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Abstract

We describe the collaboratively developed Prism, a tightly integrated but architecturally


exible environment for modeling, visualizing, and simulating radiation treatment plans

for cancer patients. Despite signi�cant advances in function, we built Prism at low cost in

e�ort and code size. The key was using behavioral entity-relationship (ER) modeling to craft

an architecture, and objects representing abstract behavioral types (ABTs) to implement

it. In more detail, we model a system as a set of independently de�ned entities used

directly by clients but made to work together by behavioral relationships connecting them.

We implement this model in an imperative programming framework by representing both

entities and relationships as instances of classes that de�ne, announce, and register with

events in addition to de�ning and calling operations. Prism provided a realistic test of the

behavioral ER modeling and design method.
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1 Introduction

We discuss a collaboration in which Sullivan and Notkin helped Kalet and colleagues use

behavioral entity-relationship (ER) modeling and design, a software analysis and design

technique [Sullivan and Notkin 92], to build a tightly integrated but architecturally 
exible

environment for planning radiation treatments for cancer patients [Kalet et al. 91, Kalet et

al. 92].

In this collaboration, each of our groups had its own goals|Sullivan and Notkin in

software engineering and Kalet and his colleagues in radiation oncology. Kalet had de�ned

the requirements for a radiation treatment planning (RTP) system that was richer and

more tightly integrated than previous systems in this domain, and needed a method to help

realize the system on a modest budget. Sullivan and Notkin sought to test their claim that

their method can ease the development and evolution of sophisticated, tightly integrated

environments.

In earlier e�orts [McCabe 91, Griswold 91, Sullivan and Notkin 92] Sullivan and Notkin

or close associates controlled both the method and the requirements against which the the

method was tested. In this case, Kalet had de�ned the requirements before collaboration

began. Nor did Sullivan and Notkin control detailed design or implementation. Rather,

Sullivan worked with Kalet on the overall architecture, which Kalet then elaborated and

implemented. Thus, in addition to providing a fairer test of the approach, this e�ort also

provided experience in transferring the approach to another group.

The collaboration succeeded. Kalet is now routinely applying behavioral ER modeling

and design. Prism implements the original speci�cation with only minor changes. The

system is tightly integrated, broad in scope, and has a very 
exible architecture. Kalet

attributes our success in building this system on a small budget largely to the conceptual

and architectural bene�ts of behavioral ER modeling and design. Despite the anecdotal

quality of the evidence, this e�ort substantially increases our con�dence in the ability of

this approach to ease development of serious (albeit not immensely complex) integrated

environments.

This paper describes both the application and the role of our approach in building it.

Section 2 introduces the radiation treatment planning domain, places the Prism system

in context with related systems, and details Prism using an example session. Section 3

discusses the software engineering challenges posed by requirements for a combination of

tight integration and architectural 
exibility, and goes on to present behavioral ER modeling

and design as a solution concept. Section 4 shows how we applied the tenets of our approach

to design and integrate several key subsystems. We focus on modeling and design idioms

that provided leverage needed to make rapid progress in building Prism. Section 5 presents

code sizes and the like. Section 6 evaluates this e�ort and discusses future work.
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2 Radiation Treatment Planning

2.1 The Application Domain

An RTP system is a collection of software tools used by dosimetrists to design radiation

treatments for cancer. Dosimetrists are expert treatment planners. A treatment delivers

a prescribed dose to cancerous target regions without overdosing other organs. A plan

basically de�nes a three-dimensional con�guration of radiation beams and other sources

relative to a patient that satis�es the given constraints.

Designing treatments can be hard. Challenging cases require care and exploration. The

space of possible geometric and anatomical con�gurations is huge" di�erent people have

di�erent shapes; tumor locations and types vary; etc. An RTP system helps by supporting

modeling and visualization of plans, computation of dose distributions, visualization of

plans and dose distributions, and management of a database of patients, plans, treatment

machines, etc. An RTP system that promotes exploratory planning can lead to treatments

that would otherwise be missed [Rosenman et al. 89].

A key goal for Prism is to give dosimetrists a powerful exploratory system: one provid-

ing a tool set that is broad in scope, dynamically con�gurable, and tightly integrated. By

broad in scope, we mean that the tools support diverse planning tasks: modeling, dose com-

putation, visualization, data management, etc. By 
exible, we mean that the dosimetrist

can instantiate tools at will, not being constrained to a �xed dialog or layout. Finally, by

tightly integrated, we mean that all active tool instances work together interactively and

incrementally. When a patient model or plan changes, all graphical renderings displayed by

any tool should be updated accordingly, for example.

2.2 Related Systems

Many RTP systems have been built [Goitein et al. 83, Kutcher 88, Fraass et al. 87,

Rosenman et al. 89], including several at the University of Washington [Kalet and Jacky

82, Jacky and Kalet 87b]. None of these e�orts achieved breadth of scope, integration and


exibility. This is not surprising, in light of Taylor et al.

\: : : a well-integrated environment is easiest to achieve if the environment is

limited in scope and static in its contents and organization. Conversely, broad

and dynamic environments are typically loosely coupled and poorly integrated.

Unfortunately, poorly integrated environments impose excessive burdens upon

users, and small static environments are quickly outgrown [Taylor 88, p. 2]."

This has clearly been the case in the radiation treatment planning domain. First, in

many systems, di�erent planning tasks are handled by di�erent, stand-alone, \Unix-like"

tools that run as separate processes and are loosely integrated through shared �les. Kalet's

�rst system integrated modeling, dose computation, and visualization tools in this way. To

modify the anatomical model, the dosimetrist has to terminate the dose display, run and

then terminate anatomy modeling tools, execute the dose computation program, and then

restart the dose display program.
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Second, many existing environments are static and in
exible at runtime. This is often

apparent in the user interfaces. One operates in Kalet's second system by traversing a broad

and deep menu tree to change plans, update anatomy models, tailor visualization parame-

ters, store models in the database, etc. The visualization subsystem itself is in
exible, too.

It displays a �xed set of graphical views in a �xed layout. These limitations make it hard

quickly model and simulate patients and treatment plans.

Third, to the extent that existing systems are broad and integrated, their architectures

tend to be in
exible and evolution-unfriendly. For example, despite its object-oriented

architecture [Jacky and Kalet 86, Jacky and Kalet 87b], Kalet's second system does not

easily accommodate integration of prototype AI-based planning tools [Kalet 92c, Paluszyn-

ski 89a]. Architectural in
exibility inhibits both research on uses of software in radiation

treatment planning and also exploitation of research results by making it hard to integrate

new tools|whether prototypes or not|into the overall treatment planning environment.

2.3 Prism

Prism thus serves two purposes: it supports treatment planning in clinical practice, and

it provides a platform for research on software technologies in treatment planning. In the

second role, Prism provides something like a framework [Johnson 92], to be specialized and

extended with additional tools. For example, a tool that computes target treatment volumes

based on mathematical models of tumor shape and type, patient movement, etc. is now

being devised and integrated. This tool was not foreseen in the original requirements, but

was easy to integrate because the Prism architecture is integration- and evolution-friendly.

Both roles|production environment and research platform|demand a combination of

tight integration and architectural 
exibility. Tight integration of tool instances within a

session is needed for e�cient treatment planning. Graphical views should provide immediate

feedback when models are changed, for example. A 
exible software architecture is also

needed to support the planning task. In particular, the dosimetrist should be able to

instantiate tools and con�gure the environment at will. The system must support non-

deterministic instantiation of tools during a session. Finally, architectural 
exibility is

needed to accommodate the integration of new tools over the lifetime of the system|as

research concepts are tested, re�ned, and adopted or rejected.

The strength of Prism is that is combines architectural 
exibility|in execution and

evolution|with tight integration. The simple but powerful anatomy modeling tools can

stay on the screen with dose display tools, for example. When the anatomy is updated,

the dose distribution tool is easily activated to compute and display the new distribution.

To help users understand three-dimensional treatment plans, Prism allows any number of

views of a given plan, and a given view can either be displayed or not.

To give a sense of Prism, we discuss a session, using \screen dumps" to help illustrate. It

is hard to give a sense for how dynamic Prism is in the written medium. For those wanting

a more dynamic experience, the Prism source code is freely available.

1

1

For information on obtaining Prism, contact Kalet at an address given on the title page.
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Figure 1: A transverse slice.

This �gure illustrates the Cartesian patient coordinate system, and shows a transverse slice

through the patient. Images in image studies are oriented in this way.

2.3.1 Image Studies

Image studies are the basis for modeling and visualization in Prism. An image study is a

sequence of two-dimensional, radiographic images|usually computed tomography or mag-

netic resonance scans. Figure 1 illustrates one slice in a study. We build three-dimensional

models of the patient anatomy and tumors by tracing contours against successive slices. All

contours tagged as belonging to a given organ de�ne the geometric model of that organ.

These models, augmented with information such as density and radiation tolerance, are the

basis for visualization, dose computation, and other Prism activities.

2.3.2 Master Control: The Patient Panel

Prism tools are presented in panels. A patient panel appears in the upper left of Figure 2.

The patient panel is the tool presented to users on start-up. It is used to select patient cases

from the database; load associated image studies; edit patient administrative data (e.g.,

name, hospital ID number), display anatomical models and treatment plans in abbreviated

form, invoke tools to display and edit these models, store updates in the database, etc.
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Figure 2: A Prism screen.

The bottom part of the patient panel presents several selectors. In user interface jargon,

these are multiple selection lists. Selectors display the patient model in abbreviated form

and allow elements to be added, deleted, and selected for further editing in new tool panels.

Each selector thus presents a multi-valued attribute of the patient case. There is one for the

set of organs de�ned for a patient, another for the tumors, and so on. When the user loads

a patient case from the database, the lists are �lled in. Pushing the add button above a

selector adds a new element. Selecting an item with the middle button deletes that element.

Selecting an element with the left button instantiates a new tool to display and edit the

selected object (e.g., organ or plan).

2.3.3 Tool Invocation: The Plan Panel

Selecting a plan in particular instantiates and displays a plan panel to display and edit that

speci�c plan. The highlighted PLAN-439 item in the plan selector indicates that that plan

has been selected and that there is a corresponding plan panel active on the display. The

plan panel for this plan appears in the �gure, but is mostly obscured below the patient and

beam panels. (The beam panel, discuss below, is the one with the three dials.) Throughout

Prism, tool instances are invoked in this way. To edit the radiation target volume named

TARGET, for example, one would select the TARGET button in the target selector. This

point-and-click tool invocation is what provides the user with a highly 
exibly runtime

environment.
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Figure 3: A second Prism screen.

2.3.4 Physical Modeling: The Easel Panel

The large panel in the lower left of Figure 3 presents the easel panel instantiated by the

user's selecting this target volume. The easel has several major component parts. Down the

left are attributes such as the color in which the contour is displayed, and the Z coordinate

of the current slice. Across the top is the �lmstrip. Each frame in the �lmstrip presents a

slice of the patient model, with the image for that slice in the background and contours for

organs, tumors, targets, etc. at that position overlaid. The �lmstrip provides a scrollable,

visual menu for selecting slices for editing. The large area in the middle of the easel is the

canvas, on which editing operations actually take place.

To edit a slice, the user scrolls through the �lmstrip to �nd the desired slice, and then

clicks on the desired frame. The third frame is selected here (indicated by highlighting,

which is hard-to-see in this window dump). The image and contours for the selected frame

are then brought up on the canvas. All contours at that slice are displayed, but only the one

for the entity being edited can be changed. In this case it is a contour of the target volume,

outlined with small squares to highlight and support editing of this contour. The user can

add, delete, and move these vertices. The Clear button below the �lmstrip deletes the entire

contour. In addition to a Manual drawing mode, the easel supports automatic contouring

based on following edges in the background image. The easel operates on a copy of the

contour de�ned for the underlying patient model. If the user presses the easel's Accept , the

newly edited contour is inserted into the patient model, replacing the older contour.
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2.3.5 Visualization: Views and View Panels

To support visualization of patient cases, including anatomy, tumors, beams, etc., Prism

allows the user to de�ne any number of views of a given treatment plan. Prism supports

orthographic and perspective views. Orthographic views come in three kinds: transverse,

coronal, and sagittal. These are perpendicular to the Z; Y; and X axes of the patient

coordinate system, respectively. Prism also supports perspective views, from radiation

beam origins|\beam's-eye" views.

A selector on each plan panel lists the views for the plan. When adding a view, the user

is queried for the kind of view. Views persist even when not displayed. To display a view,

the user selects it using the selector. This creates a view panel, which displays the view

and allows its parameters to be set|position of viewing plane along view axis, whether an

image is displayed in the background, etc. A view panel displays all information de�ned for

a plan visible in the view.

Figure 2 presents �ve orthographic views panels. The large one in the upper right is

transverse. It presents the same slice as in the easel in Figure 3, but also displays two

radiation beams|as two pairs of diverging lines. One enters from the upper left; the other

from upper right. The target volume is in the intersection of the beams, but is imprecisely

aimed: the beams hit other organs, including the kidneys (white ovals) and spinal cord

(white, irregular shape). This kind of information and the ability to see and change it

easily are critical to the dosimetrist.

The two smaller panels below display transverse slices above and below the one in the

large panels. The smaller panel in the lower right presents a sagittal view. The squares

depict intersections of contours (parallel to the transverse views) with the sagittal viewing

plane. The smaller panel to the left displays a coronal view. The overlapping parallelograms

depict intersections of the beams with viewing planes. Since beams are shaped as generalized

pyramids they intersect with viewing planes in such polygons.

Finally, the lower right panel in Figure 3 presents a beam's-eye view. This view is taken

from the perspective of the beam that, in the view above, enters from the upper left. The

view depicts a sequence of transverse slices through the patient, as seen from the side. The

outer contours represent skin; the inner ones others, organs, target volume, tumor, etc.

We anticipate adding room views|perspective views taken from arbitrary points in the

treatment room|but we have not yet speci�ed or implemented them.

2.3.6 Integration: Easels and Views

The modeling and view tools are tightly integrated. When the user presses Accept, new data

is inserted into the patient model. This causes all graphics to be incrementally updated to

re
ect the changes. Even frames in easel �lm-strips are corrected. If a dose distribution is

displayed, and if the change a�ects the distribution, the data is invalidated and erased from

all renderings where it appears. In general, changes made to one part of the environment

cause changes throughout, as necessary, to maintain global consistency. It is in this sense

that the system is tightly integrated.
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2.3.7 Integration: Views with Views

Visualizing three-dimensional con�gurations from a set of two-dimensional views is hard.

Visual hints indicating how views relate to each other can help. Prism provides hints in the

form of locators. A locator is a line appearing in one orthographic view that depicts the

intersection of the viewing plane of some other view. Locators show how views are oriented

relative to each other, helping the dosimetrist fuse disparate views into a three-dimensional

understanding.

Consider the sagittal view in the lower right of Figure 2. This view depicts a slice that

divides the patient into left and right parts. Where the viewing plane intersects the patient

is given by the vertical locator in the transverse view, above: the sagittal view is down the

middle of the patient. Symmetrically, the horizontal locators in the sagittal view show the

relative positions of the three transverse views. The horizontal locator in the transverse

views depict the intersection of the coronal view in the lower left. The vertical line in

the sagittal view shows the intersection of the coronal view. The horizontal locator in the

coronal view presents the intersection of sagittal view.

Views are integrated with each other through locators. The problem is to keep locators

and views consistent with each other. The viewing planes of views can be changed, and

locators can be \dragged." The position of the viewing plane of a view can be updated

using the Pos text line on a view panel. If a viewing plane is changed, the locators for that

view in other views update. Symmetrically, if a locator is dragged in one view, the view-

ing plane of the corresponding view is changed. Thus, not only do locators provide hints

about relative orientations; they also let the user change relative orientations. The user can

animate a viewing plane passing through the patient in one dimension by dragging a cor-

responding locator in another view. This tight integration signi�cantly eases visualization

and exploration of three-dimensional treatment con�gurations.

2.3.8 Physical Modeling: The Beam Panel

To review, one edits a plan by selecting it using the plan selector on the patient panel.

This creates a plan panel. For this discussion, the key features of the plan panel are the

two selectors for radiation beams and views. To add a beam, one uses the beam selector.

To edit a beam, one selects the corresponding item. That instantiates a beam panel. On

the plan panel just visible on the far left of Figure 2, we see that the \left lateral" beam is

selected. This instantiated the beam panel, with the dials, in the lower left.

The left side of the beam panel presents widgets for editing the kind of treatment

machine producing the beam (Clinac 4), the color in which the beam is displayed in views,

etc. Across the top are dials used to adjust the beam orientation relative to the patient.

One models rotation of the couch the patient lies on; another models the position of the

gantry that supports the beam apparatus, rotating on an axis parallel to the 
oor; the third

models the axial rotation of the collimator through which the beam passes on its way to the

patient. The bottom part of the panel displays several sliders. Three adjust the lateral and

longitudinal positions and the height of the couch. The rest adjust the collimator aperture.
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2.3.9 Integration: Beam Panels with Beams and Views

Beam panels are integrated with views in the sense that changes to a beam are re
ected

in all views that display the beam. As the couch dial is dragged around, for instance, the

pair of nearly parallel lines in the transverse views rotate, and the depiction of the patient

in the beam's-eye view seems to rotate in three dimensional space. Changes in most beam

parameters also invalidate any dose distribution that has been computed, causing views to

erase depictions of out-of-date values.

An interesting aspect of the beam panel is in the integration of the panel with the

beam it displays. A user can change the machine attribute of a beam (set to \Clinac 4" in

this example). Changing the machine may change the collimator used to shape the beam,

since di�erent machines have di�erent collimation systems. This, in turn, may require a

change in the collimator part of the beam panel, since di�erent collimation systems have

di�erent capabilities, hence interfaces. With a Clinac 4, two sliders are required, since there

are two \jaws" that can be manipulated. Other devices have more degrees of freedom,

and so need an interface with more sliders. With a \multi-leaf collimator," a slider-based

interface is not su�cient; a contour editor for specifying the desired beam cross-section is

more appropriate. Thus, when the user changes the machine attribute, the user interface

presented by the beam panel may itself change, to allow editing of a beam shaped by a

di�erent kind of collimator.

3 Behavioral ER Modeling and Design in Prism

The Prism functional requirements call for a system dynamically con�gured by the user,

broad in scope, tightly integrated, and easy to evolve. This presented an interesting, di�cult

software engineering problem: it was unclear how to meet these requirements on a limited

budget. It was easy to imagine an architecture where each tool type would be de�ned

to manage its interactions with a dynamically changing set of other tool instances; but

the tangled structure that would result would be costly to build, debug, and extend. It

was evident to Kalet that the requirements could not be met within budgetary and time

constraints using common (e.g., object-oriented) methods. The problem was to obtain the

required tight integration without losing architectural 
exibility|the key to controlling

development costs and easing evolution.

The behavioral entity-relationship modeling and design approach developed by Sullivan

and Notkin [Sullivan and Notkin 92] purported to reconcile integration with architectural


exibility, and with ease of software development and evolution. Kalet found the method

su�ciently appealing that he decided to adopt it for the Prism project.

Our method involves an approach to analysis, design, and implementation. In this

section we present the method in a nutshell, and illustrate it by showing how we analyzed,

designed, and implemented a new interface widget as a simple \integrated environment" in

which two simpler widgets work together. The widget we discuss is a dialbox , de�ned in

the SLIK user interface toolkit, used to build all Prism interfaces [Kalet 92].
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3.1 Our Method

Our method is based on the notion that the con
ict between integration and architectural


exibility is reconciled by viewing and implementing systems as collection of visible, in-

dependent entities integrated in a network of separate behavioral relationships. Entities

provide the behaviors used by system clients|e.g., a dial on an interface, a set of organs in

a model of a patient. Behavioral relationships make the entities work together as they are

manipulated by clients. A simple behavioral relationship might assert that when a dial is

moved, a text representation of its angle is updated accordingly and, similarly, that when

the text is changed, the dial updates.

The approach provides a clean model of integration. To make given tools work together,

we identify the behavioral relationship we want between them, and implement the relation-

ship as a separate component. This also leads to a 
exible architecture. When tool instances

are created at run time, we integrate them with other instances by instantiating behavioral

relationships to connect them together. We can make a stand-alone dial work together with

a text display by creating a relationship object that makes them work together. When

a new tool type is de�ned, we integrate it with existing tools by de�ning new behavioral

relationship types. In many cases, existing types need not change.

To provide the essential details, we sum up our analysis, design, and implementation

methods in a few lines each. Then we illustrate their use for the simple case of the dialbox

widget. We refer interested readers to more \theoretical" discussions elsewhere [Sullivan

and Notkin 92, Sullivan 94].

3.1.1 Analysis

� First, identify and represent key entities as visible, independent objects. An object is

visible if it can be directly referenced and used by any client. It is independent if it is

not de�ned to reference any objects outside of itself.

� Second, identify and represent behavioral relationships as separate objects. We use

the term mediator to refer to an object that represents a behavioral relationship.

Mediators are dependent|de�ned to reference the objects they integrate.

3.1.2 Design

� First, design objects as instances of abstract behavioral types. An ABT de�nes a class

of objects in terms of an abstract state space, applicable operations, visible activities,

and responses to the activities of other referenced objects. The distinction between

this and an abstract data type is that one ABT-based object can extend the behavior

of another by responding to its visible activities.

� Second, design behavioral relationships as objects (mediators) that reference the ob-

jects they relate and that integrate them by responding to their activities, calling

their operations, and storing locally any additional information needed to maintain

the speci�ed relationships.
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3.1.3 Implementation

� Implement abstract behavioral types as classes in object-oriented programming lan-

guages. Implement abstract state in terms of hidden instance variables. Implement

applicable operations as public methods. Implement visible activities as public in-

stance variables whose values are event objects (see below). Implement responses to

activities of other objects as registrations of hidden methods with the event-valued

instance variables of the other objects.

� Implement event objects as instances of event classes supporting three operations.

If E is an event object, then E:Register(op; ob) should cause E to store the as-

sociation between the operation op and the object ob: E:Unregister(op; ob) should

break this association. E:Announce(p

1

; : : : ; p

n

) should iterate over all registered op; ob

pairs, applying the registered operations to the corresponding objects: i.e., calling

ob:op(p

1

; : : : ; p

n

): The p

i

are the parameters that de�ne the signatures of both the

events and the methods that they \implicitly" invoke.

3.2 Example: The DialBox Widget

To illustrate these ideas, we discuss how we applied them to model, design, and implement

a user interface widget called a dialbox. The dials in the beam panel (see Figure 2) are

instances of this kind of \tool," which can, itself, be seen as a tiny integrated environment.

The key components|the tools|of a dialbox are a dial and a text line. The angle of

the dial can be changed by \dragging" the dial with the mouse. The text in the text line

can be changed by typing a new value in the window. Both components also have \API's"

2

,

program callable interfaces for getting and setting their values. These tools are integrated

in that as either changes the other updates so both continue to display the dial angle. As

the dial turns, the text line updates repeatedly until the dial's motion stops. When the user

types a new value to the text line and presses Enter, the dial snaps to the given angle.

It is sometimes desirable to treat it not as a system of related components but as a

unity|a single object. A dialbox is instantiated in entirety, for example: one need not

create then glue together several components. To support the view of the widget as a unity,

we specify that the dialbox as an object has its own \API" with operations to get and set

the (common) angle of the underlying dial and text line components.

3.2.1 Analysis

When given requirements for a \complex" behavior, such as the dialbox, we begin an

analysis by asking if we can view it as a system of independent behaviors integrated in a

network of behavioral relationships. We have no mechanical procedure for �nding a \good"

decomposition. Our approach is heuristic. We are guided, however, by concerns for issues

of independence, relationship, and visibility. What pieces can we use, develop, understand

2

This stands for applications programming interface, or some small variant of this phrase.
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TextLine DialTD

DialBox

Figure 4: The architecture of the dial box \integrated environment."

The rectangles represent independent entities; the diamond represents the behavioral rela-

tionship that integrates them. The dark arrows denote the dependence of the relationship

on the entities. The light arrows suggest the entities are visible: used directly by clients.

independently? Given a breakdown into parts, is there a simple statement of the behavioral

relationship needed to integrate the parts? What visible structure do the clients of a system

\want" to see?

Reasonable answers for the dialbox are fairly obvious. We break it into two independent

entities linked by one behavioral relationship, as pictured in Figure 4. The entities are a

dial and a text line. The relationship is simple: if the value of one changes, the other must

be updated to re
ect the change. This breaks the system into two entities that we can

implement, test, and (re)use independently, plus a relationship that is easy to comprehend

as a unit in its own right.

3.2.2 Design

At the design level the task is to represent the entities and relationships as ABT instances

while preserving the independence and visibility structure of the analysis model. Figure 5

presents the essential features of our design. The text line and dial are de�ned as inde-

pendent ABTs. The behavioral relationship is represented as an ABT (a mediator) that

responds to the activities of each entity by updating the other to maintains the desired

relationship in the face of client accesses.

In more detail, the dial and text line ABTs de�ne operations to Get and Set their values

and events that are announced when these values change|NewInfo and NewAngle. The

mediator is dependent, referencing the dial and text line. It integrates these entities by

responding to their event announcements and calling their operations.

Speci�cally, the mediator registers its UponNewInfo(x) operation with the text line

NewInfo(x) event. When the event is announced, the operation is invoked. It computes

a new angle a for the dial by converting the updated text|which is passed as an event

parameter{to an angle, and then it calls Dial.Set(a) to update the dial with the new angle.

The behavior is symmetrical for changes to the dial. The circularity that results|one

update causes another causes another etc.|can be broken in several ways. One is for the

mediator to maintain a bit indicating whether an update is in progress. When invoked, the

mediator checks the bit. If not set, the mediator sets it and performs the update. If set,

the mediator just returns [Sullivan and Notkin 92].
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DialBox

TextLine

Get():string

Set(x:string)

NewInfo(x:string)

Info:string

Dial

NewAngle(x:float)

Angle:float

Get():float

Set(x:float)

Mediator

UponNewAngle(x:float)

t: TextLine;   d: Dial

Set(x:float); Get():float

UponNewInfo(x:string)

Figure 5: Mediator-based design of the dialbox widget.

The heavy lines indicate dependencies between objects. The dial and text line are inde-

pendent. The mediator depends on both. The dashed arrows represent registrations of the

operations at the tails of the arrows with the events at the heads. The lighter solid arrows

represent invocations of the operations at the heads by the operations at the tails.

3.2.3 Implementation

It is straightforward to implement ABTs in common programming languages. The main

problem is representing events. This is not hard [Notkin et al. 93]. It is especially easy

in object-oriented languages, which already support objects with states and operations. In

this case, we represent events in object interfaces as instance variables holding event objects.

An event object maintains an association between the event it represents and the objects

and operations to be invoked when the event is announced [Sullivan and Notkin 92].

Events. The implementation environment for Prism is Common Lisp [Steele 90] and

CLOS [Bobrow et al. 88]. Our �rst task was to support objects having events as well

as operations in their interfaces. We used event object-valued instance variables for this.

An event object is an instance of an event class with operations to Register and Unregister

objects and operations and another operation to Announce the event.

The mechanism is simple. Source code appears in Figure 6. An event object maintains

an association list that records object/operation pairs. Upon creation, the list is empty. The

operations, implemented as macros, are simple. Add-notify registers an object (party) and

an operation to be applied to the party. Registration removes any operation already present

for the party, then stores the new operation. Remove-notify removes any registration for a

party. Finally, Announce iterates over the list, applying the operation part of each entry to

the associated party. The parameters object and args are passed to the invoked operations.

Object identi�es the object announcing the event. Args encodes other parameters for the

event. Thus, when a text line announces NewInfo(x) by calling the announce operation of

this event object, object is a reference to the text line and args is the new text string x.

14



(deftype event () 'list)

(defun make-event () nil)

(defmacro add-notify (party event operation)

`(setf ,event

(adjoin (list ,party ,operation)

(remove ,party ,event :test #'eq :key #'car))))

(defmacro remove-notify (party event)

`(setf ,event (remove ,party ,event :test #'eq :key #'car)))

(defun announce (object event &rest args)

(dolist (entry event) ; event is an a-list

(apply (second entry) (first entry) object args)))

Figure 6: Common Lisp/CLOS implementation of event objects in Prism.

Entities. Implementing the dial and text line object speci�ed in Figure 5 is now easy.

Since the entities are similar, we just discuss one. The dial stores a numerical representation

of an angle, de�nes operations to get and set this value, and makes changes visible by

announcing an angle-changed event. The problem is in representing and announcing the

event. Figure 7 presents the dial class declaration and shows how we guarantee that the

event is announced when setf is used to update the angle attribute. The idea is to use

CLOS wrapper methods. The class includes a slot holding an event object. The wrapper,

which is automatically executed whenever setf is called, announces the event. (In addition,

the wrapper updates the dial graphics; we do not discuss graphics any further).

Mediators. Finally, implementing the mediator is easy. Elided source code appears in

Figure 8. In our implementation, the mediator is the dialbox itself. As de�ned by the

defclass, a dialbox has a dial and a text line as its visible parts. The setf in the dialbox

class initialization routinemake-dialbox creates these objects and assigns them to their slots

in the dialbox object. The initialization routine also registers the mediator operations with

the events of the dial and text line objects. The �rst, upon-angle-changed handles changes

to the dial; the second, upon-info-changed handled updates to the text. In the registration

instructions (ev:add-notify) the variable db refers to the dialbox|the party to be noti�ed.

The next expressions reference the event objects in the dial and text line objects. The

NewAngle event is represented by an event object in the dial's angle-changed slot, in turn is

found through the the-dial slot of the dialbox db. The parameters preceded by hash signs

(#) are the operations to be invoked when the events are announced.

These \update" operations are similar so we just present one. Upon-angle-changed

updates the text line when the dial changes. The parameters passed to this operation

identify the noti�ed party (dialbox), the event announcer (dial), and the new angle. The

operation uses a busy bit to prevent circularity, as discussed above. Between setting and

clearing busy , the operation updates the string value of the text line, then announces the

dialbox angle-changed event. This event supports clients that treat the dialbox as a unit.
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(defclass dial (frame) ; define a dial ABT

((angle :type single-float ; angle attribute

:accessor angle

:initarg :angle)

(angle-changed :type ev:event ; angle-changed event

:accessor angle-changed

:initform (ev:make-event))))

(defmethod (setf angle) :around (new-angle (d dial))

(dial-erase-pointer d) ; erase old dial graphic

(call-next-method) ; invoke inner wrappers

(dial-draw-pointer d) ; draw new graphic

(ev:announce d (value-changed d) new-angle) ; announce value-changed

new-angle) ; setf must return value

Figure 7: Key features of the implementation of the dial ABT.

(defclass dialbox (frame) ; the dialbox/mediator class

((the-dial :type dial :accessor the-dial) ; references a dial

(the-text :type textline :accessor the-text) ; and a text line,

(angle-changed :type ev:event ; and exports an event,

:accessor angle-changed

:initform (ev:make-event))

(busy :accessor busy :initform nil))) ; and avoids circularities

(defun make-dialbox (radius &rest other-initargs)

(let* ((db (apply #'make-instance 'dialbox)))

(setf (the-dial db)

(apply #'make-dial radius :parent (window db))

(the-text db)

(apply #'make-textline width height :info "0.0" :parent (window db))

(ev:add-notify db (angle-changed (the-dial db)) #'upon-angle-changed)

(ev:add-notify db (new-info (the-text db)) #'upon-new-info)

db)))

(defun upon-angle-changed (db ann val)

(unless (busy db) ; avoid circularity

(setf (busy db) t) ; " "

(setf (info (the-text db)) ; convert angle to

(format nil "~5,1F" (mod val 360.0))) ; string; update text

(ev:announce db (angle-changed db) val) ; announce dialbox event

(setf (busy db) nil))) ; avoided circularity

Figure 8: Key features of the implementation of the dial/text line mediator.

16



Now consider what happens when a client changes the dial angle using setf. The wrapper

method is invoked by Common Lisp before setf executes. The dial graphic is erased. The

setf occurs within call-next-method , the graphic is redrawn, and then the angle-changed

event is announced. This invokes the mediator upon-angle-changed operation. This routine

checks the busy bit, �nds no update in progress, converts the new angle to a string and sets

the value of the text line. This causes the text line's new-info event to be announced, which

invokes the mediator's upon-info-changed operation. This operation checks the busy bit

but �nds an update in progress. Control returns to the text line (its event announcement

returns). The text line update completes and returns to the mediator. Now the mediator

announces its angle-changed event. Finally, the mediator clears the busy state and returns.

The original setf operation on the visible dial object completes with the whole dialbox

system in a consistent state.

4 Modeling and Design Problems and Solution

The Prism architecture is based throughout on these analysis, design and implementation

methods. In this section, we discuss �ve Prism subsystems to show how we applied the

tenets of our approach to realize the required integrated Prism functions while preserving

architectural 
exibility.

We start with multiple selection lists|the interface widgets that display lists of organs,

tumors, and plans on the patient panel, beams and views on the plan panel, and so forth.

Next, we discuss how these widgets are used in selectors. A selector uses a selection list

to display a set of objects, such as organs, to support addition and deletion of elements,

and to support instantiation of tools to edit elements. Third, we discuss locators, the lines

displayed in view panels to depict intersections between views. Fourth, we present our

architecture for keeping graphical renderings|views, easels, �lm strips, etc.|consistent as

underlying entities, such as beams and organs, are changed. Finally, we discuss our model

for changing the interface presented by the beam panel as the beam type is changed.

4.1 Multiple Selection List

A multiple selection list (hereafter menu) displays a list of items. Items can be added to

and deleted from the menu, and they can be selected and deselected. When selected, an

item is highlighted; when deselected, it is unhighlighted.

4.1.1 Analysis

We based our analysis of the menu behavior on knowing how we would use menus in

selectors. The idea for selectors|discussed next section|is to have a menu participate

in two relationships. The �rst is a one-to-one correspondence between an object set (e.g.,

the set of organs of a patient) and all the items in the menu. The second is a one-to-one

correspondence between selected menu items and active tool instances. This way, if an

organ is added to the patient, an item must appear in the list; and if an item representing
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Items: Set[Button]

Multiple Selection List

M Selected:Set[Button]

Figure 9: Simpli�ed model of a multiple selection list.

A multiple selection list is viewed as a pair of sets of buttons. A button is an item displayed

by a menu that can be selected or deselected. The set of buttons called Items contains all

buttons displayed by the menu. The set, Selected, contains exactly the subset of selected

buttons. The behavioral relationship M will ensure that this constraint is maintained as

buttons are selected and deselected, inserted and deleted.

an organ is selected, a tool must be instantiated for editing that organ. This implements

the behavior speci�ed in the Prism requirements.

Our analysis of the menu itself resulted in the model illustrated in Figure 9. We view a

menu as maintaining two sets of buttons. The sets are entities into which one can insert and

from which one can delete references to buttons. The buttons themselves are entities that

can be selected or deselected. The typical usage is for a client to insert unselected buttons

into Items, then to select and unselect them, and �nally to delete them from Items.

Integration of these sets and the buttons they contain is achieved by the behavioral

relationship (M in the �gure). This relationship imposes the constraint that the selected set

is the subset of Items containing exactly those buttons that are selected. Thus, if a button

in items becomes selected|because a user invokes its Select operation|it must then be

inserted into the Selected set. The relationship makes the entities work together. Although

our implementation does not precisely have this structure, this analysis signi�cantly eased

the design, implementation, and integration of the menu components.

4.1.2 Design

In design and implementation, we merged the two sets and the behavioral relationship into

a single object. In design and implementation, the menu supports operations to insert,

delete, select, and deselect buttons. The select and deselect operations are the equivalents

of insertion into and deletion from the selected subset. The menu also announces events for

button insertion, deletion, selection, and deselection.

We designed buttons as ABTs with operations for selection and deselection, and events

to indicate these activities. The key to the menu design is that when a button is inserted into

the menu, the menu registers with the button to be noti�ed of its selection and deselection

events. When a button in the menu is selected by the user, the menu is noti�ed. In turn it

announces its own selected event. This mimics the button being inserted into the selected

subset. Deselection is symmetrical. When a button is deleted from the menu, the menu

cancels its registrations with the button object.
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The implementation of these ideas is straightforward using the ideas and source code

presented above. For brevity, we omit implementation details for this and subsequent

subsystems.

4.2 Selectors

Selectors are used throughout Prism to display the contents of models (e.g., the organs

belonging to the patient), and to allow elements to be added, deleted, and selected for

editing. There are, however, other ways that models can be changed: Prism eases integration

of new tools by making models visible, so any tool can operate directly on a model, e.g.,

adding, changing, and deleting organs and beams. In the face of manipulations, it is critical

to keep the interface presented to the dosimetrist consistent. If an organ is added, a new item

should appear in the organ menu. If the name of an organ is changed, the name displayed

by the corresponding item should update. Moreover, we can meet the requirement that the

user be able to change the name of an organ by allowing the user to change the button

name, with a constraint that the organ name be updated accordingly. In the face of direct

client accesses, all aspects of the Prism environment should be kept consistent. We now

discuss how we met this requirements, focusing on selectors in particular.

4.2.1 Analysis

Figure 10 presents our analysis model of the organ selector. All other selectors are analogous.

In fact, all are instances of the same class, parameterized at instantiation time to handle

di�erent kinds of objects and panels.

The primary entities in the analysis model are a set of organs, a set of easels, and a menu.

To each set is associated zero or more elements. These associations change dynamically as

elements are added and deleted. The two main behavioral relationships, SM and ME,

maintain the one-to-one correspondences discussed above. If an organ is added to the organ

set, SM requires a corresponding item be added to the menu. If an item is selected, ME

requires addition of a new easel to the easel set. Conversely, if an easel is closed by the

user, ME requires that the corresponding button be deselected; and so forth.

The relationshipME is dependent on relationship SM. This is because ME is responsible

for creating panels for selected menu items, but a panel must be connected to the organ

associated with the item selected. The association between organs and items is maintained

by SM. Thus, when a menu item is selected, ME queries SM to �nd out to which organ

the new panel should be attached.

The bottom half of the �gure depicts the individual elements of the sets (organs, buttons,

easel panels) and the behavioral relationships between them. OB requires associated organ

and button names be equal; if either changes, the other must be updated. The arrow from

the easel to the organ denotes a dependence of the easel on the organ. We basically merged

the relationship between the easel display and the organ into the easel because easels are

never used in the absence of organs (or generally some volume to be edited). Since the

relationship is dependent, this merging made the easel dependent.
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Figure 10: Simpli�ed model of the Prism selector subsystem.

The patient model contains a set of organs. The panel subsystem presents this set and

supports insertion, deletion, and selection for editing. The SM relationship ensures that the

menu contains one button for each organ. Instances of the OB relationship, dispatched by

SM, keep organ and button names consistent with each other. The ME relationship ensures

there is one easel for each selected button. Each easel is connected to the designated organ.

To �nd out which organ that is, ME queries SM to map a given, selected button to the

organ it represents.

4.2.2 Design

To save space, we only discuss some of the key features of the selector subsystem at the

design level. First, we represent instances of the OB relationship as mediator objects. The

design for these objects is modeled on the dialbox presented earlier. The relationships

SM and ME are similar to each other, so we only discuss the design of SM . We start the

discussion with a simple but key aspect of Prism: the design of the organ set. All other

sets in Prism|panels, tumors, plans, etc.|are analogous.

Sets. We represent the organ set at the design level as an ABT. The set ABT has two

operations, one to insert an element, one to delete one. Each operation takes a reference to

the element as a parameter. The ABT also de�nes events inserted(x) and deleted(x), where

x is a reference to the object inserted or deleted. If a client calls the operation insert(x),

the inserted event is announced if and only if x is actually added to the set, which happens

if and only if x was not already in the set.

Representing multi-valued attributes as set ABTs|e.g., the organs in a patient|is one

of the cornerstones of the Prism design. It provides an explicit runtime representation of

dynamic entry and exit of elements into and from associations. Rather than having to

maintain consistency in the face of creation and deletion of objects, we do so in the face

of insertions into and deletions from sets. Doing this is easy because set ABTs announce

events that can be monitored by mediators.
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Relations. Designing a mediator to represent SM is straightforward, based on the design

of the dialbox. First, the SM mediator references the organ set and the menu. Second, it

supports four private operations, one to handle each relevant activity: insertion and deletion

of organs and buttons. When the mediator is created, it receives references to the set and

menu and registers these operations with their events. At runtime, it uses a \busy bit" to

avoid circular updates, as in the dialbox example.

In addition, the mediator maintains a relation (in the form of a relation ABT) as part

of its state. It uses the relation to record correspondences between individual organs and

buttons. Each association is stored as a pair of references, one to the organ, one to the

button. This relation is used both by the mediator itself, and by clients. In particular, the

ME mediator queries this relation to �nd out to which organ to attach an easel when a

menu item is selected.

To see how the SM mediator works, consider what happens when an organ is deleted.

The mediator, having registered for deletion events, is invoked. It responds by checking its

busy bit, which it �nds clear (no update in progress). It maps the organ that was just deleted

through the relation to �nd the corresponding button. It deletes the correspondence from

the relation, then deletes the button from the menu. This invokes the mediator recursively,

but the mediator �nds its busy bit set, so it just returns (to the menu). Then the menu

returns back to the mediator. The mediator returns to the set. Finally the insert operation

completes with the set, the mediator's relation, and the menu all consistent.

Submediators. There is one additional complication. When an organ and a button are

associated, we want their names to stay consistent. To implement this, the SM mediator

uses an idiom we call deploying submediators. A critical advantage to the method of im-

plementing behavioral relationships as ABT-based objects is that they can be created and

can register with other objects dynamically. This is the basis for integrating tools as they

are activated in Prism.

The basic idea is that in addition to maintaining a relation between two collections, a

mediator also maintains a set of mediators (of a di�erent kind) responsible for integrating

related elements of these collections. In this case, SM creates an instance of the OB medi-

ator to integrate each associated organ and button. Thus, when SM adds an association to

its relation (see above), it creates an OB instance, giving it references to the organ and but-

ton. OB then registers dynamically with their events and keeps them consistent thereafter.

When SM deletes the assocation, it also deletes the corresponding OB mediator.

The ability to integrate entities, without change, by interposing mediators eases inte-

gration as well as evolution over the life time of a system. Deploying submediators for each

entry in a relation is a run-time example of the leverage gained by separating behavioral

relationships, and is a key idiom used extensively in the Prism system. We discuss more

sophisticated usages of this idiom in the next subsection.
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Figure 11: The Prism locators subsystem.

The locators subsystem contains a set of views and a set of locators. The set of views

holds zero or more view instances; similarly for the locator set. The sets are integrated

by a behavioral relationship VSLS (for view-set/locator-set). VSLS keeps the locator set

consistent as views are added and deleted. It also inserts locators into and deletes them

from the views that are to display them. Finally, it also deploys VL submediators to keeps

locators consistent with the views they depict.

4.3 Locators

The idea of deploying submediators in correspondence with the elements in a relation pro-

vided the basis for solutions to several more di�cult design problems. In this subsection

we discuss how we handled locators. Recall (see Section 2.3.7) that each orthographic view

displays one locator for every other orthographic view that intersects the given view. Thus,

whenever a new view is created, a locator has to be added to eacg view intersected by the

new view, and locators have to be added to the new view for each of these intersecting

views.

Furthermore, the position of each locator in the view in which it is displayed has to be

kept consistent with the position of viewing plane of the view it represents. If the Z position

of a transverse view is changed, the locators for that view in all coronal and sagittal views

have to be updated. Similarly, if the user drags one of those locators, the Z position of the

corresponding transverse view must be updated. This supports a kind of crude animation:

as a locator is dragged, the view it represents appears to pass through the patient model

along the viewing axis. As it does this, it renders successive slices of the patient anatomy,

beam locations, dose distributions, etc.

4.3.1 Analysis

Abstractly, these requirements are similar to the earlier problem: several sets have to be

kept consistent as elements are added and deleted, and corresponding elements have to work

together while they are related. The key idea for the locators subsystem was that we had a

set of views needed to maintain a relation encoding intersections. Rather than a one-to-one

correspondence, we need a behavioral relationship that maintains the intersects relation.
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Suppose two views A and B intersect|perhaps A is transverse and B is coronal. Then

the intersects relation contains the tuples (A;B) and (B;A); since each view intersects

the other. Corresponding to these tuples are two locators L

(A;B)

and L

(B;A)

: The �rst is

displayed in A to represent the intersection of B with A: The second appears in B for

the intersection with A: The locator system essentially consists of a set of views and a

set of locators, and tuples in the latter are in one-to-one correspondence with tuples in

the intersects relation. As views are added and deleted, the behavioral relationship VSLS

maintains the intersects relation and updates the locator set accordingly.

VSLS has two additional tasks. First, when it adds a locator to or deletes it from the

locator set, it also displays the locator in or removes it from the corresponding view. Thus,

the mediator maintains the one-to-n relationship from views to locators, as presented in the

�gure. Second, each locator has to remain consistent with the view it represents. To ensure

this, VSLS deploys submediators, one instance of VL to integrate each locator displayed in

a view A with the view B that the locator represents.

A key bene�t of the Prism architecture is that it enabled conception and development

of this machinery independently of all the other relationships in which the individual views

and the set of views participate. The other relationships are suggested by the dashed lines

and relationship diamonds in the �gure. We have already discussed some of these. The

set of views is related to the menu in the views selector of the plan panel. The name of

each view is related to the name displayed by the corresponding menu item. The visibility

of the individual views and of the view set allow these entities to participate in and be

manipulated by many di�erent relationships at the same time.

4.3.2 Design

The design and implementation follow from the analysis model. The set of views appears in

design and implementation as a visible set ABT. The views are also de�ned independently

and visible. We changed the representation of the locator set in design to reduce the number

of classes and objects. Speci�cally, we eliminated the set of locators in favor of each view

having its own set of locators|those it displays. Locators are this distributed about the

system. We did realize VSLS as a mediator that registers with and responds to insertion

and deletion events of the view set.

When a view is added, the mediator updates the intersects relation, which it itself

maintains, by comparing the new view against each view in the view set. Only views on

di�erent axes intersect, and views on di�erent axes have di�erent Prism class names|

transverse, coronal, sagittal|so intersection is computed by comparing these names. If the

names di�er, the views intersect. For each intersection, the mediator creates both a locator

and a submediator. It adds the locator to the set of locators in the view in which the locator

is to be displayed; and it instantiates the submediator giving it references to this view and

to the view the locator depicts. The submediator registers with that view and with the

locator and thereafter maintains consistency between them. When a view is deleted, the

mediator reverses this procedure. When locators are moved or view planes changed, the

submediators maintain consistency.
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Figure 12: The Prism graphics subsystem.

The graphics rendering subsystem is analogous to the selector and locator subsystems. The

behavior relationship OSVS requires that each element in each of the object sets on the

left be rendered by a graphic in each of the views in the view set on the right. Although

omitted in this �gure, corresponding elements are related by submediators, as in the earlier

subsystems.

Our behavioral entity-relationship method not only produced an analysis model that

e�ectively separated concerns; in addition we obtained a design and implementation in

which the machinery for handling the relationship between the view and locator sets is

entirely separate from the machinery for the relationship between the same view set and

selectors. The key properties of the analysis models|the independence and visibility of

entities and the explicit representation of integration concerns|are preserved at the design

and implementation levels.

4.4 Graphics

Having solved the selectors and locators problems collaboratively, Kalet applied the idea

of deploying submediators to the subsystem responsible for keeping graphical renderings

consistent with the treatment plans they depict. The requirement was to incrementally

update all renderings|e.g., in views, easels, frames in �lmstrips, etc.|when the subject

changes: any set of organs, tumors, target volumes, etc. or any element of any of these sets.

In Figure 3, if the easel is used to change the shape of the target volume (outlined with

small squares) then at least three renderings are updated: the frame in the �lm strip in the

easel, the transverse view in the upper right, and the beam's-eye view in the lower right.

Updates are incremental in that only graphics for speci�c elements are changed, added,

or deleted|e.g., the graphic for a single contour. With current hardware, incremental

consistency maintenance is important for good runtime performance.

Figure 12 presents our analysis model. The solution is analogous to those for selectors

and locators. For those subsystems we de�ned mediators that maintained relations between

sets and that deployed submediators to integrate elements. The relation for the selector

subsystem was a bijection between sets and for locators, intersections within a set. In

this case the mediator maintains a cross-product relation: each element in each subject set

(organs, tumors, etc.) must be depicted (consistently) in each view in the view set. The

cross product is between the union of the subject sets and the view set.

The mediator thus creates a graphic for each object/view pair, which it inserts into the

view, and it deploys a submediator between the object and the graphic to maintain con-
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sistency in the face of changes. In the case of contoured volumes|organs, target volumes,

etc.|there is a submediator for each one. When the user changes the target volume contour

in the easel (Figure 3) and presses Accept multiple submediators are invoked to update the

corresponding graphics in the various renderings. If, on the other hand, a view is added to

the view set, the main mediator creates m graphics and deploys m submediators|one for

each object to be displayed in the new view.

The design and implementation of this model is straightforward based on the earlier

examples. This structure paid o� when Kalet discovered that the initial design for graphics

rendering was unworkable. The problem was in using X windows [Schei
er and Gettys

86] to render multi-layered pictures, with contoured objects over background images. The

mediator-based architecture made it easy to �x the problem because all graphics code

was localized in the submediators: each was responsible for rendering its object in its

view. We replaced the graphics pipeline without touching the OSVS mediator, or the

object sets, or the objects, or the view sets, or the views. Moreover, these changes were

independent of relationships between the view set and selector panel, between the object

sets and the selectors, between the locators and views, etc. The mediator architecture

e�ectively separated these concerns.

4.5 Beam Panel

Finally, we examine the problem of adjusting the user interface that the the beam panel

presents to accommodate changes in the kind of beam being handled. Consider the beam

panel in Figure 2. The key aspects of the panel are the button on the left that displays

the kind of treatment machine speci�ed as generating the beams (Clinac 4), and the part

of the panel used to adjust the collimator that shapes the beam (the bottom two sliders on

the panel).

If the user presses the machine button, a menu of machine types pops up. If one is

selected, the machine type attribute of the underlying beam is updated. The problem is

that di�erent kinds of machines have di�erent collimation systems, and di�erent collimator

types have di�erent numbers of parameters that can be adjusted, so changing the machine

type may require a di�erent \sub-panel" for adjusting collimator settings. The sub-panel

for the Clinac-4 requires two sliders. Another kind of machine needs four sliders. Another

requires an entirely di�erent interface to shape the beam aperture|one that uses a contour

editor, as in the easel.

4.5.1 To Use Inheritance?

One question we asked when designing this part of the system was whether to use inheritance

to model di�erent kinds of beams and beam panels. We �rst tried de�ning an abstract beam

class with subclasses specialized by kind of collimator then by other parameters (such as

particle type). The result seemed arbitrary. Why specialize �rst by collimator type then

by particle type? We tried other orders, too.
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We had two problems with this approach. First, every ordering seemed arti�cial. This

is because the specialization dimensions are independent. Beam types occupy a matrix, not

a hierarchy. Particle type and collimation system are independent ; neither is subordinate

to the other. Second, changing a beam's machine attribute could have required dynamically

changing the class of the beam being edited and also dynamic replacement of beam panels.

New subclasses would have to be created when machine types changed. Although CLOS

does support dynamic type conversion, we found that mechanism to be too complex in

contrast with the simplicity of the ideas.

4.5.2 Analysis

Instead, we de�ned a single beam class with attributes|slots containing objects and values|

to indicate specializations. These include particle type and collimation system. We then

used inheritance to model di�erent kinds of collimators. To change the collimator type of

a beam, we assign an instance of a di�erent collimator subtype to its collimator attribute.

We modeled the beam panel in the same way, with a collimator sub-panel as an attribute.

This made it easy to maintain the correspondence between machine type and collimator

type within the beam, and to integrate the beam and beam panel. When the machine

type changes, the collimator object in the beam is easily replaced. When a the type of

collimator assigned to a beam changes, the beam announces an event. A mediator linking

the beam and the beam panel responds by replacing both the collimator sub-panel and the

\submediator" that is responsible for connecting the sub-panel to the collimator object.

This is just a simple adaptation of concepts presented for the subsystems discussed above.

4.6 Wrap-Up

We conclude this section with the observation that the Prism architecture and our approach

to crafting it di�ered from common methods in two ways. First, we have developed a new

way of thinking about systems|one that emphasizes both independence and visibility of

entities, and the separate, explicit representation of the behavioral relationships needed to

integrate them. Second, we use event mechanisms in a stylized way to map behavioral

ER analysis models into structurally similar designs and implementations. We applied this

approach throughout Prism, at all levels of \granularity," and in solving reasonably di�cult

design problems of several di�erent kinds.

5 Development E�ort

Prism is implemented in about 18,000 lines of Common LISP (CL) [Steele 90] and CLOS [Bo-

brow et al. 88] and 4,500 lines of Pascal. It also has 11,000 lines of L

a

T

E

X documentation.

The Lisp code handles modeling, visualization, and �le management. The Pascal, adapted

from an earlier system, computes dose distributions. Of the Lisp, about 4,200 lines handle

user interface widgets, sets, relations, and events. Prism classes take 2,700; �le handling,

1,000; panels, 5,200; views and other graphical renderings, 3,100; mediators, 1,300 (except
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for mediators that link panels to objects, which are counted with panels); and \other" code

takes about 500 lines. The code density is about 30 characters per line, with blank lines and

concise documentation text included. In comparison, Kalet's �rst system has 47,000 Pascal

lines. Kalet's second system, still in use, has 41,000 lines of Pascal, 5,000 for dose distribu-

tions. Comparing with another system, the basic functions taking 18,000 lines in Prism take

about 60,000 of C [Kernighan and Ritchie] and C++ [Stroustrup 86] in GRATIS [Rosenman

et al. 89], of which about 14,000 are for interface widgets. Those functions taking 4,500

lines of Pascal in Prism, take about 12,000 lines of C in GRATIS

3

Prism performs adequately on high-end workstations. We use HP9000 series 700 work-

stations for development and production. The costliest operations by far are for rendering

pictures with background images. Background image display can be turned o� in a given

panel for faster response. Updates to interface widgets|menus, buttons, etc.|are comfort-

ably fast. Event registration, unregistration, and announcement are performed many times,

but the cost in memory and CPU is negligible in comparison with these other functions.

We built Prism on a modest budget in person-hours and with a small project team. The

e�ort lasted from January, 1990 to present. Ten people were involved at di�erent times.

The total e�ort was about 4.5 person years. Of this, requirements speci�cation, which was

done before collaboration began, took 24 person months. Design and implementation, the

focus of the collaboration, took 20. Developing electron beam dose calculation code took

11.

Prism is portable. It runs without source code modi�cation using Allegro Common Lisp

(CL) and Lucid CL on Sun Sparcstations (2 and 10). It runs using Allegro CL on DEC-

station 5000, IBM RS6000, Silicon Graphics Indigo, and HP9000 series 700 workstations.

The Prism Pascal code is ISO level 0 compliant and runs without modi�cation on all of the

above systems.

6 Discussion

A software approach that is successful in the lab can fail in practice. Approaches should

be tested in realistic trials before large-scale e�orts are staked on them. Prism provided a

realistic trial for behavioral ER modeling and design. From Kalet's perspective, it worked.

He realized a sophisticated system on a modest budget, with a few people, and ended up

with small, 
exible implementation.

Can we attribute success to behavioral ER modeling and design? It might, instead,

be due to the use of Common Lisp, or to experience building earlier systems, or to more

attention paid than in previous e�orts to requirements speci�cation, analysis modeling,

and design. Some of these factors surely helped. Our collaboration was not a controlled

experiment, so we can't quantify the contribution of our approach. Even without a rigorous

experimental design, however, there are useful ways to evaluate the outcome.

3

Personal communication with Gregg Tracton, Department of Radiation Oncology, University of North

Carolina.
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First, we can ask the clients, Kalet et al., whether the approach helped. They are

both domain experts and have signi�cant experience using modern (e.g., object-oriented)

techniques to built radiation treatment planning systems. Nor do they have a vested interest

in behavioral ER modeling and design. Their basic claim is that without the conceptual and

structural bene�ts of these methods, meeting the functional requirements for Prism would

have taken far more resources than were spent or available; and the resulting architecture

would still have been in
exible, unfriendly to integration of tools yet to be developed.

Second, we can ask whether our methods helped make the clients more e�ective software

builders. The answer is yes, but the transition was harder than expected. The problem was

that the approach represents a signi�cant change in how we model, design, and implement

systems. Just as the transition from a structured to an object-oriented style requires time

and a visceral understanding, so does shifting from object-orientation to behavioral ER

modeling and design. Super�cially, one can believe this is a small shift. Our experience

with several members of this project shows that the shift is large. The approach cannot be

applied mechanically, but has to be internalized.

Finally, we can evaluate the artifacts using well-accepted (although still imperfect) de-

sign quality criteria: coupling and cohesion [Stevens, Myers, and Constantine 74]; informa-

tion hiding [Parnas 72]; structural continuity [Dechampeaux 93]; etc. Explicitly applying

these concepts is outside the scope of this paper. The system is evidently factored into useful

and interesting stand-alone entities integrated by mediators that represent intuitively clear

behavioral relationships. New mediator types and instances can be deployed to integrate

independent tools and objects. Our method did reconcile tight integration with a signi�-

cant degree of architectural 
exibility in a signi�cant environment that is being released for

hospital use.

Future Work. Prism is scheduled for hospital use in December, 1993. Its release will pro-

vide an opportunity for studying the impact of our architecture on ease of handling changes,

both expected and unexpected. Using Prism as a framework for evaluating experimental

tools will involve unexpected change. Observing how the architecture responds as AI-based

planning engines and other prototype tools are integrated will provide a good test of our

approach in the face of unexpected change.

Acknowledgments. Jonathan Unger kindly provided a great deal of technical assistance.
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