
A (More) Formal De�nition of Communicating Real-Time State

Machines

�

Technical Report No. 93-08-01

Alan C. Shaw

Abstract

The language of communicating real-time state machines is de�ned precisely in three parts.

First, the syntax of a single machine and of a set of connected machines are described. Then,

the static semantics is described as the set of execution paths obtained through a static analysis.

Finally, the dynamic semantics is de�ned by specifying a simulation algorithm that produces

execution traces or histories. The most di�cult and interesting aspect is that dealing with time.

1 Introduction

Communicating Real-Time State Machines (CRSMs), a requirements and design speci�cation lan-

guage for real-time systems, were introduced and de�ned informally in [Shaw 92]. They are uni-

versal state machines, with guarded commands as transitions, synchronous IO communication over

unidirectional channels much like Hoare's CSP [Hoare 85], and mechanisms for specifying execution

times of transitions and for accessing real-time, using a continuous time model. The original paper

described the CRSM notation, presented many applications examples, outlined an algorithm for

simulating the execution of a system of CRSMs, and discussed some methods for reasoning about

system behaviors in terms of CRSM event traces.

A discrete time version of CRSMs has been implemented [Raju & Shaw 92]. Further, a veri�er

for the discrete time version based on timed reachability graphs has been developed and built

[Raju 93]. In the veri�er paper, Raju presents a \tuple" de�nition for the form or syntax of dis-

crete time CRSMs.

Our purpose here is to provide a more precise de�nition of the semantics of CRSMs. We do this in

three parts. First, the syntax of an individual CRSM and of a system of CRSMs is described. Then,

the static semantics is de�ned as the execution histories or traces that can be obtained through a

�

This research was supported in part by the National Science Foundation under grant number CCR-9200858.

1

static analysis. Finally, the dynamic semantics is speci�ed operationally by means of a simulation

algorithm that generates execution histories.

2 Syntax

2.1 General CRSM

A CRSM is a tuple M = (S; I; O; V; G; C; E; T; s

0

).

1. S is a �nite set of states.

2. I and O are each �nite sets of input and output channels, respectively. Excepting the special

real-time clock CRSM (de�ned below in Section 2.2), I always includes a timer channel RT

M

.

Every channel also has an associated type. The type of RT

M

is the non-negative real numbers.

I \ O = ;

Aside: The type of a channel speci�es the data type of the message transmitted

across the channel.

3. V;G;C, and E are �nite sets of variables, guards, commands, and expressions, respectively,

in some programming language P .

Aside: Elements of V may have structure, e.g., records, arrays, and lists.

4. V is a �nite set of typed variables.

5. G is a �nite set of side-e�ect-free Boolean expressions of P , composed from elements of V

and constants.

6. C = C

internal

[C

io

. An element of C

internal

may be any terminating IO-free, sequential

program in P or it may be any identifying name.

Aside: A name denotes some physical activity; a program describes a computation.

C

io

may contain input commands ch

i

(v)? or output commands ch

o

(expr)! where ch

i

2 I ,

ch

o

2 O, v is a variable of P of the type of ch

i

, and expr is an expression of P of the type of

ch

o

.

Aside: The IO syntax is borrowed from CSP([Hoare85]), because the semantics are

similar.

7. E is the set of non-negative real-valued expressions from P composed from V , constants, and

the special symbol \1".

Aside: The elements of E�E denote lower and upper time bounds for the termi-

nation of a command.

2

8. T is a �nite set of transitions. T � S � S �G� C � E �E.

9. s

0

is the start or initial state of M . s

0

2 S.

2.2 Real-Time Clock CRSM

Corresponding to every general CRSM M is a real-time clock CRSM denoted RTC

M

.

RTC

M

= (fs

0

g;�; fRT

M

g; frtg; ftrueg; fRT

M

(rt)!g; f0;1g; f(s

0

; s

0

; true; RT

M

(rt)!; 0;1)g; s

0

)

The variable rt is the only system-wide global variable and is directly accessible only by the clock

CRSMs. It has a value from the non-negative reals.

Aside: rt contains global real-time. RTC

M

makes rt available to M and also provides

for timeouts.

2.3 Machine Connections

Two machines M

1

and M

2

may be composed for concurrent execution, provided that I

1

\ I

2

=

� and O

1

\O

2

= �; where I

1

; O

1

; I

2

, and O

2

are the input and output channels of M

1

and M

2

,

respectively. The channels in I

1

\O

2

and O

1

\I

2

are then de�ned to be connected. The composition

is represented as M

1

kM

2

.

Aside: For every machineM we have the compositionM k RTC

M

. The channel RT

M

is

connected. Machines communicate with each other through connected channels. Note

that this is not the traditional de�nition of \composition"; M

1

kM

2

does not de�ne a

new CRSM.

The composition is generalized to a set of machines fM

1

;M

2

; : : : ;M

m

g; m � 2: The machines may

be composed, provided that I

i

\ I

j

= � and O

i

\ O

j

= �; for all i 6= j and i; j = 1; : : : ; m,

where I

i

and O

i

are the input and output channels, respectively, for M

i

. The channels in I

i

\O

j

and O

i

\ I

j

, for all i 6= j and i; j = 1; : : : ; m, are de�ned as connected. The composition is denoted

M

1

kM

2

k : : : kM

m

.

With the exceptions of possible channel connections and the global real-time variable rt, machines

are independent. For any two machines M

1

and M

2

, neither of which is a real-time clock machine,

it is required that S

1

\ S

2

= � and V

1

\ V

2

= �, where S

1

; V

1

; S

2

; andV

2

are states and variables of

M

1

and M

2

, respectively.

Aside: The variables V of any general machine M are thus local to M .

3

2.4 Closed System of CRSMs

A closed system of CRSMs is a set of composed machines M

1

kM

2

k : : : k M

m

; m � 2, such that

all channels are connected.

Aside: This means that there are no \dangling" channels { every input has a corre-

sponding output, and vice versa. A closed system is meant to completely model both a

real-time system and its environment. Alternatively, a closed system could be de�ned

as a pair <M; C >, whereM is a set of CRSMs and C is a set of unidirectional channels

connecting pairs of machines. This emphasizes the external view of a system which can

be characterized solely by its IO activity.

In the following, we will assume that all systems are closed.

3 Execution Histories

The static semantics of a general CRSM and of a closed system of CRSMs are de�ned by describing

all their possible execution paths. These paths are also called histories or traces. We ignore the

dynamic e�ects caused by guards and the timing expressions.

Aside: The result will be many more traces than are possible.

3.1 Trace for a Single CRSM

A well-formed execution history for a CRSMM = (S; I; O; V;G;C;E;T; s

0

) is de�ned by a sequence

h = < s

0

; (c

1

; t

1

); s

1

; (c

2

; t

2

); : : : ; s

i�1

; (c

i

; t

i

); s

i

; : : : >

satisfying the following for all i > 0:

1. s

i

2 S.

2. c

i

2 C.

3. There exists a transition � 2 T such that � = (s

i�1

; s

i

; g; c

i

; e

1

; e

2

) for g 2 G and

e

1

; e

2

2 E.

4. t

i

= t

i�1

+�+ t, where t is �nite (t <1) and 0 � lb(e

1

) � t � ub(e

2

) � 1, with lb and

ub being the lower and upper bounds of their expressions, respectively. t

0

is a non-negative

real.

4

Aside: t

i

gives the time that command c

i

terminates and state s

i

is entered. Its

range is determined statically by the lower and upper bounds on the expressions.

� is a \small" positive real number and de�nes a minimum time for all transitions;

equivalently, M will spend at least � time in each state. The use of � also assures

that time progresses forward in an in�nite trace, and that a �nite number of tran-

sitions are executed in a �nite amount of time. t

i

� t

i�1

is de�ned to be �nite; thus

commands always terminate.

A history can be either �nite or in�nite. A �nite trace has the form:

h = < s

0

; (c

1

; t

1

); s

1

; : : : ; s

n�1

; (c

n

; t

n

); s

n

>; n > 0

h =< s

0

>; n = 0

Aside: A �nite trace corresponds to a deadlock. In the case here (one machine), it

indicates that a state s

n

has been reached with no outgoing transitions.

Let L(M) be the set of all well-formed execution histories for machine M .

Aside: L(M) is, in general, uncountable since the time intervals speci�ed in E�E range

over the reals.

3.2 Trace for a Closed System

Given a closed system of CRSMs

M = M

1

kM

2

k : : : kM

m

; m � 2;

a well-formed execution history for M is de�ned by forming a time-ordered interleave of elements,

one from each of L(M

1

);L(M

2

); : : : ;L(M

m

). Let L(M) be the set of all such well-formed traces.

Any h 2 L(M) can be written as a concatenation of subsequences from the elements of each L(M

i

):

h = x

1

� x

2

� : : :� x

m

� y

1

� y

2

� : : :� y

m

� z

1

� z

2

� : : :� z

m

� : : :

= < a

0

; a

1

; : : : ; a

i

; : : : > ;

where � means sequence concatenation.

h has the properties:

1. x

i

� y

i

� z

i

� : : : 2 L(M

i

) for i = 1; : : : ; m.

2. x

i

6=<>, the empty sequence. Any of the other subsequences y

i

; z

i

; : : : could be empty.

5

Aside: This allows for �nite traces and for all possible interleaves. x

i

6=<> because

the start state for every machine exists in every trace.

3. Each a

i

is either a machine state s

i

or a pair (c

i

; t

i

).

4. For all i > 0 and j > i, if a

i

= (c

i

; t

i

) and a

j

= (c

j

; t

j

), then t

i

� t

j

.

Aside: This provides for the time ordering.

5. IO commands are synchronized. Formally, for every a

i

= (c

i

; t

i

),

(a) if c

i

= ch(v)?, then there exists an a

j

in the trace, i 6= j, such that a

j

= (ch(expr)!; t

j

)

and t

i

= t

j

for the same channel ch.

(b) if c

i

= ch(expr)!, then there exists an a

j

in the trace, i 6= j, such that a

j

= (ch(v)?; t

j

)

and t

i

= t

j

for the same channel ch.

ch(v)? and ch(expr)! on the same channel ch are said to be complementary IO commands.

Aside: When it is necessary to identify states and commands with machines explic-

itly, one can prepend the machine name to them, i.e., M

k

:s

i

or (M

k

:c

i

; t

i

).

3.3 Projections

A projection of an execution trace h is the sequence obtained by retaining only a subset of the

terms of h; alternatively, it is one obtained by removing some subset. In particular, there are at

least three projections of interest:

1. Individual Machine History

We denote by hjM the trace obtained from h by removing all states and (command, time)

pairs from h, except those of machine M .

Aside: If L(M) are the well-formed traces for a closed system containing M and

b

L(M) is fhjM : h 2 L(M)g, then

b

L(M) � L(M) because the IO of M is now

synchronized.

2. All-Channel Behavior

The all-channel behavior is the trace obtained from h by removing all states from h and all

(command, time) pairs from h, except pairs with IO commands.

3. External Behavior

The external behavior of a trace h, denoted hjIO, is obtained by removing the timer channel

IO commands from the all-channel behavior of h. A non-empty external projection hjIO can

be written as the sequence:

hjIO = < (c

0

; t

0

); (c

1

; t

1

); : : : ; (c

i

; t

i

); : : : >;

6

where for all i � 0; t

2i

= t

2i+1

; c

2i

and c

2i+1

are complementary IO commands, and t

2i+1

�

t

2i+2

. The 2ith and (2i+ 1)th elements of hjIO can be combined into a single element, for

all i, to produce a new sequence b(hjIO) that contains only the channel name, message sent,

and time:

b(hjIO) = < (ch

0

; expr

0

; t

0

); : : : ; (ch

i

; expr

i

; t

i

) : : : >;

where for all i � 0; t

i

� t

i+1

; ch

i

is the IO channel in the complementary commands c

2i

and

c

2i+1

of hjIO; expr

i

is the expression in the sender machine, and t

i

is the time used in the 2ith

and (2i+ 1)th terms of hjIO. A particular instance � of the external behavior represented

by b(hjIO) is a sequence obtained by substituting a possible value for each message in b.

� =< ch

0

; v

0

; t

0

>; : : : ; < ch

i

; v

i

; t

i

>; : : : >;

where v

i

is a possible value of the message expr

i

.

Aside: The external behavior is the IO history, excluding the clock. When traces

are restricted to dynamic execution paths (next section), the instances � de�ne the

external environment behaviors and the system responses (requirements).

4 Operational Semantics

The semantics of a closed system M of CRSMs is de�ned by considering the dynamic execution

paths through the system. These paths are obtained by including the e�ects of guards which enable

or disable transitions, the actual values of the time expressions which are functions of the state

variables, and the earliest-transition-�rst policy for deciding which transition to take. The result

is a set of execution traces L

0

(M) � L(M). Corresponding to each trace h 2 L

0

(M) is an external

behavior b(hjIO) and an associated instance �.

Our methodology is to describe an algorithm for producing any pre�x of a history h 2 L

0

(M).

This simulation algorithm, �rst outlined informally in [Shaw92], has two forms of non-determinism

{ that associated with selecting a particular time within a given interval for a computation (in-

ternal command) and the arbitrary dealing with ties on the earliest-transition-�rst policy. L

0

(M)

is de�ned implicitly by the set of all possible choices for these nondeterminisms. The algorithm

also gives a precise de�nition of \time" { the values of the t

i

in histories and the values that the

real-time variable rt take.

4.1 Variables, Events, and Time

The local variables V of any machine M are changed only upon execution of a command. Associ-

ated with the execution of a command c in a transition � = (r; s; g; c; e

1

; e

2

) in M are two events

or markers, the start of the execution, denoted c

s

, and the end of the execution, denoted c

e

. These

events have corresponding occurrence times t

c

s

and t

c

e

, respectively. t

c

e

is also the time that M

completes the transition and enters state s; call this time t

s

for the particular execution. t

s

= t

c

e

.

7

Aside: M can be viewed as being in state r until t

c

s

, then executing the command c

taking t

c

e

� t

c

s

time, and then entering state s. During execution of c, the state of M

is unde�ned. From Section 3.1, we have t

c

s

� t

r

� �.

The real-time variable rt is updated consistently to be identical with the occurrence times of the

c

s

and c

e

events as commands in M get executed.

A transition � = (r; s; g; c; e

1

; e

2

) is enabled in state r if its guard g(V) is true at time t

r

. A

command can only be a candidate for execution if its transition is enabled.

Aside: Since elements of V are local (excepting rt) and can only change upon execution

of a command, g(V) need only be evaluated once on each entry to state r.

If a transition is enabled, its time interval expressions e

1

(V) and e

2

(V) may be evaluated, using

the values of V at t

r

. If e

1

(V) > e

2

(V); c cannot be selected for execution (a \semantic" error);

also, if c 2 C

internal

, then c cannot be selected for execution unless e

2

(V) <1.

Let � = (r; s; g; c; e

1

; e

2

) be an enabled transition in machine M . If c 2 C

internal

and c is se-

lected for execution, then t

c

e

= t

c

s

+t, where 0 � e

1

(V) � t � e

2

(V) < 1 and t

c

s

= t

r

+�.

Aside: t gives the execution time of c and is assumed to be �nite. t can be an arbitrary

value in the time interval.

If c 2 C

io

and c is selected for execution, then there exists a partner machine M

0

also selected

for execution with enabled transition �

0

= (r

0

; s

0

; g

0

; c

0

; e

0

1

; e

0

2

) and

1. c and c

0

are complementary IO commands on the same channel.

2. t

c

s

= t

c

0

s

= t

c

e

= t

c

0

e

; t

c

s

6=1.

Aside: IO is instantaneous and occurs at the same (global) time on both machines.

3. 0 � e

1

(V) � t

c

s

� (t

r

+ �) � e

2

(V)

0 � e

0

1

(V

0

) � t

c

0

s

� (t

r

0
+ �) � e

0

2

(V

0

)

4. either t

c

s

= t

r

+ � + e

1

(V) or t

c

0

s

= t

r

0
+ � + e

0

1

(V

0

)

Aside: IO occurs at the earliest possible time and is only possible in the time

intervals de�ned by (e

1

; e

2

) and (e

0

1

; e

0

2

). Note that e

2

or e

0

2

could be 1.

8

The e�ect of an executed IO ch(v)? on machine M with ch(expr)! on its partner M

0

, is the

instantaneous assignment

v := expr

in M and the null statement in M

0

, where v is a local variable of M .

Aside: If M

0

is M 's clock machine, M

0

= RTC

M

, then the execution of c = RT

M

(x)?

on M will produce the assignment x := rt, where rt = t

c

s

. (See next section.)

4.2 Simulation Algorithm

The major data structure is an event record which keeps track of the last event that occurred

on each machine and is used for the computation of possible next events. An event record for a

machine M has three �elds: (event type, transition, time), where event type may be either cs (for

command start), or ce (for command end), transition is an element � 2 T , and time gives the time

of the event.

Initially, rt and all elements of V for each machine are initialized, the history trace sequence is

initialized with the start state of all machines, and each machine's last event is set to type ce with

a �ctitious starting transition and an initial time. More precisely, we start with the code:

rt := t

0

h := < >

for each M do

append (h; M:s

0

)

M:le := (ce; (�; s

0

; �; �; �; �); t

0

)

end

where t

0

� 0, the append function inserts an element at the end of a sequence, le is the last event

record, and \�" is a \don't care" indicator. When the context is obvious, we will omit the \M:"

notation.

The algorithm for each step in the simulation is essentially the three-phase one presented in

[Shaw 92]. Errors in the time bound expressions, the \semantic" errors mentioned in Sec. 4.1,

are not checked for, but this check could be added easily.

9

Phase 1:

Construct a set of possible next events NEL(M) for each machine M . Each element of NEL(M) is

an event record.

for each M do NEL(M) := �

for each M do

case le: event type of

cs: NEL(M) := f(ce; le:transition;M:t

c

e

)g

= � t

c

e

for this command, an internal one, was computed in Phase 3. �/

ce: for each � = (s; u; g; c; e

1

; e

2

) s.t. le.transition = (�; s; �; �; �; �) and g(V) do

= �M has entered state s. The transition � is enabled. �=

case command type(c) of

internal: NEL(M) := NEL(M) [f(cs; �; le:time + �)g

io : if (cs; �; �) 62 NEL(M) then /� NEL(M) doesn't have it already. �/

for each M

0

:�

0

= (s

0

; u

0

; g

0

; c

0

; e

0

1

; e

0

2

) s.t. ch is the channel in c,

M

0

is M 's IO partner on ch, M

0

:le.event type = ce;

M

0

:le.transition = (�; s

0

; �; �; �; �);

c

0

is an IO command on ch, and g

0

(V) do

t

c

e

:=M:le:time

t

c

0

e

:=M

0

:le:time

t := max(t

c

e

+ e

1

(V); t

c

0

e

+ e

0

1

(V))

if t � t

c

e

+ e

2

(V) and t � t

c

0

e

+ e

0

2

(V

0

) then

NEL(M) := NEL(M) [f(cs; �; t+ �)g

NEL(M

0

) := NEL(M

0

) [f(cs; �

0

; t+ �)g

end

end

end

10

Phase 2:

Let EV =

S

M

i=1

NEL(M

i

). Select the set EV

next

of next events that are to be simulated according

to an earliest-event-�rst policy. EV

next

� EV.

An element (event record) x 2 EV

next

will have the following properties:

1. x.time � y.time for all y 2 EV.

Aside: This assures that only the earliest events are in EV

next

.

2. If x 2 NEL(M) for a machine M , then 6 9y 2 NEL(M) s:t: y 2 EV

next

.

Aside: At most one event from each machine is in EV

next

.

3. If x is a command start for an IO command, then 9 y 2 EV

next

s:t: y is the command start

for the complementary IO command of x.

Aside: This assures that both sender and receiver are selected on an IO.

In addition, there are no events y 2 (EV� EV

next

) s:t: y satis�es the above three properties along

with the members of EV

next

.

Aside: EV

next

is thus a maximal subset of EV satisfying the above properties. EV

next

is not unique. There may be many maximal subsets, leading to di�erent execution paths.

11

Below is an algorithm for computing any EV

next

.

t

min

:= minimum

x 2 EV

(x:time) =� Compute the earliest-time. �=

EV

next

:= �

for each M do

NEL(M) := fx : x 2 NEL(M); x:time = t

min

g

=� NEL(M) now contains only the earliest-time events. �=

while NEL(M) 6= � do

x := select(NEL(M)) =� Pick an element of NEL(M):�=

NEL(M) := NEL(M)� fxg

c := x.transition.command

if c 2 C

internal

then

EV

next

:= EV

next

[fM:xg

NEL(M) := �

else = � c 2 C

io

Let ch be c's channel and M

0

be c's IO partner for channel ch: �=

if 9 x

0

2 NEL(M

0

) s.t. x

0

:transition:command = c

0

2 C

io

; ch is c

0

's channel,

and x.time = t

min

then

EV

next

:= EV

next

[fM:x;M

0

:x

0

g

NEL(M) := NEL(M

0

) := �

end

end

Phase 3:

Perform the simulation step leading to the events in EV

next

. This involves the possible execution

of a command and updating of the local variables of a machine, inserting new values in some last

event records, updating rt, and appending the appropriate elements to the execution trace h.

12

rt := t

min

Aside: t

min

is thus the new time reported by the clock machine.

while EV

next

6= � do

x := remove(EV

next

) =� Remove an arbitrary event record from EV

next

: �=

=� Let x = M:(a; (�; s; �; c; e

1

; e

2

); �) �=

if c 2 C

internal

then

case a of

cs : le := (cs; x:transition; rt)

M:t

c

e

:= rt + choose time(e

1

(V); e

2

(V)) =� Compute t

c

e

for Phase 1. �=

= � e

1

and e

2

are evaluated and a time duration is selected in their range. �=

ce : le := (ce; x:transition; rt)

execute program(c) =� This changes the data state V in general. �=

append(h; (M:c; rt))

append(h;M:s)

else = � c 2 C

io

. Let M

0

:(�; (�; s

0

; �; c

0

; �; �); �) = x

0

2 EV

next

be the IO partner event of x: �=

M:le := (ce; x:transition; rt)

M

0

:le := (ce; x

0

:transition; rt)

EV

next

:= EV

next

� fx

0

g

execute io(c; c

0

) =� Perform IO assignment on target machine. �=

append(h; (M:c; rt))

append(h; (M

0

:c

0

; rt))

append(h; M:s)

append(h; M

0

:s

0

)

end

13

Phases 1, 2, and 3 are repeated either forever or until EV= � after Phase 1, to produce an in�nite

or �nite trace, respectively. All possible pre�xes could be obtained in principle by trying all possible

orderings of the M

i

in the global \for each M" statement in Phase 2, by trying all possible orders

in the \select(NEL(M))" statement in Phase 2, and by trying all \possible" reals in the interval

(e

1

(V); e

2

(V)) in Phase 3.

Aside: The technique mentioned above for obtaining all possible pre�xes can, in general,

produce repeats of the same pre�x or trace. The Phase 3 algorithm (and initialization)

can be modi�ed easily to generate any of the projections described in Section 3, e.g.

hjIO, the combination b(hjIO), or its instantiation �.

5 Conclusions

Our (more) formal semantics has clari�ed several ideas that appeared in the original CRSM paper.

One is the notion of a closed system with all channels connected. A second is the de�nition of

execution traces and their relation to time. A third is the meaning of real-time, involving both the

execution times for transitions and the global real-time accessible through the clock machines.

Acknowledgement

Thanks to Sitaram Raju for his careful reading and comments.

References

[Hoare 85] C. Hoare, Communicating Sequential Processes, Prentice-Hall International, Englewood

Cli�s, NJ, 1985.

[Raju 93] S. Raju, \An Automatic Veri�cation Technique for Communicating Real-Time State Ma-

chines," TR #93-04-08, Dept. of Computer Science & Engineering, University of Washington,

Seattle, April 1993.

[Raju & Shaw 92] S. Raju and A. Shaw, \A Prototyping Environment for Specifying, Executing

and Checking Communicating Real-Time State Machines," TR #92-10-03, Dept. of Computer

Science & Engineering, University of Washington, Seattle, October 1992. A revised version is

in publication in the journal Software-Practice & Experience.

[Shaw 92] A. Shaw, \Communicating Real-Time State Machines," IEEE Trans. on Software Eng.,

Vol. 18, No. 9, September 1992, pp. 805-816.

14

