
Building Softbots for UNIX

(Preliminary Report)

�

Oren Etzioni Neal Lesh Richard Segal

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

fetzioni, neal, segalg@cs.washington.edu

November 1992

\If you want to think about thinking, you have to think about thinking about some-

thing." | Seymour

Papert

AI is moving away from \toy tasks" such as block stacking towards real-world problems. This

trend is positive, but the amount of preliminary groundwork required to tackle a real-world task

can be staggering, particularly when developing an integrated agent architecture. To address this

problem, we advocate real-world software environments, such as operating systems or databases, as

domains for agent research. The cost, e�ort, and expertise required to develop and systematically

experiment with software agents is relatively low. Furthermore, software environments circumvent

many thorny, but peripheral, research issues that are inescapable in other environments. Thus,

software environments enable us to test agents in a real world yet focus on core AI research issues.

To support this claim, we describe our project to develop UNIX

1

softbots (software robots)|

intelligent agents that interact with UNIX. Existing softbots accept a diverse set of high-level

goals, generate and execute plans to achieve these goals in real time, and recover from errors when

necessary.

�

This is an abridged version of a report we began to circulate in November 1992, describing our �rst fully-

implemented softbots. Since that time, we have incorporated a more powerful planner into the softbot

[

Etzioni et

al., 1993a, Golden et al., 1993

]

, broadened our focus from UNIX to the Internet, developed a graphical user interface

to the softbot, and formulated the First Law of Softbotics

[

Etzioni and Weld, 1994

]

. In addition, a number of people

have joined the project including Greg Fichtenholtz, Terrance Goan, Keith Golden, Mike Perkowitz, Rob Spiger, and

Dan Weld. However, the softbot's architecture (Figure 2), and the spirit of our investigation, remain the same.

1

UNIX is a trademark of AT&T Bell Labs.

1

1 Motivation

The work described in this report is motivated by two fundamental claims:

� Real-world software environments are attractive testbeds for AI research. Specif-

ically, environments such as operating systems, databases, and computer networks have the

following features:

{ pragmatic convenience: the cost, e�ort, and expertise necessary to develop and system-

atically experiment with software artifacts are relatively low. Software also facilitates

the dissemination and replication of research results. Finally, developing e�ective sensors

and actuators is relatively easy, making software environments particularly attractive for

agent research.

{ realism and richness: In contrast to simulated physical environments, software environ-

ments are real, providing a rich source of intuitions, motivating examples, simplifying

assumptions, stumbling blocks, test cases, etc.

{ research focus: though rich, software environments circumvent many thorny research

issues (e.g., overcoming sensory noise, representing liquids, shapes, etc.), enabling us to

focus on core AI problems.

� AI is mature enough to yield useful software agents. Two examples of mature AI

techniques are:

{ Planning: endowing a software agent with planning, execution, and error recovery ca-

pabilities will enable the user to specify high-level goals and expect its software agent to

�gure out how to best satisfy the given goals.

{ Machine learning: learning capabilities will enable a software agent to customize itself

to a user, adapt to a changing environment, discover new resources (e.g., new bulletin

boards, databases, etc.), and more.

A more detailed argument for this claim, aimed at a general computer-science audience,

appears in

[

Etzioni et al., 1993b

]

.

The above claims are empirical. We set out to re�ne and validate the claims by developing softbots

(software robots) for UNIX

[

Etzioni and Segal, 1992

]

. Our twin goals are to make fundamental

contributions to core AI, relying on UNIX as a testbed, and to develop technology that will actually

assist UNIX users.

The remainder of this report is organized as follows. Section 2 describes the notion of a softbot

in more detail. The following section presents our very �rst softbot|St. Bernard (a softbot that

specializes in locating and retrieving \lost" �les). The bulk of the report focuses on Rodney, a

more sophisticated, general-purpose UNIX softbot that we are continuing to extend and improve

in many ways. We conclude with a discussion of related and future work.

2 Softbots

A softbot is an agent that interacts with a software environment by issuing commands and in-

terpreting the environment's feedback. A softbot's e�ectors are commands meant to change the

1

external environment's state (e.g. commands such as mv or compress in UNIX). A softbot's sensors

are commands meant to provide the softbot with information about the environment (e.g. pwd or

ls in UNIX). Due to the dynamic nature and sheer size of real-world software environments it is

impossible to provide the softbot with a complete and correct model of its environment; sensing

and learning are essential elements of \softbotics."

Some will argue that programs such as computer viruses or even shell scripts are degenerate

cases of softbots. However, the fundamental di�erence between softbots and other programs is the

commitment to AI capabilities inherent in the softbot paradigm. We envision softbots that possess

the following capabilities:

1. Goal-directed behavior |a softbot attempts to achieve explicit goals. Unlike a \Brook-

sian Creature," it does not merely following pre-programmed instincts. Thus, a human can

\program" a softbot by specifying goals for it.

2. Planning, executing, and error recovery | A softbot is able to compose the actions it

knows about into sequences that, once executed, will achieve its goals. Furthermore, a softbot

actually executes such sequences, monitors their progress, and attempts to recover from any

unanticipated failures.

3. Declarative knowledge representation | A softbot stores its knowledge declaratively,

enabling it to use the same knowledge in multiple tasks. For example, our UNIX softbot

represents \retry" as a general error recovery strategy. Thus, whenever an action fails, the

softbot has the option of retrying the action at some later point in time. The softbot treats the

questions \should a particular action be retried and, if so, how often?" as learning problems

to be resolved by experience.

4. Learning and adaptation | A softbot improves its performance over time by recording

and generalizing from its experiences. For example, we would like our UNIX softbots to learn

new commands, the locations of various objects (e.g. location of the Lisp executable) and the

preferences of its human partners.

5. Continuous operation | A softbot continuously operates in its environment. This con-

straint forces softbot designers to address problems such as surviving, co-existing with other

agents, and being productive over time.

6. Natural-language processing| Much of the information potentially available to a softbot

is encoded in natural-language (e.g. UNIX man pages). A softbot's ability to understand its

sensory inputs scales with its ability to understand natural language. Thus, a softbot requires

strong natural-language capabilities.

7. Communication and cooperation | Many other agents (both human and softbotic) may

be operating in the softbot's environment. The softbot's ability to achieve its goals may

well depend on its ability to communicate and cooperate with other agents, including other

softbots.

8. Mobility and cloning | Unlike most software, a softbot is mobile. For example, a UNIX

softbot is able to move from its home machine to a remote machine by logging into a the

new machine, copying itself, and starting a Lisp process on the remote machine. Thus, unlike

2

hardware artifacts, a softbot can clone itself. This ability suggests a variety of strategies for

survival, exploration, and learning. We are only beginning to understand the relationship

between cloning and intelligence.

2

Naturally, the softbots we have constructed to date possess only a small (but growing!) subset of

the above capabilities. Below, we describe our fully-implemented softbots in more detail.

3 St. Bernard: a File-Retrieving Softbot

St. Bernard is a softbot that is able to locate and retrieve �les based on a partial description of

their characteristics

[

Segal, 1992

]

. When the description includes the �le's parent directory, this

task is straight forward but, in many cases, the �le's parent directory and name are unknown. Users

often �nd themselves asking questions such as \where did I put my MLC '88 paper?" or \where is

Allegro Common Lisp on this machine?" Queries of this sort can lead to a massive search for the

appropriate �le.

Humans handle such searches by relying on expectations regarding the location of the target �le

(\it's probably somewhere under my /papers directory"). St. Bernard is a �le-retrieving softbot

that acquires expectations regarding �le location from experience, and attempts to minimize its

average search cost by relying on these expectations. St. Bernard expresses its expectations as

probabilities: how likely is the target �le to be in a given directory?

St. Bernard sorts the directories in the hierarchy and searches them in sequence, stopping

when the target �le is found. All other things being equal, St. Bernard prefers to search directories

more likely to contain the target �le. This preference must be tempered by estimates of directory

size. To illustrate this point, consider searching for the �le f in the directories d

1

and d

2

; Suppose

P (f 2 d

1

) = 0:8 and P (f 2 d

2

) = 0:9, but directory d

1

contains only �ve �les and d

2

contains one

thousand �les. Since f is more likely to be in directory d

2

, St. Bernard might be tempted to search

d

2

followed by d

1

. The expected cost of this strategy is:

0:9 � 1000 + (1� 0:9) � 5 = 900:5:

The expected cost of the alternative strategy, d

1

followed by d

2

, is much smaller:

0:8 � 5 + (1� 0:8) � 1000 = 204:

The small cost of searching d

1

outweighs the reduced chance of �nding f there. Thus, St. Bernard

has to balance the probability of �nding a �le in a given directory with the cost of searching that

directory.

To explain St. Bernard's strategy more precisely, we need to introduce some notation:

D | The set of directories to search.

f | The description of the �le to be found.

P (f 2 d) | The probability that searching the directory d will succeed.

3

C(d) | The cost of searching the directory d.

� | A sequence (d

1

; d

2

; d

3

; :::; d

n

) to search the directories in D.

2

The genetic algorithms community has studied the evolution of simple artifacts such as bit strings or rules, but

we would like to clone whole softbots.

3

Segal

Mail bin src todo−filesdoc softbots

doc lispbinarchery

...

lisp motif

srcdoc lib

...

xjot xmonth

Figure 1: A sample directory hierarchy searched by St. Bernard.

If we assume that the probability of �nding a �le matching the description f , in a given directory

d

i

, is independent of the probability of �nding such a �le in other directories, then the expected

cost of St. Bernard's search is:

EC(�) =

X

d

i

2�

C(d

i

)

i�1

Y

j=1

(1� P (f 2 d

j

))

This formula weights the cost of searching each directory by the probability that the directory will

be searched. A directory is searched only if St. Bernard failed to �nd the target �le f in a directory

searched earlier in the search sequence. An optimal search ordering �

�

is an ordering of D that

minimizes the expected search cost. Naively, we could determine �

�

by computing the expected cost

of all directory orderings, but for k directories this takes O(k!) time. As proved in

[

Etzioni, 1991,

Simon and Kadane, 1975

]

and elsewhere, we can compute �

�

in O(k logk) time by sorting the

directories of D in decreasing order on

P (f2d)

C(d)

.

To apply this procedure in practice, St. Bernard has to estimate the probabilities and costs

involved. St. Bernard can estimate C(d) based on previous experience with the directory, or based

on the number of kilobytes in the directory. To compute P (f 2 d), St. Bernard maps f to a �le

class such as \T

E

X �les owned by Segal" or \�les created before March 1, 1991" and estimates the

proportion of �les in d that belong to the class based on its previous searches in the directory. St.

Bernard supports arbitrary classi�cation schemes by making every attribute of a �le available for

classi�cation purposes. See

[

Segal, 1992

]

for a more comprehensive description of St. Bernard.

Given the directory hierarchy shown in Figure 1, St. Bernard searched for the �le xjot.c in

the directories /src, /motif, /softbots in order. St. Bernard omitted directories such as /Mail

since it believes the probability of �nding a C-�le in such directories is zero. When searching for

the �le softbots.tex, St. Bernard searched /doc /softbots in order.

We tested St. Bernard on the directory hierarchy shown in Figure 1. After exploring the

directory hierarchy, to form its probability and cost estimates, St. Bernard is given a random

3

Clearly, the �le f is either in d or not, but P can be interpreted as St. Bernard's degree of belief in the proposition

f 2 d.

4

sample of target �les. Table 1 summarizes St. Bernard's performance and compares it with an

exhaustive search of the hierarchy in which the directories are searched in alphabetical order.

Class Search in alphabetical order St. Bernard Speedup

T

E

X 50.1 (5.0) 25.0 (1.7) 2.0

LISP 97.8 (8.8) 28.8 (1.4) 3.4

C 527.1 (7.3) 177.5 (1.4) 3.0

Totals 675.0 (7.2) 231.3 (1.6) 2.9

Table 1: Total times, in CPU seconds, for locating a random set of target �les in Segal's directory

hierarchy. Parenthesis indicate the average number of directories visited. Since visiting a single

directory is optimal, we see that St. Bernard's searches are quite close to optimal.

3.1 Discussion

In essence, we have formulated the �le-retrieval problem in the classical framework of satis�cing

search (i.e., minimizing expected search cost) introduced by

[

Simon and Kadane, 1975

]

. Simon and

Kadane's analysis was purely theoretical. Algorithms for deriving cost and probability estimates

from experience were proposed and analyzed theoretically in

[

Etzioni, 1991

]

, and simpli�ed versions

were implemented as part of the SE system

[

Mitchell et al., 1991

]

, but St. Bernard represents the

�rst attempt we are aware of to empirically test satis�cing search in a real-world domain. The

abundance of data for \training" St. Bernard, and the presence of a real-world yet easily-studied

task demonstrates the pragmatic convenience of softbots as experimental testbeds for AI.

In future work we plan to integrate St. Bernard's estimates of probability and costs with sym-

bolic rules (e.g., search for system �les in system directories, but not in user directories) provided

by the user or learned from experience. This approach will enable us to empirically test and ex-

tend the recent work on learning algorithms that combining theories and data (e.g.,

[

Ourston and

Mooney, 1990, Pazzani et al., 1991

]

). We also plan to generalize St. Bernard, so it is able to move

beyond �le-retrieval tasks, and minimize the expected cost of searches for available printers, free

machines, users who need to be contacted, etc.

4 Rodney: A General-Purpose UNIX Softbot

This section presents Rodney, a general-purpose UNIX softbot. We can decompose the low-level

tasks Rodney is able to accomplish into three broad categories:

� Monitoring events: immediately display on my screen any mail message I receive that

contains the word \urgent."

� enforcing constraints: keep all the �les in the directory /joint-paper group-readable.

� locating and manipulating objects: at midnight, compress all �les whose size exceeds 10

mega-bytes and have not been modi�ed in more than a week.

5

These task classes are neither exhaustive nor mutually exclusive, but illustrate our main point:

the softbot enables a user to specify what to accomplish, in a high-level goal language, leaving the

decision of how to accomplish it to the system. While this idea is widely accepted in the functional

and logic programming communities, current user interfaces are incapable of such expressiveness.

The power provided by the softbot in each of the individual examples above could be achieve by

writing a UNIX shell script. However, to match the full power of the softbot with shell scripts or

conventional programs, a user or system programmer would need to create programs to accomplish

every conceivable user goal or combination of goals. Furthermore, should a new system facility

become available, each shell script would need to be modi�ed to use it. In contrast, once the

softbot knows about a new facility, that facility becomes immediately available to its planning

process, and is automatically invoked to satisfy relevant user requests.

Below, we describe Rodney's architecture and provide examples of Rodney \in action." Rod-

ney's architecture is shown in Figure 2. The architecture has four major components:

� Goal manager: receives task speci�cations from the user, and periodically invokes the

planner with goals to achieve.

� Planner: satis�es goals by interleaving planning and execution. The planner is discussed in

more detail in Section 4.2, and its algorithm appears in Table 3.

� Model manager: serves as the central repository for Rodney's beliefs. The model manager

stores beliefs about the world's state, Rodney's operator models, etc.

� Executor: issues commands to the UNIX shell and interprets the shell's output. All direct

interaction between Rodney and its external environment takes place here.

This report focuses on Rodney's planner and goal manager. Rodney's executor and model manager

are relatively straight forward.

4.1 Planning with Incomplete Information

The �rst problem facing Rodney is representing UNIX shell commands as operators it can plan

with. It is natural to think of certain UNIX commands such as mv, cd or lpr as operators, and of

some UNIX tasks as goals (e.g., (protection file1 readable)) in a classical planning framework.

However, UNIX has a number of more challenging aspects as well:

� Due to the vast size of the UNIX environment, any agent's world model is necessarily incom-

plete. For instance, no agent knows the names of all the �les on all the machines accessible

through the Internet.

� Due to the dynamic nature of the environment, beliefs stored by the agent frequently become

out of date. Users continually log in and out, �les and directories are renamed or deleted,

new hosts are connected etc.

Consequently, many of the most routine UNIX commands (e.g., ls, pwd, finger, lpq, grep)

are used to gather information, and Rodney has to represent information-gathering actions, and to

confront the problem of planning with incomplete information.

Highly-expressive logical axiomatizations of the notions of knowledge and belief

[

Hintikka, 1962,

Moore, 1985, Morgenstern, 1988

]

have not yielded planning algorithms or implemented planners.

6

Environment
 (Unix Shell)

Rodney’s Architecture

Goal ManagerPlanner

Model ManagerExecutor

Figure 2: A high-level view of Rodney's Architecture. Loosely speaking, the solid arrows represent

control ow in Rodney, and the dashed arrows indicate data ow.

To facilitate planning in the UNIX domain, we chose to devise the less expressive but more tractable

uwl representation. The syntax and semantics of uwl are speci�ed precisely in

[

Etzioni et al.,

1992

]

. We provide a brief, intuitive discussion of the language below.

Our �rst step is to extend the truth values a proposition can take on: propositions can be

either true T, false F, or \unknown" U. Truth values of U apply to propositions about which the

planner has incomplete information: those that are not mentioned in the initial state and which no

subsequent plan step has changed. uwl denotes propositions by content, truth value pairs such as

((current.directory rodney dir1) . T).

Next, uwl divides an operator's e�ects into those that change the world (cause postcondi-

tions), and those that change the planner's state of information (observe postconditions). Causal

postconditions correspond to strips' adds and deletes. Observational postconditions come in two

forms, corresponding to the two ways the planner can gather information about the world at run

time: it can observe the truth value of a proposition, (observe ((P c) . !v)), or it can identify

an object that has a particular property, (observe ((P !x) . T)). The variables !v and !x are

run-time variables, which refer to information that will not be available until execution time. For

example, the UNIX command wc has the postcondition: (observe ((character.count ?file

!char) . T)), indicating that the value of !char will only be available after wc is executed.

Finally, uwl annotates subgoals with satisfy, hands-off, or find-out. A satisfy subgoal

can be achieved by any means, causal or observational. The subgoal (find-out (P . T)) means

roughly that the Rodney ought to determine that P is true, without changing P's state in the

process. Typically, Rodney ensures this by achieving find-out goals with observational postcon-

ditions. This constraint is critical to information gathering. Otherwise, if we give Rodney the goal

(find-out ((name ?file core-dump) . T)), it may satisfy it by renaming the �le paper.tex

7

to be core-dump, which is not the desired behavior (and will have disastrous consequences if we

then delete the �le named core-dump). In general, if a planner is given a de�nite description

that is intended to identify a particular object, then changing the world so that another object

meets that description is a mistake. The appropriate behavior is to scan the world, leaving the

relevant properties of the objects unchanged until the desired object is found. Subgoals of the form

(hands-off (P . T)) explicitly demand that the plan do nothing to change (P . T)'s state. For

instance, we may use a hands-off constraint to prevent Rodney from deleting any �les:

(hands-off ((isa file.object ?file) . F))

The UNIX command wc, represented as a uwl operator, appears in Table 2. Other examples

appear later. To date, we have represented more than forty UNIX commands in uwl, and are in

the process of encoding many more.

Name: (WC ?�le)

Preconds: (find-out ((isa �le.object ?�le) . T))

(find-out ((isa directory.object ?dir) . T))

(find-out ((name ?�le ?name) . T))

(find-out ((parent.directory ?�le ?dir) . T))

(satisfy ((protection ?�le readable) . T))

(satisfy ((current.directory softbot ?dir) . T))))

Postconds: (observe ((character.count ?�le !char) . T))

(observe ((word.count ?�le !word) . T))

(observe ((line.count ?�le !line) . T))

Table 2: uwl representation of the UNIX command wc which provides the character, word, and

line count of a �le.

4.2 Rodney's Planner

Rodney's planner attempts to satisfy uwl goals received from the goal manager. Classical planners

(e.g.

[

Chapman, 1987, Fikes and Nilsson, 1971

]

) presuppose correct and complete information about

the world. Rodney has incomplete information about its UNIX environment. As

[

Olawsky and

Gini, 1990

]

point out, a planner with incomplete information has three basic options: to derive

conditional plans that are intended to work in all contingencies

[

Etzioni et al., 1992, Schoppers,

1987

]

, to make assumptions regarding unknown facts, and replan if these assumptions turn out

to be false at execution time, or to interleave information gathering with planning to obtain the

information necessary to complete the planning process. Conditional planning is di�cult to pursue

when many of the contingencies are not known in advance.

4

Making assumptions is appropriate

in some cases (e.g., we may assume that a �le is appropriately protected, and replan if we get an

4

Imagine logging in to a remote machine, whose directory hierarchy is unknown to you, and trying to map out

the appropriate series of cd and ls commands.

8

execution error), but not in others. For instance, if we are asked to locate a �le with a certain name,

it seems inappropriate to assume the answer. In Rodney, we have chosen to interleave planning

and information gathering.

Rodney's planning algorithm is based on that of SNLP

[

McAllester and Rosenblitt, 1991, Barrett

and Weld, 1993

]

. We review SNLP briey, and then describe our extension. The central SNLP

data structure is a plan representation, which contains goals, steps (or operators), step ordering

constraints, and causal links. This representation, referred to as the plan structure, is updated

throughout the planning process. When all the goals in plan structure are supported by non-

conicting steps then the structure represents a partially ordered plan to achieve the speci�ed

goals.

On each iteration, the planner selects one \open" goal and computes all possible ways of achiev-

ing it. There are three ways to satisfy a goal: add a new step to the plan, link the goal to an e�ect

of an existing step, or link the goal directly to the current state. One of these options is added the

plan structure and a choice point created with the alternatives. If we ever backtrack to this choice

point then the previously chosen option is removed and one of the untried alternatives is inserted

in its place. When a step is added to the plan all of its preconditions become \open" goals which

must be \closed" in future iterations. Adding a step does not involve specifying when the step is

to be executed. Partial step orderings are only added to the plan to resolve a \threatened link",

or possible goal clobbering. In general, whenever the e�ect of any step in the plan threatens to

clobber any closed goal, a new choice point is established with all possible ways of resolving the

threat. If the plan structure contains an unresolvable threat, or there are no options to achieve the

selected goal, the current plan structure fails and we backtrack to the last choice point.

We have weakened SNLP in several ways. First, we do not allow the possibility of closing a

goal by linking to an existing step. Second, we have hardwired in depth-�rst search while true

SNLP can accommodate various search strategies. We get depth-�rst search by using chronological

backtracking. We continue to extend a plan until it fails (for any reason) and then backtrack to

the most recent choice point with untried alternatives. We then try one of those alternatives and

begin to move forward again.

Our main extension to SNLP is that, at the beginning of every iteration, one or more of the

steps in the current plan may be executed. The current plan structure is passed through a special

function that determines which steps to execute. If no steps are executed then our algorithm is

equivalent to the SNLP algorithm. There are several possible results of an execution. One is that

the execution of the step may fail. This suggests a defect in the operator model or in the softbot's

model of the world. We expect that the softbot will eventually be able to aggressively investigate

these possibilities. At the moment, however, an execution failure simply triggers chronological

backtracking.

If the execution is successful then the state is updated with the e�ects of the operator, the step

is removed from the plan, and any goals the step was supporting are linked directly to the state.

Also, the execution of an operator might reveal new bindings for variables in the plan. This usually

happens, for example, when the softbot executes the UNIX ls command and learns about new �les

in some directory. In this case, a new choice point is established to reect the information gained

from execution. However, even a successful execution might fail to achieve the goal it was intended

to satisfy. For example, given the goal of being in the root directory, the softbot might employ

a sensory action to check if it already happens to be there. If, in fact, the softbot is elsewhere,

then executing this sensory action does not support the goal, in which case the planner backtracks.

9

Pseudo code describing our planning and execution algorithms more precisely appears in Table 3.

SNLP is both sound and complete. However, adding an execution point plays havoc with these

formal properties. SNLP is a partial-order planner but execution of a step imposes ordering con-

straints. Additionally, the discovery of new objects and modi�cations to the state during planning

also open up new areas of potential incompleteness. See

[

Lesh, 1992, Etzioni and Lesh, 1993

]

for

further discussion of the planner's design.

until a termination condition is reached:

if choose to execute step S in PLAN

then execute S

if execution of S succeeded

then update PLAN based on execution

if execution of S failed

then backtrack

else

pick open condition G in PLAN

create a choice point with options for closing G

if there are threats in PLAN

then create a choice point with options for resolving each threat

if there were no open conditions in PLAN

or no options to close G

or an unresolvable threat in PLAN

then backtrack

termination: Planning fails if backtracking fails

Planning succeeds if conditions are achieved in world

Table 3: Pseudo-code description of Rodney's planning algorithm.

4.3 Rodney in action

To make the planner's operation more concrete, this section shows how Rodney satis�es a simple

conjunctive goal:

(find-out ((pathname ?dir ``/ai/softbots/test/bin'') . T))

(find-out ((parent.directory ?file ?dir) . T))

(find-out ((group.protection ?file readable) . F))

This goal asks Rodney whether there is a �le in the /ai/softbots/test/bin directory that is not

group-readable. Below, we explain Rodney's behavior in detail.

By default, Rodney closes goals in the order the goals are presented. So �rst it chooses the

pathname subgoal. From previous experience, Rodney is familiar with the /ai/softbots/test/bin,

so it binds the variable ?dir to the object representing that directory. Rodney's very �rst choice

10

illustrates the bene�ts of uwl. The mv operator could potentially satisfy the pathname subgoal, by

renaming a directory to be /ai/softbots/test/bin, but Rodney rules out mv due to the subgoal's

find-out annotation. Rodney wants to access the directory named /ai/softbots/test/bin, not

a di�erent directory whose name has been changed to /ai/softbots/test/bin. Rodney could use

the local-ls operator to satisfy this goal. However, a control rule rejects this possibility when

there is a binding choice available.

Next, Rodney decides to satisfy (find-out ((parent.directory ?file ?dir) . T)) using

the operator local-ls, which is the only operator that can potentially satisfy this goal. The

precondition of of the local-ls operator , (satisfy (current.directory rodney ?dir) . T),

becomes an open goal in the plan. Rodney chooses this precondition. Since Rodney does not know

its current directory it has two alternatives: pwd and cd. In general, a satisfy goal can be achieved

either by an operator with an observe postcondition, such as pwd, or an operator with a cause

postcondition such as cd. Rodney creates a choice point with these two alternatives. First it chooses

to add the pwd operator to the plan. This operator can be executed because all of it's preconditions

are linked directly to the state. Rodney executes pwd and �nds that its current.directory goal is

not satis�ed. This failure illustrates a distinctive feature of sensory actions. Unlike classical strips

operators: A sensory action can fail to satisfy its goal even when its preconditions are satis�ed and

it is successfully executed.

Since pwd failed, Rodney backtracks to its last choice point and considers cd next. Rodney

executes cd. Now the preconditions of local-ls are also linked to the state and so it executes

local-ls and discovers 3 �les in the directory /ai/softbots/test/bin. Rodney now creates a

choice point with these three bindings for the ?file variable. At this point, Rodney tackles the

�nal top-level subgoal (find-out ((group.protection ?file readable) . F)), and chooses

the operator protection-on-file (\ls -l" to UNIX a�ecionados) to satisfy this goal.

The �rst �le that Rodney executes protection-on-file turns out to be group-readable. Thus

Rodney backtracks to the choice point described above and tries the second binding for ?file.

This �le is not group-readable so planning ends and Rodney returns success.

4.4 The Goal Manager

Most existing AI planners are unable to handle ongoing tasks or respond to exogenous events.

Instead of trying to build a planner with these features, we have chosen to build a layer on top of

our uwl planner that adds these features. This layer, the goal manager, accepts a wide range of

tasks, written in the Rodney Action Language (RAL), decomposes these into a set of actions to be

executed and a set of uwl goals, and periodically invokes the planner to satisfy these goals.

RAL is designed around the notion of an action. There are two kinds of actions (both treated

uniformly by the goal manager):

� Primitive actions: the main type of primitive action is the execution of a uwl operator.

The goal manager ascertains that the operator's preconditions are satis�ed by invoking the

planner with the preconditions as a top-level goal. Once the preconditions are satis�ed, the

goal manager instructs the executor to issue to execute the operator. Additional primitive

actions include asserting a fact, selecting an object, executing a lisp function, and more.

� Compound actions: a compound action is some combination of primitive actions. Legal

combinations include sequences, conditionals, and loops.

11

(select (?file) ((name ?file "to-print") . T))

(print-file ?file)

(select (?file) ((file.type ?file lisp) . T)

((string.in.file ?file "*dc-print*") . T))

(replace-string ?file "*dc-print" "*planner-print*")

Figure 3: Some simple actions. The select statements provide arguments for actions.

(select (?file) ((name ?file "very-long-paper.dvi") . T))

(request (print-file ?very-long-paper)

:when ((printer.status ?printer idle) . T))

(select (?neal) ((preferred.name ?neal "neal") . T))

(select (?machine) ((machine.name ?machine "june") . T))

(request (double-beep)

:when ((active.on ?neal ?june) . T))

Figure 4: Sample actions involving asynchronous events.

In general, an RAL action can be viewed as a partially-speci�ed plan. Some of the primitive

actions may be speci�ed, but others are left at the planner's discretion. RAL actions are speci�ed

in two parts. First, the objects that will serve as arguments to the action are determined. Second,

the action to be performed on the objects is speci�ed. This is illustrated by the simple actions

appearing in Figure 3.

RAL currently supports a simple notion of universal quanti�cation. Any action can result in

binding a variable to a set of objects. For example, the UNIX ls command returns the set of

objects in the current directory. When an action is given a set, the goal manager will execute the

action multiple times in order to achieve the desired e�ect. In particular, when the goal manager

is given an uwl goal with a variable bound to a set, the goal manager will iterate through the set,

repeatedly sending the planner instances of the goal. Each element in the set yields a distinct goal

that is sent to the planner.

5

One of the most important features of the goal manager is its ability to handle goals involving

exogenous events. Common UNIX goals such as waiting for a print job to complete, waiting for a

user to log on, and monitoring bboards are easily expressed in terms of actions that are triggered

by exogenous events. In RAL you can request that an action occur whenever a set of events occurs

in the world. For instance you can specify that the double-beep action occur when the literal

((active.on neal june) . T) becomes true. See Figure 4 for examples.

The manner in which the goal manager handles exogenous events is a good example of its

interaction with the planner. When the goal manager receives a request involving an exogenous

5

Mapping goals over sets to sets of ground goals is quite similar to the approach taken in planners that handle

universally-quanti�ed goals such as prodigy

[

Minton et al., 1989

]

and UCPOP

[

Penberthy and Weld, 1992

]

.

12

(request (display "Printer out of paper.")

:when ((printer.status ?printer out-of-paper) . T)

:duration ((job.status ?job completed) . T))

(request (monitor-bboards ?bboards ?topics)

:when ((new-messages ?bboards ?topics) . T)

:duration always)

Figure 5: Sample of repetitive actions.

(assert ((pathname ?dir ``/softbots/rodney/stable'') . T))

(ls ?dir ?files)

(maintain (satisfy ((group.protection ?files readable) . T))

(satisfy ((group.protection ?files writable) . T)))

(maintain (find-out ((file.type ?files lisp) . T))

(satisfy ((compiled ?files decstation) . T))

(satisfy ((compiled ?files Sparcstation) . T)))

Figure 6: . Sample actions with constraint goals.

event, it places the desired event on a list of events it must monitor. Periodically, it cycles through

this list and one by one asks the planner to �nd out the status of each event's predicates. By using

the planner, the goal manager can utilize all the planner's reasoning ability to determine whether

an event has occurred

6

When an event is detected, the goal manager proceeds to execute the actions

associated with that event, again using the planner as needed.

Many tasks presented to Rodney involve looping behavior. For instance, monitoring bulletin

boards requires repeatedly checking for new messages. Some tasks that require looping have limited

duration. For instance, a goal to monitor whether a job has completed is only of interest while that

job is active. In RAL you can specify the duration of an action as once, always, or \repeat until

a particular event occurs." The duration of an action defaults to once, which prevents the actions

in Figure 4 from occurring multiple times. Examples of repeated actions appear in Figure 5.

In �gure 6 we see examples of the �nal class of goal RAL can express: constraint goals indicate

conditions that Rodney should constantly try to maintain in the world. The �rst goal in the

example expresses the goal of ensuring that all �les within a directory are both group-writable and

group-readable; the second expresses the goal that all lisp �les in the directory are compiled for

two machine types. Although not shown in the examples, it also possible to specify a duration for

constraint goals as done with any ongoing task.

Due to the dynamic nature of the UNIX environment, information frequently becomes out of

date. This problem is particularly acute for constraint maintenance and event monitoring tasks,

where the point of the task is to repeatedly check whether a certain condition is maintained or

6

An event occurs when the corresponding literal changes its truth value.

13

(defaction print-file (?file)

(select (?user) ((current.user softbot ?user) . T))

(select (?printer) ((preferred.printer ?user ?printer) . T))

(lpr ?file ?printer)

(select (?filename) ((name ?file ?filename) . T))

(select (?job) ((job.status ?job working) . T)

((job.printer ?job ?printer) . T)

((job.user ?job ?user) . T)

((job.name ?job ?filename) . T))

(request (display "Printer out of paper !!!")

:when ((printer.status ?printer out-of-paper) . T)

:duration ((job.status ?job completed) . T))

(request (display "Printer error !!!")

:when ((printer.status ?printer error) . T)

:duration ((job.status ?job completed) . T))

(request (display "Print job completed !!!")

:when ((job.status ?job completed) . T)))

Figure 7: Sample print action that noti�es the user when errors occurs.

whether a certain event has occurred. If the condition is only checked against the softbot's world

model, then the softbot will overlook both exogenous events and unforeseen e�ects of its own

actions. To address this problem we introduce the sense goal annotation. The goal

(sense ((parent.dir ?file /joint-paper) . T))

is an information goal that can only be satis�ed by executing a sensory action. Thus, when a

sense goal is satis�ed, the softbot is guaranteed that its information is current. The goal manager

maps the \event triggers" in the :when and :duration �elds of RAL actions to sense goals, and

periodically invokes the planner to satisfy these goals.

In conclusion, we illustrate the power of RAL via the sophisticated print action shown in

Figure 7. The print action uses the uwl planner to �nd out who is the current user and what

printer he or she prefers. It then sends the �le to that printer by executing the UNIX lpr command

(invoking the planner to satisfy lpr's preconditions, if necessary). Finally, it spawns o� several

background tasks to monitor the printer. Anytime an error occurs or the printer runs out of paper

while the print job is still going, the user will be noti�ed. When the print job completes, the user

is noti�ed and Rodney stops monitoring the printer. This same print operator can be used to print

multiple �les by passing it a set of �les as an argument. Thus, RAL enables us to naturally encode

high-level behavioral speci�cations that would be di�cult to build directly into a planner.

The design of Rodney forced us to confront the problem of planning with incomplete information

in a dynamically changing environment. The core of our solution to this problem are the uwl

representation

[

Etzioni et al., 1992

]

which facilitates planning with information goals and sensory

actions, and the RAL representation, which facilitates responding to exogenous events, maintaining

constraints, and receiving partially-speci�ed plans from the user.

14

5 Related Work

Work related to our UNIX softbots project falls into two broad categories: work on software

agents, outside AI, that does not attempt to endow the agents with AI capabilities such planning

and learning, and work inside AI that focuses on various aspects of the softbot problem. By

and large, work outside AI has focused on knowbots

[

Kahn and Cerf, 1988

]

, agents that mediate

between humans and vast knowledge stores.

7

In essence, a knowbot is a sophisticated interface to

a network of distributed databases. One knowbot can accept a query, translate it into a variety of

formats, and transmit the translated queries to various knowbots on the network, which are then

expected to reply. Important concerns in this context are billing and inter-agent communication

protocols. Prototype knowbots are hard-coded to perform certain functions (e.g., look up user

addresses

[

Droms, 1990

]

). In contrast to softbots, existing knowbots do not plan or learn from their

experience.

8

In a sense, softbots can be viewed as general-purpose knowbots with AI capabilities.

5.1 AI Work on Software Agents

Dent et al.

[

Dent et al., 1992

]

describe CAP \a learning apprentice for calendar management." CAP

provides a convenient appointment management tool, that facilitates scheduling appointments.

CAP's actions manipulate a calendar by adding, deleting, and moving appointments. CAP's envi-

ronment consists of the calendar it maintains and the commands it receives from the human user.

Its e�ectors are commands that update the calendar; CAP senses the calendar's state to determine

which operations are allowable at any given point. CAP does not have explicit goals or planning ca-

pabilities, but it does learn to suggest default values for various choices (e.g., meeting duration and

location). Future plans for CAP include allowing it to arrange, con�rm, and re-schedule meetings.

Maes et al.

[

Maes and Kozierok, 1993

]

are developing a number of interface agents|application-

speci�c user interfaces with learning capabilities. There are two central di�erences between this

work and our own. First, we have focused on providing Rodney with general-purpose planning,

execution, and representation facilities that enable to interact with the wide variety of applications,

commands, and programs found in the UNIX environment. Second, Maes et al. are focusing on

a knowledge-lean approach to learning where the interface agent requires as little information as

possible about the task domain, and learns in an unsupervised manner. We plan to focus on

knowledge-intensive learning that is done in cooperation with the user (or with a domain expert).

Steier and Newell

[

Newell and Steier, 1991

]

describe preliminary work on interfacing Soar to

a variety of software packages such as Mathematica, a drawing package, and more. The Soar

project has focused on how to structure the interaction within Soar's architectural constraints

(e.g., universal subgoaling, automatic chunking, etc.). For instance, Doorenbos et al.

[

Doorenbos et

al., 1992

]

describe the performance of a Soar system that learns more than ten-thousand chunks by

interacting with a database. Like the CAP project, the emphasis in this work has been on learning

rather than planning.

Shoham's work on the agent-oriented programming (AOP) framework

[

Shoham, 1993

]

is comple-

mentary to our own and to much of the work described above. Whereas we have taken an empirical

approach|developing agents that tackle useful tasks in the UNIX domain|Shoham is particularly

7

Knowbots are a trademark of the corporation for national research initiatives.

8

Planning and symbolic learning capabilities distinguish softbots from various \arti�cial life" programs

[

Langston

et al., 1989

]

as well.

15

concerned with developing logics that provide precise de�nitions for terms such as \agent," \com-

mitment," \choice," and \capability" as basis for designing (both software and hardware) agents

and communication protocols between them.

Over the years, the UNIX domain has periodically attracted attention in AI. We briey contrast

our UNIX softbots with two major projects: Wilensky et al.'s UNIX Consultant

[

Wilensky et al.,

1988

]

, and Dietterich's EG system

[

Dietterich, 1984

]

.

The UNIX Consultant (UC) is a natural-language interface that answers naive user queries

about UNIX. The UC project focused on identifying the user's plans, goals, and knowledge. UC

utilized this information to generate informative responses to queries. For example, if the user asked

\is rn used to rename �les?" UC not only told her \No, rn is used to read news," but also said that

the appropriate command for renaming �les is \mv." Based on the query, UC hypothesized that

the user's goal is to rename a �le and decided that the information regarding \mv" is relevant. In

contrast to Rodney, the UC does not act to achieve its own goals, but responds to user's queries.

9

Although the UC had a limited capability to learn about UNIX commands from natural-language

descriptions, it did not have the capacity to explore its environment or actually execute any UNIX

commands. In short, the UC was a sophisticated natural-language interface, not a softbot. The

UC project demonstrated the fertility of UNIX as a real yet manageable domain for AI research, a

lesson we have taken to heart.

Dietterich's EG system

[

Dietterich, 1984

]

represents an ambitious attempt to use UNIX as a

test domain for theory formation. EG focuses speci�cally on the problem of data interpretation

which, in UNIX terms, involves correctly understanding the string returned by the UNIX shell in

response to a UNIX softbot's action. In contrast, our softbots start with models of UNIX output

that enable them to correctly parse it into high-level logical descriptions, in most cases. In essence,

EG is a knowledge-lean system that attempts to acquire, using learning techniques, much of the

knowledge that we \hand feed" our softbots.

6 Conclusion

Software environments (e.g. distributed databases, computer networks) are gaining prominence

outside AI, demonstrating their intrinsic interest. Building agents that perform useful tasks in

software environments is easier than building the corresponding agents for physical environments.

Thus, softbots are an attractive substrate for AI research, resolving the potential conict between

the drive for integrated agents operating in real-world task environments and the desire to maintain

reasonable progress in AI. At the same time, incorporating AI capabilities into software tools has

the potential to yield a new class of software technology with planning and learning capabilities.

To support these claims we have described our ongoing project to develop UNIX softbots. The

project is still in its infancy, but our softbots are already producing both useful behavior and

thought-provoking research challenges.

Acknowledgments

We thank Denise Draper, Steve Hanks, Craig Knoblock, Nick Kushmerick, Steve Minton, Tom

Mitchell, Dan Weld, Mike Williamson, and members of the UW AI group for helpful discussions.

9

The UC did note when the user's goals were in conict with its internal agenda and refused to answer queries

such as \how do I crash the system?"

16

Thanks are also due to Steve Hanks, Dan Weld, Denise Draper, and Mike Williamson for their

collaboration in designing uwl. This research was funded in part by O�ce of Naval Research

Grant 92-J-1946, and by National Science Foundation Grants IRI-9211045 and IRI-9357772.

References

[

Barrett and Weld, 1993

]

Barrett, A. and Weld, D. 1993. Partial order planning: Evaluating pos-

sible e�ciency gains. Arti�cial Intelligence. To appear. Available via anonymous FTP from

~ftp/pub/ai at cs.washington.edu.

[

Chapman, 1987

]

Chapman, D. 1987. Planning for conjunctive goals. Arti�cial Intelligence

32(3):333{377.

[

Dent et al., 1992

]

Dent, Lisa; Boticario, Jesus; McDermott, John; Mitchell, Tom; and Zabowski,

David 1992. A personal learning apprentice. In Proceedings of AAAI-92, Sam Mateo, California.

Morgan Kaufmann. 96{103.

[

Dietterich, 1984

]

Dietterich, Thomas Glen 1984. Constraint Propagation Techniques for theory-

driven data interpretation. Ph.D. Dissertation, Stanford University.

[

Doorenbos et al., 1992

]

Doorenbos, R.; Tambe, M.; and Newell, A. 1992. Learning 10,000 chunks:

what's it like out there. In Proceedings of the National Conference on Arti�cial Intelligence.

[

Droms, 1990

]

Droms, R. 1990. Access to Heterogeneous Directory Services. In IEEE INFO-

COM '90, San Francisco, CA. 1054{1061.

[

Etzioni and Lesh, 1993

]

Etzioni, Oren and Lesh, Neal 1993. Planning with incomplete information

in the unix domain. In Working Notes of the AAAI Spring Symposium on Foundations of

Automatic Planning, Menlo Park, CA. AAAI Press.

[

Etzioni and Segal, 1992

]

Etzioni, Oren and Segal, Richard 1992. Softbots as testbeds for machine

learning. In Working Notes of the AAAI Spring Symposium on Knowledge Assimilation, Menlo

Park, CA. AAAI Press. Also in Proceedings of the Canadian Machine Learning Workshop,

Vancouver, B.C. 1992.

[

Etzioni and Weld, 1994

]

Etzioni, O. and Weld, D. 1994. The �rst law of robotics. Technical report,

University of Washington Department of Computer Science. Forthcoming.

[

Etzioni et al., 1992

]

Etzioni, Oren; Hanks, Steve; Weld, Daniel; Draper, Denise; Lesh, Neal; and

Williamson, Mike 1992. An Approach to Planning with Incomplete Information. In Proceedings

of KR-92. Available via anonymous FTP from ~ftp/pub/ai/ at cs.washington.edu.

[

Etzioni et al., 1993a

]

Etzioni, O.; Golden, K.; and Weld, D. 1993a. Tractable closed-world rea-

soning with updates. Technical Report 93-xx-xx, University of Washington, Department of

Computer Science and Engineering.

[

Etzioni et al., 1993b

]

Etzioni, Oren; Levy, Hank; Segal, Rich; and Thekkath, Chandramohan

1993b. OS agents: Using AI techniques in the operating system environment. Technical Re-

port 93-04-04, University of Washington.

17

[

Etzioni, 1991

]

Etzioni, Oren 1991. Embedding decision-analytic control in a learning architecture.

Arti�cial Intelligence 49(1{3):129{160.

[

Fikes and Nilsson, 1971

]

Fikes, R. and Nilsson, N. 1971. STRIPS: A new approach to the appli-

cation of theorem proving to problem solving. Arti�cial Intelligence 2(3/4).

[

Golden et al., 1993

]

Golden, K.; Etzioni, O.; and Weld, D. 1993. xii: Planning for Universal Quan-

ti�cation and Incomplete Information. Technical report, University of Washington, Department

of Computer Science and Engineering.

[

Hintikka, 1962

]

Hintikka, Jaako 1962. Semantics for Propositional Attitudes. Cornell University

Press, Ithica, N.Y.

[

Kahn and Cerf, 1988

]

Kahn, Robert E. and Cerf, Vinton G. 1988. An open architecture for a

digital library system and a plan for its development. Technical report, Corporation for National

Research Initiatives.

[

Langston et al., 1989

]

Langston, C.; Farmer, D.; and Rasmussen, S., editors 1989. Proceedings of

an interdisciplinary workshop on the sysnthesis and simulation of living systems. Addison-Wesley.

[

Lesh, 1992

]

Lesh, Neal 1992. A planner for a UNIX softbot. Internal report.

[

Maes and Kozierok, 1993

]

Maes, Pattie and Kozierok, Robyn 1993. Learning interface agents. In

Proceedings of AAAI-93.

[

McAllester and Rosenblitt, 1991

]

McAllester, D. and Rosenblitt,

D. 1991. Systematic nonlinear planning. In Proceedings of AAAI-91. 634{639. internet �le

ftp.ai.mit.edu:/pub/users/dam/aaai91c.ps.

[

Minton et al., 1989

]

Minton, Steven; Carbonell, Jaime G.; Knoblock, Craig A.; Kuokka, Daniel R.;

Etzioni, Oren; and Gil, Yolanda 1989. Explanation-based learning: A problem-solving perspec-

tive. Arti�cial Intelligence 40:63{118. Available as technical report CMU-CS-89-103.

[

Mitchell et al., 1991

]

Mitchell, Tom M.; Allen, John; Chalasani, Prasad; Cheng, John; Etzioni,

Oren; Ringuette, Marc; and Schlimmer, Je�rey C. 1991. Theo: A framework for self-improving

systems. In VanLehn, K., editor 1991, Architectures for Intelligence. Lawrence Erlbaum, Hills-

dale, NJ.

[

Moore, 1985

]

Moore, R. 1985. A Formal Theory of Knowledge and Action. In Hobbs, J. and

Moore, R., editors 1985, Formal Theories of the Commonsense World. Ablex, Norwood, NJ.

[

Morgenstern, 1988

]

Morgenstern, Leora 1988. Foundations of a Logic of Knowledge, Action, and

Communication. Ph.D. Dissertation, New York University.

[

Newell and Steier, 1991

]

Newell, Allen and Steier, David 1991. Intelligent control of external soft-

ware systems. Technical Report EDRC 05-55-91, Carnegie Mellon University.

[

Olawsky and Gini, 1990

]

Olawsky, D. and Gini, M. 1990. Deferred planning and sensor use. In

Proceedings, DARPA Workshop on Innovative Approaches to Planning, Scheduling, and Control.

Morgan Kaufmann.

18

[

Ourston and Mooney, 1990

]

Ourston, Dirk and Mooney, Raymond J. 1990. Changing the rules: a

comprehensive approach to theroy re�nement. In Proceedings of the Eighth National Conference

on Arti�cial Intelligence.

[

Pazzani et al., 1991

]

Pazzani, Michael; Brunk, C. A.; and Silverstein, G. 1991. A knowledge-

intensive approach to learning relational concepts. In Proceedings of the Eighth International

Worskhop on Machine Learning.

[

Penberthy and Weld, 1992

]

Penberthy, J.S. and Weld, D. 1992. UCPOP: A sound, complete,

partial order planner for ADL. In Proceedings of KR-92. 103{114. Available via anonymous

FTP from ~ftp/pub/ai/ at cs.washington.edu.

[

Schoppers, 1987

]

Schoppers, M. 1987. Universal plans for reactive robots in unpredictable envi-

ronments. In Proceedings of IJCAI-87. 1039{1046.

[

Segal, 1992

]

Segal, Richard 1992. St. bernard: The �le retrieving softbot. Internal report.

[

Shoham, 1993

]

Shoham, Yoav 1993. Agent-oriented programming. Arti�cial Intelligence 60(1):51{

92.

[

Simon and Kadane, 1975

]

Simon, Herbert A. and Kadane, Joseph B. 1975. Optimal problem-

solving search: All-or-none solutions. Arti�cial Intelligence 6(3):235{247.

[

Wilensky et al., 1988

]

Wilensky, Robert; Chin, David; Luria, Marc; Martin, James; May�eld,

James; and Wu, Dekai 1988. The Berkeley UNIX Consultant project. Computational Linguistics

14(4):35{84.

19

