
ucpop User's Manual

(Version 2.0)

Anthony Barrett, Keith Golden, Scott Penberthy & Daniel Weld

Technical Report 93-09-06

January 27, 1994

Department of Computer Science and Engineering

1

University of Washington

Seattle, WA 98105

bug-ucpop@cs.washington.edu

1

We thank Marc Young for contributions to the documentation, Claudia Chiang and Alan Lundy for

comments and proofreading, and other members of the AI group for discussions and suggestions regarding

UW planning research. This work was funded in part by National Science Foundation Grant IRI-8957302,

O�ce of Naval Research Grant 90-J-1904, and a grant from the Xerox corporation.

Abstract

The ucpop partial order planning algorithm handles a subset of the KRSL action rep-

resentation [?] that corresponds roughly with Pednault's ADL language [?] and prodigy's

PDL language [?]. In particular, ucpop operates with actions de�ned using conditionals and

nested quanti�cation. This manual describes a Common Lisp implementation of ucpop,

explains how to set up and run the planner, details the action representations syntax, and

outlines the main data structures and how they are manipulated. Improvements in version

2.0 include:

� Declarative speci�cation of search control rules

� Universal quanti�cation over dynamic universes (i.e., object creation and destruction)

� Domain axioms

� Predicates expanding to lisp code

� Larger set of domain theories search functions for testing.

� Expanded users manual.

� Improved CLIM-based graphic plan-space browser

Contents

1 Introduction 1

1.1 The ucpop Algorithm : 1

1.2 New Features : 2

1.3 Document Overview : 2

2 Installing and Loading ucpop 2

3 Operating ucpop 3

3.1 A Simple Example : 3

3.2 Prede�ned Problems : 5

3.3 Bounding Search : 6

3.4 Graphic Search-Space Browser : 6

4 Creating New Domains 8

4.1 Operators : 8

4.2 Goal Descriptions : 9

4.3 E�ects : 10

4.4 Axioms : 10

4.5 Facts : 11

5 Creating a Search Controller 12

5.1 Search Control Rules : 13

5.2 Triggering Clauses Asserted by ucpop : 13

5.3 Rule Consequents : 14

5.4 Prede�ned Filtering Clauses : 15

5.5 Useful Functions For De�ning Rules : 16

5.6 De�ning Filtering Clauses : 16

5.7 Example Controller: bf-mimic : 17

5.8 Debugging a Search Controller : 18

6 Primitive ucpop Calls 18

6.1 Switches : 19

6.2 Calling the Planner : 19

6.3 Bugs and Versions : 20

7 ucpop Internals 20

7.1 Plans : 20

7.2 Plan Steps : 21

7.3 E�ects : 21

7.4 Causal Links : 21

7.5 Open Conditions : 21

7.6 Threatened Links : 22

7.7 Forall Goals : 22

i

1 Introduction

This handout details the ucpop planning system | a clean Common Lisp implementation

of an elegant algorithm for partial order planning with an expressive action representation.

ucpop handles a large subset of ADL [?], including actions with conditional e�ects, uni-

versally quanti�ed preconditions and e�ects, and universally quanti�ed goals. ucpop has

desirable formal properties: e.g., [?] proves soundness and completeness. Since ucpop's

simplicity and e�cient implementation make it an excellent vehicle for further research on

planning and learning, we provide this description of the implementation.

1.1 The ucpop Algorithm

ucpop represents a planning problem with an initial, dummy plan that consists solely

of a \start" step (whose e�ects encode the initial conditions) and a \goal" step (whose

preconditions encode the goals). ucpop then attempts to complete this initial plan by

adding new steps and constraints until all preconditions are guaranteed to be satis�ed.

The main loop makes two types of choices: supporting \open" preconditions and resolving

\threats."

� If ucpop has not yet satis�ed a precondition (i.e., it is \open"), then all step e�ects

that could possibly be constrained to unify with the desired proposition are considered.

ucpop chooses one e�ect nondeterministically

2

and then adds a \causal link" to the

plan to record this choice.

� If a third step S

k

(called a \threat") might possibly interfere with the precondition

being supported by a causal link from S

i

to S

j

, ucpop nondeterministically protects

against this threat by performing one of

1. Promotion: if consistent, move S

k

after S

j

; or

2. Demotion: if consistent, move S

k

before S

i

; or

3. Separation: if consistent, add binding constraints to ensure that S

k

cannot in-

terfere with r; or

4. Confrontation: if the threat results from a conditional e�ect, add a new subgoal

that negates the preconditions of the o�ending e�ect.

Once ucpop has successfully created and protected a causal link for every goal in the

plan, it halts and returns a solution. Any totally ordered completion of this partially ordered

plan will achieve the problem's goals.

Of necessity, this overview has been brief and conceptual. For a complete description of

the ucpop algorithm see the �le kr92-ucpop.ps which contains a postscript version of the

de�nitive paper: [?].

2

In fact, domain dependent information can be used to guide the choice. Backtracking ensures that all

choices will be eventually considered.

1

1.2 New Features

Since version 1.00a many features have been added to ucpop. First, the domain de�nition

language is enhanced to improve quanti�cation and handle dynamic universes | action

e�ects can create new objects or delete existing ones and quanti�ed goals will work properly.

ucpop 2.0 now supports domain axioms as explained in section 4.4. For tractability

reasons, the domain-axiom facility partitions predicates into derived and primitive classes.

Actions can only a�ect primitive terms while axioms are restricted to assert derived pred-

icates. Conceptually, after an action is executed, the world state is updated by asserting

an action's e�ects and then �ring all domain axioms until none apply. Of course, since

ucpop does backward chaining, it doesn't actually implement this conceptual model, but

the model suggests how one should use domain axioms: to de�ne terms (like clear and

above) in terms of primitive predicates (such as on).

Section 4.5 shows how to de�ne predicates that call user de�ned lisp functions when

used as preconditions. This facility greatly extends the practical utility of ucpop when

dealing with arithmetic etc.

Perhaps the most important addition to ucpop is the search control facility. Many

users complained that the ranking functions were a cumbersome way to direct the search

through planning space. Version 2.0 allows users to de�ne a rule based search controller to

guide ucpop's nodeterministic choices. Declarative rules allow much more exible control

of search; see section 5 for the details.

Note that the operator de�nition syntax is di�erent (improved to be more regular), but

all old domain de�nitions will still work; see section 4 for the details. The graphic plan-space

browser has also been extended, but basic operation is essentially the same.

1.3 Document Overview

Section 2 explains installation and loading. Section 3 shows how to call the planner on

existing examples, lists the basic interface, and discusses the X window-based search space

browser which uses a VCR metaphor for navigation. Section 4 describes the ucpop action

language in detail and explains how to de�ne new domains. Section 6 lists some of the

primitive calls and switches that ucpop supports. Finally, section 7 provides an overview

of ucpop's data structures for users that wish to extend the planner.

2 Installing and Loading ucpop

The core ucpop system consists of the following �les:

struct.lisp Basic data structure de�nitions

variable.lisp Uni�cation & codesignation constraint handling

ucpop.lisp Actual planning algorithm

plan-utils.lisp Routines for testing domains and creating steps

vcr.lisp Optional X-window graphical interface

choose.lisp Routines for computing preference orders

rules.lisp General production system

scr.lisp Rule based search controller

2

interface.lisp Top level interface for calling ucpop

domains.lisp Example domain and problem de�nitions

controllers.lisp Example search controller de�nitions for ucpop

In addition, the �le ucpop.system de�nes the dependencies necessary to enable use of

Mark Kantrowitz's public domain \Portable Mini-DefSystem." Once you have installed the

system �le

3

you need only type:

(require 'ucpop)

to load the planner. Alternatively, you may load ucpop by editing the �le loader.lisp so

as to change the value of *ucpop-dir* to the directory where you have copied these �les.

Then start lisp and load loader.lisp and type (compile-ucpop). In future interactions,

you need only type (load-ucpop) to load the compiled version.

Note that the graphical interface (implemented in vcr.lisp and described in section

3.4) requires CLIM, the Common Lisp Interface Manager, for operation. Regardless

of how it is loaded, ucpop checks to see if CLIM exists (by looking for the clim package)

and only includes vcr if appropriate.

3 Operating ucpop

Once you have loaded ucpop, type:

(in-package "UCPOP")

to enter the UCPOP package. The rest of this manual assumes that you are in this package

and refers to symbols locally.

3.1 A Simple Example

To run a small example from domains.lisp you can type

(bf-control 'uget-paid)

This de�nes and runs Pednault's famous example [?] involving transportation of objects

between home and work using a briefcase whose e�ects involve both universal quanti�cation

(all objects are moved) and conditional e�ects (if they are inside the briefcase when it is

moved). Section 1.1 of [?] describes how ucpop solves a problem in this domain. You may

�nd it helpful to refer to that paper as you read the actual Common Lisp encoding below.

The domain is described in terms of three action schemata:

(define (operator mov-b)

:parameters (?m ?l)

:precondition (and (at B ?m) (neq ?m ?l))

:effect (and (at b ?l) (not (at B ?m))

(forall (?z)

(when (and (in ?z) (neq ?z B))

(and (at ?z ?l) (not (at ?z ?m)))))))

3

See the defsystem documentation for instructions on installing a central system registry and using

defsystem. Contact mkant@cs.cmu.edu for information on acquiring the public domain code.

3

This speci�es that the briefcase can be moved from location ?m to ?l where the symbols

starting with question marks denote variables. The preconditions dictate that the briefcase

must initially be in the starting location for the action to be legal and that it is illegal to

try to move the briefcase to the place where it is initially. The e�ect equation says that the

briefcase moves to its destination, is no longer where it started, and everything inside the

briefcase is likewise moved.

(define (operator put-in)

:parameters (?x ?l)

:precondition (neq ?x B)

:effect (when (and (at ?x ?l) (at B ?l))

(in ?x)))

This operator speci�es the e�ect of putting something (not the briefcase (B) itself!)

inside the briefcase. If the action is attempted when the object is not at the same place

(?l) as the briefcase, then there is no e�ect.

(define (operator take-out)

:parameters (?x)

:precondition (neq ?x B)

:effect (not (in ?x)))

The �nal operator provides a way to remove something from the briefcase. Pednault's

example problem supposed that at home one had a dictionary and a briefcase with a pay-

check inside it. This situation can be speci�ed with the list of true facts:

'((at B home) (at P home) (at D home) (in P))

because ucpop assumes that all facts not declared to be true are false. Suppose that we

wished to have the dictionary and briefcase at work, but wanted to keep the paycheck at

home. We could write this desire as the conjunction:

'(and (at P home) (at D office) (at B office))

Note that initial conditions and e�ects are not completely symmetric! Although the initial

conditions are all true together (i.e., they are a conjunct), this conjunctive nature is implicit

| you don't need to say and. Instead the initial conditions are speci�ed with a simple list

of terms. Goals on the other hand (even if they are a simple conjunction) must have the

and included explicitly! This is because one can specify other types of goals besides simple

conjunctions (see the de�nitions is section 4.2).

The �le domains.lisp de�nes this planning problem and gives it the name uget-paid.

Thus when one gives the bf-control command listed at the beginning of this section,

ucpop will �nd and display a plan to solve the problem. In this case, it prints:

Initial : ((AT B HOME) (AT P HOME) (AT D HOME) (IN P))

Step 1 : (PUT-IN D HOME) Created 3

4

0 -> (AT D HOME)

0 -> (AT B HOME)

Step 2 : (TAKE-OUT P) Created 2

Step 3 : (MOV-B HOME OFFICE) Created 1

3 -> (IN D)

0 -> (AT B HOME)

2 -> (NOT (IN P))

Goal : (AND (AT B OFFICE) (AT D OFFICE) (AT P HOME))

1 -> (AT B OFFICE)

1 -> (AT D OFFICE)

0 -> (AT P HOME)

Complete!

UCPOP Stats: Initial terms = 4 ; Goals = 4 ; Success (3 steps)

Created 42 plans, but explored only 22

CPU time: 0.1340 sec

Branching factor: 1.455

Working Unifies: 248

Bindings Added: 63

#plan<S=4; O=0; U=0>

#Stats:<cpu time = 0.1340>

Here we see the correct steps in order. Although ucpop only inferred late in the planning

process (i.e., after creating the �rst two steps) that it needed to put the dictionary in the

briefcase, it correctly deduced that this step should come early in the plan. Also, since it

doesn't matter whether the dictionary is put in the briefcase before the paycheck is removed,

ucpop will not order these two steps, but the plan display routine chooses a (legal) total

order for clarity.

Underneath most steps are a sequence of lines with a number followed by a -> followed

by a term. These lines list the producing step identi�ers for each of the preconditions of

the current step. For example, under the goal \step" are three lines and the �rst indicates

that the step which was created �rst (i.e., the move-b action) is responsible for achieving

the �rst goal proposition(i.e., (at b office)).

The last few lines printed by the bf-control command give myriad statistics showing

how well ucpop performed on this problem. The function returns a plan and a statistics

structure. These structures are tersely printed at the bottom.

3.2 Prede�ned Problems

As mentioned in the last section, the �le domains.lisp de�nes a number of named domains

and problems. It records these problems using the global variable *tests* which is assumed

to be a list of problem structures. Each problem has �ve �elds:

� name This is just a symbol, like uget-paid to be passed to bf-control as an argument

identifying the problem.

5

� domain This is a function which when called will initialize the domain operators.

� inits This is a list of terms, usually propositions that are true in the world.

� goal This can be a complicated logical expression with conjunction, disjunction, and

quanti�cation. In the example above we saw a simple case, but the formal de�nition

of what is allowed is de�ned as a GD (goal description) in the EBNF description of

section 4

� rank-fun An optional plan ranking function to guide search. If not speci�ed, it

defaults to the standard domain-independent ranking function. See section 6 for

details on writing new ranking functions.

For example, assuming that the function blocks-world-domains had already been de-

�ned, we could specify the Sussman anomaly with the following expression:

(define (problem sussman-anomaly)

:domain #'blocks-world-domain

:inits ((block A) (block B) (block C) (block Table)

(on C A) (on A Table) (on B Table)

(clear C) (clear B) (clear Table))

:goal (and (on B C) (on A B)))

Since this piece of code has already been de�ned (as part of domains.lisp) you can see

how ucpop handles the Sussman anomaly by calling

(bf-control 'sussman-anomaly)

The output should resemble the comment section in domains.lisp. Take some time to

look through this �le for other interesting domains and problems. ucpop works on most,

but not on all of these examples.

3.3 Bounding Search

In some cases, ucpop will exceed its resource bounds before �nding a solution. When this

happens you may wish to use setf to modify the value of the special variable

search-limit

which sets an upper limit on the number of incomplete plan states that ucpop explores

when solving a problem. This allows ucpop to avoid swamping a machine when it is given

a very hard, or unsolvable, problem.

Since the function bf-control performs a best �rst search, it uses exponential space.

Another way to make ucpop avoid swamping a machine is to use the function ibf-control

instead. This function performs an iterative deepening best �rst search as de�ned in [?].

3.4 Graphic Search-Space Browser

The �le vcr.lisp contains an X-Window interface for analyzing a search tree created by

ucpop. It is invoked using the routine bf-show which takes a problem as �rst argument

(as does bf-control). An example invocation appears below.

6

(bf-show 'sussman-anomaly "mizar:0")

The �rst parameter speci�es a problem, and the second speci�es an X-Window display.

The routine �rst executes the planner on the problem, and then raises a window for dis-

playing the search tree. The window is initially empty. The search tree is brought up by

clicking on a \refresh" button. The meanings of all the buttons are:

� <<: Backup the VCR until a mouse button is pressed.

� <: Backup the VCR to the plan visited just prior to the current one.

� >: Progress the VCR to the next visited plan.

� >>: Progress the VCR until a mouse button is pressed.

� Resize: Shrink or enlarge the displayed search tree by a constant.

� Refresh: Format and refresh the search tree display.

� View: Change the node picture of the tree nodes to one of the following:

{ Order: Color the nodes from red to purple depending on visitation order.

{ Histograms: Display the standard histogram icon.

{ Rank: Color the nodes from red to purple depending on the absolute rank.

� Summary: Select one of the following tree summarization commands:

{ All Nodes: Display all nodes in the tree.

{ Steps Only: Display nodes for plans with newly added steps.

{ Solution Only: Display solution node only (if found).

{ Solution Path Only: Display nodes on solution path (if found).

{ Expand Node: Display the children of the current plan.

{ Contract Node: Do not display the children of the current plan.

{ Expand Branch: Display the branch rooted at the current plan.

{ Contract Branch: Do not display the branch rooted at the current plan.

� Exit: Close the window and exit the bf-show routine

Each node in the search tree graph represents a partial plan and the path to the solution

plan is left justi�ed. The plans are graphically summarized with four histograms. From left

to right these histograms represent the number of unsolved goals, causal links, threats, and

steps in a plan. A very brief summary of the reason for creating a plan appears as a label

below the histograms, when there is enough space. For example, the label \5:PUTON"

means that the �fth step was created, and it was a PUTON action.

At any given moment, one of the plans in the tree is the current plan. This plan is

marked by a black box, and its histograms appear in the lower left corner. The current plan

can be changed by the progress/backup buttons or by clicking on another plan in the tree.

7

Clicking on the current plan displays it textually in the lower right corner. A more verbose

reason for creating the plan appears after the plan.

Since ucpop creates more plans than it visits, some of the VCR's tree nodes were never

visited. It is possible to manually visit such a node by clicking on a plan aw. These aws

appear in the plan's textual display in the lower right corner. It is possible for the VCR

to incorrectly format the tree while manually visiting plans. A \refresh" will reformat and

redisplay the tree.

When a search tree is initially displayed, only the plans on a path to the solution appear

with their graphical summarization. The other plans are graphically summarized once they

are made current. It is possible to make plans appear without ever making their parents

appear. This happens when using the progress or backup buttons after clicking on a plan

in the middle of the search path.

4 Creating New Domains

Planning domains are de�ned using an action description language that is inspired by KRSL

[?] but corresponds more closely to ADL [?] in expressive content. This section describes

the salient features of ucpop's language and provides its grammar.

4.1 Operators

The EBNF

4

for the operator de�nition is:

<operator> ::= (define (operator <operator name>)

:parameters (<parameter>*)

[:precondition <GD>]

:effect <effect>)

<parameter> ::= <variable-name>

<parameter> ::= <typed-var>

The parameters list is simply the list of variables on which the particular rule operates,

i.e., its arguments. The precondition is an optional goal description (GD) which must be

satis�ed before the operator is applied. As de�ned below, ucpop goal descriptions are quite

expressive: an arbitrary function-free �rst-order logical sentence is allowed. If no precondi-

tions are speci�ed, then the operator is always applicable. E�ects list the changes which the

operator imposes on the current state of the world. E�ects may be universally quanti�ed

and conditional, but full �rst order sentences (e.g., disjunction and Skolem functions) are

not allowed. Thus, it is important to realize that ucpop is asymmetric: action preconditions

are considerably more expressive than action e�ects.

Free variables are not allowed. All variables in an operator de�nition (i.e., in its pre-

conditions or e�ects) must be included in the parameter list or explicitly introduced with a

quanti�er.

4

Our EBNF de�nitions use square brackets ([and] to surround an optional clause. We use an asterix

(*) to mean \zero or more of". Angle brackets denote names. Ordinary parenthesis are an essential part of

the syntax we are de�ning and have no semantics in the EBNF meta language.

8

4.2 Goal Descriptions

A goal description is used to specify the desired goals in a planning problem and also the

preconditions for an operator. Function free �rst order predicate logic (including nested

quanti�ers) is allowed.

<GD> ::= <term>

<GD> ::= (and <GD>*)

<GD> ::= (or <GD>*)

<GD> ::= (not <GD>)

<GD> ::= (imply <GD> <GD>)

<GD> ::= (forall <term> [<GD>])

<GD> ::= (exists <term> [<GD>])

<GD> ::= (eq <argument> <argument>)

<GD> ::= (neq <argument> <argument>)

where eq and neq specify equality and inequality constraints between <argument>s respec-

tively. In order to facilitate the de�nition of domains from outside the "UCPOP" package,

all of the keywords mentioned above can also be pre�xed with a \:". Finally, a <term> is

an atomic expression of the form:

<term> ::= (<predicate-name> <argument>*)

<argument> ::= <constant-name>

<argument> ::= <variable-name>

For example, one can create a goal requiring that all blocks be clear with (forall

(block ?b) (clear ?b)). When confronted with a goal of this form, ucpop takes the

initial conditions and creates a goal (clear B) for every block B. This approach works for

static predicates which cannot appear in any operator's e�ects.

When a predicate does appear in one or more operators' e�ects, it becomes dynamic.

For example, the existence of an operator that creates or destroys a block would make

block a dynamic predicate. In this event, ucpop adds the goal (or (not (block B))

(and (block B) (clear B)) for every block B. Thus, each block must either be cleared

or deleted in order to achieve the goal.

Since steps can add dynamic predicates, ucpop must consider all steps as well as the

initial conditions when handling forall goals. In the previous example, each step with an

e�ect (block B) makes ucpop create a disjunctive goal like the one previously mentioned.

In order to maintain correctness, ucpopmaintains a list of previously handled forall goals.

These goals cause the creation of disjunctive goals whenever a new step with an e�ect, like

(block B), is inserted into a plan

5

.

In a more complex example, the �rst argument of a forall equation can be an arbitrary

term. For example, one can create a goal requiring that all blocks on the table are clear

with (forall (on ?b Table) (clear ?b)). When confronted with a goal of this form,

ucpop detects e�ects like (on ?x ?y) and generates disjunctive goals like:

5

This technique requires one restriction on domain encodings. When a step adds (block B), B cannot

be a universally quanti�ed variable. In general, any <term> in a forall or exists goal equation cannot be

positively asserted by a universal e�ect. ucpop actively enforces this restriction.

9

(or (neq ?y Table)

(and (eq ?y Table)

(or (not (on ?x ?y))

(and (on ?x ?y)

(clear ?x)))))

In this case the forall goal can be satis�ed three di�erent ways. In the �rst two the

e�ect does not a�ect the forall goal because (neq ?y Table) is true, or a step asserting

(not (on ?x ?y)) intervened. If (on ?x ?y) is true at the time of the forall, then

(clear ?x) must also be true. Considering all three options ensures completeness. The

syntax and semantics of forall and exists was inspired by prodigy[?].

Finally, the <GD> is optional in forall and exists equations. This lets the user specify

goals like (not (exists (on ?x b))) to require that a block b is clear.

4.3 E�ects

ucpop allows both conditional and universally quanti�ed e�ects. The description is straight-

forward:

<effect> ::= (and <effect>*)

<effect> ::= (forall (<variable-name>*) <effect>)

<effect> ::= (when <GD> <effect>)

<effect> ::= (not <term>)

<effect> ::= <term>

This de�nition of <effect> is less verbose than that of ucpop version 1.00a. The user

has the option de�ning operators using this formalism, or the old formalism.

As in strips, the truth value of predicates are assumed to persist forward in time.

Unlike strips, ucpop has no delete list | instead of deleting (on a b) one simply asserts

(not (on a b)). If an operator's e�ects does not mention a predicate P then the truth of

that predicate is assumed unchanged by an instance of the operator. The initial conditions,

however, while represented as the e�ects of a dummy \start" step, are treated di�erently.

All predicates which are not explicitly said to be true in the initial conditions are assumed

by ucpop to be false.

4.4 Axioms

Domain axioms provide a convenient way to structure domains so that action e�ects can

be short and sweet. For example, suppose that one wished to represent both above and on

predicates in the blocks world. Using the STRIPS representation (or even ADL) one would

need to explicitly show how each action a�ected both predicates.

This leads to poor software engineering (or perhaps we should say \domain engineer-

ing"). For example, if one added a new predicate (perhaps below) then one would have

to go and change every action de�nition. To avoid this error prone problem, version 2.0

provides a restricted form of domain axioms. We restrict the form of axioms to keep the

frame problem in check.

10

The basic idea is for the user to partition the domain predicates into two sets: primitive

and derived. For example, on might be primitive and above might be derived. Actions

can only a�ect primitive terms while axioms are restricted to assert derived predicates by

de�ning them in terms of a <GD> which may include both primitive and derived terms.

ucpop actively enforces this partition.

<axiom> ::= (define (axiom <axiom name>)

:context <GD>

:implies <term>)

For example, we might de�ne above as follows:

(define (axiom is-above)

:context (or (on ?x ?y)

(and (exists (on ?x ?z) (above ?z ?y))))

:implies (above ?x ?y))

As another blocks world example, we could write an axiom for de�ning the derived term

(clear ?x) as follows:

(define (axiom is-clear)

:context (or (eq ?x Table)

(not (exists (on ?b ?x))))

:implies (clear ?x))

ucpop handles a goal with a derived term by nondeterministicly choosing an appropriate

axiom and replacing the goal with a new goal containing the axiom's :context. Since a

<GD> can contain derived terms, an in�nite recurse is possible. ucpop does not detect such

a recurse.

4.5 Facts

Facts are preconditions that are satis�ed by calling lisp functions. They are typically used

for de�ning complex relationships, such as arithmetic functions and the de�nition of new

constant symbols. Each fact predicate has a unique lisp function associated with it. A

define macro is used to create facts and associate lisp functions with them.

<fact> ::= (define (fact (<predicate-name> <variable-name>*))

<function-body>)

One simple example of a fact, the arithmetic < operation, appears below and is used as

a �lter when planning.

(define (fact (less-than ?x ?y))

(cond ((or (variable:variable? ?x) (variable:variable? ?y))

:no-match-attempted)

((and (numberp ?x) (numberp ?x) (< ?x ?y))

'(nil))

(t nil)))

11

The calling conventions for these functions are similar to those in prodigy[?]. When

resolving a fact goal, ucpop evaluates the associated lisp function within the context of

the goal term. For instance, the goal (less-than 5 13 would make ucpop evaluate the

function with ?x and ?y being bound to the symbols 5 and 13 respectively. This function

either evaluates to :no-match-attempted, nil, or '(nil). The :no-match-attempted

symbol is used to inform ucpop that there is not enough information to evaluate this fact.

When such is the case, the associated goal is di�ered until later. The lists '(nil) and nil

inform ucpop that the fact is satis�ed and unsatisfyable respectively. The reasons for these

lists will become apparent by the end of this section.

The next example fact comes from the office-world domain in domains.lisp �le. It

is used to de�ne new constant symbols in a dynamic universe. In this example a fact returns

a list of binding constraint lists.

(define (fact (new-object ?x))

(when (variable:variable? ?x)

(list (setb ?x (gensym "obj-")))))

A binding constraint list is an association list where each entry speci�es an equality

constraint. The fact goal is resolved by adding these constraints to the plan. Since there

can be more than one set of binding constraints to resolve a fact goal, the fact function must

evaluate to a list of one or more binding constraint lists. ucpop nondeterministicly chooses

one of these constraint lists to resolve the goal. Finally, note that the list of constraint lists

(nil) speci�es that the fact is resolved without adding any variable constraints, and nil

speci�es that the fact cannot be resolved at all.

5 Creating a Search Controller

ucpop solves a planning problem by taking an initial dummy plan, and performing a best

�rst search through a space of plans for a solution. When ucpop visits a plan it expands

the search space by choosing a aw with that plan (e.g. a threat) and modifying the plan

to �x that aw (e.g. promotion). The search controller uses a production system to guide

this process. Such an approach to search control is by no means new. Our control language

was inuenced by search control in prodigy[?].

To run a simple example that uses a controller de�ned in controllers.lisp and a

problem from domains.lisp you can type:

(sc-control 'uget-paid #'bf-mimic)

This de�nes and runs the example problem mentioned earlier. The search controller cre-

ated by the function bf-mimic makes sc-control perform a search identical to the one

performed by the bf-control function.

The routine sc-show also performs a controlled search. After the search it functions

just like bf-show in that it raises a window on an X-Window display for analyzing the tree.

To call this function you can type:

(sc-show 'sussman-anomaly #'bf-mimic "mizar:0")

The parameters, from left to right, specify the problem, controller, and X-Window display.

12

Finally, the function isc-control performs a controlled search using iterative deepen-

ing. With bf-mimic, isc-control will mimic ibf-control. In general, any controller that

works with sc-control will also work with isc-control.

5.1 Search Control Rules

The search control rule language is a lot like prolog, but it works in a forward chaining

direction whereas prolog is backward chaining.

When writing search control rules it is important to keep in mind that there are two

types of clauses, triggering and �ltering. When a new proposition is stored in the database,

a rule with triggering clauses that match will get activated. If the rule's �ltering clauses

are satis�ed with the bindings produced by the triggering clauses, then the rule �res and its

consequent takes e�ect. Note that it doesn't make sense to write an scr rule that doesn't

have at least one triggering clause in its antecedant, since it would never do anything.

You can de�ne more �ltering clauses with the (define (clause : : :)) macro, and more

triggering clauses in the e�ects of rules. The order of the clauses in the antecedant of your

search control rules is important - you should put the triggering clauses �rst.

The syntax of a search control rule de�nition is:

hscri ::= (define (scr hrule-namei)

:when '(hpatterni hpatterni�)

:effect 'hpatterni)

hpatterni ::= (hpredicatei hargumenti�)

A hpredicatei must be a symbol, but an hargumenti can be any arbitrary symbolic expres-

sion where symbols begining with $ represent variables. For instance the pattern (test $f)

matches clauses (test n) for any value of n.

5.2 Triggering Clauses Asserted by ucpop

When ucpop removes a plan from the priority queue and visits it (i.e., starts to work on

it), it asserts the following clauses into the database:

(:current :node hplani) The current hplani that ucpop is visiting.

(:flaw hflawi) Each of the newly introduced aws in the

current plan generates an entry of this

form. (The older aws are still on

the priority queue of aws for this plan)

At this point any search control rule that has an antecedant pattern matching one of these

clauses will wake up and try to �re. Once all rules stop �ring, for each :flaw clause a set

of :rank clauses are combined to compute a :candidate clause. These computed clauses

are added to the database and look like the following:

(:candidate :flaw hranki hflawi) The ranks of the new aws in the current

plan. Flaws with low numbered ranks

will be repaired �rst.

13

The value of hranki for some aw F is the sum of all the R values in (:rank :flaw R F)

clauses asserted during the previous rule �rings. The default rank is zero when there were

no assertions. These :candidate assertions may cause more rules (i.e., preference rules for

aws) to be triggered; once these rules stop �ring, the search controller chooses the most

interesting aw to repair and generates all possible re�nement plans that �x the aw. The

following clauses are asserted at this point.

(:current :flaw hflawi) The hflawi that ucpop is repairing while

visiting the current plan.

(:node hplani hreasoni) The plans created when repairing the

current aw in the current plan.

The format of hreasoni is one of the

following patterns:

hreasoni ::= (:init) - The start plan

(:fact htermi) - Fact htermi was handled

(:goal htermi hsi) - Precondition htermi was added

for step hsi

(:step hsi htermi) - Step hsi was added to assert htermi

(:link hsi htermi) - Step hsi was reused to assert htermi

(:cw-assumption) - Made a closed world assumption

(for :not terms)

(:bogus) - This aw did not really exist

(:order hs

1

i hs

2

i) - order step hs

1

i before step hs

2

i

These assertions will trigger more rules. Once these rules stop �ring, :rank, :select, and

:reject clauses are collected to de�ne the candidate plans that will get placed into ucpop�s

priority queue for futher consideration. For each such plan a clause of the following form is

asserted:

(:candidate :node hranki hplani) The ranks of the :node (i.e. plan)

entries. One of these will get added to

the database for each nonrejected plan

unless some plan was selected. If any

plan is selected, then one of these

assertions will be added for each

nonrejected plan that was selected.

Once the rules that these assertions trigger stop �ring, the candidate plans are sorted by

their rank values followed by preferences de�ned by asserted :prefer clauses. At this point

the plans get placed into the priority queue, the database is ushed, and ucpop removes

the next plan from the priority queue.

5.3 Rule Consequents

A rule can assert any clause, but only a limited number directly a�ect ucpop�s behavior.

They are:

14

(:rank :node hranki hplani) ranks a plan with the associated

value. Low numbered plans are

considered before higher numbered ones.

The default rank is 0. A plan's �nal

rank is the sum of all rules that

assert rankings.

(:rank :flaw hranki hflawi) similar

(:reject :node hplani) rejects a plan by removing its ranking.

(:select :node hplani) speci�es that all plans that are

not selected get rejected. Selection

takes precedence over rejection.

(:select :flaw hflawi) similar

(:prefer :node hp

1

i hp

2

i) As long as hp

1

i and hp

2

i are of the same

rank, then put hp

1

i ahead of hp

2

i on the

priority queue (i.e., visit and repair it

�rst).

(:prefer :flaw hf

1

i hf

2

i) similar

5.4 Prede�ned Filtering Clauses

You can de�ne your own �ltering clauses with the (define (clause ...)) syntax, but

this usually requires understanding the ucpop internal datastructures. To simplify your

life, we provide some prede�ned clauses.

(operator hsi hactioni hplani)

This clause is true for each step hsi in plan hplani that uses operator hactioni. For

example, suppose you want your scr rule to only trigger on plans whose 5th step (note

5 denotes the �fth step added to the plan, not the �fth step to eventually be executed!)

is a (puton $a $b) action. In this case you could add the following �ltering clause:

(operator 5 (puton $a $b) $p). Presumably, $p would be bound by a previous

triggering clause, perhaps (:node hplani hreasoni). Note that variables $a and $b

get bound to the operands of the puton so you can test them with subsequent clauses.

Note further, that it's handy to know what hsi is because it lets you focus on the step

that was most recently added to the plan.

(goal hplani hflawi htermi hstepi)

This clause is true for each hflawi in hplani that is an unsupported precondition

htermi for step number hstepi. Naturally, this is useful when ranking aws.

(threat hplani hflawi hlinki hsi)

This clause is true for each hflawi in hplani that is states that causal link hlinki is

15

threatened by step hsi. Naturally, this is useful when ranking aws.

(neq hxi hyi)

This clause is true in all cases where hxi is not lisp EQ to hyi.

5.5 Useful Functions For De�ning Rules

The following lisp function isn't a clause or an scr rule, but it generates an scr rule.

(fail-link hproduceri htermi hconsumeri)

This routine produces rules that reject plans that add a step with action hproduceri

to add e�ect htermi for a step with action hconsumeri. For example:

(fail-link '(close $a) '(:not (open $a)) '(open $a))

creates a rule that ensures that the planner never closes a container in order to open

it again.

It's instructive to look at the rule that this invocation creates. (See the source code for

fail-link in controllers.lisp). The resulting scr has the following antecedant:

:when `((:current :node $n)

(:current :flaw $f)

(:node $p (:step $s2 (:not (open $a))))

(operator $s2 (close $a) $p)

(goal $n $f $g $s1)

(operator $s1 (open $a) $p))

Note that the �rst three clauses are triggering clauses. This rule will wake up when plan

$p has been generated as a re�nement of plan $n in an attempt to �x aw $f by adding a

new step (number $s2) that produces the (:not (open $a)) proposition. The rule's e�ect

will be enforced when the new step (just added) is a (close $a) action, and the current

aw (ie the one repaired by re�ning plan $n to plan $p) is an open (unsupported) goal of

step $s1, and $s1 is an (open $a) action. (Note that the variable $g is just a dummy

placeholder - it's value never gets tested or used). When these conditions are all satis�ed,

the rule will �re and

:effect '(:reject :node $p)))

will ensure that $p will never get put onto the priority queue, so it will never get visited.

5.6 De�ning Filtering Clauses

A rule's precondition contains patterns that match two types of clauses: triggering clauses

and �ltering clauses. Where a triggering clause uses the database to specify a simple

relationship, a �ltering clause uses a lisp to specify a complex relationship. The syntax of

a �ltering clause de�nition is:

16

hclausei ::= (define (clause (hpredicate-namei hvariable-namei�))

hfunction-bodyi)

For example, consider the following rule. The �rst pattern matches a trigger clause.

When the rule is triggered, the values for $p and $r are found, and the search controller

queries the rank-plan relationship with these values.

(define (scr select-ranked)

:when '((:node $p $r) (rank-plan $p $n))

:effect '(:rank :node $n $p))

The rank-plan relationship associates plans with some other value hranki. We de�ne de�ne

the relationship it with the following lisp function:

(define (clause (rank-plan plan rank))

(when (plan-p plan)

(matchb `(rank-plan ,plan ,rank)

`((rank-plan ,plan ,(rank3 plan))))))

Whenever a the search controller queries with a (rank-plan hplani hranki) pattern,

the function body of the above de�nition is called with plan and rank bound to the hplani

and hranki arguments respectively. If plan-p accepts hplani, the function will compute

a list of relevant clauses and invoke matchb to match the pattern against this list. Only

relevant clauses that match the pattern are returned to the search controller.

Actually, matchb does not return a list of clauses. It returns lists of variable binding

lists. Each variable binding list corresponds to the results of a match between the pattern

and a clause that would have been returned. This observation can be used to optimize a

�ltering clause. For example, the above clause can be replaced with:

(define (clause (rank-plan plan rank))

(when (plan-p plan)

(matchb rank `(,(rank3 plan)))))

5.7 Example Controller: bf-mimic

The routines sc-control and sc-show call a user speci�ed function to de�ne the controller.

This function takes a problem description as its only argument. This allows the creation

of problem speci�c controllers. Since the controller de�ned by the function bf-mimic is

problem independent, the �rst argument is ignored here.

(defun bf-mimic (prob)

(declare (ignore prob))

(reset-controller)

(define (scr select-ranked)

:when '((:node $p $r) (rank-plan $p $n))

:effect '(:rank :node $n $p))

(define (scr select-threats)

:when '((:current :node $n)

17

(:flaw $g1)

(threat $n $g1 $l $t))

:effect '(:rank :flaw -1 $g1))

(define (clause (rank-plan p n))

(bound! 'rank-plan p)

(when (plan-p p)

(matchb n (list (rank3 p))))))

This function starts by initializing the ucpop controller using the function reset-controller.

At this point the controller has no rules in its production system. When a search control

rule is de�ned, it is immediately inserted into the controller.

The purpose of the rule select-ranked is to rank plans prior to their insertion into

ucpop�s priority queue. It ultimately controls the order in which ucpop visits partial plans

in its search space. Similarly the select-threats rule directs ucpop to repair unsafety

conditions before considering open conditions. For more examples of rule de�nitions, see

the �le controllers.lisp.

Finally, bf-mimic de�nes a �ltering clause to assist the select-ranked rule in comput-

ing a ranking value for a partial plan. This value is computed by the function rank3 which

is the domain independent ranking function used by bf-control. This �ltering clause is

functionally identical to the one mentioned previously, but it uses bound! to test for errors.

The function bound! is similar to a lisp assert. If any of its arguments are variablized

patterns, then it stops all planning and ags an error.

5.8 Debugging a Search Controller

In order to facilitate debugging a search controller there exist the routines trace-scr and

untrace-scr. They are used to trace the use of speci�c rules and clauses, and untrace

respectively. Example invocations appear below.

(trace-scr 'select-threats)

(untrace-scr)

Another useful pair of routines are profile and show-profile. The �rst turns on

production pro�ling, and the second display pro�les and turns production pro�ling o�. A

pro�le displays how often each rule was triggered and how often it �red. The invocations

are:

(profile)

(show-profile)

6 Primitive ucpop Calls

While casual users will be happy to use the problem-oriented interface to ucpop which was

described in section 3, many users will desire more control over the planner. This section

shows how.

18

6.1 Switches

is this implemented? *ord-constrain-on-confront* with default value of NIL. When

true, DISABLE introduces ordering constraints S

prod

< S

threat

< S

consume

when the threat

is resolved via confrontation.

is this implemented? *positive-threats* (default NIL). When true, causes ucpop

to recognize a step as a threat when the step provides redudant causal support for a con-

sumer. When the switch is NIL then steps are threats only when the e�ect un�es with the

negation of the link's label.

There are several global variables used to control ucpop. For instance, the variable

search-limit was already mentioned in section 3.3. Some other important variables

are *templates*, *axioms, and *facts* which contain the operators, axioms, and facts

of the domain. These variables are reset with the function reset-domain which takes no

arguments. Each call to define with type arguments operator, axiom, or fact adds an

entry to one of these variables.

The variable *verbose* is used to control how plan and stat objects are printed. Set

it to T and the objects will be displayed in all their glory. By default it is set to nil and

the routines display-plan and display-stat can be used to see the details of the objects

which are especially interesting.

The variable *d-sep* is used to control the de�nition of an unsafety condition. When it

is set to nil, all steps that can a�ect a link are reported as unsafety conditions. Otherwise,

unsafety conditions only occur when a step a�ects a link without the addition of binding

constraints. See [?] for a more detailed explanation of this strategy.

6.2 Calling the Planner

The basic call to ucpop is through the function plan which takes two required and two

optional keyword arguments:

� initial This is a list of terms describing the initial conditions of the planning prob-

lem. Both true and false (i.e., (not : : : terms are ok, but since all predicates are

assumed initially false unless explicitly stated to be true, the use of not is unnec-

essary. domains.lisp contains many examples using not, but this is for historical

reasons.

� goals This is the GD (goal description) for the planning problem.

� rank-fun This optional keyword argument is a function which must take a single

argument (a plan structure) and returns a number that indicates how good the plan

is. Low numbers denote good plans. The default value is #'rank3 which returns the

sums of the number of plan steps, the number of open conditions, and the number of

threatened links.

� search-fun This optional keyword argument is a search control function (default

value #'bestf-search) which is expected to take �ve arguments: an initial state, a

successors function, a goal test function, a ranking function and a limit on the states

it will explore.

19

The search function should return three values, the best plan found, and two statistics:

the average branching factor and the number of generated but unexplored states.

plan returns two values, the best plan found and a statistics object which has more

information than most people desire to look at.

6.3 Bugs and Versions

If you ever �nd a bug or have a suggestion regarding ucpop please send electronic mail to

internet address bug-ucpop@cs.washington.edu. Please be sure to include the software

version you are running which can be determined by evaluating the symbol *version*. In

addition, please describe the type of machine you are running on and the speci�c imple-

mentation of Common Lisp (also with version) being used. If possible, include a trace of

the bug in action. We aim to continue improving the ucpop code.

7 ucpop Internals

In this section we describe the main ucpop data structures which are used to represent

plans, individual actions (i.e., plan steps), action e�ects, causal links, open preconditions,

and threatened (i.e., \unsafe") links.

7.1 Plans

The main data structure in ucpop is a defstruct called plan which has the following �elds:

� steps This is a list of p-step structures which encode the basic actions in the plan.

� links A list of causal link structures.

� flaws A list of unsafe and openc structures denoting threatened links and unsup-

ported step preconditions.

� orderingA list of lists. Each sublist is of the form (ID1 ID2) where the two identi�ers

refer to steps in the plan and the �rst one is being constrained to precede the second.

� foralls A list of forall structures. Each structure represents a previously processed

universal goal and has to be checked whenever a new step is added to a plan.

� bindings The binding constraints are represented as a list of variable codesignation

sets.

� high-step This is an integer denoting the identi�er of the step last added.

� other This is an association list for search control and debugging purposes. You

might wish to put stu� here as well.

20

7.2 Plan Steps

Plan steps are represented as p-step structures with the following �elds:

� ID An integer step number.

� action The name of the action | a formula such as (puton ?X ?Y) .

� parms The parameters for the step | a list of variables.

� precond Preconditions like (clear ?X).

� add These are the effects asserted by the step.

� cache A cache of existing steps.

7.3 E�ects

An effect is represented with a structure with four �elds:

� ID An integer denoting the identi�er of the step that owns this e�ect.

� forall A list of variables that are universal in the e�ect.

� precond The preconditions of the e�ect (a GD, i.e., a goal description).

� add A list of terms that the e�ect adds.

7.4 Causal Links

Each link structure has three �elds:

� id1 The identi�er of the producing step.

� condition The term being supported.

� id2 The identi�er of the consuming step.

7.5 Open Conditions

Preconditions which have yet to be supported with a causal link are represented with openc

structures, each of which have two �elds:

� condition The open precondition itself.

� id Identi�er of the step whose precondition needs to be supported.

21

7.6 Threatened Links

Causal links which are threatened by a third step are represented with structures called

unsafes. These structures have three �elds:

� link An identi�er for the link being threatened.

� clobber-effect The effect which is doing the threatening.

� clobber-condition The added condition (part of the e�ect) which causes the threat.

7.7 Forall Goals

The equation (forall (block ?x) (clear ?x)) forms an example of a universal precondi-

tion. (block ?x) is called the generator and (clear ?x) is the condition. ucpop maintains

completeness by recording such preconditions in forall structures, each of which has four

�elds:

� ID The identi�er of the step with a universal precondition.

� vars A list of the universal variables in the goal.

� type The generator of the universal precondition.

� condition The goal required for each set of variable binding constraints that makes

the generator true.

22

