0

B

@

fh46; 25ig

fh55; 25ig

1

C

A

The closure of S is:

S

�

=

0

B

@

f1; h1; 0ig fh1; 0ig

fh1; 0ig f1; h1; 0ig

1

C

A

127

yielding the �nal product

RS

�

T = (fh1; 25ig) :

The maximum separation between a

��1

and a

�

for � � 4 is computed from the function

f = fh1; 25ig, i.e., �

�4

= f(M(root))�m(a

5

) = f(0)� 0, yielding 25.

7.2.6 E�ciency Considerations

There are two potential ine�ciencies associated with this algorithm.

1. Both "

?

and k

?

depend on the delay ranges and are not polynomial in the size of

the process graph.

2. The size of the representation of a particular function may be as large as the

number of paths between the two events related by the function.

Point 1 is potentially serious, however in most process graphs derived from circuits,

"

?

= 1 (see [Burns 91]). k

?

is more of a concern because it can be large if there exists a

cycle c such that d(c)="(c) is almost equal to r

?

. Although of theoretical interest, point 2

is not likely to be of practical concern. In practice the functions can be e�ciently pruned

and the size of the functions seems to be linear with respect to the size of the process

graph.

7.3 Practical Applications

This section describes two applications demonstrating the practicality of the algorithm

for realistic examples.

7.3.1 Memory Management Unit

Consider an edge u

k�"

[d;D]

7�! v

k

in an arbitrary process graph. If the minimum time

separation between u

k�"

and v

k

is larger than D, event u

k�"

will never constrain the

time of event v

k

, i.e., v

k

must always wait for some other event to occur, and the edge

128

from u

k�"

can be removed from the process graph without changing the behavior of the

system.

This idea can be used to remove redundant circuitry in asynchronous circuits given

(conservative) bounds on the actual delays of a speed-independent design. Super
uous

edges can be removed by analyzing the process graph corresponding to the circuit. This

approach has been taken by Myers and Meng [Myers & Meng 92] who use an inexact

timing analysis algorithm, i.e., the algorithm doesn't necessarily give tight bounds on

separation times. Clearly, being able to obtain tight bounds potentially enables the

removal of more edges.

One of the examples in [Myers & Meng 92] is a memory management unit (MMU)

designed to interface to the Caltech Asynchronous Microprocessor [Martin et al. 89].

The process graph (for one of the possible execution modes of the MMU) consists of 16

events and 23 edges and is shown in Figure 7.18.

For the chosen delay intervals, k

?

= 1 and "

?

= 1. Analyzing the 23 edges using our

exact algorithm takes on average :1 CPU seconds on a SPARC 2 for each edge. The

analysis results in the removal of six edges from the process graph (the dotted edges in

Figure 7.18) or equivalently, the removal of six transistors from the circuit. This is the

same result as in [Myers & Meng 92].

7.3.2 Asynchronous Microprocessor

A subset of the Caltech Asynchronous Microprocessor [Martin et al. 89] has been mod-

elled and analyzed using the techniques described in this chapter (see [Hulgaard et al.

93]). The process graph for this simpli�ed model consists of 60 events and 127 edges,

and has "

?

= 1 and k

?

� 3. Computations of the instruction fetch cycle period and the

pipeline latency can be performed in under 2 CPU seconds on a SPARC 2.

These and similar computations can be used to determine the real-time properties of

the asynchronous microprocessor. For example, to bound the execution time of a code

fragment, we can use the minimum and maximum separation in time for each instruction

129

mdli "

rao " bo "

rai " bi "

mslo "

bi #

bo #

msli #

rai #

rao #

mslo # msli "

mdlo "

mdli #

mdlo #

[2; 9] [2; 9] [2; 13] [2; 13]

[30;1]

[5; 30]

[5; 30]

[30;1]

Figure 7.18: Process graph for memory management unit (from [Myers & Meng 92]).

All unmarked edges have [0; 1] as the delay range. The dotted edges are super
uous

and can be removed without a�ecting the behavior of the system.

130

type [Park & Shaw 91]. Furthermore, this information is useful when interfacing the

microprocessor to an external synchronous component, especially in cases where the

synchronous component is clocked using a signal produced by the microprocessor.

7.4 Discussion

In this chapter, we have presented an e�cient and exact solution to a fundamental

problem in circuit synthesis and optimization, namely, the determination of bounds on

the separation in time of events in concurrent systems without conditional or iterative

behavior. The major contribution of this work is the structural decomposition of the

in�nitely unfolded process graph that enables it to be implicitly analyzed to obtain the

tightest possible bounds. This aspect of our algorithm and its algebraic formulation

enables it to be e�cient enough for practical use. Furthermore, our algorithm handles

a wide range of process graphs and is thus useful in a variety of domains. We presented

two applications in the area of asynchronous circuit synthesis and analysis. Several

other practical applications have been identi�ed, and are discussed in [Hulgaard et al.

93]. Because this work addresses a fundamental problem in the analysis of concurrent

systems, i.e., determining how synchronization a�ects temporal behavior, it may serve

as a foundation upon which other analysis tools can be built.

Chapter 8

Conclusions and Contributions

Timing behavior is an important yet somewhat neglected area of research in design au-

tomation, especially at high levels of abstraction. Temporal behavior needs to be speci-

�ed and analyzed if design automation tools are to deal with higher levels of abstraction

and exploit guarantees regarding temporal performance. This dissertation has focused

precisely on these two problems: providing a formal speci�cation for the timing behavior

of systems (primarily hardware) described at many di�erent levels of abstraction, and

exploring the temporal analysis of abstract concurrent systems.

This chapter is divided into two sections. The �rst summarizes the work presented

in this dissertation, and the second describes topics for future research.

8.1 Summary of Contributions

In this Section, we present a summary of the contributions of this dissertation with

respect to all four areas of design automation: speci�cation, validation, synthesis, and

veri�cation.

132

8.1.1 Speci�cation

The event-based speci�cation paradigm is a natural and appealing model upon which to

base a speci�cation language for timing behavior. In summary, the primary contribution

of this dissertation in the area of timing speci�cation is the development and presentation

of a new model, the operation-event graph, a generalization of the event-graph speci�ca-

tion paradigm. This work has been motivated by the recognition that timing constraints

are relationships between discrete events, and should not be represented simply as edges

in an event graph. Key features of the representation include:

� The use of event-logic, a natural yet expressive language for constraining temporal

behavior. The logic relies on both causal and chronological relationships to identify

the discrete events being constrained.

� The incorporation of structure (wires) into an event-based speci�cation language.

Designs can thus be speci�ed at many di�erent levels of abstraction, using the

same speci�cation language.

� The
exibility provided by the use of an operational semantics for functionality

and a denotational semantics for constraining temporal behavior (of course, as was

pointed out in Section 3.3, there is no clean distinction between functional and

temporal behavior).

8.1.2 Validation

Our speci�cation language was designed with simulation in mind, and a clear simulation

semantics was a requirement for all features of the model. The ability to execute a

speci�cation is of utmost importance because users need to be able to validate their

speci�cations.

The simulator, OEsim, was created to demonstrate that an event-based speci�cation

language could be both very expressive and also support executability of the speci�cation.

The key features of the simulator include:

133

� The ability to report timing constraint violations; i.e., to detect inconsistencies

between the operational and denotational speci�cations. This is accomplished

e�ciently through the use of incremental constraint checking and a variety of op-

timizations.

� Support for modularity and encapsulation. Timing constraints can be encapsulated

within speci�cations that can be multiply instantiated into one or more designs.

Validation of temporal correctness can then naturally take place when the design

is simulated to check its functionality.

� Support for rapid prototyping, especially when temporal relationships must be

speci�ed and taken into account. Few other existing behavioral simulators provide

such extensive support for timing constraint speci�cation and validation.

8.1.3 Synthesis

Few direct contributions to the area of synthesis have been presented in this dissertation.

However, if synthesis tools are to take timing behavior into account, they will need spec-

i�cation languages that are capable of formally expressing complex behavior. Moreover,

synthesis algorithms will need to make use of the timing information that can be pro-

vided by veri�cation. Traditionally, veri�cation is thought of as a post-synthesis step, in

which an implementation is veri�ed with respect to a speci�cation. In this dissertation,

veri�cation is viewed quite di�erently, in that it provides guarantees regarding temporal

behavior, and these guarantees are quite useful for synthesis. For example, in [Amon

& Borriello 91b], we present a synthesis task, the sizing of synchronization queues for

concurrent systems, based entirely upon timing information provided either manually by

the user or automatically by veri�cation tools.

In summary, although this dissertation is not directed towards synthesis, many of

the contributions will facilitate the development of new design automation tools and

algorithms for synthesis. For example, the veri�cation algorithm of Chapter 7 can be used

to optimize the synthesis of asynchronous circuits, simplify combinational and sequential

134

logic by extracting temporal don't care information, and focus optimization e�orts in

data-path synthesis by generating useful scheduling constraints (see [Hulgaard et al. 93]).

8.1.4 Veri�cation

Timing veri�cation is a very di�cult problem, and often NP-complete even when both

the functionality and the timing constraints are speci�ed using a very simple and restric-

tive semantics (e.g., see [McMillan & Dill 92]). In this dissertation, we have presented

two theoretically exponential algorithms for verifying the timing behavior of concurrent

systems. However, in practice, both algorithms are quite e�cient, and represent major

contributions.

Chapter 6 presented a symbolic timing veri�er that allows delays and constraints

to be expressed as variables. This powerful extension to traditional constraint checking

provides insight into how di�erent aspects of a design relate to one another (with respect

to constraint satisfaction) because the results of veri�cation are descriptions of the re-

lationships between variables that need to be satis�ed for veri�cation to be successful.

Moreover, the techniques can also provide guarantees regarding the temporal behavior

of the modeled system. The veri�cation model allows conditional and parallel behavior

as well as limited forms of concurrency. The feasibility of performing timing veri�cation

using symbolic variables has been demonstrated.

Chapter 7 presented an e�cient and exact algorithm for determining exact bounds

on the separation in time of two arbitrary system events. This problem is fundamental

in that it addresses a core issue, determining how synchronization a�ects the temporal

behavior of concurrent systems. We are not aware of any other existing tools or for-

malisms capable of performing the types of analysis that can now be performed as a

result of this work.

135

8.2 Directions for Future Research

Much of the work described in this dissertation has been driven by the goal of extending

expressivity. In the area of speci�cation, a new event-based speci�cation paradigm was

presented. In the area of veri�cation, new methodologies and a new fundamental prob-

lem were addressed. As one would expect, future research could undoubtedly attempt

to extend even further the expressiveness of the models we have described. For exam-

ple, none of the models that were presented support true hierarchy (OEgraphs support

modularity, but are not fully hierarchical), which should ideally be incorporated into all

of our models.

In the area of speci�cation, however, our model appears to be su�ciently expressive.

A much more interesting problem is in fact determining how to best restrict the model.

Simple event-graphs are clearly not expressive enough, because there are many common

constraints appearing in databooks that they cannot handle. These constraints can be

speci�ed using operation-event graphs and event-logic, but both may be overly-expressive

with respect to most designers needs. The chronological and causal relationships we used

to identify the constrained discrete events may not always be necessary. Simpler models

may be more appropriate in that they will permit more automation (i.e., in synthesis

and veri�cation) and yet still satisfy the needs of designers.

In the area of veri�cation, we would clearly like to be able to verify more compli-

cated systems than those described in Chapter 7. At present, systems expressed as

communicating pieces of software cannot e�ectively be analyzed because we do not han-

dle conditional behavior (e.g., programs have \if" statements). This model needs to be

extended to handle conditional and iterative behavior. However, when communication

(i.e., synchronization) is itself conditional, the problem appears to be quite complicated.

In this case, it may be necessary to relax the tightness of the bounds in favor of com-

putational e�ciency. It would also be desirable to integrate the symbolic veri�cation

methodology of Chapter 6 with the veri�cation algorithms of Chapter 7. At present,

applications for the symbolic timing veri�er are limited due to its inability to handle the

136

types of concurrency described in Chapter 7. The veri�er represents a proof of concept,

and further theoretical work is needed. Some of the restrictions to the model described

in Chapter 7 can undoubtedly be removed. For example, it should be possible to analyze

graphs that are not strongly connected. Further work is needed in order to establish a

lower bound on the complexity of the problem.

Looking further ahead, newer technologies (e.g., �eld programmable gate arrays)

and the growing popularity of programmable micro-controllers have served to blur the

traditional boundary between hardware and software. Many new systems will likely be

implemented using combinations of both hardware and software, and research in the

area of Hardware/Software Co-Design is in its infancy. Synthesis algorithms for these

systems must take timing behavior into account|to facilitate optimizations (using the

temporal guarantees obtained from timing veri�cation), to provide information to help

with partitioning and scheduling, and to preserve correctness.

8.3 Closing Comments

This dissertation has addressed the problem of specifying and verifying correct temporal

behavior for digital and possibly other concurrent systems. It has expanded the frontiers

of speci�cation, and looked beyond the simple event-graph. The bene�ts of perform-

ing symbolic timing veri�cation have been demonstrated, namely, that synthesis and

analysis algorithms can be cast into this framework. Finally, we have examined a funda-

mental problem in the area of analyzing concurrent systems, and presented a theoretical

framework and e�cient algorithms which may have a wide domain of applicability.

Bibliography

[Aho et al. 74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis

of Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[Ajmone Marsan 89] M. Ajmone Marsan. Stochastic Petri nets: An elementary intro-

duction. In G. Rozenberg, editor, Advances in Petri Nets 1989, number 424 in

Lecture Notes in Computer Science, pages 1{29. Springer{Verlag, 1989.

[Allen 83] J. F. Allen. Maintaining knowledge about temporal intervals. Communica-

tions of the ACM, 26(11), November 1983.

[Alur & Dill 90] R. Alur and D. L. Dill. Automata for modeling real-time systems.

In 17th International Colloquium on Automata, Languages, and Programming.

Springer-Verlag Lecture Notes in Computer Science 443, 1990.

[Alur & Henzinger 89] R. Alur and T. A. Henzinger. A really temporal logic. In Proceed-

ings of the 30th Annual IEEE Symposium on Foundations of Computer Science,

1989.

[Alur & Henzinger 90] R. Alur and T. A. Henzinger. Real-time logics: Complexity and

expressiveness. In Fifth Annual IEEE Symposium on Logic in Computer Science,

1990.

[Alur & Henzinger 92] R. Alur and T. A. Henzinger. Logics and models of real time:

A survey. In J. W. de Bakker, K. Huizing, W. de Roever, and G. Rozenberg,

editors, Real Time: Theory in Practice. Springer-Verlag Lecture Notes in Com-

puter Science 600, 1992.

[Alur et al. 89] R. Alur, T. Feder, and T. A. Henzinger. The bene�ts of relaxing punc-

tuality. In Proceedings of the 10th Principles of Distributed Computing, 1989.

[Amon & Borriello 91a] T. Amon and G. Borriello. OEsim: A simulator for timing

behavior. In 28th ACM/IEEE Design Automation Conference, June 1991.

138

[Amon & Borriello 91b] T. Amon and G. Borriello. Sizing synchronization queues: A

case study in higher level synthesis. In 28th ACM/IEEE Design Automation

Conference, June 1991.

[Amon & Borriello 92] T. Amon and G. Borriello. An approach to symbolic timing

veri�cation. In 29th ACM/IEEE Design Automation Conference. ACM/IEEE,

June 1992.

[Amon et al. 91] T. Amon, G. Borriello, and C. S�equin. Operation/Event graphs: A

design representation for timing behavior. In 1991 IFIP Conference on Hardware

Description Languages (CHDL), 1991.

[Amon et al. 93] T. Amon, H. Hulgaard, S. Burns, and G. Borriello. An algorithm for

exact bounds on the time separation of events in concurrent systems. In IEEE

International Conference on Computer Design (ICCD), October 1993.

[Andre 91] C. Andre. Delays in synchronized elementary net systems. In G. Rozenberg,

editor, Advances in Petri Nets 1991, number 524 in Lecture Notes in Computer

Science. Springer{Verlag, 1991.

[Arnold 85] J. Arnold. The knowledge-based test assistant's wave/signal editor: An

interface for the management of timing constraints. In Second Conference on

Arti�cial Intelligence Applications, December 1985.

[Augustin 89] L. M. Augustin. An algebra of waveforms. In L. Claesen, editor, Pro-

ceedings of the IFIP International Workshop on Applied Formal Methods For

Correct VLSI Design, pages 159{168, Leuven, Belgium, November 1989. North-

Holland.

[Augustin et al. 88] L. Augustin, B. Gennart, Y. Huh, D. Luckham, and A. Stanculescu.

An overview of VAL. Technical Report CSL-TR-88-367, Stanford University,

1988.

[Barbacci 81] M. Barbacci. Instruction set processor speci�cation (ISPS): The notation

and its applications. IEEE Transactions on Computers, January 1981.

[Bennett 86] M. J. Bennett. Proving Correcness of Asynchronous Circuits Using Tem-

poral Logic. PhD dissertation, University of California at Los Angeles, April

1986.

[Bestavros 90] A. A. Bestavros. The input output timed automaton: A model for real-

time parallel computation. First International Workshop on Timing Issues in

the Speci�cation and Synthesis of Digital Systems (Tau '90), August 1990.

139

[Bochmann 82] G. V. Bochmann. Hardware speci�cation with temporal logic: An ex-

ample. IEEE Transactions on Computers, C-31(3), March 1982.

[Borriello 88a] G. Borriello. Combining event and data-
ow graphs in behavioral syn-

thesis. Proceedings of the International Conference on Computer Aided Design,

November 1988.

[Borriello 88b] G. Borriello. A New Interface Speci�cation Methodology and its Appli-

cation to Transducer Synthesis. PhD dissertation, University of California at

Berkeley, 1988.

[Brauer et al. 87] W. Brauer, W. Reisig, and G. Rozenberg, editors. Advances in Petri

Nets 1986. Number 254 in Lecture Notes in Computer Science. Springer{Verlag,

1987. Part I: Petri Nets: Central Models and their Properties, Part II: Petri

Nets: Applications and Relationships to Other Models of Concurrency.

[Browne et al. 86] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra. Automatic

veri�cation of sequential circuits using temporal logic. IEEE Transactions on

Computers, C-35(12), December 1986.

[Bryant & Seger 91] R. E. Bryant and C.-J. H. Seger. Formal hardware veri�cation

by symbolic trajectory evaluation. In 28th ACM/IEEE Design Automation

Conference, June 1991.

[Bryant 86] R. E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, August 1986.

[Brzozowski et al. 91] J. A. Brzozowski, T. Gahlinger, and F. Mavaddat. Consistency

and satis�ability of waveform timing speci�cations. Networks, January 1991.

[Buck et al. 91] J. Buck, S. Ha, E. Lee, and D. Messerschmitt. Ptolemy: A platform for

heterogeneous simulation and prototyping. Proceedings of the European Simu-

lation Conference, June 1991.

[Burch 92] J. R. Burch. Trace Algebra for Automatic Veri�cation of Real-Time Concur-

rent Systems. PhD dissertation, Carnegie Mellon University, August 1992.

[Burch et al. 90] J. R. Burch, E. M. Clarke, D. L. Dill, and K. L. McMillan. Sequential

circuit veri�cation using symbolic model checking. In 27th ACM/IEEE Design

Automation Conference, June 1990.

[Burch et al. 91] J. R. Burch, E. M. Clarke, and D. E. Long. Representing circuits more

e�ciently in symbolic model checking. In 28th ACM/IEEE Design Automation

Conference, June 1991.

140

[Burns 91] S. M. Burns. Performance Analysis and Optimization of Asynchronous Cir-

cuits. PhD dissertation, California Institute of Technology, 1991. CS-TR-91-1.

[Chu 87] T.-A. Chu. Synthesis of Self-timed VLSI Circuits from Graph-theoretic Spec-

i�cations. PhD dissertation, Massachusetts Institute of Technology, 1987.

MIT/LCS/TR-393.

[Clark et al. 86] E. Clark, E. Emerson, and A. Sistla. Automatic veri�cation of �nite-

state concurrent systems using temporal logic speci�cations. ACM Transactions

on Programming Languages and Systems, 8(2), April 1986.

[Clarke et al. 86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�ca-

tion of �nite-state concurrent systems using temporal logic speci�cations. ACM

Transactions on Programming Languages and Systems, 8(2), April 1986.

[Coen et al. 90] A. Coen, A. Morzentia, and D. Sciuto. Hardware speci�cation with the

temporal logic language TRIO. First International Workshop on Timing Issues

in the Speci�cation and Synthesis of Digital Systems (Tau '90), August 1990.

[Cohen 90] J. Cohen. Constraint logic programming languages. Communications of the

ACM, 33(7), July 1990.

[Cohen et al. 89] G. Cohen, P. Moller, J. P. Quadrat, and M. Viot. Evaluation of discrete

event systems. Proceedings of the IEEE, 77(1):39{58, Jan 1989.

[Coolahan & Roussopoulos 85] J. E. Coolahan, Jr. and N. Roussopoulos. A timed Petri

net methodology for specifying real-time system timing requirements. In [TPN

85], pages 24{31, 1985.

[Devadas et al. 92] S. Devadas, K. Keutzer, S. Malik, and A. Wang. Veri�cation of

asynchronous interface circuits with bounded wire delays. In IEEE International

Conference on Computer-Aided Design (ICCAD), November 1992.

[Dill & Clarke 85] D. L. Dill and E. M. Clarke. Automatic veri�cation of asynchronous

circuits using temporal logic. 1985 Chapel Hill Conference on VLSI, 1985.

[Dill 88] D. L. Dill. Trace Theory for Automatic Hierarchical Veri�cation of Speed-

Independent Circuits. PhD dissertation, Carnegie Mellon University, 1988.

CMU-CS-88-119.

[Doc 89] Doctor Design, Inc., La Jolla, California. dV/dt User's Guide, 1989.

[Doukas & LaPaugh 91] D. Doukas and A. S. LaPaugh. CLOVER: a timing constraints

veri�cation system. In 28th ACM/IEEE Design Automation Conference, June

1991.

141

[Doukas 91] D. A. Doukas. A new speci�cation model for timing constraints and e�cient

methods for their veri�cation. PhD dissertation, Princeton University, 1991. CS-

TR-297-90.

[Ebergen 87] J. C. Ebergen. Translating Programs into Delay-Insensitive Circuits. PhD

dissertation, Technische Universiteit Eindhoven, 1987.

[Eilenberg 74] S. Eilenberg. Automata, Languages, and Machines, Vol. A. Academic

Press, 1974.

[Emerson & Halpern 86] E. A. Emerson and J. Y. Halpern. \sometimes" and \not

never" revisited: On branching versus linear time temporal logic. Journal of

the Association for Computing Machinery, 33(1), January 1986.

[Fourman 90] M. P. Fourman. Formal system design. In J. Staunstrup, editor, Formal

Methods for VLSI Design. North Holland, 1990.

[Fujita et al. 83] M. Fujita, H. Tanaka, and T. Moto-oka. Veri�cation with Prolog and

temporal logic. Proceedings of the 1983 IFIP Conference on Hardware Descrip-

tion Languages (CHDL), 1983.

[Fusaoka et al. 84] A. Fusaoka, H. Seki, and K. Takahashi. Description and reasoning of

VLSI circuit in temporal logic. New Generation Computing, 2, 1984.

[Gahlinger 90] T. Gahlinger. Coherence and satis�ability of waveform timing speci�ca-

tions. PhD dissertation, University of Waterloo, 1990. Research Report CS-90-

11.

[Garland & Guttag 89] S. J. Garland and J. V. Guttag. An overview of LP: the Larch

Prover. In Proceedings of the Third International Conference on Rewriting Tech-

niques and Applications. Springer-Verlag, 1989.

[Gordon 86] M. Gordon. Why higher-order logic is a good formalism for specifying and

verifying hardware. In G. Milne and P. A. Subrahmanyam, editors, Formal

Aspects of VLSI Design. North-Holland, 1986.

[Gordon 88] M. Gordon. HOL: A proof generating system for higher-order logic. In

G. Milne and P. A. Subrahmanyam, editors, VLSI Speci�cation, Veri�cation

and Synthesis. Kluwer Academic Publishers, 1988.

[Granacki 86] J. J. J. Granacki. Understanding Digital System Speci�cations Written in

Natural Language. PhD dissertation, University of Southern California, Decem-

ber 1986.

142

[Hansen et al. 92] M. R. Hansen, Z. Chacochen, and J. Staunstrup. A real-time duration

semantics for circuits. Second International Workshop on Timing Issues in the

Speci�cation and Synthesis of Digital Systems (Tau), March 1992.

[Harel 92] D. Harel. Biting the silver bullet: Toward a brighter future for system devel-

opment. IEEE Computer, January 1992.

[Harel et al. 88] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,

and A. Shtul-Trauring. Statemate: A working environment for the develop-

ment of complex reactive systems. Proceedings of the 10th IEEE International

Conference on Software Engineering, April 1988.

[Harel et al. 90] E. Harel, O. Lichtenstein, and A. Pneulli. Explicit-clock temporal logic.

In Fifth Annual IEEE Symposium on Logic in Computer Science, 1990.

[Hayati et al. 88] S. A. Hayati, A. C. Parker, and J. Granacki. Representation of control

and timing behavior with applications to interface synthesis. In IEEE Interna-

tional Conference on Computer Design (ICCD), 1988.

[Herstein 64] I. N. Herstein. Topics in Algebra. Blaisdell Publishing Company, 1964.

[Hopcroft & Ullman 79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata

Theory, Languages, and Computation. Addison-Wesley Publishing Company,

1979.

[Hulgaard et al. 93] H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello. Practical

applications of an e�cient time separation of events algorithm. In IEEE Inter-

national Conference on Computer-Aided Design (ICCAD), November 1993.

[Hunt 85] W. A. Hunt, Jr. FM8501: a veri�ed microprocessor. Technical Report ICSCA-

CMP-47, University of Texas at Austin, 1985.

[Ishiura et al. 89] N. Ishiura, M. Takahashi, and S. Yajima. Time-symbolic simulation

for accurate timing veri�cation of asynchronous behavior of logic circuits. In

26th ACM/IEEE Design Automation Conference, June 1989.

[Ishiura et al. 90] N. Ishiura, H. Yasuura, and S. Yajima. NES: The behavioral model for

the formal semantics of a hardware design language UDL/I. In 27th ACM/IEEE

Design Automation Conference, June 1990.

[Ja�ar et al. 92] J. Ja�ar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) lan-

guage and system. ACM Transactions on Programming Languages and Systems,

14(3):339{395, July 1992.

143

[Jahanian & Mok 86] F. Jahanian and A. K.-L. Mok. Safety analysis of timing properties

of real-time systems. IEEE Transactions on Software Engineering, September

1986.

[Kara et al. 88] A. Kara, R. Rastogi, and K. Kawamura. An expert system to automate

timing design. IEEE Design and Test of Computers, pages 28 { 40, Oct 1988.

[Katzenelson & Kurshan 86] J. Katzenelson and R. P. Kurshan. S/R: A language for

specifying protocols and other coordinating processes. In Proceedings of the 5th

Annual IEEE International Conference on Computer Communication, 1986.

[Khordoc et al. 91] K. Khordoc, M. Dufresne, and E. Cerny. A stimulus response sys-

tem based on hierarchical timing diagrams. Proceedings of the International

Conference on Computer Aided Design, November 1991.

[Koymans 89] R. Koymans. Specifying Message Passing and Time Critical Systems with

Temporal Logic. PhD dissertation, Eindhoven University of Technology, 1989.

[Koymans 90] R. Koymans. Specifying real-time properties with metric temporal logic.

Journal of Real-time Systems, 2, 1990.

[Ku & de Micheli 90] D. Ku and G. de Micheli. HardwareC | A language for hardware

design, version 2.0. Technical Report TR CSL{TR-90-419, Computer Systems

Laboratory, Stanford University, April 1990.

[Ku 91] D. C.-L. Ku. Constrained Synthesis and Optimization of Digital Integrated Cir-

cuits from Behavioral Speci�cations. PhD dissertation, Stanford University,

1991. CSL-TR-91-476.

[Kurshan & McMillan 91] R. Kurshan and K. L. McMillan. Analysis of digital circuits

through symbolic reduction. IEEE Transactions on Computer-Aided Design of

Integrated Circuits, November 1991.

[Lai 83] K.-W. Lai. Test program compiler { a high level test program speci�cation lan-

guage. In IEEE International Conference on Computer-Aided Design (ICCAD),

pages 30{31, November 1983.

[Lamport 80] L. Lamport. \sometime" is sometimes \not never". ACM 7th Principles

of Programming Languages, 1980.

[Lawler 76] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt,

Rinehart and Winston, New York, 1976.

[Lazowska et al. 84] E. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quanti-

tative System Performance: Computer System Analysis Using Queing Network

Models. Prentice Hall, 1984.

144

[Leeser 89] M. E. Leeser. Reasoning about the function and timing of integrated circuits

with interval temporal logic. IEEE Transactions on Computer-Aided Design of

Integrated Circuits, 8(12), December 1989.

[Leeser et al. 91] M. Leeser, A. Takach, and W. Wolf. Behavior FSMs for high-level

synthesis and veri�cation. In P. A. Subrahmanyam, editor, Formal Methods in

VLSI Design. Springer-Verlag, 1991.

[Lewis 90] H. R. Lewis. A logic of concrete time intervals. In Fifth Annual IEEE Sym-

posium on Logic in Computer Science, 1990.

[Lynch & Attiya 92] N. Lynch and H. Attiya. Using mappings to prove timing proper-

ties. Distributed Computing, 6, 1992.

[Lynch & Tuttle 89] N. A. Lynch and M. R. Tuttle. An introduction to input/output

automata. CWI Quarterly, 2(3), September 1989.

[Malachi & Owicki 81] Y. Malachi and S. S. Owicki. Temporal Speci�cations of Self-

Timed Systems. In H. T. Kung et al., editors, VLSI Systems and Computations.

Computer Science Press, Rockville MD, 1981.

[Martello & Levitan 93] A. Martello and S. Levitan. Temporal analysis of time bounded

digital systems. In Proceedings of the IFIP WG10.2 Advanced Research Working

Conference on Correct Hardware Design Methodologies (CHARME), May 1993.

[Martello et al. 90] A. Martello, S. Levitan, and D. Chiarulli. Timing veri�cation using

hdtv. In 27th ACM/IEEE Design Automation Conference, June 1990.

[Martin et al. 89] A. Martin, S. Burns, T. Lee, D. Borkovi�c, and P. Hazewindus. The de-

sign of an asynchronous microprocessor. In C. Seitz, editor, Advanced Research

in VLSI: Proceedings of the Decennial Caltech Conference on VLSI, pages 351{

373, Cambridge, MA, 1989. MIT Press.

[McFarland 78] M. C. McFarland. The value trace: A database for automated digital de-

sign. Technical Report TR DRC-01-04-80, Engineering Design Research Center,

Carnegie Mellon University, December 1978.

[McFarland 90] M. C. McFarland. Cpa: Giving an account of timed system behavior.

First International Workshop on Timing Issues in the Speci�cation and Synthe-

sis of Digital Systems (Tau '90), August 1990.

[McFarland et al. 90] M. McFarland, A. Parker, and R. Camposano. The high-level

synthesis of digital systems. In Proceedings of the IEEE, volume 78, Feb 1990.

[McGeer & Brayton 91] P. C. McGeer and R. K. Brayton. Integrating functional and

temporal domains in logic design. Kluwer Academic Publishers, 1991.

145

[McMillan & Dill 92] K. McMillan and D. L. Dill. Algorithms for interface timing veri-

�cation. In IEEE International Conference on Computer Design (ICCD), 1992.

[McWilliams 80] T. McWilliams. Veri�cation of Timing Constraints on Large Digital

Systems. PhD dissertation, Lawrence Livermore Laboratory, May 1980.

[Merlin 74] P. Merlin. A study of the recoverability of computer systems. PhD disserta-

tion, University of California, 1974.

[Merritt et al. 91] M. Merritt, F. Modugno, and M. Tuttle. Time constrained automata.

In J. Beaten and J. Groote, editors, Proceedings of CONCUR 91, volume 257

of Lecture Notes in Computer Science. Springer-Verlag, 1991.

[Meyer 85] B. Meyer. On formalism in speci�cation. IEEE Software, January 1985.

[Moszkowski 85] B. Moszkowski. A temporal logic for multilevel reasoning about hard-

ware. IEEE Computer, February 1985.

[Moszkowski 86] B. Moszkowski. Executing temporal logic programs. Technical report,

Cambridge University, U.K., 1986.

[Murata 89] T. Murata. Petri nets: properties, analysis, and applications. Proceedings

of the IEEE, 77(4):541{580, April 1989.

[Myers & Meng 92] C. Myers and T. H.-Y. Meng. Synthesis of timed asynchronous cir-

cuits. In IEEE International Conference on Computer Design (ICCD), Septem-

ber 1992.

[Narain et al. 92] S. Narain, J. Cameron, Y.-J. Lin, and R. C. Sekar. A high-level real-

time temporal logic. Bellcore Internal Publication, March 1992.

[Nestor 87] J. Nestor. Speci�cation and Synthesis of Digital Systems with Interfaces.

PhD dissertation, Carnegie-Mellon University, 1987. CMUCAD-87-10.

[Ortega 92] R. Ortega. Operation event timing constraints in Ptolemy. Technical report,

Department of Computer Science and Engineering, University of Washington,

November 1992.

[Ostro� 90] J. Ostro�. Temporal Logic of Real-Time Systems. Research Studies Press,

1990.

[Ousterhout 85] J. Ousterhout. A switch-level timing veri�er for digital MOS VLSI.

IEEE Transactions on Computer-Aided Design of Integrated Circuits, 4(3), July

1985.

146

[Park & Shaw 91] C.-Y. Park and A. C. Shaw. Experiments with a program timing tool

based on source-level timing schema. IEEE Computer, 25(5):48{57, May 1991.

[Parker & Wallace 81] A. Parker and J. Wallace. SLIDE: An I/O hardware description

language. IEEE Transactions on Computers, June 1981.

[Pneuli 77] A. Pneuli. The temporal logic of programs. Proceedings of the 18th IEEE

Symposium on Foundations of Computer Science, 1977.

[Ramamoorthry & Ho 80] C. Ramamoorthry and G. S. Ho. Performance evaluation

of asynchronous conncurrent systems using Petri nets. IEEE Transactions on

Software Engineering, SE{6:440{449, September 1980.

[Ramchandani 74] C. Ramchandani. Analysis of asynchronous concurrent systems by

Petri nets. Technical Report Project MAC TR-120, M.I.T., Cambridge, MA,

1974.

[Rem et al. 83] M. Rem, J. L. van de Snepscheut, and J. T. Udding. Trace theory and

the de�nition of hierarchical components. In R. Bryant, editor, Third CalTech

Conference on VLSI, pages 225{239. Computer Science Press, 1983.

[Rescher & Urquart 71] N. Rescher and A. Urquart. Temporal Logic. Springer-Verlag,

1971.

[Sherman 88] S. K. Sherman. Algorithms for timing requirement analysis and generation.

In 25th ACM/IEEE Design Automation Conference, 1988.

[Subramanyam 90] P. A. Subramanyam. Tales: Event-based semantics for timing speci-

�cation (with applications to synthesis, veri�cation and analysis). First Interna-

tional Workshop on Timing Issues in the Speci�cation and Synthesis of Digital

Systems (Tau '90), August 1990.

[Sun & Brodersen 92] J. S. Sun and R. W. Brodersen. Design of system interface mod-

ules. In IEEE International Conference on Computer-Aided Design (ICCAD),

November 1992.

[TPN 85] International Workshop on Timed Petri Nets. IEEE Computer Society Press,

July 1985.

[Vahid & Gajski 91] F. Vahid and D. D. Gajski. Obtaining functionally equivalent sim-

ulations using VHDL and a time-shift transformation. In IEEE International

Conference on Computer-Aided Design (ICCAD), pages 362{365, November

1991.

[van de Snepscheut 85] J. van de Snepscheut. Trace theory and VLSI design. In Lecture

Notes Computer Science 200. Springer-Verlag, 1985.

147

[Vanbekbergen et al. 92] P. Vanbekbergen, G. Goossens, and H. D. Man. Speci�cation

and analysis of timing constraints in signal transition graphs. In European

Design Automation Conference, March 1992.

[Wing 90] J. M. Wing. A speci�er's introduction to formal methods. IEEE Computer,

September 1990.

[Wolper 81] P. Wolper. Temporal logic can be more expressive. Proceedings of the 22nd

IEEE Symposium on Foundations of Computer Science, 1981.

[Zahir & Fichtner 90] R. Zahir and W. Fichtner. Speci�cation of timing constraints

for controller synthesis. First International Workshop on Timing Issues in the

Speci�cation and Synthesis of Digital Systems (Tau '90), August 1990.

[Zuberek 91] W. M. Zuberek. Timed Petri nets de�nitions, properties and applications.

Microelectronics and Reliability, 31(4):627{644, 1991.

Appendix A

The Ethernet Protocol Example

This appendix contains complete details regarding two di�erent versions of a speci�cation

of the Ethernet communication protocol described in Chapter 3. The protocol is speci�ed

using OEgraphs which describe the behavior of a wire X obeying the protocol.

A.1 Timing Behavior expressed Functionally

/* Ethernet, left OEgraph in Figure */

#include "runtime.h"

oe_wire X("X");

oe_event start("start",X,LOW);

oe_event preamble1("preamble1",X,HIGH);

oe_event preamble_high("preamble_high",X,HIGH);

oe_event preamble_low("preamble_low",X,LOW);

oe_event preamble2("preamble2",X,LOW);

oe_event preamble3("preamble3",X,HIGH);

oe_event data_setup("data_setup",X,VALID);

oe_event data_valid("data_valid",X,VALID);

oe_event finish("finish",X,TRI);

void operation_one(oe_trigger& trigger) {

int d;

cout << "=====> enter delay before sending new preamble: "; cin >> d;

cause(start, d);

}

oe_box one("one", operation_one);

/* The first high transition is at +50 */

void operation_two(oe_trigger& trigger) {cause(preamble1, 50);}

oe_box two("two", operation_two);

/* We loop until the end of the preamble */

void operation_three(oe_trigger& trigger) {

149

static int count;

if (trigger == preamble1) {

count = 0;

}

if (count < 31) {

cause(preamble_low, 100);

count++;

} else {

cause(preamble2, 50);

}

}

oe_box three("three", operation_three);

void operation_four(oe_trigger& trigger) {cause(preamble_high, 100);}

oe_box four("four", operation_four);

/* final transition of preamble at +50 */

void operation_five(oe_trigger& trigger) {cause(preamble3, 50);}

oe_box five("five", operation_five);

/* send the data Manchester encoded */

void operation_six(oe_trigger& trigger) {

static int i, data[100], count;

if (trigger == preamble3) {

i = 0;

cout << "=====> enter data [0,1, or -1 to quit]: "; cin >> data[i++];

while (data[i-1] == 0 || data[i-1] == 1) {

cout << "=====> enter data [0,1, or -1 to quit]: "; cin >> data[i++];

}

count = 0;

}

if (count < i-1) {

if (data[count++]==0) {

cause(data_valid,100,LOW);

if (value_on_port(trigger) == LOW)

cause(data_setup,50,HIGH);

} else {

cause(data_valid,100,HIGH);

if (value_on_port(trigger) == HIGH)

cause(data_setup,50,LOW);

}

} else {

if (value_on_port(trigger) == LOW) {

cause(data_setup,50,HIGH);

cause(finish, uniform_delay(350,2050));

} else {

cause(finish, uniform_delay(300,2000));

}

}

}

oe_box six("six", operation_six);

main(int argc, char* argv[])

{

connect(start, two);

connect(two, preamble1);

connect(preamble1, three);

connect(preamble_high,three);

connect(three, preamble_low);

connect(three, preamble2);

connect(preamble_low,four);

connect(four, preamble_high);

150

connect(preamble2, five);

connect(five, preamble3);

connect(preamble3, six);

connect(data_valid,six);

connect(six, data_valid);

connect(six, data_setup);

connect(six, finish);

connect(finish,one);

connect(one,start);

oesim(argv[0], options(argc, argv));

}

A.2 Timing Behavior expressed using Timing Constraints

/* Ethernet, right OEgraph in Figure 11 */

#include "runtime.h"

#define PREAMBLE_LENGTH 64

oe_wire X("X");

oe_event X_valid("X_valid",X,VALID);

oe_event finish("finish",X,TRI);

void operation_one(oe_trigger& trigger) {

static int count, limit;

if (trigger == finish) {

count = 0;

limit = unspecified_integer();

}

if (count < limit) {

cause(X_valid, unspecified_integer(), unspecified_value());

count++;

} else {

cause(finish, unspecified_integer());

}

}

oe_box one("one", operation_one);

main(int argc, char* argv[])

{

connect(one, finish);

connect(one, X_valid);

connect(finish,one);

connect(X_valid,one);

oe_set X_HIGH(*(new set_node(X)) ^ *(new set_node(SET_HIGH)));

oe_set X_LOW(*(new set_node(X)) ^ *(new set_node(SET_LOW)));

oe_set X_TRI(*(new set_node(X)) ^ *(new set_node(SET_TRI)));

discrete_name x1("x1",X);

discrete_name x2("x2",X);

discrete_name xL("xL",X_LOW);

discrete_name xTRI("xTRI",X_TRI);

discrete_name xTRI2("xTRI2",X_TRI);

oe_constraint c1("c1");

c1.quantify(xTRI,x1,x2);

c1.context(nco(xTRI, X, x1) &

151

nco(x1, X, x2));

c1.require(valueOf(x1)==LOW &

valueOf(x2)==HIGH &

timeOf(x2) - timeOf(x1) == 50);

c1.error("1st transition after tri should be low then high at +50ns");

oe_constraint c2("c2");

c2.quantify(xTRI, xL, x1, x2);

c2.context(nco(xTRI, X_LOW, xL) &

timeOf(x2)-timeOf(xL) <= 50+(PREAMBLE_LENGTH-2)*100 &

timeOf(x2)-timeOf(xL) > 50 &

nco(x1, X, x2));

c2.require((timeOf(x2)-timeOf(xL)) % 100 == 50 &

((valueOf(x1)==HIGH & valueOf(x2)==LOW) |

(valueOf(x1)==LOW & valueOf(x2)==HIGH)));

c2.error("preamble error, high/low from 50 (high) to 11 every 100");

/* alternatively, constraint c2 (which is very complicated) could be

expressed as a large number of simpler constraints */

for(int i=2; i < PREAMBLE_LENGTH; i++) {

oe_constraint* preamble_constraint =

new oe_constraint ("preamble_constraint");

preamble_constraint->quantify(xTRI,xL,x1);

preamble_constraint->context(nco(xTRI,X_LOW,xL) &

nco(xL,i,X,x1));

preamble_constraint->require(timeOf(x1)-timeOf(xL)==(i-1)*100+50 &

valueOf(x1) ==

((i % 2 == 0)? LOW : HIGH));

}

*/

oe_constraint c3("c3");

c3.quantify(xTRI,xL,x1);

c3.context(nco(xTRI,X_LOW,xL) &

nco(xL,PREAMBLE_LENGTH,X,x1));

c3.require(timeOf(x1)-timeOf(xL)==(PREAMBLE_LENGTH-1)*100 &

valueOf(x1)==LOW);

c3.error("end of preamble invalid");

oe_constraint c4("c4");

c4.quantify(xTRI,xL,x1);

c4.context(nco(xTRI,X_LOW,xL) &

nco(xL,PREAMBLE_LENGTH+1,X,x1));

c4.require(timeOf(x1)-timeOf(xL)==(PREAMBLE_LENGTH-1)*100 + 50 &

valueOf(x1)==HIGH);

c4.error("end of preamble invalid");

oe_constraint c5("c5");

c5.quantify(xTRI,xL,x1);

c5.context(nco(xTRI,X_LOW,xL) &

nco(xL,PREAMBLE_LENGTH+2,X,x1));

c5.require(valueOf(x1)==TRI |

(valueOf(x1)==LOW &

(timeOf(x1)-timeOf(xL)==PREAMBLE_LENGTH*100 |

timeOf(x1)-timeOf(xL)==PREAMBLE_LENGTH*100+50)));

c5.error("problem with first data transmitted");

oe_constraint c6("c6");

c6.quantify(xTRI,xL,x1,x2,xTRI2);

152

c6.context(nco(xTRI,X_LOW,xL) &

nco(xTRI,X_TRI,xTRI2) &

timeOf(x2)-timeOf(xL) >= PREAMBLE_LENGTH*100+50 &

timeOf(x2) < timeOf(xTRI2) &

nco(x1,X,x2));

c6.require(((valueOf(x1)==LOW & valueOf(x2)==HIGH) |

(valueOf(x2)==LOW & valueOf(x1)==HIGH)) &

((timeOf(x2)-timeOf(xL)) % 100 == 50 &

(timeOf(x2)-timeOf(x1) == 50 |

timeOf(x2)-timeOf(x1) == 100)) |

((timeOf(x2)-timeOf(xL)) % 100 == 0 &

(timeOf(x2)-timeOf(x1) == 50)));

c6.error("Manchester encoding of data is faulty");

oe_constraint c7("c7");

c7.quantify(xTRI, x1);

c7.context(pco(xTRI, X, x1));

c7.require(valueOf(x1)==HIGH &

timeOf(xTRI)-timeOf(x1) >= 300 &

timeOf(xTRI)-timeOf(x1) <= 2000);

c7.error("problem with protocol termination");

oesim(argv[0], options(argc, argv));

}

Appendix B

The SN74LS222 Example

This appendix contains complete details regarding the Texas Instruments 16 element

FIFO storage queue used as an example in Chapter 4.

B.1 Speci�cation of the LS222

The complete OEgraph speci�cation for the LS222 as a library component:

/* simulation model for SN74LS222 */

#include "rt_support.h" // include the run time support library for OEsim

int max_size = 4; // actual (# FIFO entries) is 16, use 4 for convenience

/* define a new encapsulation class, the LS222 */

class operation_sn74ls222: public s_bbox {

oe_wire *not_CLR,*LD,*UN,*IR,*OR,*D,*Q;

int amount;

OEqueue memory;

wire_value prev_UN,prev_LD;

public:

/* every encapsulation has a constructor (whose parameters are the

inputs and outputs of the encapsulated operation) and an evaluate

routine which is activated whenever an input event occurs */

operation_sn74ls222(char *name,

oe_wire &a_not_CLR, oe_wire &a_LD, oe_wire &a_UN,

oe_wire &a_IR, oe_wire &a_OR, oe_wire &a_D, oe_wire &a_Q);

void evaluate(oe_trigger&);

};

154

/* we make use of a constraint subroutine to simplify constraint definition */

pulse_min(oe_event_or_wire &A, wire_value& valA, oe_event_or_wire &B,

wire_value& valB, int time)

{

oe_constraint* pulse_min = new oe_constraint ("pulse_min");

/* the discrete names are created if necessary */

discrete_name &A0 = find_or_make_dname(A, "0", valA);

discrete_name &B1 = find_or_make_dname(B, "1", valB);

/* the constraint is specified using the restricted event-logic */

pulse_min->quantify(A0, B1);

pulse_min->context(nco(A0, 1, *(B.my_set_of(&valB)), B1));

pulse_min->require(timeOf(B1)-timeOf(A0) >= time);

}

/* the constructor, used when one instantiates an LS222

operation_sn74ls222::operation_sn74ls222(char *name,

oe_wire &a_not_CLR, oe_wire &a_LD, oe_wire &a_UN,

oe_wire &a_IR, oe_wire &a_OR, oe_wire &a_D, oe_wire &a_Q) : (name)

{

/* the actual connections are stored for use during evaluation */

not_CLR = &a_not_CLR; LD = &a_LD; UN = &a_UN; IR = &a_IR;

OR = &a_OR; D = &a_D; Q = &a_Q;

/* the actual inputs and outputs are connected to this encapsulation */

connect(a_not_CLR, *this); connect(a_LD, *this); connect(a_UN, *this);

connect(*this, a_IR); connect(*this, a_OR);

connect(a_D, *this); connect(*this, a_Q);

/* the timing constraints from the databook are specified */

pulse_min(a_LD,HIGH,a_LD,LOW,60);

pulse_min(a_LD,LOW,a_LD,HIGH,15);

pulse_min(a_UN,LOW,a_UN,HIGH,30);

pulse_min(a_UN,HIGH,a_UN,LOW,30);

pulse_min(a_not_CLR, LOW, a_not_CLR, HIGH, 20);

pulse_min(a_LD,LOW,a_UN,LOW,50);

pulse_min(a_UN,HIGH,a_LD,HIGH,50);

pulse_min(a_D,VALID,a_LD,LOW,50);

prev_UN = UNDEFINED;

prev_LD = UNDEFINED;

}

/* the evaluate routine is defined. The code is quite similar to that of

a non-encapsulated specification, except that the inputs are

pointers to wires, and not actually wires. */

void operation_sn74ls222::evaluate(oe_trigger &trigger) {

OEint tmp;

if (trigger == *not_CLR && *not_CLR == LOW) {

cause(*IR,uniform_delay(36,55),HIGH);

cause(*OR,uniform_delay(25,40),LOW);

amount = 0;

}

if (*not_CLR == LOW) { // async reset, capture possible data changes

prev_UN = *UN;

prev_LD = *LD;

155

return;

}

if (trigger == *LD) {

if (*LD==LOW) {

if (prev_LD == HIGH && amount < max_size) { //edge triggered

if (amount == 0) { //put data onto Q instead of memory

amount = 1;

cause(*Q,uniform_delay(34,50),value_on_port(*D));

if (*UN==HIGH) cause(*OR,uniform_delay(48,70),HIGH); //not empty

} else {

amount++;

memory.enqueue(*D,ancestors(*D,*LD));

}

}

if (amount != max_size) cause (*IR,uniform_delay(25,40), HIGH);

}

if (*LD==HIGH) {

cause(*IR,uniform_delay(36,50),LOW);

}

prev_LD = *LD;

}

if (trigger == *UN) {

if (prev_UN == LOW && *UN==HIGH && amount > 0) { //edge triggered

if (amount ==1) {

amount--;

cause(*Q,uniform_delay(54,80),TRI);

cause(*OR, uniform_delay(48,70), LOW); //since empty

} else { //Q gets memory when amount > 1

amount--;

tmp = memory.dequeue();

cause(*Q,uniform_delay(45,70),tmp,ancestors(tmp));

if (*LD==LOW) cause(*IR,uniform_delay(49,70),HIGH); //not full

}

}

if (*UN==HIGH && amount > 0) cause(*OR, uniform_delay(29,45), HIGH);

if (*UN==LOW) cause(*OR,uniform_delay(28,45),LOW);

prev_UN = *UN;

}

}

156

B.2 Simulation of the LS222

We simulate two LS222s which have been composed together (see Figure 4.6). For this

simulation, we assume that each FIFO holds 4 integers of data, and we issue a series of

7 load commands (loading 10, 20, 30, 40, 50, 60, 70) followed by 7 unload commands.

Here is the simulation log:

Welcome To Simulation v1.3, Mon Aug 13 11:41:00 1990

... reading stimulus file LS222.itf

oesim-0> run

sim_event_occurs at time: 0 event not_CLR$<external> (not_CLR*LOW)

sim_event_occurs at time: 28 event OR2$fifo2 (OR2*LOW)

sim_event_occurs at time: 31 event O1L2$fifo1 (O1L2*LOW)

sim_event_occurs at time: 44 event U1I2$fifo2 (U1I2*HIGH)

sim_event_occurs at time: 51 event IR1$fifo1 (IR1*HIGH)

sim_event_occurs at time: 200 event not_CLR$<external> (not_CLR*HIGH)

sim_event_occurs at time: 1000 event LD1$<external> (LD1*HIGH) the �rst load

sim_event_occurs at time: 1000 event D1$<external> (D1*10)

sim_event_occurs at time: 1046 event IR1$fifo1 (IR1*LOW)

sim_event_occurs at time: 1100 event LD1$<external> (LD1*LOW)

sim_event_occurs at time: 1135 event Q1_D2$fifo1 (Q1_D2*10)

sim_event_occurs at time: 1135 event IR1$fifo1 (IR1*HIGH)

sim_event_occurs at time: 1149 event O1L2$fifo1 (O1L2*HIGH)

sim_event_occurs at time: 1187 event U1I2$fifo2 (U1I2*LOW)

sim_event_occurs at time: 1221 event O1L2$fifo1 (O1L2*LOW)

sim_event_occurs at time: 1259 event Q2$fifo2 (Q2*10)

sim_event_occurs at time: 1260 event U1I2$fifo2 (U1I2*HIGH)

sim_event_occurs at time: 1321 event Q1_D2$fifo1 (Q1_D2*TRI)

sim_event_occurs at time: 1324 event O1L2$fifo1

sim_event_occurs at time: 2000 event LD1$<external> (LD1*HIGH) the second load

sim_event_occurs at time: 2000 event D1$<external> (D1*20)

sim_event_occurs at time: 2045 event IR1$fifo1 (IR1*LOW)

sim_event_occurs at time: 2100 event LD1$<external> (LD1*LOW)

sim_event_occurs at time: 2134 event IR1$fifo1 (IR1*HIGH)

sim_event_occurs at time: 2135 event Q1_D2$fifo1 (Q1_D2*20)

sim_event_occurs at time: 2168 event O1L2$fifo1 (O1L2*HIGH)

sim_event_occurs at time: 2218 event U1I2$fifo2 (U1I2*LOW)

sim_event_occurs at time: 2262 event O1L2$fifo1 (O1L2*LOW)

sim_event_occurs at time: 2295 event U1I2$fifo2 (U1I2*HIGH)

sim_event_occurs at time: 2350 event O1L2$fifo1

sim_event_occurs at time: 2369 event Q1_D2$fifo1 (Q1_D2*TRI)

sim_event_occurs at time: 3000 event LD1$<external> (LD1*HIGH) the third load

sim_event_occurs at time: 3000 event D1$<external> (D1*30)

sim_event_occurs at time: 3036 event IR1$fifo1 (IR1*LOW)

sim_event_occurs at time: 3100 event LD1$<external> (LD1*LOW)

sim_event_occurs at time: 3135 event IR1$fifo1 (IR1*HIGH)

sim_event_occurs at time: 3147 event Q1_D2$fifo1 (Q1_D2*30)

sim_event_occurs at time: 3159 event O1L2$fifo1 (O1L2*HIGH)

sim_event_occurs at time: 3200 event U1I2$fifo2 (U1I2*LOW)

sim_event_occurs at time: 3232 event O1L2$fifo1 (O1L2*LOW)

sim_event_occurs at time: 3264 event U1I2$fifo2 (U1I2*HIGH)

sim_event_occurs at time: 3333 event O1L2$fifo1

sim_event_occurs at time: 3342 event Q1_D2$fifo1 (Q1_D2*TRI)

sim_event_occurs at time: 4000 event LD1$<external> (LD1*HIGH) the fourth load

sim_event_occurs at time: 4000 event D1$<external> (D1*40)

sim_event_occurs at time: 4043 event IR1$fifo1 (IR1*LOW)

sim_event_occurs at time: 4100 event LD1$<external> (LD1*LOW)

157

sim_event_occurs at time: 4139 event IR1$fifo1 (IR1*HIGH)

sim_event_occurs at time: 4143 event Q1_D2$fifo1 (Q1_D2*40)

sim_event_occurs at time: 4160 event O1L2$fifo1 (O1L2*HIGH)

sim_event_occurs at time: 4210 event U1I2$fifo2 (U1I2*LOW)

sim_event_occurs at time: 4249 event O1L2$fifo1 (O1L2*LOW)

sim_event_occurs at time: 5000 event LD1$<external> (LD1*HIGH) the �fth load

sim_event_occurs at time: 5000 event D1$<external> (D1*50)

sim_event_occurs at time: 5042 event IR1$fifo1 (IR1*LOW)

sim_event_occurs at time: 5100 event LD1$<external> (LD1*LOW)

sim_event_occurs at time: 5129 event IR1$fifo1 (IR1*HIGH)

sim_event_occurs at time: 6000 event LD1$<external> (LD1*HIGH) the sixth load

sim_event_occurs at time: 6000 event D1$<external> (D1*60)

sim_event_occurs at time: 6039 event IR1$fifo1 (IR1*LOW)

sim_event_occurs at time: 6100 event LD1$<external> (LD1*LOW)

sim_event_occurs at time: 6139 event IR1$fifo1 (IR1*HIGH)

sim_event_occurs at time: 7000 event LD1$<external> (LD1*HIGH) the seventh load

sim_event_occurs at time: 7000 event D1$<external> (D1*70)

sim_event_occurs at time: 7044 event IR1$fifo1 (IR1*LOW)

sim_event_occurs at time: 7100 event LD1$<external> (LD1*LOW)

sim_event_occurs at time: 31000 event UN2$<external> (UN2*LOW) the �rst unload

sim_event_occurs at time: 31041 event OR2$fifo2

sim_event_occurs at time: 31100 event UN2$<external> (UN2*HIGH)

sim_event_occurs at time: 31131 event OR2$fifo2 (OR2*HIGH)

sim_event_occurs at time: 31152 event U1I2$fifo2 (U1I2*HIGH)

sim_event_occurs at time: 31169 event Q2$fifo2 (Q2*20)

sim_event_occurs at time: 31195 event O1L2$fifo1 (O1L2*HIGH)

sim_event_occurs at time: 31198 event Q1_D2$fifo1 (Q1_D2*50)

sim_event_occurs at time: 31203 event IR1$fifo1 (IR1*HIGH)

sim_event_occurs at time: 31232 event U1I2$fifo2 (U1I2*LOW)

sim_event_occurs at time: 31264 event O1L2$fifo1 (O1L2*LOW)

sim_event_occurs at time: 32000 event UN2$<external> (UN2*LOW) the second unload

sim_event_occurs at time: 32032 event OR2$fifo2 (OR2*LOW)

sim_event_occurs at time: 32100 event UN2$<external> (UN2*HIGH)

sim_event_occurs at time: 32134 event OR2$fifo2 (OR2*HIGH)

sim_event_occurs at time: 32161 event Q2$fifo2 (Q2*30)

sim_event_occurs at time: 32164 event U1I2$fifo2 (U1I2*HIGH)

sim_event_occurs at time: 32196 event O1L2$fifo1 (O1L2*HIGH)

sim_event_occurs at time: 32230 event Q1_D2$fifo1 (Q1_D2*60)

sim_event_occurs at time: 32232 event IR1$fifo1

sim_event_occurs at time: 32239 event U1I2$fifo2 (U1I2*LOW)

sim_event_occurs at time: 32281 event O1L2$fifo1 (O1L2*LOW)

sim_event_occurs at time: 33000 event UN2$<external> (UN2*LOW) the third unload

sim_event_occurs at time: 33039 event OR2$fifo2 (OR2*LOW)

sim_event_occurs at time: 33100 event UN2$<external> (UN2*HIGH)

sim_event_occurs at time: 33129 event OR2$fifo2 (OR2*HIGH)

sim_event_occurs at time: 33156 event U1I2$fifo2 (U1I2*HIGH)

sim_event_occurs at time: 33159 event Q2$fifo2 (Q2*40)

sim_event_occurs at time: 33185 event O1L2$fifo1 (O1L2*HIGH)

sim_event_occurs at time: 33214 event IR1$fifo1

sim_event_occurs at time: 33216 event Q1_D2$fifo1 (Q1_D2*70)

sim_event_occurs at time: 33230 event U1I2$fifo2 (U1I2*LOW)

sim_event_occurs at time: 33263 event O1L2$fifo1 (O1L2*LOW)

** Constraint Violation: pulse_min: Q1_D2-VALID0 O1L2-LOW1 :

nco(1, Q1_D2-VALID0, O1L2-LOW1) ==> ((t(O1L2-LOW1) - t(Q1_D2-VALID0)) >= 50)

Q1_D2-VALID0 = unique event: Q1_D2$fifo1 occurrence: 10 at time: 33216

O1L2-LOW1 = unique event: O1L2$fifo1 occurrence: 18 at time: 33263

sim_event_occurs at time: 34000 event UN2$<external> (UN2*LOW) the fourth unload

sim_event_occurs at time: 34042 event OR2$fifo2 (OR2*LOW)

sim_event_occurs at time: 34100 event UN2$<external> (UN2*HIGH)

sim_event_occurs at time: 34144 event OR2$fifo2 (OR2*HIGH)

158

sim_event_occurs at time: 34167 event Q2$fifo2 (Q2*50)

sim_event_occurs at time: 34170 event U1I2$fifo2 (U1I2*HIGH)

sim_event_occurs at time: 34227 event Q1_D2$fifo1 (Q1_D2*TRI)

sim_event_occurs at time: 34237 event O1L2$fifo1

sim_event_occurs at time: 35000 event UN2$<external> (UN2*LOW) the �fth unload

sim_event_occurs at time: 35028 event OR2$fifo2 (OR2*LOW)

sim_event_occurs at time: 35100 event UN2$<external> (UN2*HIGH)

sim_event_occurs at time: 35133 event OR2$fifo2 (OR2*HIGH)

sim_event_occurs at time: 35161 event Q2$fifo2 (Q2*60)

sim_event_occurs at time: 35167 event U1I2$fifo2

sim_event_occurs at time: 36000 event UN2$<external> (UN2*LOW) the sixth unload

sim_event_occurs at time: 36038 event OR2$fifo2 (OR2*LOW)

sim_event_occurs at time: 36100 event UN2$<external> (UN2*HIGH)

sim_event_occurs at time: 36141 event OR2$fifo2 (OR2*HIGH)

sim_event_occurs at time: 36151 event U1I2$fifo2

sim_event_occurs at time: 36169 event Q2$fifo2 (Q2*70)

sim_event_occurs at time: 37000 event UN2$<external> (UN2*LOW) the seventh unload

sim_event_occurs at time: 37037 event OR2$fifo2 (OR2*LOW)

sim_event_occurs at time: 37100 event UN2$<external> (UN2*HIGH)

sim_event_occurs at time: 37161 event Q2$fifo2 (Q2*TRI)

sim_event_occurs at time: 37170 event OR2$fifo2

stopped at time: 99999

oesim-99999>

Vita

Tod Amon was born on April 28, 1963 and grew up in Colorado. His undergraduate

work was done at the University of Colorado in Boulder, from where he graduated in

May, 1985 with a Bachelor of Science degree in Applied Mathematics with a minor in

Computer Science. Prior to completion of his degree, he worked for the Laboratory for

Atmospheric and Space Physics and was involved with the Solar Mesosphere Explorer, a

NASA satellite operated by the university. He worked as a Senior Software Engineer for

General Dynamics in San Diego from June of 1985 until June of 1988. He was a Project

Manager in the CAD/CAM department and worked on factory scheduling and simulation

software. He attended the University of Washington from September of 1988 until the

completion of this dissertation in July of 1993, working as a Research and Teaching

Assistant except for one year during which he held an IBM Graduate Fellowship. He

joined Southwest Texas State University in September of 1993.

159

