
The Meerkat Multicomputer

�

Robert Bedichek

Curtis Brown

robertb,cpbrown@cs.washington.edu

Department of Computer Science and Engineering

University of Washington

Abstract

Meerkat is a distributed memory multicomputer

architecture that scales to hundreds of processors.

Meerkat uses a two dimensional passive backplane to

connect nodes composed of processors, memory, and

I/O devices. The interconnect is conceptually simple,

inexpensive to design and build, has low latency, and

provides high bandwidth on long messages. However,

it does not scale to thousands of processors, does not

provide high bandwidth on short messages, and does

not provide cache coherent shared memory. Our hy-

pothesis is that many general-purpose, database, and

parallel numerical workloads work well on systems with

Meerkat's characteristics. We describe the Meerkat

architecture, the niche that Meerkat �lls, the motiva-

tion behind our design choices, and give performance

results obtained from our hardware prototype and a

calibrated simulator.

1 Introduction

The need for computational power far greater than

that delivered by single-processor systems drives the

search for ways to connect many processors together to

formmulticomputers. This paper identi�es a currently

vacant part of the multicomputer design space and

describes an architecture called Meerkat that �lls this

vacancy.

It is vital that a multicomputer's interconnect be

both e�cient and e�ective. By an e�cient multicom-

puter interconnect, we mean one whose design cost,

implementation cost, and processor and memory over-

head are commensurate with its bene�ts. An e�ective

This is an expanded version of a paper by the same title to

appear in the December 1993 SPDP proceedings.

interconnect is one that facilitates e�cient use of pro-

cessors and memory over a range of interesting parallel

workloads. We show the performance of Meerkat's in-

terconnect to argue for its e�ectiveness, and discuss its

design and implementation costs to show its e�ciency.

Meerkat is characterized by its ability to scale to

several hundred nodes, low internode latency, high

bandwidth on long messages, short design time, low

implementation cost, and a simple fault model. We

have taken a software intensive, performance-oriented

approach similar to that taken by RISC processor ar-

chitects in the early 1980's. In attaining Meerkat's

good qualities we neither included hardware support

for shared memory nor the ability to scale to thou-

sands of nodes. We believe that there are many im-

portant multiprocessor workloads and computing en-

vironments that are well matched with Meerkat's char-

acteristics.

We use both a four-node hardware prototype and

a simulator to measure the performance of a Meerkat

implementation. The process of implementing our ar-

chitecture brought us in close contact with design is-

sues that are easily missed in a paper design. We also

use the hardware to calibrate the simulator and for

program development. On programs that use four or

fewer nodes, the limit of the hardware, the simulator

and hardware usually report execution time which dif-

fer by less than six percent. We use the simulator to

evaluate the performance of Meerkats with up to 256

nodes.

The prototype currently runs both a stand-alone

run time environment and the Open Software Foun-

dation's UNIX server on top of the Mach 3.0 micro-

kernel. The stand-alone environment implements a

subset of the Intel message passing library and thus

allows programs written for this subset to execute on

both Meerkat and Intel parallel computers such as the

1

Intel Touchstone Delta [7]. The stand-alone environ-

ment is small and makes it easier to measure the per-

formance of the architecture in isolation. All of our

measurements reported here use the stand-alone envi-

ronment. The Mach and OSF-based system, on the

other hand, challenges us to support a large operating

system.

We present the Meerkat hardware in Section 2. Sec-

tion 3 discusses tradeo�s in multicomputer intercon-

nect design that motivated the choices we made. Mea-

surements given in Section 4 show that Meerkat can

attain good interconnect performance in practice. The

design of the Meerkat hardware prototype is outlined

in Section 5 and A paper design of a Meerkat imple-

mentation with current technology is detailed in Sec-

tion 6. Section 7 discusses related work.

2 The meerkat hardware

This section describes the structure of a Meerkat

system and the lowest level of interaction between pro-

cessors, memory, and the interconnect.

A node is a processor tightly coupled with cache,

memory, and optionally I/O devices. Two or more

nodes are connected by a set of wires, a bus, that they

may use to exchange information. Buses are divided

into two groups, horizontal and vertical. Nodes are

arranged on a grid and each node taps one horizontal

and one vertical internode bus with circuits that can

send and receive. Figure 1 shows an example of an

arrangement of nodes and buses. A pair of nodes that

tap the same vertical or horizontal bus communicate

with 1-bus connections. Node pairs that cannot use

1-bus connections must use an intermediate node as a

cross-point to communicate using 2-bus connections.

Every node is potentially a cross point for 2-bus con-

nections between nodes that share its vertical bus and

nodes that share its horizontal bus. Nodes and buses

are arranged so that all pairs of nodes can communi-

cate with either a 1-bus or a 2-bus connection. The

node sending information owns the bus or buses for

the duration of the connection through which it sends

information to the receiver.

A node's processor sees its two bus taps through

a bus interface that occupies part of the processor's

physical address space and is thus accessed via load

and store instructions. The bus interface provides

�ve primitive commands: arbitrate, signal, data-send,

data-receive, and release. Each of these operations can

be applied to either of the two taps of the bus interface.

The arbitrate command instructs the bus interface to

acquire control of a vertical or horizontal bus. In ad-

dition, it can request that a second bus, an orthogonal

bus, be acquired by a second node that shares the �rst

bus with the owing node. If the arbitration for both

buses is successful the second node acts as cross point

for the owning node. The processors in a node acting

as a cross point are una�ected unless they attempt

to use either of their buses, in which case they will

be unable to do so until the owning node relinquishes

ownership. The tap connecting an owning node to a

bus is said to be active.

After the owning node has established a 1-bus or

a 2-bus connection and before it may transfer data

through the interconnect, it must alert the receiver by

using the signal command. This command sets status

bits in both the sender and receiver and it requests a

processor interrupt in the receiver node. Either the

set status bit or the interrupt tells the receiver that it

should accept data from the interconnect. To enter a

receptive state, the receiver executes the data-receive

command. This resets the status bits that were set

by the signal command and it resets the interrupt re-

quest. Once the sender senses that the receiver node

is in a receptive state, it executes the data-send com-

mand to copy data from the owning node's memory

through its active tap, onto a bus, possibly through

a cross point and onto a second bus, through a tap

in the receiver node, and into the memory of the re-

ceiver node. The sender includes the address of data

to be copied from its memory as part of the data-send

command. Likewise, the receiver includes the address

of the bu�er where the data is to be written with its

issuance of the data-receive command.

The data sent in a single data-send operation is

called a packet. Packets may be limited in length and

may be restricted to be aligned in memory. Multiple

packets may be sent over a connection by repeating the

signal/data-receive/data-send sequence. The receiver

may elect to mask the internode interrupts and instead

poll the status bit in its bus interface to know when

a sender is waiting for it to execute a data-receive.

This is useful when a receiver knows from looking at

one packet that another is due to arrive shortly. The

receiver can poll and thus avoid the interrupt latency

for each packet received.

When the owning node has sent all the data that it

wishes, it releases the bus or buses. Other nodes can

then arbitrate and become owners of the bus or buses

that were released.

2

memory

processors

bus interfaces

optional I/O

memory

processors

bus interfaces

optional I/O

memory

processors

bus interfaces

optional I/O

memory

processors

bus interfaces

optional I/O

memory

processors

bus interfaces

optional I/O

memory

processors

bus interfaces

optional I/O

memory

processors

bus interfaces

optional I/O

memory

processors

bus interfaces

optional I/O

memory

processors

bus interfaces

optional I/O
horizontal internode bus

vertical internode bus

I/O

intranode memory bus

Processor caches

Memory

Processors

Figure 1: Structure of a 3x3 Meerkat. The rightmost box shows one possible organization of a node.

3 Multicomputer design tradeo�s

This section discusses the design issues that led to

Meerkat. We motivate the choices we made in creating

Meerkat and contrast Meerkat with other multicom-

puter architectures.

3.1 Interconnect scalability and eco-

nomics of implementation

Multicomputer interconnects scale over some range,

allowing system con�gurations with a variable number

of processing nodes. The range of nodes over which

an architecture is e�ective is called its scalability, or

its scaling range. The Thinking Machines CM-5, for

example, is scalable from 32 to 16,384 nodes, a wide

range. Most existing multicomputers have a few tens

to a few hundred processors despite the ability of man-

ufacturers to make similar models with thousands of

processors. There is no lack of demand for the greater

computational power of larger systems, rather, size

is limited by economics. Nodes of commercial multi-

computers, such as the TMC CM-5 [13] and the Intel

Paragon [8], use powerful microprocessors and large

memories and therefore cost in the range of $30K to

$100K per node. This puts the cost of a 256 node

system, for example, in the range of $7.5M to $25M.

Although larger systems are important, they are also

rare: most prospective consumers of parallel systems

can a�ord systems with a few tens to a few hundreds

of nodes, but not thousands of nodes.

Meerkat's interconnect uses passive buses with the

number of taps per bus equal to the square root of the

number of nodes per system (we assume square con-

�gurations of nodes, i.e., an equal number of nodes on

each of the horizontal and vertical buses). For elec-

trical reasons this interconnect does not scale well be-

yond about 16 nodes per bus or 256 nodes per system.

However, this limits the ability to scale to sizes that

only a few can a�ord. In return, the simple inter-

connect model has an implementation which is corre-

spondingly quick to design and is inexpensive to build.

3.2 Interconnect clock rates and planarity

of interconnect wiring

Meerkat's interconnect is planar, which means that

the wires that connect nodes can be routed in a lim-

ited number of wiring planes. This allows an inexpen-

sive implementation with a conventional controlled-

impedance backplane driven by CMOS integrated cir-

cuits. Wiring densities of the printed circuit boards

out of which backplanes are made are about 80 wires

per inch per plane. Non-planar interconnects must use

cables to connect the node circuit boards. The wiring

density of cables is approximately 10 wires per inch.

3

In addition to their order of magnitude advantage in

density, printed circuit wires are less expensive and

more reliable than cables.

Nonplanar interconnect topologies, such as the hy-

percube [11], cannot be wired using low cost, high

density printed circuit wires. Instead, nodes of these

systems are connected by links that use cables which

have relatively few wires, often just one. In order to

maintain the same data rates, these cables must use

much higher clock rates. High clock rates in turn re-

quire expensive coaxial or �ber-optic cables and GaAs

drivers. Thus, planar interconnects using printed cir-

cuit wiring are intrinsically cheaper per unit band-

width.

The performance of GaAs is not improving as

rapidly as CMOS and so we expect the relative advan-

tage of CMOS-driven interconnects to increase. With

recent advances in CMOS technology, it is possible

today to fabricate a single low cost CMOS gate ar-

ray that drives over 100 terminated bus wires at 100

MHz [6].

Fat-tree networks are planar in theory, but in prac-

tice manufacturers such as Thinking Machines are not

able to take advantage of this property. The CM-5's

fat-tree network, for example, uses coaxial cables to

connect nodes of the fat tree.

The interconnects most like Meerkat's are 2-D

meshes, such as that of the Intel Touchstone Delta.

2-D meshes are planar and so like Meerkat, they can

also use inexpensive wires and CMOS circuit technol-

ogy to make the necessary connections between rout-

ing components. They do not require coaxial cable or

exotic logic to achieve high bandwidth.

3.3 Bu�ering and deadlock in the inter-

connect

Meerkat has no bu�ering in the interconnect or in

the node interfaces to the interconnect. Because of

this, and because processors on the sending and receiv-

ing nodes rendezvous before data transmission, there

is no need for hardware
ow control. This allows nodes

to inject data into the interconnect at high rates and

is a principal source of the high internode bandwidth

that Meerkat achieves.

The lack of bu�ering in the network also eliminates

a source of potential deadlock that exists in other mul-

ticomputer interconnects that bu�er data. Deadlock

is avoided in these other interconnects, of course, but

usually with some penalty in performance or complex-

ity. There are no bu�ers in the Meerkat interconnect

and so it is not possible to have a circular dependency

involving bu�ers.

Meerkat could deadlock during bus arbitration if

two nodes each acquired the �rst bus in a 2-bus con-

nection, were not able to acquire the same second bus,

and then do not release the �rst bus. This strategy of

not releasing the �rst bus on the failure to get the

second would also lower interconnect utilization by

preventing other nodes from using the �rst bus for

a period of time. For both of these reasons Meerkat's

low level arbitration software releases the �rst bus in

a failed 2-bus arbitration and tries again a short time

later. The length of the back-o� interval is random to

prevent live-lock. This back-o� scheme is akin to that

used by Ethernet [10], except that it is done in soft-

ware and the Meerkat bus arbitration circuit grants

ownership of a particular bus to one node at a time;

in Ethernet collisions occur when two nodes try to use

the wire at the same time.

The lack of bu�ering in Meerkat also makes the

fault model simpler, the interconnect implementation

less expensive, the latency lower (by removing levels of

logic between the sender and the receiver), inherently

provides in-order delivery of packets, and allows the

interconnect to be managed by software. The Meerkat

interconnect does not require the design complexity of

high speed routing circuitry present in 2-D meshes.

4 Performance

In this section we compare the performance of pro-

grams running on a large simulated Meerkat with that

of the same programs running on the Intel Touchstone

Delta. Like Meerkat, the Delta is a multicomputer

composed of high performance microprocessors, local

memory, and an interconnect that is used explicitly by

application software. The two systems di�er in their

interconnects: Delta employs a conventional mesh of

2-D routers while Meerkat uses sets of vertical and

horizontal internode buses.

4.1 Hardware-calibrated simulations of

large systems

To evaluate the performance of Meerkat we use

both a hardware prototype and a detailed system sim-

ulator. Our simulator models the semantics of in-

struction execution, virtual address translation, phys-

ical memory, internode interconnect, and I/O devices.

This allows us to run programs on the simulator that

run on the hardware and vice versa without modi�ca-

tion or recompilation. To allow performance measure-

ments to be made with the simulator we also model

4

the timing of instruction execution, several of the pro-

cessor pipelines, the data cache, TLB misses, intern-

ode signaling latencies and transfer rates, intranode

bus contention, interference with DRAM refresh, and

instruction cache cold misses. Both execution envi-

ronments execute the program binary. The �ne de-

tail of simulation and close correspondence between

the execution times reported by the same programs

executing on both the simulated and real Meerkat

gives us con�dence that our simulation results for large

Meerkats are valid. However, there are di�erences be-

tween Meerkat and Delta that complicate the compar-

ison of the two interconnect architectures.

4.2 Di�erences between systems mea-

sured

The processors in the Delta are about twice as fast

as Meerkat's; the Meerkat message passing code is

written in carefully crafted assembler while the Delta

runs the NX/M operating system, which is written

in C; the Meerkat internode interface copies to and

frommemorywhereas the Delta interface requires that

the processor load and store each byte moved through

the interface. In addition, on the Delta the test pro-

gram runs in an address space separate from NX/M

and thus incurs context switching costs whereas on

Meerkat the test program runs in the same address

space as the message passing library. Some of these

di�erences, however, tend to cancel each other. The

slower Meerkat processors executing our small mes-

sage passing library tends to cancel the e�ect of faster

Delta processors executing the larger NX/M operat-

ing system. It is our intention in this section to show

that Meerkat is an e�ective architecture by showing

that a Meerkat implementation can perform well in

comparison to a large commercial multicomputer.

4.3 Message granularity

Interconnect bandwidth and latency are functions

of message size, which itself is a function of the algo-

rithm, data layout, the number of nodes applied to the

problem, and the problem size. In general, if the num-

ber of nodes is increased while keeping the other pa-

rameters constant, the size of messages will decrease.

Likewise, if the problem size increases the message size

will often increase. A complete discussion of message

size is beyond the scope of this paper, but we give a

few examples to motivate our subsequent performance

discussion.

1. The butter
y FFT algorithm using a cyclic lay-

out generates messages that are

N

P

points long

 Meerkat
 Delta
 iPSC/860
 iPSC/2

|
10

| | | | |||||
100

| | | | |||||
1000

| | | | |||||
10000

| | | | |||||
100000

|0
|

|
|

||
||

||1

|
|

|
||

||
||10

|
|

|
||

||
||100

 message size (bytes)

 (
M

B
/s

)
Figure 2: Throughput as a function of message size

under light load.

where N is the number of points in the FFT, P

is the number of nodes. A point takes 16 bytes in

a complex FFT using double precision numbers.

Thus, a 32,768 point FFT on 256 nodes will send

2048 byte messages.

2. We speculate that operating system tra�c on

Meerkat would be composed of both short con-

trol messages and page-sized messages to support

�le system and virtual memory tra�c. Process

migration would generate messages in excess of

64K bytes.

3. Blocked iterative solution methods send messages

that are proportional to the size of one edge of

the block. A red/black successive over relaxation

(R/B SOR) algorithmon a 4096 by 4096 grid run-

ning on 256 nodes will use a block that is 16 by

16. If double precision numbers are used, each

message will be 1024 bytes.

4.4 Throughput under light load

Figure 2 shows the throughput achieved by a pair of

nodes for both systems as a function of message size.

We include in these graphs the throughput measured

on the Intel Hypercube iPSC/2 [1] and iPSC/860. In

this test the bandwidths reported by the Meerkat sim-

ulator and by the hardware di�ered by about one per-

cent and so the Meerkat curve can be viewed both

5

 Meerkat
 Delta

|
0

|
1000

|
2000

|
3000

|
4000

|0

|100

|200

|300

|400

|500

|600

|700

|800

 Bytes

 (
M

B
/s

ec
)

Figure 3: 256 Node system bisection throughput.

as measurements of a real system and as simulation

results.

On small messages the throughput of both Meerkat

and Delta is limited by the ability of the nodes to inject

messages into the network. The lower performance

of the Delta on small messages may be due to the

extra work it is doing in NX/M that is not done in the

Meerkat message passing library. Meerkat achieves 67

MB/sec for 100,000 byte messages whereas the Delta

throughput levels o� at about 8 MB/sec for 2,000 byte

messages. On long messages both Meerkat and Delta

are limited by their di�erent abilities to drive their

interconnects. Meerkat's internode bandwidth reaches

83 percent of its peak rate of 80 MB/sec, whereas the

Delta reaches ten percent of its theoretical rate, which

is also 80 MB/sec [12].

While Meerkat's maximum interconnect perfor-

mance is seen at a message size that is longer than

most applications will generate, its performance on

shorter messages is still high. It may make sense,

however, to reduce the per-message overhead by mov-

ing logic from low-level software into hardware. This

would push the solid curve in �gure 2 up and to the

left, making the leftmost part steeper.

4.5 Throughput under heavy load

In this experiment there are two groups of 128

nodes each, A and B. Each node in group A sends

a message to its partner in group B and then waits for

a reply. Each node in group B �rst waits for a message

from its partner in group A, then sends a message back

to its partner. The nodes of each group are physically

contiguous in a 8 by 16 block and the two groups are

adjacent to form a 16 by 16 block of nodes. The dis-

tance between each node and its partner is eight. The

total number of bytes moved between the groups is the

product of the message size and the number of mes-

sages sent, which is 256. We calculate the throughput

by dividing the total number of bytes moved by one

half the round trip time.

Figure 3 shows both Meerkat and Delta with a

nearly linear increase in throughput with increasing

message size for messages of less than 500 bytes. As

with the case of light interconnect load, this increase

in throughput is due to the amortization of a �xed

processor overhead per message over longer messages.

The Delta throughput reaches a maximum of 280

MB/sec with a message size of 1000 bytes and Meerkat

peaks at 750 MB/sec at a message size of 4000 bytes.

Dividing each of these throughputs by the number of

channels through which the data moves, in this case

16, we �nd that the Meerkat buses are are driven at

an average of 46 MB/sec and the Delta channels at

the midpoint are driven at 17 MB/sec.

This earlier plateau in Delta's throughput is due

to the higher ratio of processor to interconnect per-

formance in Delta than that of the same ratio in

Meerkat. That is, Meerkat's slower processors need

longer messages to be able to saturate its faster inter-

connect. However, the level of the plateaus depends

principally on interconnect performance and not on

processor speed.

4.6 Performance of 1-D FFT

Figure 4 shows the speedup achieved on a one di-

mensional FFT by both Meerkat and Delta as a func-

tion of the number of nodes applied to the prob-

lem. FFT is a common computational problem for

large parallel systems that in practice often has poor

speedup although it would be perfect if communica-

tion were free.

The total amount of computation is a function of

the problem size and not the number of processors ap-

plied to the problem. WithN points and P processors,

there are log

2

N steps each of which takes time propor-

tional to N and of which the last log

2

P are commu-

nication steps. Thus, as the number of processors in-

creases, and the total running time becomes small, the

e�ect of communication may dominate. Also, while

the number of messages each node sends per step is

constant, the message size is proportional to O(

1

P

).

This means that when the number of processors dou-

6

 Ideal Speedup
� � Meerkat 32k

 Meerkat 4k
� � Delta 32k

 Delta 4k

|
0

|
50

|
100

|
150

|
200

|
250

|0

|20

|40

|60

|80

|100

|120

|140

 Nodes

 S
pe

ed
up

�

�

�

�

�

�

�

�

�

�

Figure 4: Speedup of 4k and 32k point FFT

bles, the amount of data per message is halved. Since

the overhead of sending a message is �xed, the amount

of overhead per byte sent doubles when P is doubled.

In addition, another communication step must be per-

formed when P is doubled.

Meerkat achieves a higher speedup on both prob-

lem sizes because its ratio of internode communication

bandwidth to node performance is much higher than

that of the Delta. The di�erences in these ratios is

due to both the Delta's more powerful processors and

to Meerkat's faster interconnect.

5 Hardware prototype

We have built a Meerkat prototype with four nodes

arranged in a square. Each node has four Motorola

88100 processors, 16 KB each of instruction and data

cache per processor, 32 MB ofmemory, two S-Bus slots

for I/O adapters, interfaces to horizontal and verti-

cal internode buses, an interrupt controller, a 32-bit

cycle counter, and an interface to a 9-bit debug bus

that connects all of the nodes with the host interface.

Nodes plug together side-by-side to form horizontal

buses and on top of each other to form vertical buses.

The horizontal bus wires traverse the width of each

node board to connect the the male and female hori-

zontal bus connectors. These wires are tapped by the

node's internode bus data switch. The vertical bus

is carried by stacking connectors that span the 3 cm

vertical spacing between nodes that are vertically ad-

jacent. The system is clocked at 20 MHz, internode

buses are four bytes wide, and internode data trans-

fers move one four-byte word between the sending and

receiving node per clock tick.

5.1 Interconnect cost in our prototype

Each node has components common to any sys-

tem, such as processors, cache, and main memory, and

those components used for internode communication.

The main contributors to the cost of Meerkat's intern-

ode mechanismare the four 9-bit wide bus transceivers

that form the internode bus data switch, four connec-

tors per node that mate with the node's neighbors, and

the board area that these parts require. The intern-

ode control logic requires a few hundred gates. In our

implementation the logic is in an FPGA, but any com-

mercial implementation would fold these gates into an

existing gate array. Hence, the incremental cost of the

Meerkat interconnect would be low.

It is common to compare gate counts, DRAM bits,

SRAM bits, and silicon area in order to evaluate com-

peting designs. However, given the simplicity of our

approach, the cost of connectors and circuit board area

are signi�cant. The current cost for these items and

the requisite integrated circuits is about $90 per node.

Compared to the total cost of a node, which is $7,500,

this is almost insigni�cant. This is on par with the

cost of an Ethernet adapter while the bandwidth of

Meerkat is 64 times higher and the processor over-

head is lower than that of Ethernet. The overhead of

the interconnect and distributed shared memory hard-

ware in DASH [9] is about 20 percent of the system.

While this is reasonable for a machine of its class,

it represents a substantially higher system cost than

Meerkat's two percent.

The design of our hardware prototype uses vin-

tage 1990 integrated circuits and does not use special

circuit tricks or any exotic technology. The detailed

design, simulation, board layout, parts procurement,

construction, debugging, host debugger development,

and target monitor coding took two person years of

e�ort. While it is di�cult to quantify design com-

plexity, and while a system designed for production

requires more e�ort than that of an academic project,

we feel that the small e�ort and high performance of

our prototype is indicative of Meerkat's merit.

7

6 Meerkat Implemented with Current

Technology

In this section we use our experience building a

Meerkat prototype to see what a Meerkat implemented

with 1993 technology would look like. The central is-

sues in a modern Meerkat interconnect design are the

limits of scaling, node size, circuit technology used for

the interconnect, and clocking.

Bus length and the nature and the number of taps

on a bus are critical in determining the rate at which

data can be sent over the bus. This puts a severe

limit on the size of a Meerkat. We anticipate that

with current circuit technology a 16x16 system with

the following characteristics can be engineered without

much di�culty:

� internode bus lengths of 75 cm, stub lengths 5 cm

or less

� a maximum of sixteen taps (each node having a

tap) per internode bus

� internode buses clocked at 100 MHz with one 32-

bit word transferred per clock tick

� use of GTL [6] logic levels for internode commu-

nication

These characteristics yield a system that can have

256 nodes and a raw per-bus internode transfer rate

of 400 MB/sec. We estimate that under heavy load

such a system would provide 20 MB/sec per node as-

suming that most communication requires two buses.

If the maximum packet size is 1024 words, as in our

prototype, the average latency under heavy load to

send 1024 words from one node to another would be

100 microseconds. Under light load we estimate that

a pair of nodes can achieve a sustained bandwidth of

330 MB/sec with a latency of 20 microseconds.

6.1 Node Size

Nodes need to be as small as possible in modern

designs in order to keep the wires within the node

as short as possible. The pressure to reduce intranode

wire lengths is increasing because of higher clock rates

and the concomitant use of logic technology with fast

edge rates. For example, the current cluster of the

DASH prototype is spread on �ve boards each about

1800 square cm. Planning for the next generation of

DASH is for a cluster to be on a single 516 square

cm board. The trend towards smaller nodes bene�ts

Meerkat because it allows more nodes to tap a bus in

a given length of internode bus. Circuit loading and

cooling requirements due to an increased number of

nodes will also limit the internode clock rate, but to a

lesser degree.

6.2 Clocking

While asynchronous interconnects are popular, we

see advantages in a synchronous design, namely that

the hardware is simpler and it is much easier to de-

bug. We believe that the di�culty in reproducing

and isolating design errors and device failures in asyn-

chronous designs is a serious problem. The principal

disadvantage with synchronous designs is that clock

skew must be controlled to achieve good performance.

Most synchronous backplane systems are limited by

maximum clock skew, worst case device performance,

round-trip propagation delay, and jitter. In these sys-

tems bus tenure is often just a few cycles and the

bus standard was proposed before large and inexpen-

sive standard cell CMOS gate arrays were available.

We propose a clocking scheme that takes advantage of

these inexpensive gate arrays and the relatively long

bus tenures that we expect in Meerkat in order to com-

pensate for clock skew, wire propagation delay, and

device performance.

A system clock is distributed to each node in the

system in a way that is convenient to implement and

with a concomitant loose bound on skew of half a cy-

cle. Each node is thus run at the same frequency, but

nodes may be out of phase with each other by as much

as half a clock cycle. The internode logic on each node

contains a programmable delay chain for each bus tap

that can shift the received system clock by as much as

half a cycle. The bus protocol guarantees that on ev-

ery cycle all nodes know which node is the current bus

master. The internode logic uses this information to

adjust its delay chains to compensate for clock skew,

propagation delay, and device performance. It does

this by looking up the delay value in a skew table that

is indexed by node and tap number. In a system where

B is 16, the table will be two by 16. Each element of

the table is a delay value which will be four to six bits

wide.

The skew table is loaded in a calibration procedure

that is performed when the system is �rst started and

could be updated periodically to adjust for tempera-

ture variations. When ownership shifts from one node

to another there will be a loss of at least one cycle as

each receiver adjusts its delay chain. Since we expect

bus tenure to last for tens or hundreds of cycles, this

is a small price to pay for the high clock rate that

we hope to achieve. By this dynamic adjustment we

8

connector
10cm

5cm Wires for horizontal bus 0 (bottommost)

Wires for vertical bus 3

Wires for horizontal bus 1

Wires for vertical bus 2

Wires for vertical bus 1

Wires for vertical bus 0 (leftmost)

Node 0’s
connector

Node 1’s
connector

Node 3’s
connector

on front side on back sideon back side

Node 2’s
on front side

Figure 5: Lower Left Corner of a Meerkat Backplane.

compensate for many factors that limit performance

in other systems.

We believe that clock skew will not be the limiting

e�ect in a high performance Meerkat design. Rather,

clock jitter and bus re
ections from the taps that each

node places on the internode buses will the primary

constraints. The later e�ect can be helped by keeping

stub lengths as short as possible, using a controlled-

impedance backplane, and using GTL.

Any pair of horizontal and vertical buses can be

connected through cross point switches. This requires

all buses be clocked at the rate of the slowest bus.

In an optimal design all of the buses would reach

their limit at the same clock frequency. To do this

we chose a physical arrangement that makes the wires

that constitute the horizontal and vertical buses the

same length.

Figure 5 shows how a Meerkat backplane would be

laid out in order to maximize the number of nodes in

two dimensions while keeping the horizontal and ver-

tical bus lengths equal and as short as possible. This

�gure shows just a portion of a Meerkat backplane in

the lower left corner. Connectors on the front of the

backplane are shown as solid, and connectors on the

back are shown as dashed. Node boards have con-

nectors along one edge that mate with the backplane

connectors. Nodes boards are plugged into the back-

plane connectors and thus are at right angles with the

backplane circuit board. Having node connectors, and

thus nodes, on both sides of the backplane doubles the

number of nodes that can be attached over the number

which can be attached with a single-sided backplane.

Node connectors and thus the nodes themselves are set

at a 30 degree angle with respect to the bottom edge of

the backplane circuit board. The backplane is a mul-

tiple layer circuit board with wires for the internode

buses running straight, i.e, not having any bends.

Figure 5 shows nodes spaced every 5 cm on hori-

zontal and vertical buses. For a given number of nodes

per bus, B, there are (B�1) 5 cm bus segments. Thus,

a system that supported up to 16 nodes per internode

bus at 5 cm intervals has buses whose wires are 75 cm

long. A system with 16 nodes per bus, 16 vertical, and

16 horizontal buses has 256 nodes. A backplane that

is 75 cm on a side would probably have to be fabri-

cated in four 37.5 by 37.5 square cm segments. The

connections between the backplane segments would be

designed to match the backplane's target impedance

as closely as possible.

9

7 Related Work

The diagram for Meerkat resembles those of the

Wisconsin Multicube [5] and Aquarius Multi-multi [4].

However, the latter two machines put their buses to

di�erent uses than does Meerkat. The Multicube and

Aquarius implement a coherent shared memory sys-

tem in hardware. Therefore, transactions on their

buses are initiated by memory reference instructions

and cache coherence operations. Packets on these

buses are small, usually carrying a cache line or less

of data. In contrast, Meerkat's buses are manipulated

by low-level message passing code that is invoked ex-

plicitly by user programs to send packets that often

will be hundreds or thousands of bytes in length.

The Intel Paragon and the Intel Delta are

distributed-memory multicomputers that consist of

powerful nodes connected by a 2-D mesh. The

Paragon adds a second microprocessor between the

main node processor and the interconnect. Thus, the

Paragon is able to delegate to the dedicated processor

some low level functions that on the Delta or Meerkat

must be done in software on the main processor.

On both the Delta and the Paragon, all routing

of messages is done in the interconnect hardware. In

Meerkat the low level message passing code establishes

and manages node-node connections explicitly. Soft-

ware control of message routing is possible in Meerkat

because the interconnect requires only a small number

of routing decisions per connection. The three systems

therefore represent di�erent points in the spectrum

of hardware/software tradeo�s. Meerkat is the most

software-intensive, the Paragon is the most hardware-

intensive, and the Delta is in between.

8 Conclusion

Meerkat is a vehicle for exploring and evaluating

several closely-related ideas about the design of multi-

computer interconnects. These ideas concern the ben-

e�ts of planar interconnects, the elimination of levels

of logic between communicatingnodes, the elimination

of bu�ering in the interconnect, and software imple-

mentation of several multicomputer interconnect func-

tions. A number of academic and commercial mul-

ticomputers use hardware for functions that Meerkat

does with software. These functions include data
ow-

control, interconnect switch control, error handling,

and contention management.

Several of the ideas demonstrated by Meerkat could

be used in multiprocessors with hardware-coherent

shared memory systems. For example, the two dimen-

sional grid of passive buses could lower communication

latency to the point where time-of-
ight dominates the

internode communication latency. This would provide

much lower latency than that of the commonly used

grid of mesh routers. This, in turn, would lessen the

need for latency hiding techniques and increase the

single-thread performance of multiprocessors. Thus,

some of the lessons that we have learned could be ap-

plied to parallel systems very di�erent than ours.

A methodological contribution of our paper is the

combined use of a hardware prototype and a detailed

simulator. We used performance results from the pro-

totype to calibrate the simulator. In addition, the

prototype allows rapid execution of programs that use

up to four nodes. The simulator extends our perfor-

mance results to systems with up to 256 nodes. While

the simulator is slow compared to the hardware, its

on-the-
y generation of threaded code allows it to sim-

ulate roughly a million processor cycles per second on

a modern workstation [2]. The Meerkat simulator al-

lows us to do detailed simulations of Meerkat systems

with 256 nodes running signi�cant parallel programs.

Meerkat's simplicity allows implementations that

have high performance without great design e�ort.

The Meerkat hardware prototype supports this re-

sult. With modest e�ort, we built a multicomputer

that yields interconnect latencies and bandwidths

above that achieved by commercial parallel system

manufactures who spend several orders of magnitude

more e�ort. Of course, there is a big di�erence be-

tween the design of a commercial system and an aca-

demic project, but the large di�erence in e�ort and

Meerkat's excellent performance nonetheless is indica-

tive of the success of the Meerkat approach. We have

shown the bene�ts of taking this hardware-minimalist

performance-oriented approach to multicomputer de-

sign.

9 Acknowledgements

We thank the corporations that directly supported

the Meerkat project: Data I/O, Horizon Research,

Latice Semiconductor, Motorola, Tektronix, and Xil-

inx, as well as the people who helped us: Craig An-

derson, Je� Beachy, Linda Bender, Kevin Bolding,

Jim Canon, Aaron Eastlund, Carl Ebeling, Ed Felten,

George Forman, Melanie Fulgham, Scott Gardner,

Dennis Gentry, Jerry Gipper, Gary Horbuckle, David

Keppel, Alex Klaiber, Ed Lazowska, Hank Levy, Rik

Little�eld, Cathy McCann, Dylan McNamee, Joao

Setubal, Robert Short, Arun Somani, Larry Snyder,

10

Chandu Thekkath, and John Theus. We also thank

the anonymous reviewers for their helpful comments.

Our work is also supported in part by the National

Science Foundation (Grants No. CCR-8907666, CDA-

9123308, and CCR-9200832), the Washington Tech-

nology Center, Digital Equipment Corporation, Boe-

ing Computer Services, Intel Corporation, Hewlett-

Packard Corporation, and Apple Computer.

This research was performed in part using the Intel

Touchstone Delta System operated by Caltech on be-

half of the Concurrent Supercomputing Consortium.

Access to this facility was provided by The Paci�c

Northwest Laboratory of the US Department of En-

ergy.

References

[1] Ramune Arlauskas. iPSC/2 System: A Second Gen-

eration Hypercube, January 1988.

[2] Robert Bedichek. Some e�cient architecture simula-

tion techniques. In Proceedings of the Winter 1990

USENIX Conference, pages 53{63, January 1990.

[3] Robert Bedichek and Curtis Brown. The Meerkat

multicomputer. University of Washington CSE Tech-

nical Report 92-09-05, 1992.

[4] Michael Carlton and Alvin Despain. Aquarius

project. IEEE Computer, pages 80{83, June 1990.

[5] James R. Goodman and Philip J. Woest. The Wis-

consin multicube: A new large-scale cache-coherent

multiprocessor. In Proceedings 17th Annual Sympo-

sium on Computer Architecture, pages 422{431, May

1990.

[6] Bill Gunning, Leo Yuan, Trung Nguyen, and Tony

Wong. A CMOS low-voltage-swing transmission-line

transceiver. IEEE International Solid-State Circuits

Conference, pages 58{59, 1992.

[7] Intel Corp, 2065 Bowers Avenue, Santa Clara, Cali-

fornia 95051. Touchstone Delta System User's Guide,

1991.

[8] Intel Supercomputer Systems Division. Paragon

XP/S Product Overview, 1991.

[9] Daniel Lenoski, James Laudon, Kourosh Gharachor-

loo, Anoop Gupta, and John Hennessy. The directory-

based cache coherence protocol for the DASH multi-

processor. In Proc. 17th Annual International Sympo-

sium on Computer Architecture, pages 148{159, May

1990.

[10] R.M. Metcalfe and D.R. Boggs. Ethernet: Distributed

packet switching for local computer networks. Com-

munications of the ACM, 19(7):395{404, July 1976.

[11] Youcef Saad and Martin H. Schultz. Topological

Properties of Hypercube. In Proceedings of the Third

Conference on Hypercube Concurrent Computers and

Applications, vol. 1, pages 867{872, January 1988.

[12] Charles L. Seitz and Wen-King Su. A family of rout-

ing and communication chips based on the mossaic.

Research on Integrated Systems, pages 320{337, 1993.

[13] Thinking Machines Corp., 245 First St., Cambridge

MA 02142. CM-5 Technical Summary.

11

