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Abstract

The Constraint Imperative Programming (CIP) family of languages integrates constraints and imper-

ative, object-oriented programming. In addition to combining the useful features of both paradigms,

there are synergistic e�ects of this integration, such as the ability to de�ne constraints over user-

de�ned domains. We discuss characteristics of the CIP family and provide a rationale for its creation.

The synergy of constraints and objects imposes additional challenges for the provision of constructs,

such as object identity and class membership, that are well-understood in conventional language

paradigms. We discuss the bene�ts and challenges of combining the constraint and imperative

paradigms, and present our current ideas in the context of the design and implementation of the

Kaleidoscope'93 language.

This is a preliminary version of a paper that will appear in Constraint Programming, B. Mayoh, E.

T~ougu, J. Penjam (Eds.), NATO Advanced Science Institute Series, Series F: Computer and System

Sciences, Springer-Verlag, 1993.



Imperative Constraint Imperative

while mouse.button = down do

old  mercury.top;

mercury.top  mouse.location.y;

temperature  mercury.height / scale;

if old < mercury.top then

delta grey( old, mercury.top );

display number( temperature );

elseif old > mercury.top then

delta white( mercury.top, old );

display number( temperature );

end if;

end while;

always: temperature = mercury.height / scale;

always: white rectangle( thermometer );

always: grey rectangle( mercury );

always: display number( temperature );

while mouse.button = down do

mercury.top = mouse.location.y;

end while;

Table 1: Imperative versus CIP Code

1 Introduction

Imperative programming languages are relatively well understood, used by a large number of pro-

grammers, and supported by numerous software tools. However, these languages are often more

low-level than one would like. Focusing on interactive graphical applications, we examined a number

of user interfaces and observed that some portions are most clearly and conveniently described using

constraints|relations that should be maintained|while other portions are most clearly described

using standard imperative constructs. However, none of the imperative languages used to program

these interfaces directly supported constraints. Thus, the constraints were encoded implicitly, by

hand, and each constraint was enforced by a widely distributed set of small code fragments|a recipe

for maintenance headaches.

To address this problem, we proposed constraint imperative programming (CIP), an integration

of two disparate paradigms: a standard object-oriented imperative one, and a declarative constraint

one [Freeman-Benson 91, Freeman-Benson & Borning 92a, Freeman-Benson & Borning 92b]. Com-

pare the two code fragments in Table 1, which allow the user to drag the mercury of a thermometer

up and down. The version on the left uses only standard imperative constructs. It requires the

programmer to check whether values have changed and if so, to �ll or erase the appropriate rectan-

gle increment and then redisplay the temperature value. The constraint version on the right uses

of combination of imperative constructs and constraints. Some of the constraints specify relations

that must always hold (e.g. temperature = mercury.height / scale), while others specify relations that

should hold only while a given condition is true (e.g. the constraint mercury.top = mouse.location.y,

which holds only when the mouse button is down). Imperative constructs, such as the while state-

ment, are used to control program execution, in particular, when certain constraints should hold.

Consider an object, VerticalLine, represented as two points. If this object were implemented in

an imperative language, all operations on VerticalLines would have to ensure that the x �elds of

both points were equal. Since there is an implicit integrity constraint that these x �elds remain

equal, it is the programmer's responsibility to maintain this constraint. A CIP implementation of

VerticalLine would simply assert this constraint when the object was created (e.g. always: p1.x = p2.x)

and maintain it automatically for the programmer.

There are advantages to CIP over approaches based in logic programming: in particular, CIP lan-

guages support mutable objects and object identity in a way that is familiar to current users of object-

oriented programming. Due to the popularity of imperative programming (and object-oriented pro-

gramming in particular), CIP o�ers an evolutionary mechanism (or maybe a Trojan Horse?) for
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introducing constraint programming.

We have found it useful to extend the constraint paradigm to allow both required and nonre-

quired (or preferential) constraints. The required constraints must hold for all solutions, while the

preferential constraints should be satis�ed if possible, but no error condition arises if they are not. A

constraint hierarchy can contain an arbitrary number of levels of preference (strengths). The original

motivation for this extension was to give a declarative semantics for what to change when perturbing

the values in a constraint system. (For example, suppose we have a constraint A+B = C, and edit

the value of B. Should we change just A, change just C, change both A and C, undo the change

to B, or what?) However, constraint hierarchies have additional uses for expressing preferences in

planning, layout and other domains. (See [Borning et al. 92] for more information.)

In addition to constraints of varying strength, Kaleidoscope has constraints of varying duration.

Constraint durations specify the period of validity for constraints. The most exible model would

allow constraints to be asserted and retracted at arbitrary points in time. However this would lead

to di�culties in predicting behavior, since any piece of code could side-e�ect which constraints are

active. Instead, in our design, the default constraint duration is always, which causes a constraint to

remain active forever. A once duration instructs the system to assert the constraint, causing it to

be enforced at that moment (and thus potentially a�ecting values), and then immediately retract

it. Finally, the assert/during construct speci�es that a constraint should remain in force during the

execution of a block or loop. We might make an analogy with the GOTO statement/structured

programming controversy of the 60's: GOTO statements are analogous to constructs that allow

constraints to be asserted and retracted at arbitrary times, while structured control statements are

analogous to the control structures in Kaleidoscope.

Kaleidoscope'93 is a class-based object-oriented language with multi-methods. In a conventional

object-oriented language, the method that is executed in response to a message is determined purely

by the receiver of the message. For example, if we send the message display to a circle object with a

bitmap as an argument, the method to be executed is determined solely by the circle. In contrast, in

a language with multi-methods, all arguments potentially may participate in selecting the method;

thus in the preceding example, both the circle and the bitmap might participate in the choice of

method, allowing a di�erent method to be invoked when displaying on a vector display. The best-

known language that supports multi-methods is the Common Lisp Object System [Steele Jr. 90];

another example is Cecil [Chambers 92].

For traditional object-oriented languages, multi-methods represent a useful but optional exten-

sion to the basic mechanism. In contrast, in a CIP language, they are essential, since given a

constraint foo(x,y,z), we might be determining a value for an unknown x using the values for y and

z|in this case dispatching on the type of x would be a futile endeavor.

Constraint constructors are special procedures that de�ne the meaning of user-de�ned con-

straints. In the simplest case, they are equivalent to rewrite rules: for example, when the constructor

p1=p2 for two Cartesian points p1 and p2 is executed, it generates two equality constraints, one for

the x slots and one for the y slots. In general, though, in keeping with Kaleidoscope's imperative

nature, constraint constructors may contain not just calls to other constraint constructors, but ar-

bitrary sequences of imperative code. However, all side e�ects are restricted to the local variables

of the constructor. Viewed from the outside, all the constructor is allowed to do is to place other

constraints on its arguments. If satis�ed, these further constraints will result in the enforcement of

the constraint represented by the constructor.

In the remainder of this paper, Section 2 outlines the evolution of CIP languages. Section 3

describes how objects and constraints are combined into a uni�ed language model. Constraint

constructors are discussed in Section 4. Section 5 presents some of the problems in combining con-

straints and objects and describes a framework that addresses these problems. The Kaleidoscope'93

implementation, the constraint solvers used by Kaleidoscope'93, and future work are discussed in

Sections 6, 7, and 8 respectively.

2



Kaleidoscope'90 Kaleidoscope'91 Kaleidoscope'93

Constraint Evaluation Lazy Eager Eager

Variables Hold streams Hold streams Imperative

Concurrent Constraints Strict Strict Non-strict

Syntax Smalltalk-like Algol-like Algol-like

Constraint Model Re�nement Re�nement Perturbation

Method Dispatching Single Multiple Multiple

Assignment As a constraint As a constraint Destructive

Table 2: Versions of Kaleidoscope

2 Background

A number of experimental programming languages include support for constraints. Much of the ac-

tivity in this area has been based in logic programming, and includes the CLP and cc (concurrent con-

straint) languages [Cohen 90, Colmerauer 90, Ja�ar & Lassez 87, Saraswat 89, Van Hentenryck 89,

Van Hentenryck et al. 92, Wilson & Borning 93]. Other constraint languages include Steele's lan-

guage [Steele Jr. 80], Bertrand [Leler 87], and Siri [Horn 92a, Horn 92b]. (Of these, Siri, another con-

straint imperative language, is the closest to Kaleidoscope.) For discussions of related work beyond

this brief mention, see [Borning et al. 92, Freeman-Benson & Borning 92b, Freeman-Benson 91].

The �rst version of Kaleidoscope, Kaleidoscope'90, had a Smalltalk-like syntax and served as a

proof of concept for CIP. Its successor, Kaleidoscope'91, had several features lacking from Kaleido-

scope'90: a conventional Algol-like syntax, multi-methods, and eager constraint solving semantics.

These two versions used a re�nement model for constraints (as also used in logic programming). In

this model, additional constraints further restrict the possible values for variables; however, variables

never change values. Re�nement semantics and mutable objects were combined by treating variables

as streams of values. Each variable had a stream of states of the variable at di�erent points in time.

For example, an assignment statement x := x+5 was treated as a constraint between successive

states of x: x

t+1

= x

t

+5. Each time a new constraint was added, a constraint was deleted, or some

object changed, all constraints were re-executed �nding new values for all slots.

In Kaleidoscope'93 we shifted to a perturbation model. In this model, destructive assignment

can change the state of objects (perhaps making previously satis�ed constraints unsatis�ed), and the

system perturbs or adjusts values to reach a new state that best satis�es the constraints. Instead of

streams of values, variables in Kaleidoscope'93 refer to a single object, as in conventional imperative

languages. Assignment in Kaleidoscope'93 is a destructive state change, accompanied by a once stay

constraint on the assigned variable (to prevent the assignment from immediately being undone by

some other constraint).

When implemented in its full generality, the re�nement model is a more powerful one, since in

particular, it doesn't restrict variables to have a single value. However, the perturbation model seems

more natural for imperative programmers, and seems to o�er more opportunities for improving the

e�ciency of our implementation. (The re�nement and perturbation models are compared at greater

length in [Borning et al. 92].)

Kaleidoscope'91 had a restriction that concurrent constraints execute in nested time scopes since

the e�ects of constructor execution could not be visible until the completion of the constructor

[Freeman-Benson 91]. Concurrent constraints allow such things as variable swapping without a

temporary (e.g. y := x jj x := y) but we have relaxed these restrictions in Kaleidoscope'93, making

nested time scopes unnecessary, although at some cost in expressiveness.

Table 2 summarizes these comparisons between the successive versions of the language.
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3 Combining Constraint and Object-Oriented Program-

ming

Kaleidoscope'93 combines constraint and object-oriented programming while preserving a familiar

object model from imperative programming. Objects have state and methods, as in most object-

oriented languages. Constraints may be placed between objects and object slots, and once a con-

straint is established, the system attempts to enforce the constraint by �lling slots with values. As

objects change by assignment, these long-lived constraints re-execute and �nd new values for their

slots.

Adding constraints to an imperative object model adds some complications (Section 5). Object

identity, an important construct in object-oriented languages, has complicated interactions with

constraints. The CIP language designer faces a trade-o� between expressiveness of the language and

problems such as accidental aliasing. Furthermore, circularities can arise if constraints are used to

determine classes, values, structure, and identity. (For example, one could imagine a situation in

which a given constructor might determine the value of one of its arguments, which determines the

class of another argument, which could the choice of constraint constructor, which could a�ect the

value of the argument : : : ) These circularities also need to be addressed in the language semantics.

The VICS constraint framework (Section 5) handles these and other issues resulting from interactions

of di�erent constraint types.

There are also positive synergistic e�ects of combining constraints and objects. For example,

constraints that apply to all members of a class can be enforced automatically when a new instance

of the class is created. Consider the following:

class HorizontalLine subclass of Object;

var p1, p2;

initially

new(Point,p1);

new(Point,p2);

always: p1.y = p2.y;

end initially;

end HorizontalLine;

There is a class invariant constraint between the two points representing a HorizontalLine. This

constraint is enforced automatically at object initialization without the need for an explicit constraint

call after initialization and without running the risk that a newly initialized member of HorizontalLine

does not enforce this invariant.

In the spirit of data abstraction, constraint constructors allow the programmer to de�ne user-

de�ned constraints in terms of other user-de�ned constraints or built-in primitive constraints. A

user-de�ned constraint can be used anywhere that a primitive constraint can, and in particular can

have a strength in a constraint hierarchy, and a speci�ed duration. This an important property of

CIP languages, since it does not restrict the programmer to constraints built into the language.

In the spirit of object-oriented programming, constraint constructors use multi-method lookup

rules to select the appropriate procedure or constructor based on the classes of the arguments. For

example, a constraint j+k=m would use the + constructor for points if j, k, and m were points, but

would use the constructor for arrays if they were arrays.

4 Constraint Constructors

As described previously, a constraint constructor provides a means of abstraction for constraints.

Constraints can be de�ned in terms of more primitive constraints, similar to a method de�ning
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a message in terms of more primitive messages. User-de�ned constraints may invoke other user-

de�ned constraints, and eventually these constraints are de�ned in terms of primitive constraints.

For example, the following constructor exploits imperative constructs to set up constraints between

array cells:

constructor +(a, b: Array) = (c: Array);

local i: Integer;

for i := 1 to a.size do

always: c[i] = a[i] + b[i];

end for;

end constructor +;

As noted previously, both procedures and constraint constructors use multi-method lookup rules

to select the appropriate procedure or constructor based on the classes of the arguments. However,

unlike a procedure call, a constraint does not necessarily result in just one execution of the corre-

sponding constructor. The �rst time a constraint is placed on a set of variables, the multi-method

lookup rules are used to �nd a constructor that implements that constraint, and the selected con-

structor is executed. If any of the variables change by assignment, then the appropriate constructor

is selected using the multiple dispatch rules (perhaps selecting the same constructor as before, or

perhaps a di�erent one). The constructor is then executed to enforce the constraint. Dynamically

binding constraints to constructors is an important component of the integration of constraints and

objects.

5 VICS Constraint Framework

While designing Kaleidoscope, we found that a considerable number of our language issues dealt

with conicts between identity, constraints, and classes. The VICS constraint framework provides

a framework for handling these di�erent constraint types. (VICS is an acronym for value-identity-

class-structure, the four di�erent types of constraint.)

Following Lisp, Kaleidoscope has several di�erent notions of equality: identity, structural equal-

ity, and user de�ned equality. The identity relation between two variables holds if both variables

refer to the same object in the computer's memory. Structural equality maintains that two objects

are equal if their slots are equal, and two primitive objects are equal by built-in equality primi-

tives. User de�ned equality allows the programmer to de�ne the conditions for equality between two

objects of the same or di�erent classes (e.g. equality between polar and Cartesian points).

An issue in CIP languages concerns when the classes of objects are determined and when objects

are initialized, since constructors can execute at arbitrary points in time (unlike procedures whose

execution is determined by a procedure call). Should constructors be allowed to initialize objects?

Can constructors create objects automatically for uninitialized argument objects? And if so, what is

the class of an argument object? Can a constructor output an object that is a member of a subclass

of the annotated argument class? Are class annotations constraints themselves? These issues are

discussed in the remainder of this section.

Allowing both the class and the slot values of an object to be constrainable led to a whole

host of problems resulting from circularities. If a class constraint can depend on a value constraint

and the result of the value constraint depends on the result of a class constraint, there can be

class/value circularities. More generally, this happens when di�erent types of constraints are allowed

to interdepend on each other.

Are structure constraints yet another form of constraint type? For example, the size of an array,

or a mirror constraint between two trees, can be considered constraints on structure rather than

values. Do we allow these types of constraints with the full generality of value constraints? If so,

how does the language overcome circularities?
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VICS addresses these issues pertaining to value, identity, class, and structure constraints, factors

these di�erent types of constraints, and provides a semantics for avoiding some of the pitfalls relating

to conicts between these constraint types. VICS attempts to strike a balance between expressiveness

and exibility on the one hand, and understandability and ease of solution on the other. The

VICS Vapo-Ware Solver

1

is used in the Kaleidoscope'93 implementation to solve VICS constraints

(Section 7). Each of the following subsections describes how the VICS framework handles di�erent

constraint types.

5.1 Value Constraints

In VICS, value constraints are constraints that restrict the contents of an object's slot to a particular

value in its domain. Value constraints are the most common type of constraint discussed in the

research literature. (See Sections 4 and 7.) Kaleidoscope'93 provides a collection of primitive value

constraints in its libraries, which are solved by local propagation.

Kaleidoscope has a powerful approach to value constraints, in which value constraints continue

to be enforced as objects change state. Constraints on mutable objects continue to be enforced

by re-executing the constructors implementing these constraints, causing more constructors to re-

execute, until primitive constraints are handled by the local propagation solver. This contrasts with

constraints in the CLP family of languages, where there is no facility for dynamically re-satisfying

constraints to deal with state change.

5.2 Identity Constraints

Object identity is a fundamental feature in standard object-oriented languages. An important

situation in which object identity is visible to the user occurs when two variables x and y refer

to the same object (i.e. x and y are aliased). In such a situation, a state-changing message sent via

x will also be visible when accessing the object referred to by y. In contrast, if x and y refer to equal

but not identical objects, changes to the object referred to by x will not a�ect y.

In a constraint imperative language, many of the e�ects of intentional aliasing can be achieved

more cleanly by using persistent equality constraints (e.g. an always x=y constraint). However,

persistent equality constraints do not handle constructs that in a conventional imperative language

would be handled by updating a pointer to refer to a new object. Examples include a pointer that

moves down a linked list, splicing a new element into a list, deleting an element from a list, and

in-place insertion of a new node in a tree.

As another kind of example, consider the problem of specifying a circular list with constraints.

The desired structure is easy to specify in an imperative language that includes pointers. For

example, in Common Lisp we could write

(setf a (cons 3 nil))

(setf (rest a) a)

In Kaleidoscope we might try writing

a.head = 3;

a.tail = a;

However, if the constraints only imply equality rather than identity, the preceding pair of constraints

can be satis�ed by an in�nite number of di�erent graph structures (with 1, 2, 3, : : : cells forming a

circular list, or with a non-circular, in�nite list). We might try adding a minimality condition to the

1

Since some readers of this paper will be from countries other than the United States, we provide a brief explanation

of the name. Vicks VapoRub is a common household remedy in the U.S. for children's colds. Vaporware is a pejorative

term for software that isn't quite real yet. At one point this term unfortunately also applied to our Kaleidoscope

solver, but we hope this time has passed.

6



Kaleidoscope solver, so that we found the solution with one cons cell|but what if we wanted a list

of two cells instead?

It would still be possible to avoid object identity by using a di�erent programming style|but one

of the design goals for Kaleidoscope was to provide a familiar model for traditional object-oriented

programmers, augmented with constraints. This is perhaps the strongest argument for its inclusion.

Based on such considerations, we decided to support a notion of object identity in Kaleidoscope.

A simple way of introducing object identity would be to have a cell object that could refer to

other objects, and that could be re-directed with a set message. However, in keeping with the

philosophy of the language, we decided instead to introduce identity constraints, in analogy with

equality constraints. In addition to the virtue of consistency, using constraints to specify identity

may open up some interesting additional programming idioms, for example, describing constraints

that keep the back pointers up-to-date in a bidirectional list, or that automatically maintain the

threads a threaded tree. Finally, we decided to allow identity constraints to be bi-directional rather

than one-way, again in analogy with equality constraints.

In Kaleidoscope'93, an identity constraint is denoted by ==. Thus, the one-cell list is easily

speci�ed by:

a.head = 3;

a.tail == a;

However, just as pointers can lead to problems in more conventional languages, identity con-

straints can lead to problems in CIP languages. The primary problem is accidental aliasing. Iden-

tity constraints labeled with an always duration (which remain in force throughout the program's

execution) don't give rise to these di�culties. However, always constraints don't allow such common

idioms as having a pointer that marches though a list structure, or a list that can have an element

deleted. For such uses, we need once identity constraints, just as we have other sorts of constraints

with a once duration.

The aliasing problem arises when the once identity constraint is no longer active. Compare

new(Point,a);

once: a.x = 0;

once: a.y = 0;

once: a == b; /* note that this is an identity constraint */

once: a.x = 5;

with

new(Point,a);

once: a.x = 0;

once: a.y = 0;

once: a = b; /* note that this is an equality constraint */

once: a.x = 5;

In the �rst example, the once identity constraint still has an e�ect after its duration, since a and b

remain identical, so that b.x is also set to 5. In the second example, the once equality constraint has

no e�ect after it is removed, and b.x remains 0.

In Kaleidoscope'93, we have chosen to live with accidental aliasing, despite these problems, since

the alternatives we considered led to a less expressive or less intuitive language.

Another issue with object identity concerns circularities. The VICS framework prohibits the

constructor for a value constraint from asserting an identity constraint that would invalidate the

original choice of constructor for that value constraint. In other words, since the execution of a

value constraint cannot depend on an identity constraint executed by that constraint, identity/value

circularities are disallowed.
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A �nal issue with object identity is how the identity of uninitialized objects is determined. One

approach is to require the programmer to initialize all objects explicitly, and not to allow constructors

to create new objects. This is cumbersome, since sometimes we would like constructors to return

objects that are created within that constructor. At the other extreme, we considered a very general

mechanism (which we called an identitor) that would de�ne the identity rules of arguments for

all cases of uninitialized arguments. The drawback of this approach is that constructors became

verbose, since they need to include code to handle all the di�erent cases for uninitialized arguments,

and so the identitor mechanism was dropped.

The VICS framework uses neither scheme for handling uninitialized variables. It is important

to allow constructors to initialize objects, but identitors seemed too powerful, especially considering

that most cases for uninitialized arguments will be common cases. The VICS approach is to provide

default behavior for uninitialized arguments for these common cases.

Class Object is the root class and LiteObject is a subclass of Object. All uninitialized arguments

to a constructor that are annotated as subclasses of LiteObject are automatically initialized upon

execution of the constructor. Any arguments which are not annotated as subclass of LiteObject

are considered heavyweight objects (e.g. Window). In contrast, these heavyweight objects are not

created automatically by the solver; a runtime error is generated if the program tries to invoke an

operator on such an uninitialized variable.

As an example, consider the evaluation of p+q=r, where q and r are bound to cartesian points

and p is unbound. The constructor for point + will be invoked:

constructor +(a, b: Point) = (c: Point);

a.x + b.x = c.x;

a.y + b.y = c.y;

end constructor +;

with p constrained to be identical to the formal argument a, q to b, and r to c. Since Point is a

subclass of LiteObject, a new instance of Point will be created automatically and bound to p.

In contrast, consider the expression is selected window(window1,mouse position). If we invoke this

with window1 unbound, since Window is presumably a subclass of Object but not LiteObject, a new

window would (correctly) not be created automatically by the constructor, and a runtime error

would be signaled if the program attempted to perform an operation on it.

5.3 Class Constraints

A class constraint is a constraint on the class of a variable. Kaleidoscope'90 treated class constraints

in a general way, with class constraints being solved as ordinary constraints. Although this scheme

was very powerful, it caused the implementation to be ine�cient, was semantically confusing, and

gave rise to circularities.

VICS simpli�es the semantics and implementation by reducing the power of class constraints.

The �rst design decision was how classes for classless variables are determined, and the second was

how constructors are chosen given the classes of variables. (A classless variable is one that is not

yet constrained to refer to an instance of a particular class.) Classless variables are considered to be

of a special class Bottom, until the class is set explicitly by assignment, by declaration, or indirectly

through identity constraints. Bottom is a subclass of all classes. Thus, a variable of class Bottom

can be used in multiple dispatch constructor lookup. If there is an ambiguous choice of constructors,

then a runtime error is signaled. If there is a single constructor choice, despite one or more classless

arguments, then constructor execution can proceed.

For e�ciency, VICS currently does not allow backtracking. The order of execution of constraints

in an expression is arbitrary. If a later constructor executes and has class information that contradicts

an earlier constructor executed in the same expression, a runtime error is generated. Programmers

can try to avoid this type of runtime error by making variable classes explicit. Circularities with
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value and identity constraints are avoided with VICS class semantics. The class of a variable is

determined prior to establishing the identity of a variable; value constraints are not allowed to select

a class for a variable that would force an alternate choice for the value constraint.

5.4 Structure Constraints

Examples of structure constraints include size constraints on arrays, matrix addition (which con-

strains both the value and structure of matrices), and tree mirror. In some systems these are either

treated di�erently from constraints on values, or not allowed at all. In Kaleidoscope'93, however,

constraints on structure are handled in a manner similar to value constraints: either by user-de�ned

constructors, or by primitives (e.g. Array size). Structure and value constraints may be intermingled,

as long as the solver can solve the structure constraints by local propagation. (This disallows a cycle

through a structure constraint, for example, a constraint on the bounds of an array that depends

on the contents of an element of that same array.)

6 Implementation

The K-machine is a virtual machine for constraint imperative languages, providing low-level function-

ality that is unavailable from strictly object-oriented or strictly constraint-based virtual machines.

The interface to the K-machine is similar to that for imperative virtual machines. However, in addi-

tion to the standard machine instructions for imperative languages, there are a several instructions

pertaining to constraint execution.

An alternative to designing a virtual machine particular to CIP languages would be to use

one of the many existing virtual machines for imperative or constraint-based languages. The re-

quirements for CIP support are: object-oriented-support, preferably class-based with inheritance;

multi-methods; constraint solving; and dynamically bound constraints. It would be possible,

yet extremely awkward, to implement Kaleidoscope with a virtual machine from a conventional

object-oriented language with a value-based data store, for example the Smalltalk-80 virtual ma-

chine [Goldberg & Robson 83]. However, to do so, the compiler would have to implement the entire

semantics of the K-machine in the code generator to ensure that the e�ect of a constraint-based

data store was achieved. This would needlessly complicate the code generator, and would actually

reduce the speed of the resulting program. Virtual machines for conventional imperative program-

ming languages are even less suited to CIP languages because they support neither objects nor

constraints.

Similarly, it would be possible, yet awkward, to implement Kaleidoscope using the virtual ma-

chine for a pure constraint language. For example, CLP(R) is a constraint logic programming

language whose implementation has a constraint solving engine for constraints over the real num-

bers [Ja�ar et al. 92]. The CLAM is the abstract machine used in the CLP(R) interpreter, which

is based on the WAM, often used in Prolog implementations [Warren 83]. However, to use the

CLAM, one would have to translate the Kaleidoscope semantics into one of the object-oriented

logic programming schemes. Other constraint-based languages include Bertrand [Leler 87] and Siri

[Horn 92a]. Both Bertrand and Siri are based on an Augmented Term Rewriting virtual machine,

which is not powerful enough to support all of the imperative features of Kaleidoscope.

Table 3 lists the complete set of K-codes (K-machine instructions). A constraint template sets up

a constraint between a set of variables. The execution of a template causes constructors to execute

and primitives to be solved. There are three stacks for constraint templates for each of the three

durations: once, always, and assert/during. Minstrength is used to compute the minimum of the

strength of the currently executing constructor and a second strength (to handle constraints in a

constructor that are themselves labeled with a strength).

The key to the semantics of constraint imperative programming is the constraint-based data

store and thus, in Kaleidoscope, the object model as well. It is in this constraint-based data store
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Operation Arguments Description

Branch BooleanVar, NewPC If condition is true, then branch to NewPC

CallProc ProcedureName, Args Calls a procedure

LoadTemplate Var, Template De�nes a var to refer to a constraint template

AddTemplate Var Executes the constraint template

RemoveTemplate Var Removes all constraints for the constraint template

Return none Returns from a procedure or constructor call

MinStrength Strength1, Strength2 Computes the minimum of two strengths

Table 3: K-machine Instructions (K-codes)

that Kaleidoscope di�ers from virtual machines for imperative languages. All objects are stored

as constraint graph objects. Using the \everything is an object" design principle, stack frames are

constraint graph objects as well. Constraints are placed between these constraint graph objects.

The Kaleidoscope'93 implementation is signi�cantly di�erent from the implementation of Kalei-

doscope'91. The Kaleidoscope'91 K-machine re-executed all constraints each time a new constraint

was added, closely modeling the re�nement semantics of the language. The objects as streams of

values semantics was mirrored in the implementation by representing variables as streams of objects.

Furthermore, the semantics of Kaleidoscope'91 forced constructors to execute in nested time

scopes [Freeman-Benson 91]. Kaleidoscope'91 had an explicit notion of time. In order to prevent

the arbitrary advancement of time, the e�ects within a constructor were local to that constructor via

this nested time scope. Handling these nested time scopes led to ine�ciencies in the implementation.

In the Kaleidoscope'93 implementation, we have redesigned the K-machine so that constraint

constructors execute incrementally. This has improved the performance tremendously, since con-

structors only need to re-execute when a�ected by other constraints. Furthermore, objects are no

longer represented as streams of values, but persist as mutable objects with a single state, as in

conventional imperative virtual machines.

We also eliminated nested time from Kaleidoscope in Kaleidoscope'93, since there is no longer

an explicit notion of time. Hence, there are no implementation ine�ciencies due to nested time.

7 Solvers

The VICS Vapo-Ware Solver is a special-purpose solver used by Kaleidoscope'93 to implement the

VICS constraint framework. The VICS framework simpli�es class constraints, reducing their ex-

pressiveness, but allowing more e�cient multi-method lookup rules for solving the classes of classless

variables.

Value constraints are handled by constructor execution when a constraint is added. For con-

straints of long duration, the constraint re-executes each time of any of its variables (or the subparts

of those variables) changes identity. The execution of a constructor might trigger additional con-

structors to execute. This process continues until the remaining constraints are primitive constraints,

which are solved by SkyBlue [Sannella 93], the incremental local propagation solver used for Kalei-

doscope'93 primitives. (SkyBlue is a new algorithm that extends our earlier DeltaBlue algorithm

[Freeman-Benson et al. 90, Sannella et al. 93] to allow constraints with multiple outputs, and that

provides better handling of cycles.)

Structure constraints, as described in Section 5, are grouped semantically with value constraints,

and thus share the same implementation. Hence, there are primitives for structure constraints as

well as value constraints.

Identity constraints are solved by special-purpose constructors that establish an identity relation
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between two variables. For identity constraints of long duration, this constructor is re-executed each

time one of these variables changes identity. An unbound variable that is annotated with a subclass

of LiteObject is bound at constructor execution time, as speci�ed by the VICS semantics. Finally,

there is a predicate that tests whether two variables are identical, also implemented as a constructor.

All primitive constraints are represented as constraint edges in the primitive constraint graph.

SkyBlue solves these constraints by executing the primitive constraints and �nding values for all

variables. As new primitive constraints are added to this graph as a result of constructor execution,

SkyBlue re-executes primitives to satisfy all primitive constraints. Since SkyBlue is incremental,

constraints that are not a�ected by changes to the primitive graph do not re-execute.

8 Future Work

As of this writing, our Kaleidoscope'93 implementation has just become usable. We plan to continue

work on the implementation, and as it stabilizes, begin to write larger programs in the language,

and feed back the results to the language design and implementation. Another major e�ort will

involve increasing the e�ciency of the code produced by the Kaleidoscope compiler, in particular

to eliminate runtime constraint satisfaction when possible. Finally, we are about to replace our

primitive constraint solver, SkyBlue, with a more powerful solver, CobaltBlue. In addition to local

propagation constraints, CobaltBlue will handle simultaneous equations and non-unique constraints.
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