
Protocol Compilation:

High-Performance Communication for Parallel Programs

by

Edward W. Felten

A dissertation submitted in partial ful�llment of

the requirements for the degree of

Doctor of Philosophy

University of Washington

1993

Approved by

(Co-Chairperson of Supervisory Committee)

(Co-Chairperson of Supervisory Committee)

Program Authorized

to O�er Degree

Date

In presenting this dissertation in partial ful�llment of the requirements for the Doc-

toral degree at the University of Washington, I agree that the Library shall make

its copies freely available for inspection. I further agree that extensive copying of

this dissertation is allowable only for scholarly purposes, consistent with \fair use"

as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of

this dissertation may be referred to University Micro�lms, 1490 Eisenhower Place,

P.O. Box 975, Ann Arbor, MI 48106, to whom the author has granted \the right

to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed

copies of the manuscript made from microform."

Signature

Date

University of Washington

Abstract

Protocol Compilation:

High-Performance Communication for Parallel Programs

by Edward W. Felten

Co-Chairpersons of Supervisory Committee: Professor John Zahorjan

Professor Edward D. Lazowska

Department of Computer Science

and Engineering

One obstacle to the use of distributed-memorymulticomputers has been the disap-

pointing performance of communication primitives. Although the hardware is capable

of moving data very quickly, the software has been unable to exploit this potential.

The main cause of this \communication gap" is protocol overhead. In addition

to moving the application's data between processors, communication systems must

engage in other communication and synchronization to ensure correct execution. Pro-

tocol overhead is an inherent attribute of parallel computation | it occurs on all

machines, under all programming models.

To reduce the e�ect of protocol overhead, I advocate the use of tailored protocols

| communication protocols custom-designed to work with a particular application

program. A tailored protocol takes advantage of advance knowledge about the behav-

ior of the application program to \slim down" the protocol. Unfortunately, designing

tailored protocols by hand is very di�cult.

The process of designing tailored protocols can be automated. A protocol compiler

is a tool that takes an application program as input, and produces as output a tailored

protocol for that program. This tailored protocol is plug-compatible with the existing

message-passing library, so its use is transparent to the application program.

The bulk of this dissertation discusses the principles underlying the design of a

protocol compiler, including the forms of program analysis the protocol compilermust

carry out. In addition to this general discussion, I describe the details of Parachute,

a working prototype I have constructed. Parachute generates tailored protocols for

data-parallel programs running on the Intel series of multicomputers.

Performance models predict, and experiments with Parachute on real applications

con�rm, that using a protocol compiler leads to a large decrease in communication

time. Experiments indicate that Parachute, despite several engineering compromises

in its design, cuts communication time by 17%. Reductions in overall application

running time range from 0% to 20%, with an average reduction of 7.5%. More

aggressive implementation, or new hardware, will lead to even larger speedups.

Table of Contents

List of Figures v

List of Tables vii

Chapter 1: Introduction 1

1.1 Sources of the Communication Gap : : : : : : : : : : : : : : : : : : : 3

1.1.1 Protection : 3

1.1.2 Data Movement : 6

1.1.3 Reducing Protocol Overhead : : : : : : : : : : : : : : : : : : : 7

1.2 Contributions of this Dissertation : 8

1.3 Organization : 8

Chapter 2: Strategies for Supporting Communication 10

2.1 Communication Issues : 11

2.1.1 The Simplest Protocol : 11

2.1.2 Dealing with Limited Storage : : : : : : : : : : : : : : : : : : 12

2.2 Parallel Programming Models : 12

2.2.1 Explicit vs. Implicit Communication : : : : : : : : : : : : : : 13

2.2.2 Other Models: Explicit CommunicationWithout Message-Passing 15

2.3 The Inevitability of Protocol Overhead : : : : : : : : : : : : : : : : : 18

2.3.1 Protocol Overhead in Cache-Coherent Shared-Memory Systems 19

2.3.2 Protocol Overhead in Remote-Access NUMA Systems : : : : : 20

2.3.3 Protocol Overhead in Linda : : : : : : : : : : : : : : : : : : : 20

2.4 Message-Passing : 21

2.4.1 Message-Passing Hardware : 21

2.4.2 Message-Passing Software : 23

2.5 Summary : 31

Chapter 3: Improving Message-Passing Protocols 32

3.1 Design Choices : 33

3.2 Designing Tailored Protocols by Hand : : : : : : : : : : : : : : : : : 34

3.2.1 A Simple Example : 34

3.2.2 Extending the Example : 37

3.3 Protocol Compilers : 37

3.4 Summary : 39

Chapter 4: Compiling Tailored Protocols 40

4.1 Designing a Protocol Compiler : 42

4.2 Data-Parallel Programs and Languages : : : : : : : : : : : : : : : : : 43

4.2.1 Limits of the Data-Parallel Model : : : : : : : : : : : : : : : : 44

4.3 Representing Communication Behavior : : : : : : : : : : : : : : : : : 45

4.3.1 Representing Behavior in Parachute : : : : : : : : : : : : : : : 45

4.3.2 Communication Patterns : 46

4.3.3 Describing Communication Patterns Formally : : : : : : : : : 47

4.3.4 Design Rationale for the Description Language : : : : : : : : : 50

4.3.5 Communication Patterns in the Context of the Entire Program 52

4.3.6 Recognizing Communication Patterns : : : : : : : : : : : : : : 53

4.4 Summary : 54

Chapter 5: Program Analysis Issues in Protocol Compiler Design 55

5.1 Nondeterminism : 56

5.1.1 Making a Virtue of Nondeterminism : : : : : : : : : : : : : : 57

5.1.2 Retagging : 58

5.1.3 Retagging in Parachute : 60

5.1.4 Message Matching : 61

5.1.5 Summary : 65

5.2 Message-Passing Modes : 66

5.2.1 How Parachute Chooses Message Modes : : : : : : : : : : : : 67

5.2.2 Synchronizing Mode vs. Receiver-Bu�ered Mode : : : : : : : : 69

5.2.3 Bu�ering and Deadlock : 72

ii

5.2.4 Bu�ering and Performance : 77

5.2.5 Summary : 78

5.3 Bu�er Allocation : 79

5.3.1 Static Allocation of Bu�ers : : : : : : : : : : : : : : : : : : : 80

5.3.2 Bu�er Allocation in Parachute : : : : : : : : : : : : : : : : : : 83

5.3.3 Meeting the Space Limit : 85

5.3.4 Summary : 85

5.4 Complexity of Parachute's Algorithms : : : : : : : : : : : : : : : : : 86

5.4.1 Message Matching : 86

5.4.2 Bu�ering Analysis : 87

5.4.3 Bu�er Allocation : 88

5.4.4 Cycling to Satisfy the Space Bound : : : : : : : : : : : : : : : 88

5.5 Summary : 89

Chapter 6: Parachute: The Prototype 90

6.1 Using NX : 90

6.2 User's View of Parachute : 91

6.2.1 The Communication Description File : : : : : : : : : : : : : : 91

6.3 Parachute at Runtime : 94

6.3.1 Synchronization : 94

6.3.2 The State Machine : 94

6.3.3 The Library's Data Structures : : : : : : : : : : : : : : : : : : 95

6.3.4 Moving Data Without a Protocol : : : : : : : : : : : : : : : : 96

6.3.5 Handling Synchronizing-Mode Messages : : : : : : : : : : : : 96

6.3.6 Handling Receiver-Bu�ered Messages : : : : : : : : : : : : : : 97

Chapter 7: Performance 98

7.1 Fraction of Time Spent Communicating : : : : : : : : : : : : : : : : : 101

7.2 Magnitude of Protocol Overhead : 101

7.2.1 Modeling Protocol Overhead : : : : : : : : : : : : : : : : : : : 102

7.3 Reduction in Protocol Overhead : 106

7.3.1 Applying the Model to the Macro-Benchmarks : : : : : : : : : 108

iii

7.4 Performance of Parachute : 108

7.4.1 Protocol Compiler Statistics : : : : : : : : : : : : : : : : : : : 112

7.4.2 E�ectiveness of the Protocol Compiler's Algorithms : : : : : : 113

7.5 Summary : 117

Chapter 8: Conclusions 118

8.1 Related Work : 118

8.1.1 Data Movement : 118

8.1.2 Compiling to Message-Passing Code : : : : : : : : : : : : : : : 119

8.1.3 Optimizing Transformations for Message-Passing Code : : : : 119

8.1.4 E�cient Protocol Implementation Techniques : : : : : : : : : 119

8.1.5 Protocol Veri�cation : 120

8.2 Future Work : 120

8.2.1 Porting to Other Architectures : : : : : : : : : : : : : : : : : 120

8.2.2 Extending to Wider Classes of Programs : : : : : : : : : : : : 122

8.2.3 Runtime Compilation : 123

8.2.4 Collective Communications as First-Class Operations : : : : : 123

8.2.5 Improved Optimization : 124

8.3 Conclusion : 126

Bibliography 127

Appendix A: Syntax of the Communication Description Language 138

Appendix B: NP -Completeness Proof for the Bu�ering-Mode Prob-

lem 140

Appendix C: Pseudocode for Communication Operations in the Run-

time Library 145

iv

List of Figures

1.1 The communication gap. : 2

2.1 A data-parallel shared-memory program. : : : : : : : : : : : : : : : : 17

2.2 The program of �gure 2.1, translated to message-passing form. : : : : 17

2.3 Basic MP0 communication calls. : 25

2.4 A program that requires bu�ering. : : : : : : : : : : : : : : : : : : : 25

2.5 The pre-reservation protocol. : 29

3.1 An example program fragment. : 34

3.2 A tailored protocol for the program of �gure 3.1. : : : : : : : : : : : : 35

3.3 Another tailored protocol for the program of �gure 3.1. : : : : : : : : 35

3.4 Another tailored protocol for the program of �gure 3.1. : : : : : : : : 36

4.1 How a protocol compiler works. : 41

4.2 Pseudocode for a parallel FFT. : 47

4.3 Spacetime diagram of the FFT communication pattern. : : : : : : : : 48

4.4 Pattern description for a four-process FFT. : : : : : : : : : : : : : : : 51

5.1 A nondeterministic program. : 56

5.2 A deterministic program. : 57

5.3 A retagged program. : 58

5.4 Deadlock results from careless retagging. : : : : : : : : : : : : : : : : 59

5.5 Another nondeterministic program. : : : : : : : : : : : : : : : : : : : 59

5.6 The program of �gure 5.5, after retagging. : : : : : : : : : : : : : : : 60

5.7 Initial state of the message matching algorithm. : : : : : : : : : : : : 64

5.8 A state of the message matching algorithm. : : : : : : : : : : : : : : 64

5.9 A state of the message matching algorithm. : : : : : : : : : : : : : : 64

5.10 A state of the message matching algorithm. : : : : : : : : : : : : : : 65

5.11 Delivery of a message in blast mode. : : : : : : : : : : : : : : : : : : 68

v

5.12 Delivery of a message in synchronizing mode. : : : : : : : : : : : : : 70

5.13 Delivery of a message in receiver-bu�ered mode. : : : : : : : : : : : : 71

5.14 An example communication pattern. : : : : : : : : : : : : : : : : : : 73

5.15 An example event-ordering graph. : 74

5.16 Extended event-ordering graph. : 75

5.17 Extended event-ordering graph. : 76

5.18 A program that might use unbounded bu�ers. : : : : : : : : : : : : : 80

5.19 A program that might require unbounded bu�ers. : : : : : : : : : : : 81

5.20 An example bu�er allocation problem and its solution : : : : : : : : : 84

6.1 User's view of Parachute. : 92

7.1 Message latency for three versions of the pong program. : : : : : : : : 103

7.2 Message latency for three versions of the pong program. : : : : : : : : 104

7.3 Percentage of communication time spent in protocol overhead. : : : : 105

7.4 Predicted reduction in communication time. : : : : : : : : : : : : : : 107

C.1 Pseudocode for the beginSend operation. : : : : : : : : : : : : : : : : 146

C.2 Pseudocode for the beginRecv operation. : : : : : : : : : : : : : : : : 147

C.3 Pseudocode for the endSend operation. : : : : : : : : : : : : : : : : : 148

C.4 Pseudocode for the endRecv operation. : : : : : : : : : : : : : : : : : 149

C.5 Pseudocode for the beginPattern operation. : : : : : : : : : : : : : : 149

C.6 Pseudocode for the endPattern operation. : : : : : : : : : : : : : : : 150

C.7 Pseudocode for the initPrototype operation. : : : : : : : : : : : : : 150

vi

List of Tables

7.1 Characteristics of the macro-benchmarks. : : : : : : : : : : : : : : : : 100

7.2 Communication statistics for the macro-benchmarks. : : : : : : : : : 100

7.3 Percentage of time spent in communication. : : : : : : : : : : : : : : 101

7.4 Protocol overhead, for the macro-benchmarks. : : : : : : : : : : : : : 106

7.5 Predicted e�ect on communication performance. : : : : : : : : : : : : 109

7.6 Performance of Parachute protocols. : : : : : : : : : : : : : : : : : : : 110

7.7 Protocol compiler running time and statistics. : : : : : : : : : : : : : 111

7.8 Protocol compiler running time and statistics. : : : : : : : : : : : : : 112

7.9 Distribution of message modes. : 113

7.10 E�ectiveness of Parachute's bu�ering-mode analysis algorithm. : : : : 115

7.11 E�ectiveness of Parachute's bu�er allocation algorithm. : : : : : : : : 116

vii

Acknowledgments

I'd like to thank everyone who has helped make the UW a uniquely fun and

productive place for me to learn. The faculty, and many of my fellow students,

took the time to teach me both inside and outside the classroom. The friendly

atmosphere was maintained by a little e�ort from everyone. I also want to

thank the technical and administrative sta�, who we often take for granted

because everything runs so smoothly. Frankye Jones deserves a special mention

for her ability to solve problems even faster than Student Accounts can cause

them.

I am especially grateful to my advisors, Ed Lazowska and John Zahorjan,

for teaching me not only how to do research, but how to communicate and

how to be a professional computer scientist. Having two advisors is more than

twice as good as having one!

Thanks are due to Battelle Paci�c Northwest Laboratory for providing

time on their iPSC/860; the experiments described in this dissertation were

all performed on their machine. Intel Supercomputer Systems Division and the

Caltech Concurrent Supercomputing Facility also provided me with computer

time, which was useful in earlier stages of this research. On the software side,

I would like to thank Matt Rosing for providing me access to his extensions

to the iPSC/860 operating system, and Roy Williams and Sharon Brunett for

helping me �nd application programs.

My research has bene�ted from conversations with many people. Among

them are Tom Anderson, Scott Berryman, Brian Bershad, Guy Blelloch, Gae-

tano Borriello, Je� Chase, David Culler, Jamie Frankel, David Keppel, Alex

Klaiber, Richard Ladner, Jim Larus, Rik Little�eld, Steve Otto, Paul Pierce,

Matt Rosing, Joel Saltz, Burton Smith, Larry Snyder, Chandu Thekkath,

Martin Tompa, David Walker, and Kathy Yelick.

viii

I would like to thank those who provided the money to support me through

graduate school. The Mercury Seven Foundation and AT&T Bell Laboratories

both provided generous fellowships.

Finally, I'd like to thank my family, for the support they have given me

throughout the years of my education. As always, my deepest gratitude is to

Laura, for her constant love, advice, and encouragement.

ix

Chapter 1

INTRODUCTION

He who would do good to another, must do it in minute particulars

General good is the plea of the scoundrel, hypocrite and
atterer:

For Art and Science cannot exist but in minutely organized particulars.

| William Blake, Jerusalem

Massively parallel computers are becoming the tool of choice in attacking large,

\grand challenge" problems in science and engineering. In contrast to conventional

supercomputers, massively parallel machines can take advantage of the rapidly in-

creasing speed of mass-produced microprocessors. The crucial question is whether

massively parallel machines can continue to scale successfully to solve larger prob-

lems on larger machines.

Communication performance is one factor that threatens to limit scalability. Al-

though communication hardware is capable of moving data quickly between the pro-

cessing nodes of a parallel machine, applications are unable to achieve communication

performance matching the hardware's capacity. I call this situation the communica-

tion gap.

Figure 1.1 shows the communication gap on the Intel DELTA multicomputer. The

hardware can transmit a packet between processors with a latency of less than one

microsecond, but even a cleverly-written user-level program sees a 67 microsecond

latency. The communication gap is a factor of seventy for this machine; large gaps

also exist for other vendors' systems.

The communication gap a�ects programmers in two important ways. First, it

limits the granularity of programs that can run successfully | programs whose com-

putational grainsize is larger than the hardware latency but smaller than the observed

2

Hardware Software

la
te

nc
y

[m
ic

ro
se

co
nd

s]

0

20

40

60

80

Figure 1.1: The communication gap.

latency see their performance destroyed by the communication gap. Second, it de-

grades the performance of even coarse-grained programs, forcing the programmer or

compiler to optimize these programs aggressively. This has the e�ect of making the

parallel machine even harder to program than it already is.

One key to unlocking the performance potential of massively parallel computers

is understanding how the communication gap arises and what can be done to nar-

row it. This goal has driven my research, and motivates the work described in this

dissertation. While others have addressed some aspects of the problem, I will argue

that there is one aspect, protocol overhead, that has not been addressed. My work

focuses on methods for reducing protocol overhead.

3

1.1 Sources of the Communication Gap

The communication gap is caused by three factors:

� protection boundaries: Communication is often provided as a service of the

operating system kernel. The need to cross between user-level and kernel-level

makes communication more expensive.

� data movement: The interface that the communication hardware o�ers may not

match the software's needs. The resulting semantic gap adds to software costs.

� protocol overhead: Communication does more than simplymove data from place

to place; it must also use some kind of protocol to ensure that data arrives at

the right time and place. The overhead of this protocol in
ates communication

costs.

To dramatically improve the performance of communication primitives, we must �nd

ways to reduce each of these three costs.

In the following subsections, I discuss each of these factors in turn. My conclusion

is that while the �rst two have been addressed by recent work of others, the third

has been largely ignored. It is this third factor, protocol overhead, that is the topic

of this dissertation.

1.1.1 Protection

Like traditional uniprocessor operating systems, multicomputer operating systems

have two main responsibilities: protecting jobs from each other, and managing the

allocation of shared resources to jobs. In the context of communication, the system

must ensure that

� user-level processes can communicate directly only with other processes with

within the same job, and

� user-level processes cannot conspire to monopolize the shared communication

network.

4

The usual way of achieving these guarantees is to make communication a service

of the operating system kernel. Since all communication operations are protected

operations, the kernel can ensure that user-level processes play by the rules.

One problem with putting communication in the kernel is that crossing protec-

tion boundaries is costly [Anderson et al. 92, Anderson et al. 91]. There are several

reasons for this:

� context switch costs: Crossing into the kernel requires that registers be saved

and restored. It also generally causes some cache and translation-bu�er misses,

due to a change in locality.

� lack of trust: The kernel must be especially careful not to corrupt the system's

state. As a result, the kernel must check parameters to system calls, to make

sure they are legal, that pointers point to legally accessible memory, and so on.

� �xed interface: The interface at the user-kernel boundary must satisfy a wide

variety of clients. In addition, this interface is very di�cult to change, so appli-

cations are often required to bridge a semantic gap between the functionality

they want and the functionality that the interface actually provides.

To eliminate the cost of crossing protection boundaries, we must eliminate the need

to cross boundaries. We must allow application processes to communicate directly

with each other, without kernel intervention, but without sacri�cing protection.

Safe, User-Level Communication

The solution to this problem is to use carefully designed hardware support, to make

sure that applications can perform only safe, legal actions. This problem can be solved

by using a combination of �ve techniques. The Thinking Machines CM-5 employs all

but the last of these techniques. The �ve techniques are:

� Divide the machine into partitions. The machine must be divisible into par-

titions, where a partition is a set of nodes and the network connecting them.

Partitions have the property that sending a message between two nodes in the

same partition uses only network channels within that partition; this ensures

that mutual deadlock between applications cannot occur. Partitions should be

changeable in software, but this can acceptably be a heavy-weight operation.

5

� Validate message destinations in hardware. The hardware must check the des-

tination of each message, to ensure that it is being sent to a processor in the

same partition.

� Use strict gang scheduling. Each parallel job must run in one partition, but

several jobs may be running in the same partition, with the operating system

time-slicing the partition's CPUs between them. To guarantee protection, we

must use strict gang scheduling in each partition; this means that all nodes in

the partition run the same job at the same time | nodes in a partition must

all switch jobs at the same time. This prevents a message sent by one job from

being delivered to another job in the same partition.

� Support saving and restoring the network state. When a partition context-

switches from one job to another, we need some way of saving the state of the

network. Generally, some messages (and partial messages) from the switched-

out job will be in the network at the time of the context-switch, and these mes-

sages must be saved somewhere so the network is clear for the newly switched-in

job. Later, when the original job is rescheduled, the saved network state must

be restored.

The CM-5 saves network state by putting a region of the network in \all fall

down" (AFD) mode. AFD mode causes all messages to be delivered to the

nearest node, rather than to their destinations. (This allows messages to be

cleared very quickly from the network, without making any node handle more

than a few messages.) Nodes receiving these messages save them in memory,

and then resend them when the job is rescheduled.

AFD mode relies on two assumptions about the CM-5 network: message pack-

ets are limited to 20 bytes, and in-order delivery of messages is not guaranteed

1

.

Both of these assumptions may be false for other hardware models, so we can-

not always use AFD mode. However, it is not hard to design other hardware

mechanisms that allow network state to be saved and restored.

1

In-order delivery means that messages from a given sender to a given receiver are received in the

same order in which they were sent.

6

� Provide a separate logical communication network for the kernel. The machine

runs a general-purpose operating system, so the operating system kernel might

have to communicate at any time. For example, the kernel might need to service

a page fault, or receive the result of an input/output operation, or coordinate a

context switch between jobs. The kernel must always be able to communicate,

regardless of how application programs use the network.

The only way to provide this guarantee is to have a separate logical network for

the kernel. Each node must have two network interfaces, one for user-level pro-

grams, and one reserved for the kernel. Fortunately, we needn't implement two

separate physical networks | the two logical networks can be multiplexed over

a single physical network, using virtual channels [Dally & Seitz 87, Dally 92] as

in the J-machine [Dally 90].

The CM-5 nearly satis�es these requirements. Its only de�ciency is that it does

not have a separate network for the kernel. However, the CM-5 can o�er user-level

communication if the operating system is slightly restricted.

While support for user-level communication has not yet been adopted by multi-

computer vendors, the clear advantages of user-level communication will drive them

to adopt this technology. I will assume that user-level communication will �nd its way

into practice soon, and thus that removing the cost of crossing protection boundaries

is a solved problem.

1.1.2 Data Movement

The second cause of the communication gap is ine�cient low-level movement of hard-

ware data packets between processors. Data can be moved between processors by

manipulating the hardware directly, but adding a thin layer of abstraction above

the hardware allows a simpler and more portable interface. Several e�cient data

movement systems have been devised.

The best-known such system is Active Messages [von Eicken et al. 92]. An active

message is a small packet whose �rst word contains a pointer to a \handler" procedure

that is invoked when the packet arrives at the destination processor. The handler

is responsible for incorporating the packet's data into the ongoing computation on

the receiving processor. The handler must complete promptly, and thus is not always

7

allowed to perform certain potentially blocking operations, such as sending a message.

Both interrupt-based and polling versions of active messages exist; the polling version

is most often used, but it requires the application program to actively check for

incoming packets.

Another common idea in data movement packages is supporting read and write

operations on remote processors' memory. This was originally proposed by Spector,

who provided a microcoded implementation on networked workstations [Spector 82].

A later version of the same idea appears as part of the Active Messages system.

Thekkath [Thekkath et al. 93] has proposed a general remote-memory-operation sys-

tem suitable for multicomputers or for networked workstations.

The forthcoming Cray T3D system supports a NUMAmodel, in which each mem-

ory location is attached to one processor, but processors can directly access each

other's memory. This is one form of hardware support for data movement.

Finally, some machines have block-copy hardware that allows data to be moved

directly between the memories of di�erent nodes. This hardware can be used to

provide fast data movement.

There are many suggested mechanisms for e�cient data movement. Although

the tradeo�s among these mechanisms are not yet clearly understood, the competing

mechanisms are �nding their way into practice. As in the case of user-level commu-

nication, we can assume that e�cient data-movement mechanisms will be available

soon, and hence treat this as a solved problem.

1.1.3 Reducing Protocol Overhead

The third source of the communication gap is protocol overhead. Reducing protocol

overhead is the main focus of my work.

Protocol overhead is the cost induced by the communication protocol that man-

ages the movement of data between processors. The protocol is responsible for ensur-

ing that data is delivered to the application program at the correct time; consequently,

the protocol performs bu�ering and software
ow control. Later chapters will discuss

in more detail why a protocol is necessary and how typical protocols work.

To reduce protocol overhead, I advocate the use of tailored protocols, which are

specially designed to �t the behavior of a particular application program. A tailored

protocol is correct and fast when used with the application program it was designed

8

for, but might be slow, or even incorrect, if used with other applications. By taking

advantage of what is known about an application's behavior, a tailored protocol can

take shortcuts that improve performance.

Designing and verifying tailored protocols is a di�cult process. Rather than

requiring the programmer to design a tailored protocol, I automate the process by

introducing a tool called a protocol compiler. The protocol compiler accepts as input

a description of the application program's communication behavior, and produces as

output a program that implements a tailored protocol. Using a protocol compiler

allows the programmer to reap the bene�ts of tailored protocols, without the work

required to design them.

The bulk of this dissertation is about how to construct a protocol compiler, and

about the performance improvements it a�ords, as indicated by experiments with

Parachute, a prototype protocol compiler that I have constructed.

1.2 Contributions of this Dissertation

This dissertation makes the following contributions:

� It identi�es protocol overhead as a ubiquitous performance problem in parallel

computing.

� It suggests the use of tailored protocols as a means of reducing protocol over-

head.

� It elucidates the general issues underlying the design of protocol compilers.

� It demonstrates the viability of the protocol compiler concept through the con-

struction of a working prototype.

� It analyzes the performance bene�ts of using a protocol compiler, both through

general modeling, and through experiments with the prototype.

1.3 Organization

The remainder of this dissertation is organized as follows. Chapter 2 discusses gen-

eral issues surrounding communication in various programming models, including

9

the hardware and software of message-passing machines, and concludes by recom-

mending the use of tailored protocols. Chapter 3 discusses the choices available in

designing tailored protocols, and introduces protocol compilers. In Chapter 4 I discuss

data-parallel programs and how the protocol compiler can represent their behavior.

Chapter 5 discusses three important issues in the protocol compiler's analysis, and

how Parachute, my prototype, addresses them. Chapter 6 presents further details of

Parachute. Chapter 7 evaluates the performance of the protocol compiler and the

protocols it generates. Finally, Chapter 8 summarizes my results, discusses related

research, and presents some ideas for future work.

Chapter 2

STRATEGIES FOR SUPPORTING COMMUNICATION

No, I had no problem communicating with Latin American heads of

state | though now I do wish I had paid more attention to Latin when

I was in high school.

| Dan Quayle

We can think of the execution of a parallel program as consisting of two com-

ponents: local computation and communication. Local computation refers to the

normal processing that takes place within each thread of control, while communica-

tion refers to the data movement and synchronization required to bind the threads

together into a parallel program. We already understand how to support local com-

putation | decades of using sequential machines have taught us how to do this very

e�ciently.

The same is not true of communication. Although existing operating systems and

distributed systems support interprocess communication, these systems use mecha-

nisms that are better suited to sequential and distributed computation than to the

kinds of communication that parallel programs do. Since parallel programs have

di�erent characteristics, they require di�erent kinds of support.

This chapter discusses the problem of how to support communication in parallel

programs. The chapter has three parts. First, I introduce some general issues, using

an abstract model of how parallel programs work. Next, I discuss the various parallel

programming models, and conclude that the choice among models is less clear-cut,

and for our purposes less important, than it initially appears to be. Third, for con-

creteness, I focus on the message-passing model, and discuss how it is supported on

current machines. This serves as context for the remainder of the dissertation. Al-

though the ideas in later chapters are discussed in the context of message-passing,

they apply to other models as well.

11

2.1 Communication Issues

I begin by introducing the general issues that make it di�cult to support communica-

tion e�ciently. Rather than getting bogged down in details of a speci�c programming

model or architectural model, this discussion will use a very high-level model. De-

tailed models will be discussed in later sections.

At a high level, a parallel program consists of a set of threads carrying out local

computations. From time to time, one thread produces a value that another thread

will use. Communication is simply the mechanism for getting such values from the

producing thread to the threads that will use them. (I leave aside for now the issue

of how the producer knows which threads will use the value.) A protocol is a strategy

for managing communication.

Clearly, a value cannot be used until it has been produced, so communication

implies a one-way synchronization between producer and consumer. The semantics

of the program imply that the consumer will wait for the producer. Thus, any protocol

must do at least two things: move the value from producer to consumer, and ensure

that the consumer waits for the value to be available. The cost of doing these two

things will be referred to as the essential cost of communication. Any additional

communication cost will be termed protocol overhead.

2.1.1 The Simplest Protocol

The simplest protocol possible is to associate each datum being communicated with

a unique piece of storage. When the consumer wants a piece of data, it simply waits

until the associated memory contains a value, and then retrieves it. The producer

communicates the value by putting it into storage, and then somehow causing that

storage to migrate to the consumer.

Unfortunately, this protocol is not practical. The reason is that it requires a

fresh piece of storage for each value that will be communicated. In a real system,

a limited amount of storage is available. Therefore, a realistic protocol must either

re-use storage, or avoid using it at all.

12

2.1.2 Dealing with Limited Storage

All realistic protocols su�er some protocol overhead. This overhead stems entirely

from the fact that storage is limited. Managing storage is the central di�culty in

designing a protocol.

There are two basic strategies for dealing with storage limits: re-using storage,

and avoiding the use of storage altogether. Each has its own drawbacks, and each

introduces its own kind of protocol overhead.

If storage is re-used, the protocol must do bookkeeping to keep track of which

storage locations can be recycled. (A used location can be recycled after the consumer

has retrieved its value.) In some cases, information about recyclable storage must be

kept consistent between the distributed threads; this requires extra communication.

The real problem with re-using storage is that it ultimately cannot prevent the

protocol from running out of storage. As the protocol runs, the amount of free

storage
uctuates; if it ever reaches zero, the protocol cannot rely on storage re-use

to continue. Thus, the storage re-use strategy is not su�cient by itself | the protocol

must be prepared to avoid using storage when none is available.

To avoid using storage altogether, the protocol must use a di�erent approach.

The producer and consumer must rendezvous, and pass the value directly between

them. The drawback of this scheme is that the producer might have to wait for the

rendezvous. (This is in addition to the consumer waiting for the value to be produced,

which is part of the essential cost.) The producer's waiting may harm performance,

or worse, it might even lead to deadlock.

No matter which strategy is used, some overhead will result, in
ating the cost of

communication. Regardless of the architectural model, protocol overhead is unavoid-

able.

2.2 Parallel Programming Models

We now turn to the choice among real parallel programming models. There are many

models to choose from, but no matter which one is chosen, we must face the same

issues in implementing communication, and we must accept protocol overhead in

some form.

13

2.2.1 Explicit vs. Implicit Communication

Traditionally, parallel machines have been divided into two classes: shared memory

and message-passing. Shared memory machines supported a single,
at, coherent,

shared address space in hardware, and were programmed by parallelizing Fortran

compilers, or by a model using shared variables, threads, and monitors. Message-

passing machines had physically distributed memory, did not support a single address

space in hardware, and were programmed with processes and message-passing. Since

there were two kinds of machines, and programming model was assumed to follow

directly from architecture, there were also two programming models.

Three recent trends are making the shared-memory/message-passing dichotomy

invalid. First, hardware designs are converging. The new generation of scalable

shared-memory machines [Lenoski et al. 92, Agarwal et al. 91] have physically dis-

tributed memory and point-to-point communication networks. These machines look

very much like the current generation of distributed-memory machines; the only dif-

ference is in how communication is caused. In the shared-memory machines, commu-

nication is an implicit result of references to the shared memory; the cache controller

hardware sends messages between processors to carry out a cache coherence protocol.

In the distributed-memory machines, messages are sent and received by software.

The second trend is toward increasingly sophisticated and varied parallel pro-

gramming languages and models. These include data-parallel languages like High

Performance Fortran [HPFF 93], C* [TMC 90], and Dino [Rosing 91]; shared virtual

memory systems such as Ivy [Li & Hudak 86], Munin [Carter et al. 91] and Mid-

way [Bershad et al. 93]; data
ow languages such as Id [Nikhil 88]; and stream-based

systems like Strand [Foster & Taylor 90] and PCN [Foster et al. 92]. These systems

have one thing in common: they provide the programmer with a single namespace for

variables, but they run reasonably on distributed-memory machines. These systems

demonstrate that the programmer can have the desirable features of shared memory,

while still using a message-passing machine. The hardware design does not determine

the programming model.

The third trend is the increasing realization that shared memory does not in-

sulate the programmer from worrying about data placement and the cost of data

movement. As CPUs become faster relative to the rest of the system, the cost of

cache misses increases, and programs that run e�ciently on older shared-memory

14

machines become ine�cient on new shared-memory machines. Indeed, several re-

searchers have observed that programs written in a message-passing style perform

better on shared-memory machines than programs written in the \native" shared-

memory style [LeBlanc 86, Byrd & Delagi 88, Lin & Snyder 90, Ngo & Snyder 92].

It is becoming increasingly clear that parallel programmers must face the same dif-

�cult issues whether they are programming shared-memory or distributed-memory

machines [Snyder 86, Anderson & Snyder 91, Markatos & LeBlanc 92].

In view of these trends, we must develop a more sophisticated understanding of the

tradeo� between shared memory and message-passing. The key issue underlying the

shared-memory/message-passing debate is whether or not the programmer explicitly

controls the layout and movement of data. Thus, the key tradeo� is between explicit

and implicit data movement.

We must also recognize that modern implementations are built in layers: com-

piled code, on top of runtime library, on top of operating system, on top of hardware.

Di�erent layers may have di�erent interfaces; layers close to the programmer o�er

more convenient interfaces, while layers far from the programmer o�er interfaces that

match the hardware well. Data movement must be explicit at the lowest level, since

the hardware must ship bits around to implement communication and synchroniza-

tion. If the programming language o�ers implicit data movement, some layer between

the language and the hardware must translate implicit to explicit movement. How,

and in what level, to perform this translation is one of the key questions in parallel

computing.

One important consequence of the convergence of shared memory and message-

passing systems is the recognition that in supporting parallel programs, we face many

of the same issues regardless of the hardware platform. Increasingly, the structure

of the application program, rather than the characteristics of the hardware, dictates

the programmer's implementation strategy.

An Example

The work of Hatcher and Quinn on compiling data-parallel programs illustrates the

complexity of implementation tradeo�s. Hatcher and Quinn developed two compilers

that translate a program written in a language called Dataparallel C into code exe-

cutable on a parallel machine [Hatcher & Quinn 91]. One compiler generates code for

15

a shared-memory machine [Quinn et al. 90], and one for a message-passing machine

[Hatcher et al. 91].

The programmer's interface, Dataparallel C, is identical on both platforms. Dat-

aparallel C provides the programmer with the abstraction of a single shared address

space for variables. Thus, the programmer gets the sharing model that he wants.

The two compilers perform slightly di�erent analysis and optimization, and the

resulting executions on the two machines are quite di�erent. Rather than simply em-

ulating one machine on the other, Hatcher and Quinn chose the appropriate execution

style for each machine.

On the shared-memory machine, the execution is carried out by a set of worker

threads, one per processor. Program variables are kept in a single region of shared

memory. Threads access these variables directly, and ensure proper synchronization

by performing barrier synchronizations. The main task of the compiler is determining

where these synchronizations should be placed.

On the message-passing machine, the execution is carried out by a set of worker

processes with separate address spaces. Program variables are either kept in one

process's address space, or replicated across all processes, at the compiler's discretion.

The compiler inserts calls to a message-passing library to carry out the necessary

communications. The compiler does not insert explicit synchronization operations,

since synchronization happens implicitly due to messages. The main task of the

compiler is determining where to place communication calls.

Depending on the structure of the application program and speci�cs of the ma-

chines' architectures, either the shared-memory machine or the message-passing ma-

chine might execute a particular program more e�ciently. The programmer can use

the same programming model, regardless of the underlying machine. The choice

between machines has become an implementation issue, like the choice between se-

quential machines.

2.2.2 Other Models: Explicit Communication Without Message-Passing

Some programming models allow programmers to express explicit data movement

without using message-passing. For example, the DINO language [Rosing et al. 90,

Rosing 91] o�ers primitives that read and write remote data structures.

Similarly, the Split-C system [Culler et al. 93] extends local C-language program-

16

ming with global pointers and global arrays. Global pointers specify an arbitrary

memory location, possibly located remotely. Global pointers are supported at the

language level; dereferencing a global pointer causes the appropriate remote-memory

fetch or store to be performed. Global arrays are simply arrays that are scattered

among the memories of all processors. (Split-C has other interesting features that

are not directly relevant to this discussion.)

Similar to Split-C is the MetaMP system [Otto & Wolfe 92]. MetaMP is currently

implemented as an awk-based preprocessor, but future implementations are expected

to use a full-
edged compiler [Otto 93].

Any of these three systems could be used to illustrate the issues raised by the

remote-access programming model. This explanation is based on Split-C because it

is the simplest of the three languages, and hence requires the smallest \explanatory

overhead".

Programs written in Split-C are amenable to the same kind of analysis and op-

timization that Hatcher and Quinn used. To illustrate this, consider the case of a

simple straight-line program written in Split-C, with remote-memory operations and

barrier synchronizations. This program can be translated to message-passing form

by carrying out the following steps:

1. Find all non-local data dependencies in the program: all values written by one

process and later read by another.

2. Turn each data dependency into a message. The process that generates the

value immediately sends the message, and the process that uses the value re-

ceives the message \just in time" when the value is needed. Each of these

messages is given a unique tag, so the sends and receives match up properly.

3. Remove the barrier synchronizations from the program, since they are no longer

needed to ensure correctness.

The resulting program uses pure message-passing, rather than shared-memory-style

operations. Note that, due to its use of \just in time" receives, the message-passing

model handles anti-dependencies and output-dependencies naturally, without any

special e�ort.

17

Process 0 Process 1

x[0] = f(0) x[1] = f(1)

Barrier Barrier

y[0] = x[1] y[1] = x[0]

z[0] = x[0]+y[0] z[1] = x[1]+y[1]

Figure 2.1: A data-parallel shared-memory program, written in a notation similar to

Split-C.

Process 0 Process 1

x[0] = f(0) x[1] = f(1)

send x[0] send x[1]

receive t

0

receive t

1

z[0] = x[0]+t

0

z[1] = x[1]+t

1

Figure 2.2: The program of �gure 2.1, translated to message-passing form.

18

Consider the pseudo-Split-C program shown in �gure 2.1. This program has two

nonlocal dependencies, carried across the barrier by the variables x[0] and x[1].

After �nding these dependencies, the compiler can transform the program into the

equivalent form shown in �gure 2.2. Each dependency has been turned into a message;

this makes the barrier redundant so it is removed.

At this point we may ask whether the message-passing version of the program is

more or less e�cient than the obvious remote-access implementation of the Split-C

program. On a shared-memory machine the shared-memory version will probably

run faster. However, on a distributed-memory machine, any implementation must

use messages to transmit the remotely-referenced data. The only question is what

protocol will be used to ensure that the messages satisfy the dependencies | that

the correct version of the shared variables are read or written at each point in the

program.

One possible protocol is the straightforward shared-memory-style implementation,

in which reading a shared variable causes an asynchronous fetch of remote data, and

proper synchronization is ensured by executing a barrier synchronization. However,

other protocols exist, and may be more e�cient in speci�c cases. Ideally, the best

protocol will be chosen for each particular situation.

The same implementation issues arise, whether message-passing or shared memory

is the initial programming model. In both cases, one can determine the necessary data

movement and synchronization constraints, and then choose a protocol to e�ciently

satisfy them.

2.3 The Inevitability of Protocol Overhead

Protocol overhead is not con�ned to any one programming model; it a�ects all pro-

gramming models. Protocol overhead cannot be avoided; it is a fact of life for parallel

programmers. We can hope only to reduce its e�ect.

The following subsections consider three common parallel programming models,

and point out the protocol overheads in one typical implementation of each model.

I will assume that the reader is generally familiar with each system. Section 2.4.2

discusses protocol overhead in message-passing programs.

19

2.3.1 Protocol Overhead in Cache-Coherent Shared-Memory Systems

The �rst example is the Stanford DASH multiprocessor [Lenoski et al. 92] running a

program that uses shared variables and locks. The DASH has physically distributed

memory for scalability; processors' views of memory are kept coherent by a directory-

based cache coherence protocol. (Although this discussion is based on the DASH, it

applies to other shared-memory architectures, including bus-based machines.)

Suppose some memory location is cached by two processors A and B. A writes

the memory location, producing a value. Later, the value is consumed by B when it

reads the memory location.

In this case, the only essential communication is the transmission of the written

value from A to B. In reality, much more communication takes place. When A

executes its write operation, it sends an invalidation message to B; this ensures that

A has the only valid copy of the location. B acknowledges the invalidation, and

A then writes the location. Later, when B reads the location, it �nds the location

invalid in its cache, so it sends a request message to A. Finally, A carries out the

essential communication by sending the new value of the location to B

1

.

Along with one message of essential communication came three messages of pro-

tocol overhead. Although one can attempt to hide the latency of this overhead by

using prefetching, this imposes new costs and does not change the fact that the extra

communication uses hardware resources. Furthermore, prefetching appears to be less

useful in parallel programs than was once believed [Tullsen & Eggers 93].

There is another source of protocol overhead hidden in the shared-memory im-

plementation. The program as described contains a data race, since there is no

guarantee that B actually reads the version written by A. Because the proces-

sors are asynchronous, the read might happen before the write. To avoid this,

some synchronization must take place between A's write and B's read. This syn-

chronization imposes additional communication, which also counts as protocol over-

head. Indeed, synchronization primitives can require a great deal of communication

[Anderson et al. 89, Mellor-Crummey & Scott 91].

At �rst glance, it might appear unfair to classify synchronization as overhead.

1

Because DASH uses release consistency [Gharachorloo et al. 90], some of these communications

might actually happen in parallel. However, even under release consistency, the latency and

bandwidth required are more than the essential communication alone demands.

20

However, synchronization is really just a way of compensating for the fact that the

same memory location is being used to store logically distinct values. By storing

multiple \versions" of each memory location, we could in principle avoid the need to

make the sender wait for the receiver [Feeley & Levy 92].

2.3.2 Protocol Overhead in Remote-Access NUMA Systems

The second example is a shared-memory system without caching. This is a system in

which each memory location is located with some processor, and processors can access

each other's memory directly. Examples of such NUMA (non-uniform memory access

time) machines include the BBN Butter
y, the Cray T3D, and the CM-5 running

Active Messages.

This case is very similar to the case of cache-coherent shared memory. As in the

cache-coherent case, NUMA programs must synchronize to ensure correct execution;

this synchronization imposes some overhead. Although NUMA systems do not ex-

perience the overhead of a cache coherence protocol, they do su�er from the cost of

making repeated references to remote data, rather than caching them locally.

2.3.3 Protocol Overhead in Linda

The third example is a multicomputer like the Intel DELTA, running the Linda coor-

dination language [Carriero & Gelernter 89, Gelernter & Carriero 92]. In the Linda

model, all communication is through a logically shared data structure called the tuple

space. Processes add tuples to the tuple space via the out primitive, and access and

remove existing tuples via the in and rd primitives.

The main e�ciency problem of Linda is that tuples are produced and consumed

anonymously, so they cannot be directed to a particular destination but must instead

be globally accessible. Many clever compile-time and run-time techniques have been

developed to reduce this cost, but it remains signi�cant.

Even an e�cient Linda implementation requires three packets to get a tuple from

producer to consumer. First the producer executes its out operation, using a packet

to put the tuple into the tuple space. Then the consumer executes its in operation,

sending a request packet, and then receiving a packet containing the body of the

tuple.

21

Summary

Considering these examples, we see that protocol overhead is a property of all parallel

programs. Protocol overhead stems from the need to reuse memory locations to store

data at di�erent times during execution. The remainder of this dissertation will

consider the problem of how to reduce protocol overhead for data-parallel message-

passing programs. Similar techniques can be used to reduce protocol overhead in

other models.

2.4 Message-Passing

To make the discussion concrete, we will now focus on the implementation of one

model, message passing. The remainder of the dissertation will discuss how protocol

overhead arises in message-passing systems and what can be done to reduce it. The

lessons learned in this e�ort can be applied to reduce protocol overhead in other

programming models, as well.

This section discusses message-passing, particularly how it is supported by hard-

ware and software on multicomputers. Message-passing is a common way of managing

communication and coordination between processes in parallel programs. Tradition-

ally, message-passing has been used mainly on distributed-memorymachines, because

it matches the capabilities of the hardware.

Most multicomputers use a two-level strategy to support message-passing. The

hardware provides communication capabilities to a software library; this library uses

the hardware to provide higher-level communication services to the application pro-

gram. The bulk of this section is about the software layer, since that is where the vast

majority of time is spent. However, I begin with a brief introduction to multicomputer

interconnection hardware.

2.4.1 Message-Passing Hardware

Today's multicomputers are built as a collection of processing nodes connected by an

interconnection network. Each node is typically a commodity microprocessor with

a moderate amount of memory, although multiprocessor nodes are sometimes used.

I/O devices are often connected directly to certain processing nodes. Some machines

have a special \front-end" processor that is used for system administration.

22

Typical interconnection networks are exhibited by Intel's DELTA [Intel 91b] and

Paragon [Intel 91a] systems. In these systems, the nodes are connected in a two-

dimensional grid topology. This topology o�ers a high bisection bandwidth and

presents fewer packaging problems than other organizations [Dally 87]. Messages are

routed using a non-adaptive, oblivious algorithm: a message �rst moves horizontally

until it reaches the correct column, then it moves up or down to the destination

[Sullivan & Brashkow 77].

The Intel network is implemented as a set of router chips connected directly by

wires. The routers are pipelined and use wormhole routing [Dally & Seitz 87] to

rapidly set up a path for a message. The per-hop latency of these networks is so

low that we can consider the interconnection topology irrelevant, except for its e�ect

on contention for links [Bokhari 90]. The Intel Paragon's network can set up a path

between any two nodes in less than one microsecond; once established, the path has

a bandwidth of 200 megabytes per second.

A di�erent network design is used by the Thinking Machines CM-5 [TMC 91,

Leiserson et al. 92]. The CM-5 network uses packet switching to deliver �xed-size

packets of twenty bytes. Packets are routed adaptively to avoid blocking at hot-spots

in the network. The network topology is a fat-tree [Leiserson 85]: a tree whose links

have increasing capacity near the root. The precise shape of the fat-tree is chosen

to match the levels of packaging in the machine: board, rack, cabinet. The CM-5

network has very low latency, like the Intel network, but the CM-5 can sustain at

most 20 megabytes per second between nodes, a factor of ten less than Intel's top

speed. The CM-5's fat-tree topology guarantees a bandwidth of at least 5 megabytes

per second between any pair of nodes.

All multicomputer networks are reliable| they deliver every injected packet. Cor-

rupted messages are detected by checksums added to the end of each message by the

hardware. Most systems simply report an error when a message is corrupted; either

the application itself must recover from the error, or some kind of checkpoint/restart

mechanism can be used to recover. However, such errors are so rare that they do not

pose a problem in practice.

23

2.4.2 Message-Passing Software

There are several software packages that o�er communication services to applica-

tions. In some cases, these packages are part of the operating system kernel; Intel's

NX [Pierce 88] and NCUBE's Vertex [NCUBE 87] are examples. Other packages

are implemented as user-level libraries; these include Thinking Machines' CMMD

[TMC 92], Parasoft's Express [Parasoft 88], and the public-domain packages PVM

[Sunderam 92], PICL [Geist et al. 91], and Zipcode [Skjellum & Leung 90]. These

packages have slightly di�erent purposes and features, but in most ways they are

very similar.

In response to the proliferation of message-passing packages, a standardization

e�ort was launched. The proposed standard, called MPI1, is meant to capture the

established features common between the competing message-passing packages. Be-

cause the MPI1 standard is still under discussion, and several proposed versions are

circulating, I will not attempt to describe it here. Rather, I will base the discussion

on a composite of today's competing systems.

Interface and Semantics

This subsection explains the interface provided by a typical message-passing package.

Rather than explaining the quirks of any particular system, I have made a kind of

composite of the basic features of systems like NX, Express, and PICL. I'll call this

imaginary system MP0. Although MP0 does not o�er as many features as the other

systems, it has the advantage of being simple, yet addressing all the important issues

in the design of message-passing systems. The semantics of most message-passing

systems are not speci�ed precisely in writing, so I have given MP0 the \consensus

folklore" semantics that most programmers expect.

An MP0 job consists of a set of processes distributed over some set of processing

nodes. There is usually one process per physical processor, although most multicom-

puter operating systems support multiple processes, and systems like NewThreads

[Felten & McNamee 92] support multiple threads of control within a process. Pro-

cesses communicate by making calls to the MP0 communication library.

At the simplest level, MP0 supports point-to-point transmission of messages be-

tween processes. A message consists of data of arbitrary size. Each message is marked

with a tag. A process issuing a receive operation supplies a tag speci�er: a predicate

24

that says which tags may satisfy the receive. (In most real systems, the tag-specifer

must either accept all possible tags, or accept one speci�c tag.) Messages are sent

and received directly from locations in the memory of the application processes.

Abstractly, there are two kinds of communication operations in MP0, send and

receive. Each operation happens in two stages: �rst it is issued by an application

process, and later it completes.

For example, issuing a send operation informs MP0 that the message data is

available to be sent from the sender's bu�er; therefore MP0 may transmit the data.

A send operation completes when the message's data has been extracted from the

sender's memory; completion of a send indicates that the sender is free to reuse the

bu�er. Note that completion of a send does not imply that the message has been

delivered to the receiver; thus MP0 semantics imply that messages may be bu�ered.

Issuing a receive operation informs MP0 that the receiver is ready for the mes-

sage's data to arrive in the receiver's memory. A receive operation completes when

the message's data has actually been placed in the receiver's memory.

Blocking and Nonblocking Communication

There are two modes of communication: blocking and nonblocking. In the blocking

mode, a process initiates a send or receive operation, and immediately waits for the

operation to complete. In the nonblocking mode, a process makes an MP0 call to issue

a send or receive operation. The process may then do other work before making

another MP0 call to wait for completion of the operation. Note that nonblocking

mode allows a process to have several communication operations in progress at the

same time.

Since blocking calls can be implemented trivially in terms of non-blocking calls,

I will omit the blocking calls from now on. The MP0 interface treats send(args) as

syntactic sugar for endSend(beginSend(args)), and similarly for receive.

Figure 2.3 lists the basic non-blocking calls supported by the MP0 interface.

Bu�ering and Deadlock

As noted above, since completion of a send operation does not imply delivery of the

message to the receiver, MP0 semantics allow the implementation to bu�er messages.

Indeed, programmers expect MP0 to do bu�ering.

25

int beginSend(/* send a message, nonblocking */

int tag, /* message tag */

void* bu�er, /* memory bu�er to send from */

int length, /* number of bytes to send */

int dest /* process-ID to send to */

); /* returns message ID for endSend */

int beginRecv(/* receive a message, nonblocking */

int (*tagSpec)(), /* select by tag */

void* bu�er, /* memory bu�er to receive into */

int maxLength /* maximum number of bytes to receive */

); /* returns message ID for endRecv */

int endSend(/* wait for a send to �nish */

int msgID /* which call is it? */

); /* returns number of bytes sent */

int endRecv(/* wait for a receive to �nish */

int msgID /* which call is it? */

); /* returns number of bytes received */

Figure 2.3: Basic MP0 communication calls.

Process P

0

Process P

1

send to P

1

, tag 0 send to P

0

, tag 1

receive, tag 1 receive, tag 0

Figure 2.4: A program that requires bu�ering.

26

Some programs require bu�ering to execute correctly. For example, the SPMD

program in Figure 2.4, in which two processes exchange messages, requires that the

implementation bu�er at least one of the two messages. In general, a program may

require an arbitrarily large amount of bu�ering to run correctly.

In practice, the implementation has only a limited amount of bu�er space. Unfor-

tunately, the desire to run ordinary programs e�ciently con
icts with the desire to

avoid deadlock in all possible cases. Message-passing implementations take a \best

e�ort" approach to avoiding deadlock: they attempt to avoid deadlock whenever they

can, but they do not guarantee to avoid deadlock in all cases.

Implementation of a Message-Passing System

Having introduced some of the issues surrounding the design of a message-passing

system, we now turn to the implementation of a speci�c set of systems. Since MP0 is

a �ctional composite of several popular message-passing systems, we cannot discuss

the implementation of MP0 directly. Rather, this section sketches how Intel's NX, a

typical message-passing system, is implemented on the iPSC/860 and Delta systems

2

.

An MP0 implementation on the same machines would use a similar strategy.

Both the iPSC/860 and the DELTA have well-behaved networks that are guaran-

teed to deliver all messages correctly, with the order of messages between a particular

sender and receiver preserved. Thus, the main di�culty in protocol design is bu�er-

ing. We would like the message-passing system to bu�er messages, both to avoid

deadlock and to remove the necessity of strict synchronization between the sending

and receiving processes. Since bu�er space is limited, the protocol must somehow

ensure that messages are not lost due to a processor running out of bu�er space.

Rather than using a retry-based approach, the system uses software
ow control |

it ensures that no packet is sent to a processor unless the processor is guaranteed to

have su�cient bu�er space to store that packet.

I describe here a family of multicomputer protocols that use software
ow control.

Members of this family use the same basic data structures, but vary in which policies

they use to manage those structures. After presenting the common framework shared

by the family of protocols, I describe two speci�c protocols from the family. These

2

This information is gleaned from folklore and discussions with an NX implementor. The NX

source code is protected by a non-disclosure agreement.

27

are the protocols used in NX implementations.

A Family of Multicomputer Protocols

Although message-passing programs are written in terms of processes, protocols are

implemented in terms of processors. Communication and synchronization between

multiple processes on the same processor are easy to manage, so they are ignored

when describing protocols.

Each processor allots a �xed region of memory for message bu�ers, and divides

that space into �xed-sized packet bu�ers. All messages are packetized, so bu�ers

are allocated at a packet granularity. Processor i divides its free bu�ers into p pools

(where p is the number of processors), with one pool dedicated to packets sent by

each other processor, and the remaining pool containing packets not yet committed

to any sender. The sizes of these pools are maintained in variables by processor i:

rbufs(s; i) is the number of free bu�ers dedicated to packets sent by processor s, and

ubufs(i) is the number of free but uncommitted bu�ers. At all times, processor i can

receive up to rbufs(s; i) more packets sent by processor s, without running out of

bu�er space. rbufs(s; i) is changed as necessary to maintain this invariant.

Each sending processor s must therefore avoid having more than rbufs(s; j) out-

standing packets destined for processor j. However, since s cannot read the memory

of j directly, s does not know the value of rbufs(s; j). Instead, s maintains its own

approximation sbufs(s; j), which obeys the invariant sbufs(s; j) � rbufs(s; j). Every

time s sends a packet to j, s must decrement sbufs(s; j) to re
ect the fact that the

packet might be using a bu�er at the destination j. The transmission of data, then,

reduces the various entries in sbufs. The task of the protocol is to increase the entries

in sbufs without violating the invariants; this allows further communication to take

place. Protocols in this family di�er by precisely how they safely increment sbufs.

A Pre-reservation Protocol

In the �rst protocol, we start with rbufs(i; j) = sbufs(i; j) = 0 for all 0 � i; j < p, and

all bu�ers allocated to ubufs. When processor s wants to send an n-packet message

to processor r, s �rst sends a request(n) packet to r

3

. When r receives the request

3

Throughout this protocol, and in subsequent protocols, we assume that request and grant packets

are dealt with specially by the interrupt handler. Since these packets can always be consumed

28

packet, if ubufs(r) � n, then r can accept the message: r subtracts n from ubufs(r),

adds n to rbufs(s; r), and sends a grant(n) packet to s. These actions prepare a set

of n bu�ers to receive the message, and inform s of this fact. When the grant(n)

packet reaches s, s adds n to sbufs(s; r); now s can send the n-packet message.

If, when the request(n) message arrives at r, ubufs(r) < n, then r does not send a

grant packet, but simply records the fact that processor s requested n bu�ers. Later,

when ubufs(n) reaches at least n, the request can be granted as described above.

During this interval, the send operation is unable to complete.

Figure 2.5 shows the history of a particular user-level send/receive pair under

this protocol. When the sender is ready, it transmits a request packet, asking for

permission to transmit the message body. When the receiver gets the request, it

�nds bu�er space for the message, then transmits a grant packet, giving the sender

permission to transmit the message body. Upon receiving the grant packet, the sender

transmits the message body. The message body then sits in a bu�er on the destination

processor until the receiving process is ready for it. This protocol is e�cient for large

messages since the request/grant overhead must be paid only once per message.

A Sliding-Window Protocol

The previous protocol allocates space to rbufs lazily. An alternative is to allocate

space more eagerly, in the hope of reducing the latency that occurs before any data

can be passed. This leads to the use of sliding-window
ow control.

This protocol has two parameters b

high

and b

low

, with b

high

> b

low

� 0. It starts

with all rbufs(i; j) = sbufs(i; j) = b

high

, and all the remaining bu�ers in ubufs. When

some rbufs(i; j) � b

low

, the protocol moves min(b

high

� rbufs(i; j); ubufs(j)) bu�ers

from ubufs(j) to rbufs(i; j) in an attempt to keep rbufs(i; j) \fully stocked" with

bu�ers. When rbufs(i; j) is increased, a grant packet is sent to processor i to inform

it that bu�ers have been added.

This protocol is optimized for small messages. It has the advantage that a message

of length b

low

or shorter can usually be sent immediately without having to handshake

�rst. In other words, the grant packets are usually not on the critical path for short

messages. (There are no request packets in this protocol.) The disadvantage is that

immediately, they do not need any bu�ers.

29

sender receiver

send
call

receive
call

request

grant

data

copy

b
u
f
f
e
r

T
I

M
E

Figure 2.5: The pre-reservation protocol.

30

for large messages, more grant messages are sent than in the previous protocol; this

consumes more bandwidth and hence reduces the performance of large messages.

An Example: The NX Protocols

Intel's NX systems use either the pre-reservation protocol or the sliding window pro-

tocol, depending on circumstances. NX/2, which runs on the iPSC/2 and iPSC/860

systems, uses sliding-window for messages less than 100 bytes in length, and pre-

reservation for larger messages. NX/M, which runs on the Touchstone DELTA, uses

sliding-window for all messages.

Protocol Overhead in Multicomputer Protocols

It is tempting but incorrect to say that the programmer sends messages, and the

hardware transmits messages, so one ought to be able to implement message-passing

programs with no protocol overhead. This fallacy stems from sloppy use of language:

using the word \message" to mean two distinct things. The messages expressed by

the programmer and the messages transmitted by the hardware are di�erent things;

they have di�erent semantics and hence do not map one-to-one onto each other. For

clarity, I will refer to the programmer's constructs as \messages" and the units sent

by the hardware as \packets".

There are two main sources of protocol overhead in our family of multicomputer

protocols. First, there is the cost of processing the request and grant packets. This

cost arises because of the processors' ignorance of each other's state. The request

messages of the pre-reservation protocol overcome the receiver's ignorance of the fact

that the sender wants to transmit a message, and the grant packets of both protocols

overcome the sender's ignorance of how many bu�ers the receiver has available.

The second overhead in these protocols is due to the cost of bu�ering. Rather

than moving the contents of a message directly from the sender's address space to

the receiver's address space, message-passing software often chooses to store it tem-

porarily in an intermediate bu�er. There are two reasons to do this. First, bu�ering

decouples the sender from the receiver; the sender can continue with its program

without having to wait for the receiver to ask for the message. Second, bu�ering is

sometimes necessary to avoid deadlock. Although bu�ering is sometimes a good idea,

it also consumes resources. Bu�ering requires time, to copy the bu�ered data one

31

extra time, and space, in which to store the message. The cost of bu�ering is counted

as protocol overhead.

2.5 Summary

Protocol overhead is an unavoidable attribute of parallel programs, arising from the

fact that storage is limited. Protocol overhead takes di�erent forms in di�erent pro-

gramming models, but is present in all models.

Chapter 3

IMPROVING MESSAGE-PASSING PROTOCOLS

I cannot do it without computers.

| Shakespeare, The Winter's Tale

Traditional multicomputers use general-purpose protocols | protocols that will

work regardless of what the application program does. The pre-reservation and

sliding-window protocols of section 2.4.2 are examples of general-purpose multicom-

puter protocols. General-purpose protocols function correctly, but their performance

can be disappointing. As an alternative, I am proposing the use of tailored protocols,

which are specially designed to work with a particular application program.

We often have some kind of advance knowledge about the communication behavior

of an application program. For example, we may know that a certain phase of the

program carries out a Fast Fourier Transform (FFT); since the communication pattern

induced by the FFT computation is �xed, we can precisely predict the application's

communication behavior during that phase. Perhaps in some other phase of the

application, the processes pair up and exchange messages with their partners. And

perhaps in yet another phase, all communication consists of remote procedure calls

to some master node, obeying a request/response pattern.

Whatever knowledge is available in advance about the application's communica-

tion behavior can be used to design a tailored protocol. The design of this protocol

can take advantage of what is known about what the application will do and, more

importantly, what it will not do.

For example, suppose that at some point in the application program, process S

sends a message to process R, and we can deduce in advance that when S is ready

to send, R will de�nitely have su�cient bu�er space to store the message. In this

case, we can eliminate the request/grant transaction from the standard pre-reservation

protocol of section 2.4.2; there is no need for S to ask R whether it has bu�er space.

33

Similarly, we can use the same knowledge to eliminate the grant message in the

sliding-window protocol. In either case, we are using advance knowledge to reduce

S's ignorance about R's state, and hence we are reducing the overhead caused by that

ignorance.

There are many other ways to use advance knowledge to streamline the protocol.

Generally speaking, we would like to make as many decisions as possible in advance,

thereby reducing the amount of work that must be done at run-time. At the extreme,

a carefully crafted protocol would be devised which treats each individual message in

a specialized way.

3.1 Design Choices

There are many choices open to the designer of a tailored protocol. Any policy

embedded in the standard protocol may be reconsidered. Among the design choices

available are:

� which messages will be bu�ered, and which will not;

� where messages will be bu�ered in memory;

� whether or not to break each message into packets, and how large to make the

packets;

� whether to combine two or more messages into a single data transfer;

� whether to receive a message via interrupts or via polling; and

� how to route each message to the destination (assuming the architecture allows

this choice).

In principle, all these choices could be left open. In practice, these choices di�er

widely both in importance and in ease of implementation. The work described in

this dissertation will focus on the �rst two choices, since these two have the greatest

e�ect on performance.

34

3.2 Designing Tailored Protocols by Hand

This section will give some examples of how one might design a tailored protocol by

hand. The purpose is not to explain in detail all of the issues that arise in designing

such a protocol | that is the topic of later chapters. The goal of this section is to

provide a rough feel for some of the issues that arise in designing tailored protocols,

and for the di�culty of doing so by hand.

To simplify the discussion, we will assume for now that tailored protocols are built

using a remoteWrite operation supported by the hardware. This operation allows a

process to directly write a block of data into the memory of another process

1

. The call

remoteWrite(destProc, destVar, val) copies the local value val into the variable

destVar in remote process destProc. There is no remote-read operation.

3.2.1 A Simple Example

Process P

0

Process P

1

v f(2) w f(3)

x f(v) y f(w)

beginSend x to P

1

tag 13 name fred beginSend y to P

0

tag 14 name martha

beginRecv v tag 14 name foo beginRecv w tag 13 name bar

endSend name fred endSend name martha

endRecv name foo endRecv name bar

z g(x; v) z h(y;w)

Figure 3.1: An example program fragment.

Figure 3.1 shows a simple program fragment. The reader is invited to consider how to

implement this program using remoteWrite. Despite the simplicity of this program,

there are at least three plausible tailored protocols for it.

Figure 3.2 shows one possibility, in which it has been decided not to bu�er either

message. This protocol implements each message as a single remoteWrite operation.

1

The remote-write operation is similar to the force-type messages of Intel's NX operating system.

I chose to base this discussion on remote-write because it is easier to explain and reason about.

35

Process P

0

Process P

1

v f(2) w f(3)

x f(v) y f(w)

barrierSynch() barrierSynch()

remoteWrite(P

1

; w; x) remoteWrite(P

0

; v; y)

barrierSynch() barrierSynch()

z g(x; v) z h(y;w)

Figure 3.2: A tailored protocol for the program of �gure 3.1.

The remoteWrites are sandwiched between a pair of barrier synchronizations. The

�rst barrier ensures that the remote values are not written too early, that is, before

the receiving process is �nished with its previous use of the variable v or w. The

second barrier makes sure that each process has received its incoming value before

proceeding. (Barrier synchronization is implemented by having each process use

remoteWrite to set a bit that the other process reads.)

Process P

0

Process P

1

v f(2) w f(3)

x f(v) y f(w)

remoteWrite(P

1

; �

1

; x) remoteWrite(P

0

; �

0

; y)

barrierSynch() barrierSynch()

v �

0

w �

1

z g(x; v) z h(y;w)

Figure 3.3: Another tailored protocol for the program of �gure 3.1.

Figure 3.3 shows another possibility, in which both messages are bu�ered. By

introducing temporary storage locations (i.e. bu�ers) �

0

and �

1

, we have dispensed

with the �rst barrier synchronization. This technique of trading time for space is a

common theme in the design of tailored protocols. Adding temporary storage is a

36

good idea if the amount of storage needed is small, but if v;w; x; y, and z are large

arrays, then the extra storage might not be available, and the cost of copying data

out of �

0

and �

1

might be too large.

Process P

0

Process P

1

v f(2) w f(3)

x f(v) y f(w)

remoteWrite(P

1

; �

1

; x) wait until b

1

= 1

remoteWrite(P

1

; b

1

; 1) b

1

= 0

wait until b

0

= 1 remoteWrite(P

0

; v; y)

b

0

 0 remoteWrite(P

0

; b

0

; 1)

z g(x; v) w �

1

z h(y;w)

Figure 3.4: Another tailored protocol for the program of �gure 3.1.

Figure 3.4 shows yet another possibility, in which one of the two messages is

bu�ered and the other is not. Here the processes interact in an asymmetric fashion.

There are two one-way synchronizations in which one process signals the other using

one of the bits b

0

or b

1

; we can think of these synchronizations as the two halves of

a barrier synchronization, broken apart. This protocol has two possible advantages

over the previous one. First, it requires less temporary storage: only P

1

requires

extra storage. Second, this protocol performs half-duplex rather than full-duplex

communication; half-duplex is more e�cient on some architectures, such as the Intel

DELTA. A possible disadvantage of this protocol is that it tends to cause process

P

1

to �nish the computation sooner than P

0

; if this program fragment is embedded

in a larger program, this may cause other parts of the program to su�er from load

imbalance.

Note that the three alternative protocols apply only to the program fragment

shown. If this fragment is part of a larger program, other parts of the program use

either the standard protocol, or a separately-generated tailored protocol.

How should we choose among these three possible tailored protocols? There are

two issues involved. First, the choice depends on whether we can a�ord to use extra

37

storage. Second, we want to choose the protocol that o�ers the best performance.

Evaluating the performance of the three protocols depends on having an accurate

model of the costs and latencies of various operations on the target architecture.

This example has shown that even for very simple application programs, designing

a tailored protocol is not a simple task. There are many alternatives; choosing among

them requires detailed performance modeling and evaluation of time/space tradeo�s.

3.2.2 Extending the Example

Now let us imagine that the program fragment we have been analyzing is actually the

body of a loop, so it is executed several times in sequence. This makes our second

tailored protocol incorrect | for example, if P

0

falls behind P

1

for some reason, P

1

might remoteWrite twice into �

0

before P

0

has a chance to read it.

This
aw can be �xed by allocating twice as much extra storage. If each process

has two units of extra storage, the protocol can remoteWrite into one unit in the

odd-numbered iterations, and into the other unit in the even-numbered iterations.

But this may not be necessary. If the function g performs some communication,

it may, as a side-e�ect, provide enough synchronization to �x our second protocol.

Of course, this might depend on which tailored protocol we choose to use within g.

This illustrates another feature of the protocol design problem: choices made at

one place in the program a�ect the correctness and performance of other sections of

the program.

These examples give some idea of how di�cult it is to design and verify a tailored

protocol. The reader should bear in mind, however, that we have looked only at

arti�cially simple situations. The performance tradeo�s and correctness issues that

arise in realistic programs are much more di�cult.

3.3 Protocol Compilers

We have seen that tailored protocols o�er the hope of a large performance advantage

over the standard approaches to message-passing. Unfortunately, designing protocols

by hand is too di�cult to be practical.

The solution to this problem is to use a protocol compiler: a software tool that

automatically designs tailored protocols. Automating the design process allows us to

38

have the best of both worlds: the performance bene�ts of tailored protocols, without

imposing more work on the programmer.

There are several properties we would like from an ideal protocol compiler.

� It doesn't cause correct programs to stop working. In other words, any pro-

gram that runs under a standard message-passing system should run under the

protocol compiler as well.

� It provides a performance bene�t over standard approaches. We would like the

bene�t to be as large as possible on the average. In addition, we'd like the

protocol compiler to never make any program run slower.

� It generates tailored protocols that accept the same interface as the standard

message-passing library. This provides the programmer with familiar semantics,

and allows him to use the protocol compiler on an existing program without

changing that program at all.

� It allows, but does not require, the user to provide hints that help the protocol

compiler generate better protocols.

While it may not be possible to satisfy this wish-list completely in the �rst imple-

mentation, the list provides a set of goals to strive for.

To understand the role of protocol compilers in message-passing programs, we

can use the analogy of an ordinary compiler. The traditional approach to message-

passing is like an interpreter, which makes all of its decisions dynamically, at some

cost to performance. We would like to replace this interpreter with a compiler | a

tool that analyzes the input program in advance in order to reduce run-time costs.

Of course, the compiler cannot do everything in advance; some tasks, like dynamic

memory allocation, must be left to run-time. The compiler generates calls to a run-

time library to carry out these tasks.

Building a compiler requires an understanding of how the behavior of programs

can be represented and analyzed. In the same way, to build a protocol compiler we

must have techniques for analyzing the behavior of message-passing programs, and

for transforming message-passing protocols into equivalent, but faster, protocols.

39

It may not be obvious that it is possible to build a protocol compiler that improves

the performance of real application programs. This dissertation demonstrates by

example that this goal can be reached.

3.4 Summary

One way to reduce protocol overhead is to use tailored protocols, which are special-

ized to the behavior of a particular application program. It is possible to design a

tailored protocol by hand, but this is a di�cult and error-prone process. To make

tailored protocols practical, we must automate their design. A protocol compiler is

an automatic tool that ful�lls this requirement.

Chapter 4

COMPILING TAILORED PROTOCOLS

A good pattern can keep your new garment from looking like you tai-

lored it yourself.

| Anonymous Sewing Teacher

The previous chapter showed the bene�ts of using tailored protocols, but also

pointed out the di�culty of designing these protocols by hand. A protocol compiler

is required to make the use of tailored protocols practical.

Figure 4.1 shows how a protocol compiler is used. The protocol compiler takes

as input some description of the application program's communication behavior; this

description could be the source code of the application program, or some condensed

representation of its communication behavior. The protocol compiler analyzes the

source program's behavior, and designs a tailored protocol. The protocol compiler's

output is a program fragment that implements the tailored protocol underneath the

system's standard communication interface. This program fragment is then compiled

and linked with the application program and a special runtime library.

From the application program's point of view, the tailored protocol looks exactly

like the machine's native communication mechanism. This means that, beyond being

a functional replacement for the native mechanism, the tailored protocol must o�er

the same interface as the native mechanism. For example, on an Intel iPSC/860, the

tailored protocol must o�er the same interface as the native NX/2 communication

library. Thus, the application program can be unaware of the fact that it is running

on top of a tailored protocol.

41

communication
description

protocol
compiler

compiler/
linker

run−time
library

application
program

tailored
protocol

runnable
image

Figure 4.1: This diagram shows how a protocol compiler is used. The protocol

compiler takes as input the communication description, and produces as output code

for a tailored protocol. This is then compiled and linked with the application program

and a special runtime library to yield a runnable image.

42

4.1 Designing a Protocol Compiler

In principle, protocol compilers might be designed for a wide range of input programs,

and a wide range of target architectures. To design a protocol compiler, one must

deal with several issues:

1. how to represent the communication behavior of a program, and how to extract

that information from the program;

2. how to support tailored protocols on the target architecture; and

3. what kinds of analysis the protocol compiler should carry out in order to map

from the program's behavior to a tailored protocol.

We would like the answers to these questions to be as general as possible, so they are

of the greatest possible use.

In this chapter and the next two, I address these questions of protocol compiler

design. Along the way, I describe the details of Parachute, a prototype I have designed

and built. Throughout this discussion, it is important to bear in mind the distinction

between what is general, applying to all protocol compilers, and what is speci�c to

Parachute.

Parachute is specialized in three ways. First, it applies only to a certain class

of data-parallel application programs. Second, it generates code only for message-

passing multicomputers running Intel's NX operating system. Third, it makes par-

ticular choices about how to attack certain combinatorial optimization problems en-

countered during its analysis. (While speci�c choices had to be made in each of these

dimensions, it would be relatively simple to adopt another speci�c set of choices in a

di�erent implementation.)

The remainder of this chapter deals with the �rst of the three main issues: how

to represent a program's communication behavior. Chapter 5 discusses the analysis

carried out by the protocol compiler, and chapter 6 contains additional details about

Parachute.

Before discussing how to represent programs, I �rst introduce data-parallel pro-

grams. Since Parachute is restricted to this class of programs, it is important to

understand the structure and importance of data-parallel programs and languages.

43

4.2 Data-Parallel Programs and Languages

Data-parallel programs are an important class of parallel programs. The relative sim-

plicity of the data-parallel model has enabled the development of programming and

debugging tools, and programming languages, that e�ciently support data-parallel

programming. In addition, the majority of successful scienti�c applications of parallel

computers are amenable to data-parallel implementation. In a study of 84 scienti�c

applications of high-performance computers, Fox found that 70 applications, or 83%

of those considered, �t the data-parallel model [Fox 88].

In the data-parallel model, a program has a single locus of control | a single

\program counter" that advances through the program. This single execution stream

invokes small pieces of parallel code. This model is supported directly by SIMD

machines, including the Connection Machine CM-1 and CM-2 architectures and the

MasPar MP-1 and MP-2; the existence of these machines, which run only data-

parallel code, has fostered the development of a rich variety of data-parallel algorithms

[Hillis & Steele 86].

Recent research has shown how (SIMD) data-parallel programs can be run e�-

ciently on MIMD hardware [Hatcher & Quinn 91, TMC 91]. This is done by using

compile-time analysis to determine where and when synchronization and communi-

cation are needed to maintain the illusion of lockstep behavior in spite of physically

unsynchronized processors. Optimizing compilers for these systems attempt to ag-

gregate several logical synchronization/communication operations into a single op-

eration, thereby increasing the granularity of the computation and hence making it

more e�cient.

The \loosely lockstep" behavior of the programs generated by these compilers

matches a common programming pattern on MIMD systems. This pattern is some-

times referred to as SPMD (single-program, multiple-data) parallelism. It is also the

idea captured by Fox's \loosely synchronous" programs [Fox et al. 88] and Snyder's

XYZ model [Griswold et al. 90]. These ideas, in turn, have spawned research on

data-parallel languages with weaker synchronization [Larus et al. 92]; for example,

processes may (logically) synchronize after a set of statements rather than after each

instruction.

Because data-parallel programs have a single locus of control, the programmer

retains the usual sequential notion that the program is \at a single place" at any

44

point of the execution. This not only eases programming, but also allows standard

debuggers and performance analysis tools to be easily adapted to the data-parallel

case. In addition, most data-parallel programs are either deterministic, or have their

nondeterminism carefully encapsulated in a few constructs. Again, this eases debug-

ging.

The attractiveness of the data-parallel model has led to the development of many

data-parallel languages. Early data-parallel languages include Dino [Rosing et al. 90,

Rosing 91], Kali [Koelbel et al. 90], and C* [Rose & Steele 87]. The current gener-

ation of data-parallel languages is more mature, and o�ers a richer set of directives

to control data distribution [TMC 89, TMC 90, Fox et al. 91, Chapman et al. 92].

A consortium of researchers and vendors is now developing a standardized language

called High Performance Fortran (HPF) with some data-parallel features [HPFF 93].

HPF will be supported by all the major parallel system vendors, and will provide a

common platform for researchers studying implementation of data-parallel languages.

Compilers for data-parallel languages usually generate message-passing programs

as output. This is done because message-passing is the \lowest common denomi-

nator" interface, and also because explicit message-passing gives the compiler the

best opportunity to carefully manage communication. Despite this careful manage-

ment, compiler-generated programs typically communicate more than hand-written

message-passing programs would, so communication performance is a particularly

acute problem for compiler-generated code [Hatcher et al. 91].

Data-parallel languages are easier to compile than other parallel languages, be-

cause the single locus of control allows the compiler to deduce that all processes are

in the same small section of code at the same time. This information allows the com-

piler much more latitude to perform optimizations. The same advantage is available

to a protocol compiler when it is processing a data-parallel program; because pro-

cesses work their way through the program in semi-lockstep, the protocol compiler

can deduce much more about how processes interact with each other. As we will see,

this enables the protocol compiler to generate highly e�cient protocols.

4.2.1 Limits of the Data-Parallel Model

As discussed above, the data-parallel model �ts a wide range of scienti�c and other

numerical programs. However, it does not support all parallel programs. The most

45

common structure it does not support is the work-heap model. In this model, a set

of worker processes carry out tasks that are stored on a central work-heap. Each

worker repeatedly requests a task from the heap and processes it, perhaps adding

more tasks to the work-heap. The work-heap model is simple, and applies naturally

to many search or divide-and-conquer programs. The work-heap model is amenable

to careful, specialized implementation to reduce protocol overhead.

4.3 Representing Communication Behavior

The �rst step in analyzing a program's communication behavior is to build a repre-

sentation of that behavior. This representation is then used by the protocol compiler

to analyze and improve the program's behavior. We can consider the representation

problem to be one of designing a formal language that speci�es the communication

behavior of programs. This section discusses the general issues surrounding the choice

of this representation, and describes the particular solution used in Parachute.

The source program itself is one possible representation. However, it is incon-

venient for several reasons. The most important of these is that the source code

contains too much information. The protocol compiler focuses its attention on com-

munication, and treats local computation phases as black boxes. Using the source

code forces the protocol compiler to handle unneeded complexity.

We may choose to extract the necessary information directly from the source code,

and then pass it on to the protocol compiler. This is a useful thing to do, but it still

leaves us with the question of in what form the protocol compiler should accept the

information.

In order to be precise, it is helpful to use a communication description language

to describe the communication behavior of a program. This language maps directly

to the protocol compiler's internal representation of a program's behavior. Thus,

de�ning the language is equivalent to stating how the protocol compiler represents

communication behavior.

4.3.1 Representing Behavior in Parachute

Parachute deals with data-parallel programs written with explicit message-passing,

rather than dealing directly with code written in a data-parallel language. This

46

decision has two main bene�ts. First, it allows the protocol compiler to accept

hand-written message-passing code, provided the code adheres to the data-parallel

style. This is important because the majority of existing programs use hand-written

message-passing rather than parallel languages. Second, having the protocol com-

piler accept explicit message-passing allows me to avoid having to implement a full

compiler for a data-parallel language in addition to the main body of the protocol

compiler.

On the other hand, having a complete parallel-language compiler would have

allowed more opportunities to transform the program to improve performance. For

example, a full compiler could use feedback to incorporate the results of the protocol

compiler's analysis into earlier optimization phases of the compiler. In addition, the

compiler's analysis might provide more information to the protocol compiler about

the order in which events can be allowed to take place at runtime.

We now turn to the design of Parachute's mechanism for representing communica-

tion behavior. Rather than attempting to de�ne a completely general communication

description language, I de�ne a description language that applies to the restricted

class of programs that Parachute accepts.

4.3.2 Communication Patterns

Parachute accepts only data-parallel programs, and it generates tailored protocols

only for communication patterns. A communication pattern is some �xed \conver-

sation" that takes place between a �xed set of processes. Communication patterns

capture the notion that there are small sections of the program whose communication

behavior is completely known in advance; for example, an FFT procedure carries out

the same sequence of communications every time it is executed.

To specify a communication pattern, one must specify two things:

� a list of the processes that participate in the pattern, and

� for each process participating in the pattern, exactly what sequence of communi-

cation calls that process will make within the pattern, including the destination,

the tag, and (an upper bound on) the message-size arguments of all send calls,

and the tag-speci�er and (an upper bound on) the message-size arguments of

all receive calls.

47

All messages sent within a pattern must be received within the same pattern, and

vice versa. Thus, a pattern is a self-contained unit of communication.

Parachute operates exclusively on communication patterns. Only communication

within such a pattern will be optimized by Parachute. Communication which is

not part of a communication pattern falls outside Parachute's domain, and so is

implemented using standard protocols.

var

x,y : ARRAY [2048] of COMPLEX

for i 0 to log

2

P � 1f

send x to xor(pid; 2

i

) tag i

recv y tag i

�tStep(x, y, i)

g

Figure 4.2: Pseudocode for a parallel FFT. P denotes the number of processes, and

pid is the number of the current process.

We can represent a communication pattern by drawing a diagram of the com-

munication history of each process within the pattern. Such diagrams are drawn by

trace analysis tools like ParaGraph [Heath & Etheridge 91], where they are called

\space-time diagrams" or \Feynman diagrams." Figure 4.2 shows pseudocode for a

one-dimensional FFT computation, and �gure 4.3 shows the spacetime diagram of

its communication pattern. The diagram is not meant to denote the exact timing of

events, but merely the sequence of events seen by each process.

4.3.3 Describing Communication Patterns Formally

Although spacetime diagrams are useful for visualizing and understanding commu-

nication patterns, they are not precise enough to describe all the patterns that can

48

process 0 process 1 process 2 process 3

Figure 4.3: Spacetime diagram of the communication pattern induced by the FFT

computation of �gure 4.2. The diagram is a time-line with time increasing downward.

Each vertical line denotes the history of a single process, and arrows between vertical

lines denote messages transmitted; the arrow points from the sender to the receiver of

the message. The diagram is not concerned with the exact time at which each event

happens, but only with the sequence of events as seen by each process.

49

occur in real programs. This section presents a formal language for specifying com-

munication patterns. A slightly augmented version of this language is used to specify

the communication behavior of programs to Parachute.

Parachute's internal representation of communication patterns is isomorphic to

this language, so describing the language is equivalent to describing the internal

representation. Indeed, this language can be viewed as the formal de�nition of a

communication pattern | anything that can be expressed in the language is a com-

munication pattern, and anything that cannot be expressed in the language is not.

The language is called PDL (pronounced \puddle"), for \pattern description lan-

guage". I present PDL by giving examples; a full grammar appears in appendix A.

Some syntactic sugar that appears in the real PDL language is omitted. Keywords

appear in boldface, and other tokens in typewriter style. Phrases or nonterminals

are represented by italics.

Basic Communication Operations

PDL has four basic communication primitives: beginSend, endSend, beginRecv,

and endRecv. beginSend and endSend combine to allow a split-phase message-send

operation, and beginRecv and endRecv o�er a split-phase message-receive opera-

tion. (Recall that a split-phase, or non-blocking, operation is one that has sepa-

rate begin and end calls; arbitrary computation and communication can thus be

overlapped with a split-phase operation.) Operations with other semantics, such as

blocking send/receive, or CSP rendezvous, can be implemented trivially on top of

the four primitives. PDL also o�ers a send primitive which is just syntactic sugar

for a beginSend/endSend pair, and a recv primitive which is syntactic sugar for a

beginRecv/endRecv pair.

Each communication pattern is named by an integer pattern-ID. To specify pat-

tern number 17, one writes

pattern 17 f

pattern-description

g

where pattern-description describes the behavior of each process participating in the

50

pattern.

A pattern description provides the names of all processes participating in the

pattern, and gives a sequence of communication calls for each process:

process 1 f

call-sequence

g

A call sequence is simply a sequence of zero or more call-descriptors, where a call

descriptor gives the name of an MP0 call, and values for some of its arguments. Here

are some legal call descriptors:

beginSend dest 4 tag 717 maxsize 1024 name message1

endSend name message2

beginRecv tag ANY maxsize 42k name arthur

endRecv name jane

The \name" arguments are required to match up each beginSend with the corre-

sponding endSend, and each beginRecv with the corresponding endRecv. At run-

time, the beginSend or beginRecv call will return a message-identi�er, which will

later be passed to the endSend or endRecv call. This mechanism is awkward to

describe in the pattern description, so the \name" mechanism is used instead.

We can put all these bits of grammar together to yield the full language. For

example, �gure 4.4 shows the pattern description for a one-dimensional FFT on four

processes. Although this example is small and has a regular structure, general com-

munication patterns can be larger and asymmetric, so long as the components of the

pattern are known in advance.

4.3.4 Design Rationale for the Description Language

I designed PDL with four goals in mind:

1. It should be as simple as possible.

2. It should capture all the information Parachute needs to do its analysis.

51

pattern 0 f

process 0 f

send dest 1 tag 0 maxsize 16k

recv tag 0 maxsize 16k

send dest 2 tag 1 maxsize 16k

recv tag 1 maxsize 16k

g

process 1 f

send dest 0 tag 0 maxsize 16k

recv tag 0 maxsize 16k

send dest 3 tag 1 maxsize 16k

recv tag 1 maxsize 16k

g

process 2 f

send dest 3 tag 0 maxsize 16k

recv tag 0 maxsize 16k

send dest 0 tag 1 maxsize 16k

recv tag 1 maxsize 16k

g

process 3 f

send dest 2 tag 0 maxsize 16k

recv tag 0 maxsize 16k

send dest 1 tag 1 maxsize 16k

recv tag 1 maxsize 16k

g

g

Figure 4.4: Pattern description for the FFT program of �gure 4.2.

52

3. It should be easy for the programmer or compiler to generate, understand, and

edit.

4. It should be extensible to meet future requirements.

The language addresses these goals well. PDL captures the actions of each process

within each communication pattern; this is the information Parachute needs. Each

communication operation is described using the same name, and in roughly the same

form, as in the source program, so the programmer should be able to understand how

a PDL description relates to his program. The language can be parsed by yacc, so

it is easy to extend.

The main omission in PDL is the lack of timing information. This stems from

the lack of any description of local computation. Since local computation does not

appear explicitly in the description, Parachute has no way of knowing when local

computation might happen or how long it might take. This prevents Parachute from

using detailed timing estimates to make its decisions. Although calculating and using

timing estimates may be problematic, it would be useful to have the opportunity to

try them. Future versions of the description language are likely to have an operation

corresponding to local computation, with an optional estimate of the duration of the

computation.

Several other languages have been used to describe communication behavior and

protocols. The best-known is LOTOS [ISO 88, van Eijk et al. 89, Logrippo et al. 92],

devised by ISO to specify and model the OSI standard protocol suite. LOTOS is much

more ambitious and complex than PDL. Although LOTOS is in some sense a superset

of PDL, expressing communication patterns in LOTOS would be overkill.

LOTOS is, however, useful as a tool for formally specifying both the behavior of

the underlying communication networks, and the precise semantics of operations in

MP0 or similar systems.

4.3.5 Communication Patterns in the Context of the Entire Program

At run-time, Parachute allows communication patterns to be mixed freely with local

computation and non-pattern communication. For example, arbitrary local compu-

tation can take place during a communication pattern, or non-pattern messages can

be sent or received during a communication pattern.

53

The programmer or compiler is responsible for adding annotations to the source

program to mark the beginning and end of executing a communication pattern. For

example, the call beginPattern(13) denotes the beginning of pattern 13. Until a

call to endPattern(13), all communication is assumed to be part of the pattern,

unless it is explicitly marked as non-pattern communication. (The marking would be

done by using calls like patternTimeOut and patternTimeIn.)

When a pattern is executing, the tailored protocol ensures that each process exe-

cutes the sequence of communication calls that the pattern calls for. If the pattern is

violated, the implementation will detect the violation and generate a run-time error.

Further details of the run-time library appear in section 6.3.

4.3.6 Recognizing Communication Patterns

Since Parachute requires the beginning and end of each communication pattern to

be marked with an annotation, we must have some strategy for identifying commu-

nication patterns. At present, this is done by the programmer. This problem takes

two forms, depending on the circumstances. If the program is being written to use

Parachute, communication patterns can be built into the structure of the program.

If an existing program is being adapted to use Parachute, communication patterns

must be recognized.

The �rst problem is the easier one. Message-passing programs are usually designed

by drawing pictures of data layout, and estimating performance by calculating the

number and size of messages. This process leads naturally to the identi�cation of

communication patterns.

The second problem, �nding patterns in existing code, is harder. This is the

problem I faced when adapting to Parachute the �ve applications programs described

in chapter 7. The remainder of this section outlines the strategies I developed while

annotating these programs.

The �rst tactic is to concentrate on those parts of the source code where the

program actually spends its time. Since one can choose to use the protocol compiler

for a subset of the program, it makes sense to ignore sections of the code where not

much time is spent.

Once the relevant sections of the program have been identi�ed, the next step is to

look for likely candidates for identi�cation as patterns. A candidate might be some

54

procedure that is invoked in a data-parallel fashion, or the body of a loop.

Once a few probable patterns have been identi�ed, these are marked in the source

code, and Parachute is run on them. If the annotations are erroneous (if the com-

munication inside one of the marked \patterns" is not really data-independent) a

run-time error will be signaled. Usually, no errors are signaled and the annotation

process is �nished. If an error is found, the o�ending region of code is broken up into

several smaller patterns, and the process is repeated again.

Although this procedure is less rigorous that we would like, it seems to work

very well in practice. Eventually, we would like the compiler to automatically iden-

tify communication patterns, or at least to check the programmer's annotations for

correctness.

4.4 Summary

This chapter considers the �rst of three major issues in protocol compiler design: how

to describe and represent the communication behavior of application programs. This

problem is simpli�ed in the case of Parachute, because it deals with a restricted class

of parallel programs. Parachute operates on communication patterns, which can be

described in the PDL description language. A communication pattern consists of a

known set of processes exchanging messages in a known sequence. By analyzing a

program's communication patterns separately, Parachute makes its job much easier.

Chapter 5

PROGRAM ANALYSIS ISSUES

IN PROTOCOL COMPILER DESIGN

And ye shall know the truth, and the truth shall make you free.

| CIA Motto

Mostly, the truth makes us nervous.

| Anonymous CIA Analyst

This chapter discusses three important issues that arise in designing a protocol

compiler. Each issue is relevant to the general problem of protocol compiler design;

when specialized to the case of Parachute, each issue is dealt with by one phase of

Parachute's analysis.

The �rst of the three issues is how to deal with nondeterministic programs. Non-

determinism is useful for the programmer, but it makes the protocol compiler's job

more di�cult by expanding the set of possible situations that must be planned for.

The general solution to this problem is to resolve the nondeterminism| to transform

the program by making certain nondeterministic \choices" in advance, rather than

letting them depend on accidents of timing.

The second issue is whether and how to change the means of transmitting each

message across the network. There are several ways in which one might change the

mode of a message: for example, one might introduce a rendezvous between the

sender and the receiver. Such changes might a�ect the behavior of the program |

we must somehow guarantee that a change is safe before it is made.

The third issue is how to use memory bu�ers to realize the communication re-

quirements of a program. Messages are often bu�ered to improve performance and

to ensure correctness. Typical message-passing libraries allocate bu�ers dynamically

to messages. Using a protocol compiler enables us to make some of these decisions

at compile-time, thus reducing runtime overhead. Of particular importance is the

decision to share bu�ers between a set of messages.

56

5.1 Nondeterminism

Our �rst major issue is nondeterminism. A program is nondeterministic if, at some

point in its execution, it can exhibit more than one behavior, and the choice between

these behaviors is arbitrary. In message-passing programs, nondeterminism arises be-

cause of the tag-matching in receive operations. The tag-speci�er in some receive

statement may match more than one incoming message; in this case the implemen-

tation is free to deliver any of the matching messages, subject to the requirement of

in-order delivery.

Process P

0

Process P

1

Process P

2

receive x tag ANY v f(2) w f(3)

y g(x; 0) send v to P

0

tag 42 send w to P

0

tag 91

receive z tag ANY

print g(y; z)

Figure 5.1: This program is nondeterministic because either the two receive state-

ments in P

0

may match either of the two messages sent to P

0

.

Figure 5.1 shows one example of a nondeterministic program. Two messages are

sent to process P

0

, and P

0

may receive these messages in either order. Depending on

the properties of the functions f and g, this nondeterministic choice may or may not

a�ect the output of the program. Even if the output of the program is una�ected,

we still say the program is nondeterministic; although the user does not notice the

nondeterminism, the message-passing system does.

Figure 5.2 shows a program very similar to the previous example. This program,

however, is deterministic. Although the tag-matching predicate in P

0

's �rst receive

statement matches the message sent by P

2

, P

2

cannot send its message until after P

0

's

�rst receive statement has completed. As this program illustrates, nondeterminism

does not necessarily follow from complex tag-matching situations.

57

Process P

0

Process P

1

Process P

2

receive x tag ANY v f(2) w f(3)

send tag 25 to P

2

send v to P

0

tag 42 receive tag 25

y g(x; 0) send w to P

0

tag 91

receive z tag ANY

print g(y; z)

Figure 5.2: This program is deterministic. P

0

's �rst receive statement must match

the message with tag 42, and its second receive must match the message with tag 91.

5.1.1 Making a Virtue of Nondeterminism

At �rst glance, nondeterminism appears to make the protocol compiler's job harder.

The fact that a program might exhibit several di�erent behaviors when given the

same input seems to force the protocol compiler to deal with a wider range of program

behaviors.

Consider a program that can exhibit two behaviors, A or B, depending on a non-

deterministic choice. (The reader may imagine that the choice is made by accidents

of timing.) It may be that the protocol compiler can generate a tailored protocol for

behavior A, and a separate tailored protocol for behavior B, but cannot determine a

protocol for their nondeterministic combination.

On the other hand, the protocol compiler can use nondeterminism to make its job

easier. To understand this, we must carefully review the de�nition of nondeterminism.

Imagine that a program, in some state A, moves nondeterministically into either state

B or state C. How is the choice made between B and C? The implementation is free

to make the choice in whatever manner it likes. In particular, the protocol compiler

can decide to resolve the nondeterminism by decreeing that the program will always

choose B. For example, in the program of �gure 5.1, the protocol compiler could

decide which of the two incoming messages should be matched by P

0

's �rst receive

statement.

We can think of the application program as a speci�cation of which behaviors

are allowed at run-time, given a particular input. The protocol compiler is free to

58

transform the program however it likes, provided the result meets the speci�cation

1

.

If nondeterminism plays a large role in the program, the speci�cation is permissive, so

the protocol compiler has a great deal of freedom in generating code for the program.

Informally, the protocol compiler must follow two rules when resolving nondeter-

minism:

1. If the initial program is deadlock-free, then the generated program must also

be deadlock-free.

2. Any execution of the generated program must be equivalent to some possible

execution of the initial program.

Resolving nondeterminism cannot a�ect the correctness of the program, but may

a�ect performance.

5.1.2 Retagging

For message-passing programs, nondeterminism occurs only via tag matching. A

protocol compiler can resolve this nondeterminism by changing the program's tag

matching. I refer to this procedure as retagging.

Process P

0

Process P

1

Process P

2

receive x tag 91 v f(2) w f(3)

y g(x; 0) send v to P

0

tag 42 send w to P

0

tag 91

receive z tag 42

print g(y; z)

Figure 5.3: The program of �gure 5.1, after retagging.

1

The theoretically inclined reader may consider the \behavior" of a program to be speci�ed by the

set of traces the program may generate, where a trace is the list of communication events that

take place in a complete execution of the program. De�ne traces(P; I) to be the set of traces

that program P can generate given input I. If the original application program is called A, then

the protocol compiler is allowed to generate any program B such that, for all I, traces(B; I) �

traces(A; I).

59

Consider once again the nondeterministic program of �gure 5.1. The �rst receive

operation of process P

0

is nondeterministic | it will match either P

1

's message with

tag 42, or P

2

's message with tag 91. We can retag this program by changing the

tag-speci�er of P

0

's �rst receive to insist on tag 91, thereby forcing it to match the

message sent by P

2

. Having done this, we might as well change the tag speci�er of

P

0

's second receive statement. The result of this retagging is shown in �gure 5.3.

Note that this program does not exhibit the same behaviors as the original, but only

a subset of the original's possible behaviors.

Process P

0

Process P

1

Process P

2

receive x tag 91 v f(2) w f(3)

send tag 25 to P

2

send v to P

0

tag 42 receive tag 25

y g(x; 0) send w to P

0

tag 91

receive z tag 42

print g(y; z)

Figure 5.4: This program results from a careless retagging of the program of �gure 5.2.

This program deadlocks | P

0

and P

2

wait in�nitely for each other.

Now imagine that we tried to apply the same retagging operations to the determin-

istic program of �gure 5.2. Doing this leads to the program shown in �gure 5.4. This

program always deadlocks, with P

0

and P

2

blocked waiting for each other. Thus, we

cannot retag a program without doing careful analysis of the e�ects of the retagging.

Process P

0

Process P

1

Process P

2

receive x tag 42 v f(2) w f(3)

y g(x; 0) send v to P

0

tag 42 send w to P

0

tag 42

receive z tag 42

print g(y; z)

Figure 5.5: This nondeterministic program is equivalent to the program of �gure 5.1.

60

We have seen one kind of retagging, which narrows the tag-speci�er of a receive

statement. The program in �gure 5.5 presents an opportunity for another kind of

retagging operation. This program is equivalent to our original nondeterministic

example; however, in this case both messages have the same tag.

Process P

0

Process P

1

Process P

2

receive x tag (42 or �) v f(2) w f(3)

y g(x; 0) send v to P

0

tag 42 send w to P

0

tag �

receive z tag (42 or �)

print g(y; z)

Figure 5.6: The program of �gure 5.5, after retagging.

Our new retagging operation will give the two messages di�erent tags, without

a�ecting the meaning of the program. We arbitrarily choose P

2

's message to be

assigned a new, unique tag � . This requires that any receive statements that might

have matched the original tag be widened so that they also match the new tag. The

resulting program is shown in �gure 5.6. This retagging operation is always legal,

because it does not a�ect the meaning of the program. Its main usefulness is in

exposing opportunities for the �rst kind of retagging.

The fact that retagging is legal does not necessarily make it a good idea. In some

cases, preserving the nondeterminism gives the run-time system the ability to resolve

the nondeterminism in a convenient way. For example, the nondeterminism in the

program of �gure 5.1 gives the run-time library the ability to resume P

0

's execution

as soon as either of the two messages arrives, rather that waiting for a predetermined

one. The protocol compiler must decide when to remove nondeterminism, and when

to leave it alone.

5.1.3 Retagging in Parachute

Since Parachute deals only with known communication patterns, it faces a restricted

class of retagging problems. Parachute's strategy is simple: it removes all nonde-

terminism from the communication patterns it is given. Although this decision has

61

a potential cost in performance, it simpli�es the jobs of later parts of Parachute's

analysis, by insulating them from issues of nondeterminism. This was a good choice

for the �rst prototype, but is probably not the best choice in general.

Conceptually, Parachute �rst changes the tags of all send statements so they are

unique, and then narrows the tag-speci�er of each receive until it refers to a single

message. This procedure is calledmessage matching because it generates a one-to-one

matching between sends and receives. In fact, rather than carrying out retagging

operations one by one, Parachute uses an algorithm that directly computes a legal

message matching.

5.1.4 Message Matching

The goal of the message-matching procedure is to produce a matching between send

and receive operations that is consistent with the time ordering imposed by the

processes' programs. (Within a communication pattern, a process's \program" is

simply the sequence of communication operations it makes within that pattern.) The

semantics of a split-phase (\begin/end") operation say that the operation appears to

take place atomically sometime between the begin and end calls. The implementation

may choose any point between the begin and end to carry out the operation.

To give the message-matching algorithm as much
exibility as possible, the anal-

ysis will assume that each message is sent as early as possible and received as late as

possible; this gives the analysis the maximum amount of \slack" in timing. Thus, we

will treat beginSend as if it actually sends the message, and endRecv as if it actually

receives the message. The message-matching phase ignores endSend and beginRecv

operations.

Certain message-matching problems are ill-formed: there is no way to match

beginSends and endRecvs, even if execution order is ignored. For example, a problem

is ill-formed if it contains more beginSends than endRecvs.

Ill-formed problems can be detected by solving a simple bipartite matching prob-

lem. This matching problem has two sets of nodes, S and R, with one node in S for

each beginSend and one node in R for each endRecv. There is an undirected edge

between s

i

and r

j

if the tag of s

i

matches the tag-speci�er of r

j

. If this bipartite

matching problem has no solution, then the original message-matching problem is

ill-formed. If so, this fact is reported to the user, along with a possible hint about

62

which message(s) failed to match.

Unfortunately, not all solutions to the bipartite matching problem correspond to

legal message-matchings. This is because some proposed matchings may be causally

impossible; they may require some message to be received before it is sent.

To determine whether a proposed matching is causally possible, we can construct a

data structure called an event ordering graph. This is a directed graph that expresses

all the known temporal relations between the operations in the pattern. It has a node

for each communication call; a path from a to b signi�es that event a happens before

event b in any execution of the program. The graph is built from the following sets

of edges:

� program order edges: These edges express the fact that each process must ex-

ecute its statements in the order in which they appear in its program. Thus,

if a and b are executed by the same process, and a directly precedes b in that

process's program, then the graph has an edge (a; b).

� message order edges: These edges express the fact that a message must be sent

before it can be received. If s

i

and r

j

are, respectively, beginSend and endRecv

statements, and those two statements have been matched, then the graph has

an edge (s

i

; r

j

).

A proposed matching is causally possible if and only if its event ordering graph is

acyclic.

The event ordering graph is described in more detail in section 5.2.3. This data

structure is re-used in later phases of the protocol compiler's analysis.

The Message-Matching Algorithm

Parachute matches messages by symbolically executing the program. The algorithm

maintains an ordered list of messages in transit; the list is initially empty. Each

process is given a \program counter," which initially points to the beginning of that

process's sequence of communication calls. The algorithm then picks a process arbi-

trarily, and tries to symbolically execute the next communication call in that process's

program. If the call is a beginSend, an entry describing the sent message is added

to the list of messages in transit, and the process's program counter is advanced to

63

point to the next statement. If the call is an endSend or a beginRecv, the process's

program counter is simply advanced to the next statement. If the call is an endRecv,

and some message in the pending-message list has a destination and tag matching the

endRecv call, then the �rst matching message is removed from the pending-message

list and the process's program counter is advanced. Otherwise, if there is no match-

ing message in the pending-message list, the algorithm chooses another process to

execute.

Symbolic execution continues until either all processes have symbolically executed

all their communication calls, or until no process can make progress. In the �rst case,

the message-matching algorithm has succeeded: the program, after retagging, will

run correctly without deadlock. In the second case, the message-matching algorithm

is stuck: either the program may deadlock, or the sends and receives do not pair up

properly. This fact is reported to the programmer as an error.

An Example

As an example, we will simulate the message-matching algorithm on the FFT com-

putation of �gure 4.4. Figure 5.7 shows the program with each statement labelled

for clarity, and the initial state of the message-matching algorithm. The algorithm

has �ve main variables: a \program counter" for each process, and a list of pending

messages. The program counters are initialized to point to the �rst statement in the

program of each process, and the pending-messages list is initially empty.

Now suppose that the algorithm symbolically executes three statements, one each

from P

1

, P

3

and P

0

. The resulting state is shown in �gure 5.8.

At this point, the algorithm chooses P

3

to undergo the next simulated step. P

3

is due to execute a receive statement, and no matching message is pending. Hence,

P

3

cannot execute a step and some other process must be chosen. Suppose that the

next four steps are by processes P

0

, P

0

, P

2

, and P

1

. The state is now as shown in

�gure 5.9.

This procedure continues until all program counters have reached the end of their

respective programs, yielding the state shown in �gure 5.10. Since all programs have

terminated and there are no pending messages, the algorithm has succeeded. All

messages have been matched.

64

Process P

0

Process P

1

Process P

2

Process P

3

S

0

: send P

1

tag 0 T

0

: send P

0

tag 0 U

0

: send P

3

tag 0 V

0

: send P

2

tag 0

S

1

: recv tag 0 T

1

: recv tag 0 U

1

: recv tag 0 V

1

: recv tag 0

S

2

: send P

2

tag 1 T

2

: send P

3

tag 1 U

2

: send P

0

tag 1 V

2

: send P

1

tag 1

S

3

: recv tag 1 T

3

: recv tag 1 U

3

: recv tag 1 V

3

: recv tag 1

PC

0

PC

1

PC

2

PC

3

pending messages

S

0

T

0

U

0

V

0

;

Figure 5.7: Initial state of the message matching algorithm.

PC

0

PC

1

PC

2

PC

3

pending messages

S

1

T

1

U

0

V

1

P

1

to P

0

tag 0

P

3

to P

2

tag 0

P

0

to P

1

tag 0

Figure 5.8: A state of the message matching algorithm.

PC

0

PC

1

PC

2

PC

3

pending messages

S

3

T

2

U

1

V

1

P

3

to P

2

tag 0

P

0

to P

2

tag 1

P

2

to P

3

tag 0

Figure 5.9: A state of the message matching algorithm.

65

PC

0

PC

1

PC

2

PC

3

pending messages

end end end end ;

Figure 5.10: A state of the message matching algorithm.

Flexible Message-Matching

The message-matching algorithm contains a series of arbitrary choices: how to in-

terleave the execution of processes. The output of the message-matching algorithm

depends on how these arbitrary choices are made. The algorithm cannot �nd all valid

matchings, except by an exhaustive search of many possible interleavings. This lim-

itation has two consequences. First, if several matchings are possible, the algorithm

may be unable to choose the one that is \best" in some sense, for instance the one

with the shortest estimated execution time or the one in which the total expected

waiting time is minimized.

Second, there are some erroneous programs that run correctly under some in-

terleavings but deadlock under other interleavings. For some such programs, the

algorithm will �nd a legal matching without noticing that the program is erroneous;

after matching, these programs are guaranteed not to deadlock. For other such pro-

grams, the algorithm will report that the program deadlocks, without noticing that

it might sometimes run to completion. This behavior is acceptable if we de�ne a pro-

gram that sometimes deadlocks as erroneous, and do not demand that the algorithm

report possible errors in erroneous programs.

While it would be possible to detect all such erroneous programs, doing so would

require an exhaustive search of many possible interleavings of the processes' execu-

tions. Finding an e�cient algorithm to detect such programs, or proving that no such

algorithm exists, remains an open problem.

5.1.5 Summary

Some message-passing programs are nondeterministic, because the tag-speci�ers in

their receive statements can match the available messages in more than one way.

A protocol compiler can simplify a program by resolving its nondeterminism:

66

making some nondeterministic \choices" at compile-time. Although this may hurt

performance by reducing the freedom of the run-time library, it makes the protocol

compiler's job easier by reducing the variety of behaviors that the application program

can exhibit.

Nondeterminism is removed from message-passing programs via retagging, which

changes the tags of send statements and the tag-speci�ers of receive statements. In

Parachute, this takes the form of message-matching, an operation that removes all

nondeterminism from a communication pattern.

5.2 Message-Passing Modes

Our second major issue is how to transport each message from the sender to the

receiver. That is, what sequence of operations should take place to cause the message

to get safely from sender to receiver? We can think of this as the problem of choosing

which mode to use for each message. Intuitively, message-passing modes are the

\atoms" and tailored protocols are the \molecules" built by stringing these atoms

together.

There are several modes that we might use to transport a message. They di�er

primarily in how they divide responsibility for bu�ering and
ow control decisions

between compile-time analysis and run-time mechanisms on the sender and receiver.

Among the message-passing modes are:

1. blast mode, in which the sender simply transmits the full body of the message as

soon as it is ready, and the message is delivered directly to the receiving process

on arrival. Blast mode requires compile-time analysis to ensure that the receiver

will be ready for the message before the sender can possibly transmit it.

2. synchronizing mode, in which the sending and receiving processes rendezvous,

then transfer the message. Synchronizing mode requires compile-time analysis

to ensure that enforcing a rendezvous between sender and receiver does not

cause the program to deadlock.

3. receiver-bu�ered mode, in which the sender transmits the message as soon as it is

ready, and the message is stored in a memory bu�er on the receiving processor

67

until the receiving process is ready for it. This mode requires compile-time

analysis to allocate bu�er space for the message on the receiving processor.

4. sender-bu�ered mode, in which the message is copied to a memory bu�er on

the sending processor, the receiving process signals the sender when it is ready

for the message, and the message is then transmitted. This mode requires

compile-time analysis to allocate bu�er space for the message on the sending

processor.

5. dynamic mode, in which the message is handled by a general message-passing

protocol like the pre-reservation and sliding-window protocols of section 2.4.2.

This mode requires no compile-time analysis.

The choice among these modes is made on the basis of correctness and e�ciency.

Most of the modes place some responsibility on the protocol compiler to verify certain

properties of the computation, or to allocate bu�er space. If the protocol compiler is

unable to satisfy these requirements, it can \fall back" on dynamic mode, which is

the conservative thing to do, since all messages were presumably handled in dynamic

mode before the protocol compiler came along

2

.

Once correctness issues have been dealt with, the choice between modes is made

on the basis of performance. This requires the protocol compiler to have some kind

of performance model for the target architecture, so it can compare the likely perfor-

mance of the various alternatives.

5.2.1 How Parachute Chooses Message Modes

Parachute uses three of the message modes: blast, synchronizing, and receiver-

bu�ered. It does not use sender-bu�ered or dynamic modes, because doing so does

not o�er any advantages on the particular architecture Parachute targets.

2

When static and dynamic bu�er allocation must be used simultaneously, a messy problem can

arise. The question is how much bu�er space to allot to the dynamic allocator. If the dynamic allo-

cator is given insu�cient space, deadlock can result. In an ideal world, we would give the dynamic

allocator su�cient space so that the deadlock-avoidance guarantees of standard (dynamic-only)

systems were preserved. Unfortunately, real systems do not provide any clearly-de�ned guaran-

tees; they take a \best e�ort" approach. One reasonable solution is to provide bu�er space roughly

comparable to what the standard, dynamic mechanism would use.

68

sender receiver

send
call

receive
call

data

T
I

M
E

Figure 5.11: Delivery of a message in blast mode. Blast mode is incorrect unless the

receiver is ready for the message before the sender transmits it.

69

Figure 5.11 shows a message being transmitted in blast mode. Blast mode is the

most e�cient of the communication modes, so Parachute uses blast mode every time

it has an opportunity to do so. Blast mode can be used whenever the Parachute

can deduce that the receiving process executes its beginRecv call before the sending

process calls its beginSend. Since this strategy is so simple, I will make no fur-

ther mention of blast mode in this section; the reader may assume that Parachute

recognizes and takes advantage of opportunities to use blast mode whenever they

arise.

5.2.2 Synchronizing Mode vs. Receiver-Bu�ered Mode

The remaining question, then, is how to decide between synchronizing mode and

receiver-bu�ered mode. This is referred to as the bu�ering-mode analysis problem.

In the synchronizing mode, depicted in �gure 5.12, the sender and receiver ren-

dezvous to transfer the message. When the receiver is ready for the message to arrive,

it sends a hardware packet to the sender saying \ready". Once the sender is ready

to transmit, and has received the \ready" packet, the sender transmits the message

body. On arrival at the receiving processor, the data is placed directly in the memory

of the receiving process.

In the receiver-bu�ered mode, depicted in �gure 5.13, the sender transmits the

message body as soon as it is ready, without waiting for a signal from the receiver.

If the message body arrives at the receiving processor before the receiving process

is ready for the message, the message is bu�ered in memory. When the receiving

process is ready for the message, it copies the message data from the bu�er into its

memory.

When deciding which mode to use for each message, there are two factors that

must be taken into account. First, using synchronizing mode adds a rendezvous

to the execution. This added synchronization may introduce a deadlock into the

program. The analysis must avoid deadlock | a correct input program cannot lead

to a deadlocking execution. Second, there may be many choices that avoid deadlock,

and the analysis must decide among them; this is done on the basis of execution cost,

in terms of both time and space.

Depending on the circumstances, either synchronizing or receiver-bu�ered mode

may lead to faster execution. Receiver-bu�ered mode has the extra cost of copying

70

sender receiver

send
call

receive
call

ready

data

T
I

M
E

Figure 5.12: Delivery of a message in synchronizing mode.

71

sender receiver

send
call

receive
call

buffer

copy

T
I

M
E

Figure 5.13: Delivery of a message in receiver-bu�ered mode.

72

the message body; synchronizing mode uses a rendezvous, which may require the

sender to wait. Depending on the relative timing of the two processes, one mode or

the other might be faster.

In terms of space, though, synchronizing mode is always better. Receiver-bu�ered

mode requires that memory space be used to bu�er the message, while synchronizing

mode has no such requirement.

5.2.3 Bu�ering and Deadlock

The bu�ering-mode analysis must be sure that it does not, by its decisions, add

a deadlock to the application program. To determine whether or not a program

deadlocks, Parachute uses an event ordering graph, which summarizes all the known

information about the time orderings between events in the execution of the commu-

nication pattern being analyzed [Lamport 78].

The event ordering graph is a directed graph. Each node in the graph represents

an event: some instantaneous occurrence in the execution of the communication

pattern. If there is a path from node i to node j, then event i happens before event j

in any correct execution of the communication pattern; this happens-before relation

is written i! j. The communication pattern has a deadlock if and only if the event

ordering graph has a cycle, that is, if and only if there is some x such that x! x.

Each process's program generates a sequence of events. Speci�cally, each call

to beginSend, endSend, beginRecv, or endRecv generates one event. Thus, each

message induces four events, for the beginning and end of both the sending and

receiving of the message.

There are three sources of edges in the event ordering graph:

1. Program-order edges represent orderings induced by the processes' programs.

For each statement in a process's program, there is an edge from the node

induced by that statement, to the node induced by the next statement.

2. Message-order edges represent orderings induced by each message. Intuitively,

a message-order edge expresses the fact that a message must be sent before

it can be received. For each message, there is a message-order edge from the

node corresponding to the beginSend operation on that message, to the node

corresponding to the endRecv operation on that message.

73

3. Rendezvous edges are induced by decisions about which bu�ering mode to use

for various messages. These will be described in detail later.

Process P

0

Process P

1

send message M1 to P

1

send message M2 to P

0

receive message M2 receive message M1

Figure 5.14: An example communication pattern, whose event ordering graph appears

in �gure 5.15.

Figure 5.14 shows an example communication pattern, and �gure 5.15 shows the

event ordering graph corresponding to that pattern, before any bu�ering decisions are

made. Note that the graph is acyclic, which means that the communication pattern

is deadlock-free.

Once the event-ordering graph of the source communication pattern has been

built, it can be used to determine the consequences of choices about whether to use

synchronizing or receiver-bu�ered mode to transfer each message. Deciding to use

receiver-bu�ered mode for some message has no e�ect on the event-ordering graph,

since receiver-bu�ered mode does not use any synchronization between sender and

receiver, other than that implied by the message itself.

However, using synchronizing mode does add a rendezvous, and so adds an edge to

the event-ordering graph. Speci�cally, if message M is transferred in synchronizing

mode, an edge is added from the node denoting M 's beginRecv operation, to the

node denoting M 's endSend operation. This edge, together with the edge previously

induced by M (according to item 2 of the list above), forms a \bow-tie" pattern,

which says that the sending of M and the receiving of M must overlap in time. This

expresses the fact that the send and receive operations rendezvous with each other.

Of course, the newly added edge may cause a cycle in the event ordering graph, and

hence a deadlock in the execution.

For example, assume that for the program of �gure 5.15, the protocol compiler

decided to pass message M1 in receiver-bu�ered mode, and M2 in synchronizing

mode. This adds another arc (for M2) to the event-ordering graph, leading to the

74

begin send M1

end send M1

end recv M2

begin recv M2

begin send M2

end send M2

begin recv M1

end recv M1

begin block

end block

Figure 5.15: The event ordering graph for the communication pattern shown in �g-

ure 5.14.

75

begin send M1

end send M1

end recv M2

begin recv M2

begin send M2

end send M2

begin recv M1

end recv M1

begin block

end block

Figure 5.16: The event ordering graph of �gure 5.15, under the assumption that

message M1 uses receiver-bu�ered mode, and messageM2 uses synchronizing mode.

76

graph shown in �gure 5.16. Since this graph is still acyclic, this is a safe set of choices

for the protocol compiler to make.

begin send M1

end send M1

end recv M2

begin recv M2

begin send M2

end send M2

begin recv M1

end recv M1

begin block

end block

Figure 5.17: The event ordering graph of �gure 5.15, under the assumption that mes-

sages M1 and M2 both use synchronizing mode. This graph has a cycle, indicating

that the program will deadlock under these assumptions.

Now assume that the protocol compiler instead decided that both M1 and M2

should use synchronizing mode. This adds yet another arc to the event-ordering

graph, leading to the graph shown in �gure 5.17. This graph has a cycle, indicating

that if these choices are made, the program will deadlock. Thus, the protocol compiler

may not use synchronizing mode for both messages.

77

The fact that receiver-bu�ered mode is \safe" while synchronizing mode adds

possible deadlock suggests a strategy for attacking the problem of assigning bu�ering

modes to messages. We could assign a \synchronizing bene�t" to each message,

which would re
ect the relative advantage of synchronizing over receiver-bu�ered

mode for that message; this bene�t would be negative if receiver-bu�ered mode were

more attractive. We could then use an algorithm that assigned bu�ering modes to

messages while maximizing the total bene�t.

Unfortunately, there is no e�cient algorithm for this problem. The problem of

assigning bu�ering modes to maximize the sum of a per-message synchronizing bene�t

is NP -complete. (A proof of this fact is given in appendix B. The proof uses a

reduction from the feedback arc set problem.) Since there is no e�cient, optimal

algorithm, even for a very simple bene�t function, a heuristic must be used.

Parachute uses a simple greedy algorithm. Since deadlock can only be introduced

by messages in synchronizing mode, all messages start out in receiver-bu�ered mode,

then messages are individually changed to synchronizing mode, being careful on each

change not to introduce a deadlock. Messages are �rst sorted into decreasing order

of the bene�t function. Then each message is considered in turn, from largest to

smallest bene�t, changing a message to synchronizing mode if it has positive bene�t

and if making the change does not introduce a deadlock.

5.2.4 Bu�ering and Performance

The remaining problem in bu�ering analysis is how to calculate the weighting function

that expresses the bene�t of making a particular message synchronizing rather than

receiver-bu�ered. This is done by a heuristic, taking two factors into account:

� the cost of the extra message handling overhead in the synchronizing case, which

is treated as a constant, and

� the (time) cost of bu�ering a message, which is treated as linear in the size of

the message. This is consistent with the assumption that this cost arises mostly

from data copying.

Thus, the bene�t of choosing synchronizing over receiver-bu�ered, for a message of

length L, is cL � r, for some constants c and r. This cost function does not take

78

into account the cost of the extra waiting in the synchronizing case. (Or, since the

constant L is chosen empirically, the cost of waiting is treated as constant.) Dividing

by c, we can further normalize the bene�t function to be L � L

0

for some constant

L

0

. On the iPSC/860, L

0

is chosen as 8000 bytes. Thus, unless there is a danger of

exceeding the limit on bu�er space, Parachute will not attempt to treat a message as

synchronizing unless it is longer than 8000 bytes.

Ideally, the choice of bu�ering modes would be made by doing a detailed timing

analysis of the block being analyzed. The event-ordering graph would be augmented

by labelling each node with the expected time at which it is executed. The analysis

would then look for messages in which the receiver is ready before the sender, and

change these messages to synchronizing mode. In addition, the analysis could consider

both possibilities (synchronizing and receiver-bu�ered) for some messages that were

particularly large or were on the critical path.

In practice, such analysis is usually impossible, because detailed timing informa-

tion is not available at compile-time. In particular, the time taken by sequential

computation phases is not known and cannot be predicted accurately. However, we

could potentially gather such information by tracing the program.

5.2.5 Summary

There are several message-passing modes that can be used to transmit data from

one processor to another. The modes o�er di�erent tradeo�s between protocol over-

head, bu�er space requirements, and the amount of compile-time analysis needed to

guarantee correctness.

Parachute uses three modes. It uses blast mode whenever it is safe. For the

majority of messages, it uses either receiver-bu�ered mode or synchronizing mode.

Parachute's choice between receiver-bu�ered mode and synchronizing mode is

based on issues of correctness and performance. Handling a message in synchroniz-

ing mode introduces a time-ordering between events which may cause the program

to deadlock; before choosing synchronizing mode for a message, Parachute must en-

sure that this deadlock cannot occur. Performance issues include the extra bu�er

space required by receiver-bu�ered mode, as well as the tradeo� between waiting in

synchronizing mode and data copying in receiver-bu�ered mode.

The combinatorial optimization problem that arises from the choice between

79

receiver-bu�ered mode and synchronizing mode is NP-complete. Parachute uses a

simple, greedy heuristic to address it.

5.3 Bu�er Allocation

The last of our three major issues is bu�er allocation. Certain message modes re-

quire the use of memory on some processor to temporarily bu�er a message until the

receiving process is ready for it. In order to use these modes, the protocol compiler

must allocate bu�er space and see that it is managed correctly.

There are two classes of bu�er allocation schemes: static and dynamic. Static

schemes allocate bu�ers for messages at compile-time, while dynamic schemes allocate

bu�ers at run-time. Each scheme has its advantages and disadvantages. Standard

message-passing packages, like Intel's NX, use dynamic bu�er allocation

3

.

Dynamic bu�er allocation is more
exible and does not require any compile-time

analysis. On the other hand, dynamic allocation requires a heavier-weight protocol

such as those in section 2.4.2, since a processor can never be certain that some other

processor will have bu�er space available. In addition, dynamic allocation schemes

have poor failure properties. Although a good dynamic scheme works for most rea-

sonable programs, it may cause some programs to deadlock, and the conditions under

which this deadlock might take place are di�cult to specify precisely.

The main advantage of static allocation is that it allows a faster protocol, since the

sender is assured that the receiver is prepared to store the message. In addition, when

static schemes fail, they do so in a helpful way, reporting an error at compile-time, or

perhaps even reconsidering some of the compiler's earlier decisions in an attempt to

reduce bu�ering requirements. The drawbacks of static allocation are that it requires

compile-time analysis, and this analysis must necessarily be conservative.

In practice, the protocol compiler does not have complete knowledge of what the

application program will do, so it cannot use static analysis alone. Therefore it uses

some mixture of static and dynamic allocation. Some message-passing modes require

static bu�er allocation. In particular, the receiver-bu�ered mode depends crucially

on the availability of a bu�er on the receiving processor. The only way to guarantee

this is to allocate a bu�er statically.

3

Some systems support only synchronizing mode, and hence do no bu�ering at all. They are

e�ectively forcing the programmer to do static bu�er allocation by hand.

80

5.3.1 Static Allocation of Bu�ers

In general, static bu�er allocation takes place in two stages. First, an upper bound

is put on the amount of bu�ering the program requires. Second, bu�er locations are

allocated to messages in a way that re-uses bu�ers as much as possible in order to

save space.

Bounding a Program's Bu�er Requirements

Process P

0

Process P

1

n 0 y 0

while(someCondition())f while(someCondition())f

n n+ 1 receive x tag 0

send f(n) to P

1

tag 0 y g(y; x)

g g

print y

Figure 5.18: A program that might use unbounded bu�ers.

Consider the program of �gure 5.18. The two processes interact in a producer-

consumer fashion. If the producer can send messages faster than the consumer can

receive them, the amount of bu�er space in use can grow. If nothing stops this

process, the program may over
ow any bounded amount of bu�er space

4

.

The solution is simple: we must transform the program to an equivalent form,

adding su�cient synchronization, perhaps in the form of additional messages, to

ensure that the producer cannot get ahead of the consumer by more than some

bounded number of iterations. For example, we could make the program execute a

barrier synchronization before every kth iteration of the loop, or we could require the

consumer to send a
ow-control message to the producer every k iterations.

Now consider the program in �gure 5.19. P

0

sends a message for each iteration

of its loop, and all of these messages must be bu�ered until P

0

exits the loop and

4

It is tempting to classify such a program as erroneous. However, programmers write programs

like this and expect them to work, so a reasonable implementation should allow them.

81

Process P

0

Process P

1

n 0 receive n tag 1

while(someCondition())f y 0

n n + 1 for i 1 to n

send f(n) to P

1

tag 0 receive x tag 0

g y g(y; x)

send n to P

1

tag 1 g

print y

Figure 5.19: A program that might require unbounded bu�ers.

sends the message with tag 1. Since we cannot put an upper bound on the number

of iterations of P

0

's loop, we cannot bound the amount of bu�ering required.

Note the di�erence between this program and the one of �gure 5.18. In this

case, the bu�ering requirement is an inherent property of the program, whereas in

�gure 5.18 the bu�ering requirement could be reduced without changing the result

of the program.

It is unrealistic to expect the protocol compiler to execute every program, re-

gardless of its bu�ering requirements. Indeed, no possible implementation can run a

program whose bu�ering requirements exceed the available storage. The only choice

is to guess optimistically that the actual execution will not use too much bu�er space,

and generate code under that assumption. If the guess turns out to be wrong, the

run-time system can signal an error. Although the protocol compiler cannot run ev-

ery possible program, it can at least hope to run every program that a conventional

implementation could run.

Allocating Bu�ers to Messages

Once the bu�ering requirements of a program have been bounded, the protocol com-

piler can proceed to allocate bu�ers to the program's messages. The bu�er allocation

problem is roughly like the register allocation problem that compilers face. In both

cases, a set of values must be stored in memory, these values have certain lifetimes,

82

and the allocation must avoid sharing storage between values that might be alive at

the same time.

In the bu�er allocation problem, space is allocated on a per-send basis, that is, a

bu�er is allocated for each send operation in each process's program.

There are two di�erences that make bu�er allocation harder than the standard

register allocation problem. First, the values being assigned storage may vary widely

in size, depending on the maximum sizes of various messages. Second, in an asyn-

chronous parallel program, a sending process may get ahead of a receiver; if the

program contains loops, multiple messages from a single send-call might be alive at

the same time.

The second di�erence is the more important of the two. The solution is to allocate

extra space for a send-call, enough to store all the messages from that send-call that

might be alive at any time. Since we know the total bu�ering requirements are

bounded, there is some upper bound on the number of instances of each send-call

that can coexist. Program analysis may enable a tighter bound to be found.

As in the case of register allocation, bu�er allocation proceeds by �rst building a

con
ict graph that summarizes which send-calls can share storage and which cannot.

The con
ict graph is then used to produce an allocation of space.

The con
ict graph contains one vertex for each send-call, and an (undirected)

edge between two vertices if those two send-calls might possibly require storage in

the same processor's memory at the same time. The protocol compiler must assume

that two send-calls might con
ict unless it can prove that they do not con
ict.

Once the con
ict graph has been determined, the protocol compiler must solve

a kind of extended graph-coloring problem. Formally, this problem can be stated as

follows:

Given an undirected graph G = (V;E), with nonnegative integer labels s

i

on the vertices V , �nd integer values b

i

for each vertex such that:

1. b

i

� 0 for all i 2 V , and

2. for all (i; j) 2 E, either:

� b

i

+ s

i

� b

j

, or

� b

j

+ s

j

� b

i

,

and

83

3. max

i2V

(b

i

+ s

i

) is minimized.

Here G represents the con
ict graph, s

i

is the size of the bu�er required by send-call

i, and b

i

is the bu�er o�set assigned to send-call i. This problem is NP -complete |

when all s

i

= 1 it is exactly the standard graph coloring problem.

5.3.2 Bu�er Allocation in Parachute

As in the other phases of analysis, Parachute takes advantage of the special structure

of the programs it is analyzing to simplify its bu�er allocation task.

Parachute's runtime library executes a barrier synchronization at the beginning of

each communication pattern. This ensures that no process enters a pattern until all

processes have �nished previous patterns, which makes bu�er allocation easier in two

ways. First, it ensures that at most one message from each send-call can be active at

a given time. Second, it provides a guarantee that messages from two send-calls in

di�erent communication patterns can never be active at the same time. Messages in

separate communication patterns can always share storage, and therefore Parachute

can solve the bu�er allocation problem separately for each communication pattern.

Parachute builds a con
ict graph for each communication pattern by examining

the event-ordering graph that was produced by earlier phases of the analysis. If two

messages A and B must be bu�ered at the same processor, there is a con
ict between

A and B unless either A's endRecv event happens before B's beginSend event, or

B's endRecv event happens before A's beginSend event.

Parachute uses a nonoptimal, but fast, greedy algorithm to solve the bu�er allo-

cation problem. First, the messages are sorted in order of decreasing size s

i

. Then

proceeding from largest to smallest s

i

, each message is assigned the smallest bu�er

o�set b

i

which does not cause a con
ict with the messages that have been assigned

so far.

Figure 5.20 shows an example. The con
ict graph on the left side of the �gure

shows which pairs of messages can share bu�ers. The solution found by Parachute's

greedy algorithm is shown on the right side of the �gure.

84

6

1

34

4

0 1 2 3 4 5 6 7 8 9 10

Figure 5.20: An example bu�er allocation problem and its solution. The con
ict

graph on the left shows a set of �ve messages that must be bu�ered on some processor

in some communication pattern. The graph has one node for each message; each node

is labelled with the maximum size of the corresponding message. An edge between

two nodes means that those two messages cannot share bu�er space. The diagram on

the right shows the solution, which satis�es the 18 words of total bu�er requirements

in 10 words of bu�er space.

85

5.3.3 Meeting the Space Limit

The analysis described so far is satisfactory, except that it may sometimes use too

much bu�er space. In practice, there is a limit on the amount of bu�er space that the

tailored protocol may use. This limit can be stated explicitly by the programmer, or

it can be inferred from the size of the generated program, or a default value can be

used.

If the analysis as described so far yields a solution that meets the space limit, that

solution is used. If, on the other hand, the result exceeds the space limit, corrective

measures must be taken. Decisions made in earlier phases of the analysis can be

reconsidered, with the new goal of reducing the amount of bu�ering required.

In the case of Parachute, the analysis of the o�ending communication pattern is

done again, with the L

0

parameter of the bu�ering analysis reduced. (Recall that

L

0

is the \break-even" message size; messages L

0

bytes in length or larger are put in

synchronizing mode if possible.) The algorithm tries new values of L

0

, trying to �nd

the largest value which allows the space bound to be met. This is done via a binary

search between zero and the original value of L

0

.

If the space bound cannot be met, even for L

0

= 0, Parachute gives up, outputs

the minimum-space solution it has found, and issues a warning to the user.

5.3.4 Summary

Allocating bu�er space for messages is the third major task of the protocol compiler.

In general, the protocol compiler must put an upper bound on the amount of bu�er

space a program requires, and then must perform the bu�er allocation.

Bu�er allocation is similar to the standard register allocation problem, except that

in bu�er allocation, storage may be allocated for objects whose sizes di�er widely.

Parachute's bu�er allocation algorithm �rst builds a con
ict graph that sum-

marizes all the available information about which messages can share bu�ers. The

algorithm then uses this con
ict graph to assign bu�er addresses to messages, using

a greedy heuristic.

86

5.4 Complexity of Parachute's Algorithms

This section calculates the time complexity of Parachute's algorithms, as a function

of two parameters: the number of processes P , and the number of (static) messages

M . The complexity is calculated for a single communication pattern; multiplying by

the number of patterns in the program gives the total complexity of the algorithms

running on an entire application program. Since each process participating in a

communication pattern must handle at least one message, we know that P � M .

Also, since all statements refer to somemessage, and there are at most four statements

referring to any message, we know there are O(M) statements executed in the pattern.

The following subsections consider each phase of Parachute's execution. Adding

up these contributions, we will see that the protocol compiler's overall running time

is O(M

2

).

5.4.1 Message Matching

If implemented carefully, the message matching phase requires O(M) time. This can

be demonstrated by \charging" some message for every operation performed by the

algorithm, and then arguing that no message can be charged for more than some

constant amount of work.

Two implementation techniques are needed to bound the complexity of this phase.

First, the algorithm must maintain a \ready-list" of processes that are possibly ready

to execute a statement. When a process reaches the end of its program, or tries to

receive a message that hasn't yet been sent, that process is removed from the ready-

list. Sending a message to a process that is not on the ready-list causes that process

to be returned to the ready-list. The ready-list ensures that a process cannot try and

fail to execute a particular statement too many times.

The second technique is to store the list of pending messages carefully. By doing

this, we can ensure that the algorithm can always �nd the �rst pending message

that matches some endRecv statement in O(1) time. Using FIFO linked lists is a

simple way to guarantee that messages from a given sender to a given receiver will

be delivered in order. Each pending message is a member of two doubly-linked lists:

1. a list of all pending messages with the same destination process, and

87

2. a list of all pending messages with the same destination process and message

tag.

Since a receiving process can either accept any message tag or specify a particular

tag, these two lists correspond to the two ways in which an endRecv operation can

attempt to match a message. The algorithm maintains a header for each list; these

headers are stored in a hashtable.

If the hashtable is implemented properly, �nding the header for any list requires

O(1) expected time. Thus, a message can be added to the pending message list, or the

�rst message matching some receive can be found and removed, in O(1) expected

time.

Operations are charged to messages as follows: The time to execute an operation is

charged to the message that operation applies to. The time to remove a process from

the ready-list as a result of a blocked endReceive is charged to the message eventually

received by that endReceive call. The time to return a process to the ready-list is

charged to the message whose sending causes that process to be returned. Per-process

start-up and shut-down costs are charged to the �rst message the process sends or

receives. Since each message can be charged at most a constant number of times, and

each charge adds only a constant to that message's account, the total charge for each

message is O(1), and hence the total execution time is O(M).

5.4.2 Bu�ering Analysis

This phase performs a series of steps. First, it builds an event-ordering graph and

checks it for cycles. Second, it generates a list of messages, sorted by size. Third, it

considers each message in turn, deciding whether or not to make each one use syn-

chronizing mode. Making a message synchronizing causes the event-ordering graph

to change.

The event-ordering graph can be built in O(M) time, since the outdegree of each

node in the graph is at most two: one for a program-order edge to the next statement,

and one for a possible message-order or rendezvous-order edge.

Since each node has O(1) outdegree, we can check for a path between some pair

of nodes a and b in O(M) time by depth-�rst search. Thus, the analysis can check for

a cycle in the newly-constructed graph in O(M

2

) time by checking for a (nontrivial)

path from each node to itself.

88

Sorting the list of messages into order of decreasing size requires O(M logM)

time.

In its �nal step, the bu�ering analysis phase considers each message in turn,

and decides whether or not to make it synchronizing. Determining whether or not a

message can be synchronizing requires testing for the existence of a path between two

speci�c nodes in the event-ordering graph, which takes O(M) time. If the message

is made synchronizing, the event-ordering graph is updated, which takes O(1) time.

Since this entire procedure might be repeated for each message, this step could require

O(M

2

) time.

Adding up the times required by these three steps, we see that the bu�ering

analysis phase requires O(M

2

) time.

5.4.3 Bu�er Allocation

The bu�er allocation phase builds a con
ict graph for each process, and then assigns

a bu�er address to each message. In the worst case, all the messages sent in the

communication pattern are destined for the same process.

Building the con
ict graph requires O(M

2

) time. First, the algorithm calculates

the transitive closure of the event-ordering graph. This is done by doing a depth-�rst

search from each node in the event-ordering graph. Since there are O(M) nodes, and

the search takes O(M) time, this calculation takes O(M

2

) time.

Assigning bu�er addresses requires a doubly-nested loop over the nodes in the

con
ict graph, and hence requires O(M

2

) time.

5.4.4 Cycling to Satisfy the Space Bound

Recall that if the bu�er allocation step is unable to bu�er the required messages in

the available bu�er space, the algorithm cycles back to the bu�er analysis phase,

while changing the bene�t function to discourage bu�ering. This cycle might repeat

several times before the space bound is met, or the protocol compiler determines that

it cannot meet the space bound. At �rst glance, it appears that this would increase

the complexity of the protocol compiler.

In reality, the worst-case asymptotic complexity is not increased by this cycling.

Recall that when cycling, the protocol compiler tries to �nd the largest value of the

L

0

parameter which allows the space bound to be met. Since the �rst, failed, attempt

89

used a �xed value of L

0

(call this value L

orig

), and using L

0

< 0 doesn't make sense,

the protocol compiler can do a binary search between the bounds 0 � L

0

< L

orig

.

This binary search requires O(log L

orig

) iterations. But since L

orig

is a constant,

the number of iterations is O(1). Therefore, the binary search multiplies the total

complexity by O(1), which leaves the total complexity as O(M

2

).

5.5 Summary

A protocol compiler's analysis must deal with three main issues: nondeterminism,

bu�ering modes, and bu�er allocation.

Nondeterminism in message-passing programs arises from tag-matching. The pro-

tocol compiler can reduce or eliminate nondeterminism by retagging: changing the

tags used by the application's communication calls. Reducing nondeterminism in this

way simpli�es the tasks of later phases of analysis.

A message can be transmitted from sender to receiver via one of several modes.

Di�erent modes o�er di�erent tradeo�s between performance and the amount of

compile-time analysis required to guarantee correctness. A protocol compiler must

choose between modes on the basis of correctness and performance; making the right

choice might depend on having an accurate model of the target architecture.

Some bu�ering modes require that bu�er space be allocated for messages at

compile-time. This leads to the bu�er allocation problem. Allocating bu�ers for

messages is similar to the standard compiler problem of allocating registers for vari-

ables. The main di�erence is that messages come in many di�erent sizes. The bu�er

allocation problem leads to a modi�ed graph coloring problem.

Parachute handles these three issues by taking advantage of the special structure of

the application programs it accepts. Parachute uses symbolic execution to remove all

nondeterminism from the source program. Both bu�ering-mode analysis and bu�er

allocation lead to NP -complete problems, on which Parachute uses greedy heuristics.

For a communication pattern withM messages, Parachute's analysis requires O(M

2

)

worst-case time.

Chapter 6

PARACHUTE: THE PROTOTYPE

Pandora's Pox: Nothing ever works the �rst time, but there is always

hope that this time is di�erent.

| Gerald M. Weinberg

This chapter describes the remaining details of Parachute, the prototype protocol

compiler. Parachute generates tailored protocols for communication patterns. These

protocols execute on the Intel iPSC/860 multicomputer, which runs the NX operating

system. The next chapter will present experiments that evaluate the performance,

for real application programs on real machines, of tailored protocols generated by

Parachute.

Parachute consists of about 2500 lines of C code, plus about 300 lines of lex and

yacc source. Parachute's protocol compiler reads a communication description �le,

which summarizes the communication patterns in the application program. Parachute

produces as output a tailored protocol. This output is actually C source code, con-

sisting of declarations of a set of data structures specifying the tailored protocol; it is

compiled and linked with a run-time library. The run-time library, which is described

in detail in section 6.3, uses these data structures to carry out the tailored protocol.

6.1 Using NX

Parachute runs on top of the native NX operating system. Building on top of NX

introduces some overhead into the protocols, since NX does not conveniently provide

all the hooks that tailored protocols need. However, the decision to build on NX had

two important bene�ts. First, it allowedme to use all the NX features not having to do

with communication. This made it easier to port existing applications to Parachute,

and also enabled the use of the standard NX tools for debugging and performance

monitoring. In addition, this choice allowed ordinary NX message-passing to co-exist

91

with optimized communication. Thus, it allowed the protocol compiler to be used for

only part of a program if that was desired.

Second, by comparing NX to Parachute running on top of NX, I was able to isolate

the e�ect of improving the communication protocol. When Parachute was used, all

the details of data movement and protection-boundary crossings were handled by NX.

This means that any di�erences in performance between Parachute and NX could

not have been caused by di�erences in the e�ciency of data movement or crossing

protection boundaries. Di�erences in performance must be due to di�erences in

protocol overhead. Using NX as a basis allowed me to cleanly measure the speedup

caused by Parachute.

NX has a mechanism called \force-type messages" that allows applications to

move data without NX imposing a protocol. Parachute uses force-type messages to

move data, thus avoiding any protocol overhead within NX. Parachute also uses NX's

hand-coded gsync procedure to perform barrier synchronizations.

6.2 User's View of Parachute

Figure 6.1 shows how Parachute works from the user's point of view. To adapt an

existing message-passing program to use Parachute, the programmer or compilermust

do two things: add annotations to the program to mark the beginning and end of

communication patterns, and make a communication description �le. The protocol

compiler reads the communication description �le and generates code for a tailored

protocol. This is compiled and linked with the application program and a runtime

library to get a runnable image.

The programmer or compiler adds annotations to the application program to

mark the beginning and end of each communication pattern. Patterns are denoted

by integer identi�ers; the statement beginPattern(6) marks an entry to pattern

number 6, and endPattern(6)marks an exit from pattern 6.

6.2.1 The Communication Description File

The communication description �le encapsulates all the information the protocol

compiler needs to know to make its decisions. In principle, this information could

be gleaned from an analysis of the source code of the application program, but for

92

communication
description

protocol
compiler

compiler/
linker

run−time
library

application
program

tailored
protocol

runnable
image

Figure 6.1: The user's view of how Parachute works. The communication description

�le is fed through the protocol compiler to produce C code for the tailored protocol.

This is then compiled and linked with the application program and a runtime library

to make a runnable image.

93

Parachute I chose the simpler alternative of requiring a separate description �le.

Appendix A contains a formal grammar for the PDL language used in the com-

munication description �le; this section will give an informal treatment. The com-

munication description �le has two parts: directives, and pattern descriptions. The

directives section says how many processes will execute the program, and how much

memory space the tailored protocol may use. The pattern descriptions section lists

all the patterns, and the behavior of each process within each pattern, as described

in section 4.3.3.

There are three ways the communication description �le can be generated. First,

the programmer can write it. This is straightforward but tedious.

Second, the communication description �le can be generated automatically from

a trace of the program. Once the source program has been annotated to mark the

pattern boundaries, the program can be run in a mode that generates a trace �le de-

scribing the exact sequence of communication calls (and annotations) executed within

each pattern. This trace �le can then be post-processed to generate the communi-

cation description �le. This is the approach I used in my experiments; it requires

almost no work beyond annotating the source program. Once the annotations have

been added, the rest of the procedure can be automated using make.

Note that, by assumption, the trace of each communication pattern generated by

this procedure is data-independent. This is because the programmer or compiler, by

annotating the communication patterns in the program, asserted that the communi-

cation within those patterns was not data-dependent. If this assertion was in error,

that fact will be caught at run-time and signalled as an error.

Finally, the third method of generating the communication description �le is to

rely on the compiler. If the source message-passing program is generated by such

a compiler, this compiler could be induced to create the communication description

�le. The information in the communication description �le is probably known to the

compiler at one time or another, so this is merely a matter of writing the information

out to a �le in the correct format. Alternatively, the compiler could merely mark

pattern boundaries in the generated message-passing code; then the tracing method

could be used to generate the communication description �le.

94

6.3 Parachute at Runtime

The �nal component of Parachute is its runtime library. The library does all the

bookkeeping necessary for running the tailored protocol, and provides the low-level

communication services that tailored protocols need.

The library contains all the code that executes in every tailored protocol. The

protocol compiler does not actually generate executable code, but merely creates C

code that declares a set of data structures that are used by the code in the library.

The contents of these data structures are interpreted by the library code to carry out

the appropriate actions for each message.

When considering how the library works, some confusion may arise between the

send and receive calls made by the application program, and the NX send and

receive operations performed by the library to accomplish the tailored protocol.

Throughout this section, I will refer to calls made by the application program as

\user-level" calls. Any calls not designated as user-level should be assumed to be NX

calls made by the library.

6.3.1 Synchronization

Parachute's runtime library executes a barrier synchronization at the beginning of

each communication pattern. This synchronization has two purposes. First, it sim-

pli�es the bu�er allocation task by e�ectively isolating the patterns from each other

so that they can be analyzed separately. Second, it enables a process to execute per-

pattern initialization, where necessary, without any danger of other processes entering

the pattern prematurely.

These barrier synchronizations add some overhead at run-time. However, this is

a small e�ect, since patterns tend to be large, so the cost of synchronization can

be amortized over many messages. Section 8.2.5 discusses methods for reducing the

number of synchronizations.

6.3.2 The State Machine

The application program uses a user-level interface that does not mark each message

specially. Yet the tailored protocol must determine which message each communica-

tion call pertains to, so it can treat that message in the special way that the protocol

95

compiler decided on. The mapping between these levels is done by using a state ma-

chine managed by the library. The state machine keeps track of which communication

pattern is currently being executed (if any), and exactly where in the execution of

that pattern the program is.

In each state of the state machine, some subset of the possible user-level commu-

nication calls is legal. In other words, the application program may only make calls

that conform to the communication pattern that it is in. The state machine allows

the library to detect when the application program violates these constraints. If the

program makes an \illegal" user-level communication call, a run-time error is reported

to the user. Checking for this error costs only a few instructions per communication

call.

The state machine has one state for each user-level communication call made by

each process in each communication pattern. There is another, distinguished state

that denotes that the program is not in any communication pattern. When a process

enters a communication pattern, it looks up in a table which state to enter. (States

are identi�ed by integers.)

During the execution of the pattern, the state-identi�er of a process is incremented

each time the process makes a user-level communication call, thus \counting o�" the

required user-level communication calls within that communication pattern. When

the end of the communication pattern is reached, the state machine reverts to its

\no-pattern" state.

6.3.3 The Library's Data Structures

The protocol compiler outputs a set of data structures that are used by the library.

These structures include the following:

� a message descriptor for each message sent or received within any pattern.

A message descriptor identi�es the message's sender, receiver, tag, maximum

size, bu�er location, and which message-passing mode it uses. In addition, the

message descriptor has a few slots used at runtime to keep track of the status

of the message.

� a state descriptor for each state of the state machine. This descriptor says which

communication call the application program is allowed to make in that state,

96

and which message that call pertains to.

� a pattern descriptor for each communication pattern the program executes.

This descriptor contains the initial state-identi�er each process should use when

entering that communication pattern, as well as information about which states

and which messages are part of the pattern.

� mapping tables that translate back and forth between the integer pattern-

identi�ers used by the application program, and those used internally by the

library.

6.3.4 Moving Data Without a Protocol

The library uses an NX feature called \force-type messages" to move data between

processors without a communication protocol. An NX message is designated as force-

type by giving it a message tag in a certain range. The data of a force-type message is

sent immediately through the network by the sending processor. When the message

data arrives at the destination processor, if some process on the destination has issued

a matching receive call, the data is given directly to that process. If, on the other

hand, no matching receive has been issued, then NX silently drops the message.

In order to use force-type messages, we must ensure that the receiving process

has issued its receive call before the sender issues its send. Appendix C explains in

detail how this is done. Separate mechanisms are used to implement synchronizing

and receiver-bu�ered messages on top of force-type messages.

In order to uniquely identify each message in transit, the library uses a unique

message tag for each message the protocol compiler knows about. This tag is assigned

by the protocol compiler.

6.3.5 Handling Synchronizing-Mode Messages

Synchronizing messages involve a rendezvous between sender and receiver. This ren-

dezvous is initiated by the receiver. When the receiving process issues its user-level

receive operation, the library code on the receiver's node issues a non-blocking NX

receive call to accept the message data, then transmits a small packet to the sender

using the NX csend call, which uses a protocol optimized for small messages. This

97

packet causes a bit to be set which informs the sender of the receiver's readiness.

Once the sender has issued its user-level send operation, and the ready-bit is set, the

sender clears the ready-bit and then uses an NX force-type message to transmit the

data to the receiver.

6.3.6 Handling Receiver-Bu�ered Messages

A receiver-bu�ered message is somewhat simpler. Recall that the protocol compiler

allocated a bu�er for each receiver-bu�ered message. At the beginning of the pro-

gram's execution, each process issues a set of non-blocking NX receive operations,

one for each receiver-bu�ered message that process will receive. After issuing these

receives, the processes perform a barrier synchronization, to ensure that all pro-

cesses have had a chance to issue their receives before any messages are sent to

them. Whenever one of these NX receives completes, the process re-issues it.

When a process issues a user-level send operation on a receiver-bu�ered message,

the sender simply issues an NX forced-type send operation to transmit the data to

the receiver. This is safe since the receiver is known to have previously issued a

matching NX receive.

Appendix C shows pseudocode for the runtime library's implementation of the

MP0 communication calls.

Chapter 7

PERFORMANCE

First get your facts; and then you can distort them at your leisure.

| Mark Twain

This chapter uses experiments to evaluate the performance consequences of using

a tailored protocol rather than standard data-movement techniques. In addition to

simply measuring the performance of Parachute, I will attempt to address the more

general issue of how valuable the protocol-compiler approach is.

To determine the bene�t of using a protocol compiler, we must answer three

questions.

� What fraction of their time do applications spend in communication?

� What fraction of the communication time is protocol overhead?

� What fraction of the protocol overhead can be eliminated by using the protocol

compiler?

Combining these three factors yields the decrease in running time due to the protocol

compiler.

To address these questions, I performed experiments on six programs, using

Parachute. Of the six programs, one is a micro-benchmark: a small, \toy" pro-

gram designed to cleanly measure a particular feature of the implementation. The

other �ve are macro-benchmarks: real computational-science applications.

All timing results reported for the benchmarks were measured on a 16-processor

iPSC/860, using the PGI icc and if77 compilers with maximum optimization level.

Times were measured using a hardware timer with one-microsecond granularity. All

times were measured separately on all processors, and then averaged.

99

The micro-benchmark is called pong. The pong application consists of a single

communication pattern that repeatedly \ping-pongs" a message between a pair of

processors. The communication operations are repeated many times to make up a

communication pattern; this ensures that per-pattern costs have minimal e�ect on

the results.

There are three versions of the pong micro-benchmark, one for each of three

message-passing modes. The native-pongversion uses the native NX communication

library directly. The buf-pong version uses receiver-bu�ered mode for all messages.

The sync-pong version uses synchronizing mode for all messages.

The micro-benchmark experiments consisted of running all three versions of pong,

for various message sizes.

The macro-benchmarks consisted of these �ve application programs:

� Matmult: This program multiplies two matrices, using the Fox/Hey/Otto al-

gorithm [Fox et al. 88, Fox et al. 87]. This algorithm lays out the program's

data, and orchestrates its communication, very carefully. Most of this applica-

tion's communication consists of broadcasts of submatrices across rows of the

machine, and vertical pipelined \rolls" of data. This program was written by

David Walker at Caltech.

� Nbody: This program simulates the evolution of a set of stars, interacting

through gravity. It uses the simple n

2

algorithm, in which each timestep re-

quires all-to-all communication. All-to-all communication is implemented with

a \bucket brigade" technique [Fox et al. 88]; the program uses double-bu�ering

to overlap communication and local computation. I wrote this program.

� Olfactory: This application simulates the olfactory cortex of a cat's brain. The

program does a biologically accurate simulation of the behavior of each neuron,

and the connections between them. This program was originally written by

Jim Bower of the Caltech Biology Department and colleagues [Bower et al. 88],

and has been updated by Wojtek Furmanski and Roberto Battiti of the Caltech

Concurrent Computing Program.

� Md: This program carries out a molecular dynamics simulation. It simulates a

set of molecules interacting via a Lennard-Jones force law. This program was

100

written by Steve Plimpton at Sandia National Laboratory [Plimpton 90].

� Eigen: This program implements a Jacobi eigensolver. This forms one im-

portant part of a larger quantum chemistry code. This program was writ-

ten by Rik Little�eld and colleagues at Battelle Paci�c Northwest Laboratory

[Little�eld & Maschho� 93].

Each application was run using the problem size suggested by the person or organi-

zation that supplied the benchmark.

Table 7.1: Characteristics of the macro-benchmarks.

application lines language data size code size running time [sec]

matmult 690 C 205k 218k 0.74

nbody 242 C 74k 218k 1.59

olfactory 1161 C 4k 256k 0.56

md 1288 Fortran 3k 319k 0.28

eigen 4799 Fortran 20k 572k 3.17

Table 7.1 shows some static characteristics of the benchmark programs. They vary

in size from 250 lines to almost 5000 lines, and are written in both C and Fortran.

Table 7.2: Communication statistics for the macro-benchmarks.

application messages sent avg message size smallest largest

matmult 187 7668 4 12800

nbody 240 2304 2304 2304

olfactory 7147 452 16 1024

md 1280 720 196 1540

eigen 2619 251 1 10000

Table 7.2 shows some dynamic properties of the application programs. Note that

the average message size varies by more than a factor of 30; there is further variation

within each benchmark.

101

7.1 Fraction of Time Spent Communicating

The �rst task is to evaluate what percentage of running time is spent in communi-

cation. This was determined by instrumenting the macro-benchmark programs to

measure the amount of time spent in communication calls.

Table 7.3: Percentage of time spent in communication.

application percent communication

matmult 13.3%

nbody 13.0%

olfactory 78.3%

md 24.4%

eigen 89.8%

average 43.8%

Table 7.3 shows the percentage of time spent in communication for the �ve macro-

benchmarks. On average, these applications spend nearly half of their time commu-

nicating.

One caveat is required in interpreting this data. If a program su�ers from load

imbalance, processors waiting for others to reach a synchronization point will spend

their extra time in the NX msgwait call, waiting for a message to arrive. This

waiting time will be reported as time spent in communication, thus in
ating the

communication time. There is no simple quantitative way to separate this waiting

from the communication time. Fortunately, examining trace �les reveals that all of the

benchmark programs exhibit nearly perfect load balance, with the exception of eigen.

The traces indicate that about 70% of eigen's time is spent in load imbalance. Still,

even if eigen spent no time in communication, the average of the �ve benchmarks

would show 27% of the time spent in communication.

7.2 Magnitude of Protocol Overhead

The next major task is to determine how much protocol overhead real programs

experience. It is impossible to remove all protocol overhead from a program; unfor-

102

tunately, it is also impossible in practice to isolate protocol overhead from essential

communication. Since protocol overhead cannot be measured directly, I will use a

performance model to predict how large it is.

The parameters of the performance model are based on the micro-benchmark

experiments. The model assigns a cost to each message, and simply sums these costs

to estimate the total communication cost of a program.

This model ignores two important e�ects: load imbalance and communication

overlap. Load imbalance arises when a processor becomes idle waiting for commu-

nication; the model ignores the e�ect of communication time on the amount of load

imbalance. The model also ignores the possibility that communication cost can be

hidden by overlapping it with computation, or with other communication.

Despite the model's shortcomings, it will prove useful in predicting the amount of

protocol overhead that programs experience. Constructing a highly accurate perfor-

mance model for a modern multicomputer would require a dissertation in itself!

7.2.1 Modeling Protocol Overhead

To build the model, I measured the running time of all three versions of the pong

program, as a function of message size. The results of these experiments are shown

in �gures 7.1 and 7.2. Latency is roughly linear in message size, except for the

discontinuity in the native version at a message size of 100 bytes. This jump in

latency is due to NX/2 switching protocols; NX/2 uses a sliding-window protocol

for messages less than 100 bytes in length, and a pre-reservation protocol for longer

messages.

I then created a linear model for communication time in each mode, by doing a

least-squares �t to the measured data. (The native data was modeled by separately

�tting lines to the data from each of the two regimes.) The resulting formulae give

the message-passing latency in microseconds as a function of the message size, n:

T

native

(n) =

8

<

:

108:39 + 0:326n if n � 100

233:96 + 0:358n otherwise

T

buf

(n) = 40:45 + 0:407n

T

sync

(n) = 224:64 + 0:357n

103

message size [bytes]

la
te

nc
y

[m
se

c]

0 256 512 768 1024 1280 1536 1792 2048
0

0.2

0.4

0.6

0.8

1

native
receiver-buffered
synchronizing

Figure 7.1: Message latency for three versions of the pong program.

104

message size [bytes]

la
te

nc
y

[m
se

c]

0 8192 16384 24576 32768 40960 49152 57344 65536
0

5

10

15

20

25

30

native
receiver-buffered
synchronizing

Figure 7.2: Message latency for three versions of the pong program.

105

To estimate the essential cost of communication, we can use the known parameters of

the iPSC/860 hardware: the latency L is 25 microseconds, and the peak bandwidth

B is 2.8 megabytes per second.

T

essential

(n) = L+

n

B

= 25 + 0:357n

Subtracting the essential time from the native time, we can �nd the amount of pro-

tocol overhead in NX as a function of message size.

T

protocol

(n) = T

native

(n)� T

essential

(n)

message size

pr
ot

oc
ol

 o
ve

rh
ea

d
[%

]

0 1000 2000 3000 4000 5000 6000 7000 8000
0

20

40

60

80

100

native
receiver-buffered
synchronizing

Figure 7.3: Percentage of communication time spent in protocol overhead.

Figure 7.3 shows the protocol overhead as a fraction of communication cost. Pro-

tocol overhead is a signi�cant factor, except in the case of very large messages, where

106

communication time is dominated by physical bandwidth requirements.

Table 7.4: Predicted protocol overhead, as a percentage of communication time, for

the �ve macro-benchmarks.

application percent overhead

matmult 5.7%

nbody 19.9%

olfactory 52.3%

md 42.6%

eigen 44.3%

average 33.0%

Table 7.4 shows the model's prediction for the �ve macro-benchmarks. The

model's predictions were calculated by instrumenting the message-passing library to

add up the predicted cost under the native communication model, and the predicted

amount of protocol overhead, as the program ran. Protocol overhead accounts for

about one-third of the communication cost.

7.3 Reduction in Protocol Overhead

The third major question is how much protocol overhead can be reduced by using

a protocol compiler. In general, we know that it is impossible to eliminate protocol

overhead entirely. On the other hand, using a protocol compiler will not increase the

protocol overhead, since the protocol compiler is always free to use the previously

existing protocol if that is the best choice.

We can predict the reduction in protocol overhead by using the performance model

developed in the previous section. Assuming that the protocol compiler handles each

message in the optimal way, the communication cost incurred by the tailored protocol

is the minimum of the costs under the three basic modes.

T

pc

(n) = min(T

native

(n); T

buf

(n); T

sync

(n)):

107

message size

co
m

m
 ti

m
e

re
du

ct
io

n
[%

]

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

Figure 7.4: Predicted reduction in communication time due to using an ideal protocol

compiler rather than the native communication system, as a function of message size.

108

The percentage reduction in protocol overhead is then

f

overhead

(n) =

T

native

(n)� T

pc

(n)

T

protocol

(n)

We can now put all the pieces together to get an estimate of the improvement in

communication performance due to using the protocol compiler. Assume we have an

application program that sends M messages, with the ith message having length n

i

.

Using an ideal protocol compiler then reduces the total communication time by the

fraction

f

time

=

M�1

X

i=0

T

native

(n

i

)�

M�1

X

i=0

min(T

buf

(n

i

); T

sync

(n

i

); T

native

(n

i

))

M�1

X

i=0

T

native

(n

i

)

:

For an application whose messages are all the same size (all n

i

= n), we have

f

time

(n) =

T

native

(n)�min(T

buf

(n); T

sync

(n); T

native

(n))

T

native

(n)

Figure 7.4 shows the value of f

time

(n) as a function of n for the iPSC/860. The

reduction in communication time is considerable for small messages, but the improve-

ment due to the protocol compiler becomes negligible for messages larger than about

4000 bytes.

7.3.1 Applying the Model to the Macro-Benchmarks

The next step is to apply the performance model to predict the e�ect of the protocol

compiler on the communication performance of the �ve macro-benchmarks. I did this

by instrumenting the runtime library so that it adds up the sums in the formula for

f

time

as the application program runs.

Table 7.5 shows the results of this modeling. On the average, the protocol compiler

is predicted to reduce communication time by about 24%.

7.4 Performance of Parachute

In addition to evaluating the general properties of protocol compilers, I performed

experiments to measure the actual performance of Parachute and the protocols it

109

Table 7.5: Predicted e�ect of the protocol compiler on communication performance

for the �ve macro-benchmarks. This table shows the predicted reduction in commu-

nication time under an ideal protocol compiler, compared to time under NX.

application predicted comm time reduction

matmult 1.3%

nbody 7.6%

olfactory 42.5%

md 32.2%

eigen 34.2%

average 23.6%

generates. Inevitably, the performance of a �rst prototype will underestimate the

potential of the protocol compiler approach, because of engineering compromises that

were made in designing and constructing the prototype.

Several factors combine to make performance of Parachute protocols worse than

could be achieved by an aggressive, \from scratch" implementation. The main degra-

dation is due to the fact that Parachute is implemented on top of NX rather than

manipulating the hardware directly. The semantic gap between the functionality of

NX and the hardware means that Parachute protocols must sometimes use multi-

ple kernel calls to do something that could potentially be done with a single call.

(Section 6.1 discusses the reasons for building Parachute on top of NX.)

We can view the prototype results as a lower bound on the value of using protocol

compilers. The only way to accurately determine the bene�t of using a protocol

compiler would be to measure the performance of a re-implementation of Parachute

which takes advantage of the lessons learned in building the �rst version, and which

is implemented more aggressively and on faster hardware.

Table 7.6 shows the measured performance improvement for the �ve macro-bench-

marks. The improvement in communication time ranges from 2% to 45%, and the

reduction in overall running time range from 0% to 20%. On the average, communi-

cation time is cut by about 17%, and overall running time by 7.5%.

The data show one surprising feature. For all �ve programs, the improvement in

110

Table 7.6: Performance of the macro-benchmarks, running on a 16-processor

iPSC/860. The NX version of each program uses the native communication system,

and the Parachute version uses a communication protocol generated by Parachute.

All times are measured in seconds. The table shows the percentage of time that the

NX version spent in communication, the improvement in communication time due

to using Parachute rather than NX, and the reduction in total running time due to

Parachute.

application percent comm comm time improvement overall improvement

matmult 13.3% 1.7% 0.3%

nbody 13.0% 44.6% 8.6%

olfactory 78.3% 19.3% 19.8%

md 24.4% 17.2% 5.0%

eigen 89.8% 4.1% 3.8%

average 43.8% 17.4% 7.5%

total running time is larger than can be accounted for by the reduction in communi-

cation alone. Despite the fact that both versions (NX and Parachute) of the program

execute exactly the same local calculation code, measurements show that the local

calculation runs faster under Parachute. There are two ways in which communication

code could be a�ecting the performance of local calculation. Some communication

processing is done at interrupt-time; if the interrupt happens during local calculation,

the interrupt-handler executes while the local calculation stopwatch is running. In

addition, the communication code a�ects the contents of the cache, which can cause

local calculation speed to change. Since the gain in local calculation time is observed

for all �ve programs, we can assume that it would be common for other applications

as well.

We can now compare the measured values of the reduction in communication time,

to the values predicted by the performance model. Doing this makes the limitations

of the model even more clear. The two agree only in the aggregate | the model

predicts the average reduction as 24.4%, while measurement yields 17.3%. The small

discrepancy can be explained by engineering compromises made in the design of

111

Parachute. Despite its shortcomings, the model is apparently adequate when averaged

over several benchmarks.

The values for the individual benchmarks do not agree so well. Particularly large

discrepancies are exhibited by nbody, for which the predicted improvement is too low,

and eigen, for which it is too high. In the case of nbody, the model fails to account

for the fact that the tailored protocol allows two messages, one outgoing and one

incoming at each processor, to be overlapped, thus gaining nearly a factor of two in

communication time. (This overlap is inherent in the source program, but NX fails

to exploit it.) In the case of eigen, the model fails to account for the fact that about

70% of the nominal communication time is really load imbalance, which cannot be

reduced by any protocol.

As stated above, a more accurate model, which takes into account these and other

factors, would be useful. However, constructing such a model would be extremely

di�cult.

Table 7.7: Running time of Parachute (running on a DecStation 5000), generating

tailored protocols for 16-processor runs of the macro-benchmarks, and statistics about

the generated protocols. Statistics include the number of communication patterns in

the program, the number of distinct send-calls encountered in these patterns, the

number of states in the protocol's state machine, and the number of bytes of bu�er

space used by the tailored protocol. Except for the protocol compiler's running time,

these are all static properties of the protocol.

application prot comp time [sec] patterns send-calls states bu�er space

matmult 0.2 3 187 748 51200

nbody 0.3 1 240 960 147456

olfactory 0.8 5 446 1784 2048

md 0.4 1 256 1024 3852

eigen 29.5 2 3219 12876 10000

112

Table 7.8: Running time of Parachute (running on a DecStation 5000), generating

tailored protocols for 64-processor runs of the macro-benchmarks, and statistics about

the generated protocols. Statistics include the number of communication patterns in

the program, the number of distinct send-calls encountered in these patterns, the

number of states in the protocol's state machine, and the number of bytes of bu�er

space used by the tailored protocol. Except for the protocol compiler's running time,

these are all static properties of the protocol.

application prot comp time [sec] patterns send-calls states bu�er space

matmult 6.3 3 1275 5100 102400

nbody 33.4 1 4032 16128 589824

olfactory 21.2 5 1490 5960 9472

md 14.3 1 1536 6144 3852

eigen 465.9 2 9963 39852 10000

7.4.1 Protocol Compiler Statistics

Table 7.7 shows statistics about the execution of Parachute, and the protocols it

generates, when generating 16-process protocols for the macro-benchmarks. Table 7.8

shows the same statistics for generating 64-process protocols. The running time of

the protocol compiler is satisfactory, except for eigen in the 64-process case. Here

we see the beginning of the blow-up in the protocol compiler's running time as the

number of messages gets large. Clearly, scaling to a larger number of processes will

require the development of techniques that break up large communication patterns

into smaller pieces.

The other statistics show that the size of the generated protocols, in terms of the

number of send-calls, number of states, and total bu�er space requirements, is quite

reasonable. The only possible exception is the bu�er space requirement of nbody;

for 64 processes the protocol requires almost 600K bytes. Of course, if this were

unacceptable, adding a single line to the communication description �le would cause

a smaller protocol to be generated.

Table 7.9 shows how the tailored protocols use message-passing modes. Four of the

benchmarks use only receiver-bu�ered mode. Matmult uses a mix of receiver-bu�ered

113

Table 7.9: Distribution of message modes in the �ve macro-benchmarks. The table

shows the number of (static) send-calls that use each message mode.

Problem receiver-bu�ered synchronizing blast

matmult 145 48 0

nbody 240 0 0

olfactory 446 0 0

md 256 0 0

eigen 3219 0 0

mode and synchronizing mode. In matmult, synchronizing mode accounts for 25% of

the messages, and 43% of the bytes transmitted. There are no opportunities to use

blast mode in the macro-benchmarks.

7.4.2 E�ectiveness of the Protocol Compiler's Algorithms

Two phases of the protocol compiler's analysis, bu�ering-mode analysis and bu�er

allocation, faceNP -complete problems. In both cases, Parachute uses a simple greedy

algorithm. This section evaluates the e�ectiveness of these greedy algorithms.

Ideally, we could simply compare the solution generated by the greedy algorithm to

the optimal solution to the problem. However, it is not feasible to �nd the optimal so-

lution, so I had to be satis�ed with a very good solution. I implemented an alternative

solver for each of the two problems, using simulated annealing [Kirkpatrick et al. 83].

Simulated annealing is a simple, robust approach to combinatorial optimization prob-

lems; it has the advantage that longer running times yield better results. When

searching for a near-optimal solution to a problem, I ran the simulated annealing

solver for at least one hour on a DECstation 5000.

Simulated annealing works by starting with some feasible solution to the opti-

mization problem, and then considering a series of \moves" from that solution. The

moves are chosen randomly from some simple set of changes to the solution. If a move

improves the objective function, it is accepted; if it damages the objective function

by an amount �, then it is accepted with probability e

�

�

T

, where T is a parameter

called the \temperature". Accepting a move leads to a new current solution, while

114

rejecting a move leaves the current solution unchanged. The temperature parameter

is slowly lowered from a large value, which causes the system to move randomly, to

a temperature of zero, which makes the system accept only pro�table moves.

For each of the two problems, I chose several problem instances at random from

those generated by the benchmark programs discussed earlier in this chapter. I then

compared the values of the objective function generated by Parachute's greedy algo-

rithm, to the best solution I found in two one-hour runs of simulated annealing.

The following subsections describe the simulated annealing solvers, and what they

revealed about the e�ectiveness of the protocol compiler's algorithms.

Bu�ering-Mode Analysis

The bu�ering-mode analysis problem is stated as follows: given a directed graph

G = (V;A) and a set of \optional" arcs A

0

, with weights on the arcs in A

0

, �nd the

set B � A

0

such that (V;A [B) is acyclic, and the total weight of the arcs in B is

maximized.

The simulated annealing process starts with B = ;. A move is generated by

randomly choosing an arc a 2 A

0

. If a 2 B, then the proposed move is to remove a

from B. If a 62 B and (V;A [B [fag) is acyclic, then the proposed move is to add

a to B. Otherwise, another move is chosen.

Table 7.10 shows the e�ectiveness of Parachute's bu�ering-mode analysis algo-

rithm. The table compares the solution found by Parachute to the best solution

found by simulated annealing, for bu�ering-mode analysis problems chosen randomly

from those faced by Parachute when generating tailored protocols for the macro-

benchmarks. As the table shows, Parachute apparently �nds the optimal solution

in all cases. Surprisingly, of about additional twenty bu�ering analysis problems,

also chosen randomly from those faced by Parachute when processing the application

programs, I was unable to �nd a single one where the greedy solution appeared to be

nonoptimal. (A solution \appears to be optimal" when several long runs of simulated

annealing all lock onto that solution in the �rst few seconds, and never �nd a better

one.) It appears that the structure of these applications leads to a particularly easy

set of bu�ering analysis problems.

115

Table 7.10: E�ectiveness of Parachute's bu�ering-mode analysis algorithm. The table

shows two solutions to a set of bu�ering-mode analysis problems: the �rst solution

was generated by Parachute's greedy algorithm, and the second is the best solution

found in two one-hour runs of simulated annealing. The last column shows the per-

centage di�erence in bene�t function between the two solutions. The problems were

chosen by picking randomly, for each application program, one of the (non-trivial)

bu�ering-mode analysis problems solved by Parachute when generating protocols for

the iPSC/860.

Problem Parachute solution best solution di�erence

nbody 4147200 4147200 0.0%

matmult 307200 307200 0.0%

olfactory 30720 30720 0.0%

md 92672 92672 0.0%

eigen 240 240 0.0%

Bu�er Allocation

The bu�er allocation problem is stated as follows: given an undirected graph G =

(V;E) with labels s

i

� 0 on each vertex i 2 V , assign a quantity b

i

to each vertex

i 2 V , such that:

� all b

i

� 0, and

� for all (i; j) 2 E, either:

b

i

+ s

i

� b

j

, or

b

j

+ s

j

� b

i

,

and

� max

i2V

(b

i

+ s

i

) is minimized.

Here G is the con
ict graph; each vertex represents a message, and an edge between

two vertices means that those two messages cannot share bu�er space. The label s

i

116

denotes the amount of bu�er space message i uses, and b

i

is the base address of the

bu�er assigned to message i.

The simulated annealing algorithm represents each solution as a totally ordered

list of the vertices. From such an ordered list, a unique solution can be generated

by considering the vertices in that order, and assigning each one the lowest bu�er

address b

i

that does not con
ict with any decision made so far.

Not all feasible assignments can be represented in this ordered-list form, but

we are guaranteed that there is an optimal solution that can be represented in this

form

1

. The advantage of the ordered-list representation is that it allows the simulated

annealing solver to easily manipulate possible solutions to the problem. A simulated

annealing move consists simply of interchanging the positions of two randomly-chosen

vertices in the ordered list.

Table 7.11: E�ectiveness of Parachute's bu�er allocation algorithm. The table shows

two solutions to a set of bu�er allocation problems: the �rst solution was generated

by Parachute's greedy algorithm, and the second is the best solution found in two one-

hour runs of simulated annealing. The last column shows the percentage di�erence

in cost function between the two solutions. The problems were chosen by picking

randomly, for each application program, one of the (non-trivial) bu�er allocation

problems solved by Parachute when generating code for the iPSC/860.

Problem Parachute solution best solution di�erence

nbody 55296 55296 0.0%

matmult 22400 22400 0.0%

olfactory 2816 2816 0.0%

md 5396 3852 40.1%

eigen 10000 10000 0.0%

1

Proof sketch: Starting with any feasible solution, we can generate an ordered list of vertices by

sorting the vertices in increasing order of b

i

in that solution. One can show that the solution

represented by this ordered list has a cost less than or equal to the cost of the original solution.

Thus, if the original solution was optimal, then the resulting solution must also be optimal.

117

Table 7.11 shows an evaluation of the e�ectiveness of the greedy algorithm for

bu�er allocation. For each application program, I randomly chose one of the bu�er

allocation problems faced by Parachute when generating a 4-, 16-, or 64-process

protocol for that application. I then compared the greedy solution for these problems

with the best solution generated by two one-hour runs of simulated annealing.

Of the �ve randomly-chosen problems, the greedy algorithm appears to �nd the

optimal solution for four, but does 40% worse than optimal for the other one. Ap-

parently the greedy algorithm is capable of generating solutions that are far from

optimal.

7.5 Summary

Performance models, and experiments with real applications, show that using a pro-

tocol compiler leads to a signi�cant reduction in the running time of application

programs.

Experiments on a set of typical applications show that the programs spend about

half of their time in communication. Performance models predict that using an ideal

protocol compiler reduces communication time by about 24%, and experiments show

that Parachute cuts communication time by 17%. As a result, the reduction in total

running time of the applications ranges from 0% to 20%, with an average of 7.5%.

This improvement is seen in spite of the engineering compromises made in building

Parachute; a more aggressive implementation on faster hardware would yield a larger

speedup over traditional approaches.

Chapter 8

CONCLUSIONS

In the end, veracity and rectitude always triumph.

| Batman

We have seen that compile-time analysis of communication can e�ectively improve

the performance of message-passing programs. By taking advantage of known com-

munication patterns in an application, the protocol compiler can generate tailored

protocols that reduce protocol overhead.

This chapter concludes by discussing �rst related work, and then future work.

8.1 Related Work

There are several classes of related work to consider.

8.1.1 Data Movement

Research on data movement has shown that low-level data transport can be pro-

vided e�ciently in a variety of ways. Spector used custom microcode to implement

fast remote-access instructions on 1980-vintage networked workstations [Spector 82].

Thekkath updated this idea by re-implementing it on today's fast workstations and

networks [Thekkath et al. 93]. Delp and co-workers devised MemNet, which pro-

vides a set of workstations with a region of physical memory that is kept coherent by

transmitting all writes around a ring interconnection. von Eicken, Culler, and their

co-workers developed the Active Messages system, which provides fast data trans-

port on multicomputers by decorating each packet with the address of a \handler"

procedure to be executed on the receiving processor.

All these systems provide methods for moving data quickly between processors,

but they do not in themselves implement the protocols needed to make this data

transport useful. Protocols must be built on top of these data movement systems.

119

8.1.2 Compiling to Message-Passing Code

Many researchers have studied how to compile languages into message-passing code.

These languages include Dino [Rosing 91], Dataparallel C [Hatcher & Quinn 91],

C* [Rose & Steele 87, TMC 90], CM-Fortran [TMC 89], Fortran D [Fox et al. 91,

Tseng 93], Vienna Fortran [Chapman et al. 92], NESL [Blelloch et al. 93], and many

others.

While several such compilers generate e�cientmessage-passing code, they all treat

send and receive as indivisible primitives. The code generated by these systems

could still be sped up by using tailored protocols rather than generic message-passing

libraries.

8.1.3 Optimizing Transformations for Message-Passing Code

Another related area is compiler optimization and transformation of message-passing

programs [Rogers & Pingali 89, Hatcher & Quinn 91, Amarasinghe & Lam 93]. Op-

timizations take several forms: aggregating several messages into one, lifting invariant

messages out of loops, moving sends earlier and receives later to hide message latency,

or recognizing collective communication operations like broadcast or parallel-pre�x.

Like the language compilation work, the optimization research treats send and

receive or higher-level operations as indivisible building blocks. These optimizations

are valuable, but the resulting code could be improved further by using tailored

protocols.

8.1.4 E�cient Protocol Implementation Techniques

The x-kernel [Hutchinson & Peterson 91] and Morpheus [Abbott & Peterson 92] are

two systems that facilitate the construction of e�cient protocols. The x-kernel pro-

vides a software substrate through which small pieces of protocol code can be as-

sembled into a single protocol. Morpheus goes further by de�ning a programming

language in which to write protocol code, and then compiling protocols written in

that language into e�cient implementations.

These systems are very useful for building fast and
exible implementations of

protocols that have been designed by a person. However, unlike my work, these

systems do not design communication protocols automatically.

120

8.1.5 Protocol Veri�cation

A great deal of research has been done on formal veri�cation of protocols. This work

typically starts with a formal description of the behavior of some implementation,

and then proves that it meets a speci�cation. Like protocol implementation research,

this work treats the protocol as a given. Although the machine analyzes the protocol,

unlike in my work the machine does not design the protocol.

8.2 Future Work

This work could be extended in several interesting ways. First, Parachute could be

re-implemented on other architectures, such as the CM-5 or a set of workstations

connected by a high-speed network. Second, it could be extended to apply to a wider

class of programs, for example, by allowing optimized communication patterns to

overlap with each other asynchronously, or by allowing incompletely speci�ed pat-

terns. Third, runtime compilation could be incorporated, using the same analysis

techniques described in earlier chapters. Fourth, this work could be extended to al-

low collective communication operations, such as multicast or parallel-pre�x, to be

treated as �rst-class operations on a par with send and receive. Finally, the protocol

compiler's analysis could be extended to do more aggressive optimization.

The following subsections discuss these extensions, touching brie
y on the issues

involved in each.

8.2.1 Porting to Other Architectures

The most likely target architectures are the CM-5, and workstations connected by

an ATM network

1

. The CM-5 and ATM networks share an important characteristic

not present on the Intel machines: they use small, �xed-size packets (20 bytes on the

CM-5, 48 bytes on the ATM). Each network adds another twist | the CM-5 does not

guarantee in-order delivery of message packets, and the ATM network occasionally

drops packets.

Re-ordering of packets should not be a major issue. Each packet can simply

be labelled with a sequence number, identifying its position within the user-level

1

Note that I am discussing the \dedicated system in the closet" model of workstation-network

computing, and not the more di�cult model based on capturing idle cycles in desktop machines.

121

message. The receiver can simply count the packets when they come in, enabling it

to determine when the entire message has been delivered. Since messages arrive into

predetermined bu�ers, message reassembly can happen in-place on arrival.

Packet loss, which occurs on the ATM network, is a more serious problem. ATM

networks drop packets for two reasons: data corruption and congestion. Data cor-

ruption errors are so rare that they can be ignored | mistaking data corruption for

congestion will not a�ect correctness and will have only a tiny e�ect on performance.

Brustoloni and Bershad present a promising message-passing protocol for ATM

networks [Brustoloni & Bershad 92]. Their protocol uses per-message pre-reservation

to allocate bu�er space for arriving messages. (They use a separate protocol for small

messages.) Dropped packets cause the sender to retry with exponential backo�.

The protocol compiler technique could be used to improve the performance of this

protocol. In this approach, bu�er allocation would be done at compile-time, but the

congestion control mechanisms of Brustoloni and Bershad would not be changed |

timeout, retry, and exponential backo� would still be used.

From the protocol compiler's point of view, the only new feature of this situation

is the fact that the sending processor must keep a copy of transmitted message data

available until an acknowledgement has arrived. This problem can be handled by

simply blocking the sender and accepting a (perhaps small) performance degradation.

Alternatively, the protocol compiler could sometimes choose to use sender bu�ering

| copying message data into a bu�er on the sending end, and discarding this bu�er

only when the message has been fully acknowledged.

Small-packet networks like the CM-5 and ATM o�er an additional problem. Be-

cause packets are so small, and interrupting a processor is relatively expensive, we

cannot a�ord to interrupt a processor whenever a packet arrives. The protocol must

take care, and the hardware must allow, the use of one interrupt for each group of

packets rather than for individual packets only. Thekkath and Levy o�er an analysis

of these architectural issues [Thekkath & Levy 93].

Remote-Access Architectures

Remote-access systems are another important class of network architectures. These

systems associate each memory location with one processor, but allow processors to

directly read or write the memory of other processors. Systems in this class include

122

the BBN Butter
y and Cray T3D, in addition to workstations connected by devices

like MemNet.

For building tailored protocols, these systems provide some advantages over tra-

ditional message-passing networks. In particular, they allow one processor to put

data into the communication bu�ers of another processor without interrupting the

destination processor. Porting Parachute to one of these systems is simply a matter

of rewriting the run-time library to address the new architecture.

8.2.2 Extending to Wider Classes of Programs

One important limitation of Parachute is that it applies only to �xed communication

patterns. The system would be more useful if it could support a larger class of

programs.

There are two main di�culties in extending Parachute. First, we must de�ne a

formal language that can specify the behavior of programs in the expanded class; this

language plays the role that PDL plays in Parachute. Second, we must determine

how the protocol compiler can exploit the information in this language to generate

e�cient protocols.

An Example

Consider the problem of extending Parachute to allow data-parallel conditional state-

ments inside a communication pattern. This allows some piece of code, including

communication, to either be executed on all processors, or not be executed at all,

during a communication pattern.

First, we must adjust the communication description language to account for

conditional statements by adding the ability to conditionally execute a pattern inside

of another.

Second, the protocol compiler must be able to analyze the extended class of pro-

grams. The main issue raised by conditionals is that they preclude the availability of

exact \happens-before" relationships between events. In other words, whether or not

a conditional is executed could a�ect the existence of causal relationships between

statements in the surrounding code. Thus, the protocol compiler's analysis would

have to be carefully extended, using conservative estimates of event orderings where

necessary. It is beyond the scope of this example to describe exactly how this might

123

be done, but it is clearly possible, and this extension is, in fact, likely to appear in a

future version of Parachute.

8.2.3 Runtime Compilation

Runtime compilation applies the protocol compiler to communication patterns that

are executed several times, but are not known until runtime. For example, in a

�nite-element simulation, the speci�c communication patterns are not known until

the exact set of elements being simulated is known. This information is typically read

in at the beginning of a run, and not changed thereafter.

Runtime compilation would use the inspector/executor model [Saltz et al. 91]. In

this model, the �rst execution of a pattern occurs slowly, as general-purpose mecha-

nisms are used; during this execution, each process records its sequence of communi-

cation operations. Once the �rst execution is �nished, the protocol compiler is run

to analyze the pattern that was recorded. This allows subsequent executions of the

pattern to use the optimized protocol generated by this analysis.

Runtime compilation would require only a small extension to the message-passing

interface. Calls would be added to declare a new pattern, and to invalidate an existing

pattern. In addition, the protocol compiler's analysis phase would be integrated into

the runtime library, so it could be executed as necessary.

Executing the protocol compiler at runtime introduces one additional issue: the

time required for the analysis. This time a�ects the usefulness of runtime compilation

by determining how many times a pattern must be executed before runtime compi-

lation is pro�table. There are two ways to improve this crossover point. First, we

could speed up the execution of the analyzer, perhaps by parallelizing it. Second, we

could develop quick-and-dirty algorithms that provide a satisfactory, but not ideal,

result quickly.

8.2.4 Collective Communications as First-Class Operations

One limitation of the current implementation is that it supports only send and

receive as �rst-class operations. The main consequence of this is that only send

and receive can be used as split-phase operations, with separate begin and end

operations that allow them to be overlapped with local calculation or other commu-

nication.

124

There are no split-phase versions of important collective communication opera-

tions like broadcast or parallel-prefix. These collective operations must currently

be broken down into their constituent send and receive operations.

We would like to allow split-phase versions of collective communication operations.

There are two ways to do this: either supporting a �xed set of collective communi-

cation operations, or allowing the programmer or compiler freedom to specify new

collective communication operations. The second, user-extensible, approach is not

much harder than the �rst, so it is preferred.

Logically, a split-phase collective operation is like a separate thread of control

within each process; this thread sends and receives messages asynchronously. For

instance, in a broadcast operation this thread may receive one message and then

send several messages. Logically, this thread is spawned by the main thread at the

beginning of the split-phase operation; at the end of the split-phase operation the

main thread waits for the subordinate thread to complete.

Note that this model allows split-phase operations to be nested within other split-

phase operations. In its full generality, any properly nested structure is possible.

Although the execution of these programs has been described using separate

threads of control, the use of threads only expresses the semantics| it does not neces-

sarily imply an implementation based on general-purpose threads. In particular, the

implementation may choose to statically interleave the operations of the threads, or

it may embed the desired behavior of a subordinate thread into an interrupt-handler

associated with the arrival of a message. Implementation details remain to be worked

out.

8.2.5 Improved Optimization

Although the current version of Parachute generates e�cient code, there are steps

remaining to be taken that a�ord even greater possibilities for improving the quality

of the generated code.

Reducing Synchronization

Parachute uses barrier synchronizations at run-time, on entry to each communication

pattern, to ensure that storage is not re-used until the previous use is �nished. Since

each communication pattern is analyzed separately, storage used by one pattern may

125

be re-used by the next pattern executed. Since the use of storage is triggered by

the arrival of messages sent by other processes, the protocol cannot send a bu�ered

message from process A to process B until B is in the same communication pattern as

A. This property is ensured by making all processes perform a barrier synchronization

at the beginning of each pattern.

Several techniques can be used to reduce the number of barriers executed. First,

if two communication patterns use totally disjoint regions of bu�er space, there is no

need to separate them by a barrier synchronization. If bu�er space is plentiful, the

protocol compiler can carefully lay out the bu�ers allocated to the patterns to avoid

con
icts. In one simple variant of this scheme, the protocol compiler can allocate

k distinct replicas of the program's bu�ers. At run-time, the �rst pattern executed

would use the �rst replica, the second pattern would use the second replica, and so on.

A barrier would be required only after every kth pattern. In exchange for increasing

bu�er space by a factor of k, this strategy cuts the number of barriers by a factor of

k.

Another way to reduce the number of barriers is to take advantage of the \free"

synchronization provided by messages within a pattern. Consider the case where

three patterns A, B, and C are executed in sequence, A and B have disjoint bu�ers,

B and C have disjoint bu�ers, but A and C do not have disjoint bu�ers. A barrier

synchronization is apparently required at some time between the end of A and the

beginning of C. However, the messages in pattern B impose some synchronization

on the program. Indeed, B may impose su�cient synchronization that the barrier is

not necessary at all. Even if the synchronization in B cannot completely replace the

barrier, it can at least reduce the amount of \arti�cial" synchronization that must be

added to insulate A from C.

A third way to reduce synchronization is to use trace scheduling [Fisher 81]. Orig-

inally developed to aid scheduling of instructions across basic-block boundaries in

compilers, this technique works by \guessing" a sequence of patterns that will be

executed, and then treating the entire sequence as if it were a single pattern. If

the prediction is correct, the sequence can be executed without any barrier synchro-

nizations, because bu�ers were allocated for the sequence as a whole. If, on the

other hand, the execution deviates from the predicted sequence of patterns, a barrier

synchronization is done, and execution continues normally.

126

Many of these techniques for reducing synchronization rely on information about

the frequency with which certain patterns, or sequences of patterns, are executed.

This information can be included as hints in the directives section of the communica-

tion description �le. The programmer can generate these hints directly, or they can

be derived by tracing. In some cases, runtime compilation can be used to detect the

necessary information at run-time and react to it.

Using Timing Information

In addition, we could take advantage of information about the timing of events to

make better choices of whether or not to bu�er messages. This requires a timing

model to be developed, to estimate how long various communication operations take.

In addition, it requires accurate information about the running time of the local-

calculation sections of the application program. This information is probably best

gleaned by tracing the program. If the communication description language is ex-

tended to carry timing hints, we can hope to automatically generate these hints by

using tracing.

8.3 Conclusion

In this dissertation, I have opened up the \black box" of message-passing to reveal

the bene�t of using carefully tailored mechanisms rather than the generic mechanisms

that are used today. Together with the previous work on the protection and data-

movement problems, my work o�ers a strategy for substantially reducing the cost of

communication. I hope that this is one useful step on the road to
exible, practical

parallel computing.

Bibliography

[Abbott & Peterson 92] M. B. Abbott and L. L. Peterson. A language-based ap-

proach to protocol implementation. In Proceedings of ACM SIGCOMM '92

Conference, pages 27{38, 1992.

[Agarwal et al. 91] A. Agarwal, D. Chaiken, G. D'Souza, K. Johnson, D. Kranz,

J. Kubiatowicz, K. Kurihara, B.-H. Lim, G. Maa, D. Nussbaum, M. Parkin,

and D. Yeung. The MIT Alewife machine: A large-scale distributed-memory

multiprocessor. In Proceedings of Workshop on Scalable Shared Memory

Multiprocessors. Kluwer Academic Publishers, 1991.

[Amarasinghe & Lam 93] S. P. Amarasinghe and M. S. Lam. Communication opti-

mization and code generation for distributed memory machines. In SIG-

PLAN '93 Conference on Programming Language Design and Implementa-

tion, pages 126{138, June 1993.

[Anderson & Snyder 91] R. Anderson and L. Snyder. A comparison of shared and

nonshared memory models of parallel computation. Proceedings of the

IEEE, 79(4):480{487, 1991.

[Anderson et al. 89] T. E. Anderson, E. D. Lazowska, and H. M. Levy. The perfor-

mance implications of thread management alternatives for shared memory

multiprocessors. IEEE Transactions on Computers, 38(12):1631{1644, 1989.

[Anderson et al. 91] T. E. Anderson, H. M. Levy, B. N. Bershad, and E. D. Lazowska.

The interaction of architecture and operating system design. In Proceedings

of 4th International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 108{120, 1991.

[Anderson et al. 92] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy.

Scheduler activations: E�ective kernel support for the user-level manage-

128

ment of parallelism. ACM Transactions on Computer Systems, 10(1):53{79,

February 1992.

[Bershad et al. 93] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Midway

distributed shared memory system. In 38th IEEE Computer Society Intl.

Conf. (COMPCON), pages 524{533, February 1993.

[Blelloch et al. 93] G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and

M. Zagha. Implementation of a portable nested data-parallel language. In

Proceedings of Fourth SIGPLAN Symposium on Principles and Practice of

Parallel Programming, pages 102{111, May 1993.

[Bokhari 90] S. Bokhari. Communication overhead on the intel iPSC-860 hypercube.

Technical Report Interim Report 10, ICASE, May 1990.

[Bower et al. 88] J. M. Bower, M. E. Nelson, M. A. Wilson, G. C. Fox, and W. Fur-

manski. Piriform (olfactory) cortex model on the hypercube. In Proceedings

of Third Conference on Hypercube Concurrent Computers and Applications,

pages 977{999, 1988.

[Brustoloni & Bershad 92] J. C. Brustoloni and B. N. Bershad. Simple protocol pro-

cessing for high-bandwidth low-latency networking. Technical Report CMU-

CS-93-132, School of Computer Science, Carnegie Mellon University, March

1992.

[Byrd & Delagi 88] G. Byrd and B. Delagi. A performance comparison of shared

variables versus message passing. In Proceedings of Third International

Conference on Supercomputing, volume 1, pages 1{7, 1988.

[Callahan & Kennedy 88] D. Callahan and K. Kennedy. Compiling programs for

distributed-memorymultiprocessors. Journal of Supercomputing, 2:151{169,

1988.

[Carriero & Gelernter 89] N. Carriero and D. Gelernter. How to write parallel pro-

grams: A guide to the perplexed. Computing Surveys, 21(3):323{357,

September 1989.

129

[Carter et al. 91] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation

and performance of Munin. In Proceedings of 13th ACM Symposium on

Operating Systems Principles, pages 152{164, October 1991.

[Chapman et al. 92] B. Chapman, P. Mehrotra, and H. Zima. Vienna Fortran | a

Fortran language extension for distributed memory systems. In J. Saltz and

P. Mehrotra, editors, Languages, Compilers, and Run-time Environments

for Distributed Memory Machines. Elsevier Press, 1992.

[Culler et al. 93] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy,

S. Lumette, T. von Eicken, and K. Yelick. Introduction to Split-C. Available

by anonymous ftp from mammoth.berkeley.edu, 1993.

[Dally & Seitz 87] W. J. Dally and C. L. Seitz. Deadlock free message routing in

multiprocessor interconnection networks. IEEE Transactions on Computers,

C-36(5):547{553, May 1987.

[Dally 87] W. J. Dally. Wire-e�cient VLSI multiprocessor communication networks.

In P. Losleben, editor, Proceedings of Stanford Conference on Advanced

Research in VLSI, pages 391{415. MIT Press, March 1987.

[Dally 90] W. J. Dally. The J-machine system. In P. Winston and S. Shellard, editors,

Arti�cial Intelligence at MIT: Expanding Frontiers, volume 1. MIT Press,

1990.

[Dally 92] W. J. Dally. Virtual-channel
ow control. IEEE Transactions on Parallel

and Distributed Systems, pages 194{205, March 1992.

[Derby et al. 90] T. M. Derby, E. Eskow, R. K. Neves, M. Rosing, R. B. Schnabel, and

R. P. Weaver. The DINO user's manual. Technical Report CU-CS-501-90,

University of Colorado, November 1990.

[Feeley & Levy 92] M. J. Feeley and H. M. Levy. Distributed shared memory with

versioned objects. In Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA '92), pages 247{262, October 1992.

130

[Felten & McNamee 92] E. W. Felten and D. McNamee. Newthreads 2.0 user's guide,

1992.

[Fisher 81] J. A. Fisher. Trace scheduling: A technique for global microcode com-

paction. IEEE Transactions on Computers, 30(7):478{490, July 1981.

[Foster & Taylor 90] I. Foster and S. Taylor. Strand: New Concepts in Parallel Pro-

gramming. Prentice Hall, 1990.

[Foster et al. 92] I. Foster, R. Olson, and S. Tuecke. Productive parallel program-

ming: The PCN approach. Scienti�c Programming, 1:51{66, 1992.

[Fox 88] G. C. Fox. What have we learnt from using real parallel machines to solve

real problems. In Proceedings of Third Conference on Hypercube Concurrent

Computers and Applications, pages 897{955, 1988.

[Fox et al. 87] G. C. Fox, A. J. G. Hey, and S. W. Otto. Matrix algorithms on the

hypercube I: Matrix multiplication. Parallel Computing, 4, 1987.

[Fox et al. 88] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon,

and D. W. Walker. Solving Problems on Concurrent Processors. Prentice

Hall, 1988.

[Fox et al. 91] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng,

and M. Wu. Fortran D language speci�cation. Technical Report TR90-141

(revised), Dept. of Computer Science, Rice University, April 1991.

[Geist et al. 91] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A users'

guide to PICL, a portable instrumented communication library. Technical

Report TM-11616, Oak Ridge National Laboratory, 1991.

[Gelernter & Carriero 92] D. Gelernter and N. Carriero. Coordination languages and

their signi�cance. Communications of the ACM, 35(2):97{107, February

1992.

131

[Gharachorloo et al. 90] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,

A. Gupta, and J. Hennessy. Memory consistency and event ordering in

scalable shared-memory multiprocessors. In Proceedings of 17th Interna-

tional Symposium on Computer Architecture, pages 15{26, 1990.

[Griswold et al. 90] W. Griswold, G. Harrison, D. Notkin, and L. Snyder. Scalable

abstractions for parallel programming. In Proceedings of Fifth Distributed

Memory Computing Conference, 1990.

[Hatcher & Quinn 91] P. J. Hatcher and M. J. Quinn. Data-Parallel Programming

on MIMD Computers. MIT Press, 1991.

[Hatcher et al. 91] P. J. Hatcher, A. J. Lapadula, R. R. Jones, M. J. Quinn, and R. J.

Anderson. A production-quality C* compiler for hypercube multicomputers.

In Proceedings of Third SIGPLAN Symposium on Principles and Practice

of Parallel Programming, pages 73{82, 1991.

[Heath & Etheridge 91] M. T. Heath and J. A. Etheridge. Visualizing performance

of parallel programs. Technical Report TM-11813, Oak Ridge National

Laboratory, May 1991.

[Hillis & Steele 86] W. D. Hillis and G. L. Steele Jr. Data parallel algorithms. Com-

munications of the ACM, 29(12):1170{1183, December 1986.

[Hillis 85] W. D. Hillis. The Connection Machine. MIT Press, 1985.

[Hoare 85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[HPFF 93] High Performance Fortran Forum. High Performance Fortran Language

Speci�cation, May 1993.

[Hutchinson & Peterson 91] N. C. Hutchinson and L. L. Peterson. The x-Kernel: An

architecture for implementing network protocols. IEEE Transactions on

Software Engineering, 17(1):64{76, January 1991.

132

[Intel 91a] Intel Supercomputer Systems Division. Paragon XP/S Product Overview,

1991.

[Intel 91b] Intel Supercomputer Systems Division. A Touchstone DELTA System

Description, February 1991.

[ISO 88] ISO. Information Processing | Open Systems Interconnection | LOTOS:

A Formal Description Technique Based on the Temporal Ordering of Ob-

servational Behavior, 1988. ISO International Standard 8807.

[Karp 72] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller

and J. W. Thatcher, editors, Complexity of Computer Computations, pages

85{103. Plenum Press, New York, 1972.

[Kirkpatrick et al. 83] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by

simulated annealing. Science, 220:671, 1983.

[Koelbel et al. 90] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared

data structures on distributed memory architectures. In Proceedings of Sec-

ond SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, pages 177{186, March 1990.

[Lamport 78] L. Lamport. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM, 21(7):558{565, July 1978.

[Larus et al. 92] J. R. Larus, B. Richards, and G. Viswanathan. C**: A large-

grain, object-oriented, data-parallel programming language. Technical Re-

port 1126, University of Wisconsin, Computer Sciences Dept., November

1992.

[LeBlanc 86] T. LeBlanc. Shared-memory versus message-passing in a tightly-coupled

multiprocessor: A case study. In Proceedings of International Conference

on Parallel Processing, pages 463{466, 1986.

133

[Leiserson 85] C. E. Leiserson. Fat-trees: Universal networks for hardware-e�cient

supercomputing. IEEE Transactions on Computers, C-34(10):892{900, Oc-

tober 1985.

[Leiserson et al. 92] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feyn-

man, M. N. Ganmukhi, J. V. Hill, W. D. Hillis, B. C. Kuszmaul, M. A. St.

Pierre, D. S. Wells, M. C. Wong, S.-W. Yang, and R. Zak. The network

architecture of the connection machine CM-5. In Proceedings of 1992 ACM

Symposium on Parallel Algorithms and Architectures, pages 272{285, 1992.

[Lenoski et al. 92] D. Lenoski, K. Gharachorloo, J. Laudon, A. Gupta, J. Hennessy,

M. Horowitz, and M. Lam. The Stanford DASH multiprocessor. IEEE

Computer, 25(3):63{79, March 1992.

[Li & Hudak 86] K. Li and P. Hudak. Memory coherence in shared virtual memory

systems. In ACM Conf. on Principles of Distributed Systems, pages 229{

239, 1986.

[Lin & Snyder 90] C. Lin and L. Snyder. A comparison of programming models for

shared memory multiprocessors. In Proceedings of International Conference

on Parallel Processing, pages II 163{180, 1990.

[Little�eld & Maschho� 93] R. J. Little�eld and K. J. Maschho�. Investigating the

performance of parallel eigensolvers for large processor counts. Theoretica

Chimica Acta, 84:457{473, 1993.

[Little�eld 92] R. J. Little�eld. Characterizing and tuning communications perfor-

mance for real applications. In Proceedings of the First Intel DELTA Appli-

cations Workshop, pages 179{190, February 1992. Proceedings also available

as Caltech Technical Report CCSF-14-92.

[Logrippo et al. 92] L. Logrippo, M. Faci, and M. Haj-Hussein. An introduction to

LOTOS: Learning by examples. Computer Networks and ISDN Systems,

23(5):325{342, February 1992.

134

[Markatos & LeBlanc 92] E. P. Markatos and T. J. LeBlanc. Shared-memory mul-

tiprocessor trends and the implications for parallel program performance.

Technical Report 420, Computer Science Dept., University of Rochester,

May 1992.

[Mellor-Crummey & Scott 91] J. Mellor-Crummey and M. L. Scott. Algorithms for

scalable synchronization on shared-memory multiprocessors. ACM Trans-

actions on Computer Systems, 9(1):21{65, February 1991.

[Milner 80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture

Notes in Computer Science. Springer Verlag, 1980.

[NCUBE 87] NCUBE Corporation. NCUBE Users Handbook, 1987.

[Ngo & Snyder 92] T. A. Ngo and L. Snyder. On the in
uence of programming mod-

els on shared memory computer performance. In Proceedings of Scalable

High Performance Computing Conference, pages 284{291, April 1992.

[Nikhil 88] R. S. Nikhil. Id (version 88.0) reference manual. Technical Report CSG

Memo 284, MIT Laboratory for Computer Science, March 1988.

[Otto & Wolfe 92] S. W. Otto and M. Wolfe. The MetaMP approach to parallel pro-

gramming. In Frontiers '92: Frontiers of Massively Parallel Computation.

IEEE Computer Society Press, 1992.

[Otto 93] S. Otto, 1993. Personal communication.

[Parasoft 88] Parasoft Corporation. Express Version 1.0: A Communication Envi-

ronment for Parallel Computers, 1988.

[Pierce 88] P. Pierce. The NX/2 operating system. In Proceedings of Third Confer-

ence on Hypercube Concurrent Computers and Applications, pages 384{390.

ACM Press, 1988.

[Plimpton 90] S. J. Plimpton. Molecular dynamics simulations of short-range force

systems on 1024-node hypercubes. In Proceedings of Fifth Distributed Mem-

ory Computing Conference, pages 478{483, April 1990.

135

[Quinn et al. 90] M. J. Quinn, P. J. Hatcher, and B. K. Seevers. Implementing a

data parallel language on a tightly coupled multiprocessor. In Proceedings

of 3rd Workshop on Programming Languages and Compilers for Parallel

Computing, 1990.

[Rogers & Pingali 89] A. Rogers and K. Pingali. Process decomposition through lo-

cality of reference. In SIGPLAN '89 Conference on Programming Language

Design and Implementation, pages 69{80, June 1989.

[Rose & Steele 87] J. R. Rose and G. L. Steele Jr. C*: An extended C language for

data parallel programming. Technical Report PL 87-5, Thinking Machines

Corporation, 1987.

[Rosing 91] M. Rosing. E�cient Language Constructs for Complex Data Parallelism

on Distributed Memory Multiprocessors. PhD dissertation, University of

Colorado, 1991.

[Rosing et al. 90] M. Rosing, R. W. Schnabel, and R. P. Weaver. The DINO paral-

lel programming language. Technical Report CU-CS-457-90, University of

Colorado, April 1990.

[Saltz et al. 91] J. H. Saltz, R. Mirchandaney, and K. Crowley. Run-time paralleliza-

tion and scheduling of loops. IEEE Transactions on Computers, 40(5):603{

612, May 1991.

[Skjellum & Leung 90] A. Skjellum and A. Leung. Zipcode: A portable multicom-

puter communication library atop the reactive kernel. In Proceedings of Fifth

Distributed Memory Computing Conference, pages 767{776. IEEE Press,

1990.

[Snyder 86] L. Snyder. Type architectures, shared memory, and the corollary of

modest potential. Annual Review of Computer Science, 1:289{317, 1986.

[Spector 82] A. Z. Spector. Performing remote operations e�ciently on a local com-

puter network. Communications of the ACM, 25(4):246{260, April 1982.

136

[Sullivan & Brashkow 77] H. Sullivan and T. R. Brashkow. A large scale homoge-

neous machine. In Proceedings of 4th Annual Symposium on Computer

Architecture, pages 105{124, 1977.

[Sunderam 92] V. Sunderam. PVM: A framework for parallel distributed computing.

Concurrency: Practice and Experience, 4:509{531, 1992.

[Thekkath & Levy 93] C. A. Thekkath and H.M. Levy. Limits to low-latency commu-

nication on high-speed networks. ACM Transactions on Computer Systems,

11(2):179{203, May 1993.

[Thekkath et al. 93] C. A. Thekkath, H. M. Levy, and E. D. Lazowska. E�cient

support for multicomputing on ATM networks. Technical Report 93-04-03,

University of Washington, 1993.

[TMC 89] Thinking Machines Corporation, Cambridge, MA. CM Fortran Reference

Manual, Version 5.2, 1989.

[TMC 90] Thinking Machines Corporation. C* Programming Guide (version 6.0),

August 1990.

[TMC 91] Thinking Machines Corporation. CM-5 Technical Summary, 1991.

[TMC 92] Thinking Machines Corp. CMMD 2.0 Reference Manual, 1992.

[Tseng 93] C.-W. Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-

Memory Machines. PhD dissertation, Rice University, January 1993. Also

published as technical report COMP TR93-199.

[Tullsen & Eggers 93] D. M. Tullsen and S. J. Eggers. Limitations of cache prefetch-

ing on a bus-based multiprocessor. In Proceedings of 20th International

Symposium on Computer Architecture, pages 278{288, May 1993.

[van Eijk et al. 89] P. H. J. van Eijk, C. A. Vissers, and M. Diaz, editors. The Formal

Description Technique LOTOS. North-Holland, Amsterdam, 1989.

137

[von Eicken et al. 92] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.

Schauser. Active messages: a mechanism for integrated communication and

computation. In Proceedings of 19th International Symposium on Computer

Architecture, pages 256{266, May 1992.

Appendix A

SYNTAX OF THE COMMUNICATION DESCRIPTION

LANGUAGE

This appendix contains a full grammar for the PDL language, which is used in

communication description �les. A discussion of communication description �les, and

a less formal explanation of PDL, can be found in section 6.2.1.

program : directivePart patternPart

directivePart : numProcsDir directivePart

j spaceDir directivePart

j �

numProcsDir : numprocesses integer

spaceDir : spaceadvice integer

j spacelimit integer

j spacelimit integer integer

patternPart : pattern patternPart

j �

pattern : pattern integer f procPatList g

procPatList : procPat procPatList

j procPat

procPat : process integer f statementList g

statementList : statement statementList

j statement

statement : beginSendStat

j endSendStat

j beginRecvStat

j endRecvStat

j sendStat

139

j recvStat

beginSendStat : beginSend dest integer tag integer maxsize integer name identifier

beginRecvStat : beginRecv source integer tag integer maxsize integer name identifier

endSendStat : endSend name identifier

endRecvStat : endRecv name identifier

sendStat : send dest integer tag integer maxsize integer

recvStat : recv source integer tag integer maxsize integer

Appendix B

NP -COMPLETENESS PROOF FOR THE

BUFFERING-MODE PROBLEM

This appendix proves that the bu�ering analysis problem introduced in section

5.2.3 is NP -complete. The problem may be formally stated as follows: given a

deterministic communication pattern C, with a weight w

i

on each message in C,

assign a bu�ering mode (either receiver-bu�ered or synchronizing) to each message

in C, such that deadlock is avoided, and the total weight of all synchronizing-mode

messages is maximized.

This problem is trivially in NP , since verifying a solution requires simply adding

up the total bene�t function and checking for cycles in the event-ordering graph

generated by the proposed solution.

To simplify the proof, I will work with an unweighted version of the problem.

The unweighted version is the same as the original problem, except that all messages

have unit weight. Thus the objective is simply to maximize the number of messages

that use synchronizing mode. Since the unweighted problem is a special case of the

weighted problem, if the unweighted problem is NP-hard, then the weighted problem

must also be NP-hard.

In order to further simplify the proof, I will restate the unweighted problem in

an equivalent form. Rather than trying to maximize the number of synchronizing-

mode messages, the algorithm will try to minimize the number of messages that use

receiver-bu�ered mode. Since all messages must use one of these two modes, this

restatement does not a�ect the solution to the problem.

The resulting problem will be called the Minimum Bu�er Problem (MBP). We

can state this problem in decision form as follows:

Given a deterministic communication pattern C that transfers M mes-

sages, and a nonnegative integer K � M , is it possible to assign bu�er-

ing modes (synchronizing or receiver-bu�ered) to all messages in C, such

that the resulting program is deadlock-free and at most K messages are

141

receiver-bu�ered?

MBP is complete for NP because the feedback arc set problem, which is known to

be NP -complete [Karp 72], can be reduced to MBP. The feedback arc set problem is

stated as follows: given a directed graph G = (V;A) and a positive integer K � jAj,

is there a subset A

0

� A with jA

0

j � K such that A

0

contains at least one edge from

every directed cycle in G? This problem can be restated equivalently as follows: given

a directed graph G = (V;A) and a positive integer K � jAj, is there a subset A

0

� A

with jA

0

j � K such that the graph (V;A�A

0

) is acyclic?

Suppose we are given a directed graph G = (V;A). Assume that its vertices are

denoted v

1

; v

2

; : : : ; v

jV j

and its arcs are denoted a

1

; a

2

; : : : ; a

jAj

. From this graph we

will construct a communication pattern as follows:

� The pattern will be executed by jV j processes, denoted P

1

; P

2

; : : : ; P

jV j

.

� The pattern will have jAj messages, denoted m

1

;m

2

; : : : ;m

jAj

.

� Processor P

i

's program is as follows:

{ First, for each arc A

k

= (j; i) 2 A, a statement beginSend dest j tag k

maxsize 1 name

k

. Call this statement bs

k

or bs

(j;i)

.

{ Second, for each arc A

k

= (j; i) 2 A, a statement endSend

k

, which will

be called es

k

or es

(j;i)

.

{ Third, for each arc A

k

= (i; j) 2 A, a statement beginRecv source i tag

k maxsize 1 name �

k

, which will be called br

k

or br

(i;j)

.

{ Fourth, for each arc A

k

= (i; j) 2 A, a statement endRecv �

k

, called er

k

or er

(i;j)

.

The order of statements within each of the four groups does not matter.

One additional de�nition will simplify the proof. I de�ne the augmented event-

ordering graph of a communication pattern to be the result of taking ordinary event-

ordering graph, and adding an edge between every pair of nodes (a; b) such there

is a path from a to b containing only program-order edges. Clearly, the augmented

event-ordering graph has a cycle if and only if the ordinary event-ordering graph has

a cycle.

142

Lemma B.1 Let F = (G;K) be an instance of the feedback arc set problem, and

B = (C;K) be the instance of MBP generated by the construction given above. Let

H = (V;E) be the augmented event-ordering graph induced by any set of decisions

about the bu�ering modes of messages in B. Then any cycle of H may contain only

edges of the following forms:

a) (es

(i;j)

; es

(i;k)

)

b) (es

(i;j)

; br

(k;i)

)

c) (br

(i;j)

; br

(k;j)

)

d) (br

(i;j)

; es

(i;j)

).

Proof: The proof proceeds by proving that all alternative forms are impossible.

That the cycle cannot contain any bs nodes. This is because the only incoming

edges to bs nodes are program-order edges from other bs nodes. Since program-order

edges alone cannot form a cycle, a cycle containing a bs node must also contain at

least one non-bs node. But there are no edges from non-bs nodes to bs nodes, so such

a cycle cannot exist.

An argument similar to the previous paragraph shows that the cycle cannot con-

tain any er nodes. (The only edges leaving er nodes are program-order edges.)

The previous two paragraphs imply that the cycle may not contain any message-

order edges, since all message-order edges have the form (bs

x

; er

y

).

Now there are only two remaining kinds of edges allowed in the cycle. The �rst

kind consists of program-order edges involving es and br nodes; together, forms (a),

(b), and (c) describe all such edges. The second kind consists of rendezvous edges;

form (d) describes all such edges. 2

Now the following theorem establishes the equivalence of the two problems: G has

a feedback arc set of size � K if and only if the generated message-passing program

can be executed while bu�ering � K messages. This shows that the feedback arc set

problem can be reduced to MBP. Thus MBP is NP -complete.

Theorem B.2 Let F = (G;K) be an instance of the feedback arc set problem, and

B = (C;K) be the instance of MBP generated by the construction given above. Then

F and B have the same solution | they are either both true or both false.

143

Proof: By contradiction. If the theorem is false, one of two cases must hold:

� Case 1: F is true and B is false.

Let G = (V;A) be the directed graph in F . Since F is true, there is some set

A

0

� A of arcs such that jA

0

j � K and (V;A � A

0

) is acyclic. Let M

0

be the

subset of messages of B de�ned by M

0

= fm

k

ja

k

2 A

0

g. Since B is false, the

program described by B, with all messages from M

0

in receiver-bu�ered mode,

must deadlock. Thus the resulting augmented event-ordering graph has a cycle.

By lemma B.1, the cycle can be written in the form

(br

(i

1

;i

2

)

; es

(i

1

;i

2

)

; br

(i

2

;i

3

)

; es

(i

2

;i

3

)

; � � � ; es

(i

k�1

;i

k

)

; br

(i

k

;i

1

)

; es

(i

k

;i

1

)

; br

(i

1

;i

2

)

:

Consider each edge of the form (br

(j;m)

; es

(j;m)

) in this cycle. Since both nodes

stem from the message (j;m) they must be executed by di�erent processes,

and hence cannot be connected by a path of program-order edges. The only

remaining kind of edge that connects a br node to a es node is a rendezvous

edge, so the edge must correspond to a message which is in synchronizing mode.

Hence the edge corresponds to an edge (j;m) in the graph (V;A�A

0

). Therefore

(V;A�A

0

) contains the cycle (i

1

; i

2

; i

3

; � � � ; i

k

; i

1

), which is a contradiction. Thus

case 1 cannot hold.

� Case 2: F is false and B is true.

Since B is true, there is some setM

0

�M of messages with jM

0

j � K such that

bu�ering the messages in M

0

eliminates all cycles in B's event-ordering graph.

Let A

0

be the set of edges in F such that a

k

2 A

0

i� m

k

2M

0

. Thus A

0

is a set

of at most K edges.

Since F is false, the graph (V;A�A

0

) has at least one cycle. Let this cycle be

(a

i

1

; a

i

2

; � � � ; a

i

k

; a

i

1

):

Now consider the set of messages M

00

= fm

i

1

;m

i

2

; � � � ;m

i

k

g. All messages in

M

00

are synchronizing, since the corresponding edges in F are not in A

0

.

144

Thus, B's augmented event-ordering graph has the cycle

(br

i

1

; es

i

1

; br

i

2

; es

i

2

; � � � ; br

i

k

; es

i

k

; br

i

1

):

So, receiver-bu�ering the messages in M does not eliminate all cycles in B's

event-ordering graph, which is a contradiction. Hence case 2 cannot hold.

2

Appendix C

PSEUDOCODE FOR COMMUNICATION OPERATIONS

IN THE RUNTIME LIBRARY

This appendix contains pseudocode for some of the communication operations

supported by Parachute's run-time library. The goal of including this pseudocode is

not to map out every detail, but simply to give the reader a general idea of how the

implementation works.

In order to avoid confusion between the operations that the native operating

system provides to the run-time library, and the operations that the run-time library

provides to the application, a naming convention will be used. The names of calls to

the native operating system will all be pre�xed by \Nat ".

Figures C.1, C.2, C.3, C.4, C.5, C.6, and C.7 contain pseudocode for the main

operations supported by the runtime library.

When the program is not in a communication pattern, each communication call

maps directly onto the corresponding native call. This allows the library to be invis-

ible outside of communication patterns.

Code for handling each message is split between the various procedures. The

library uses a per-message data structure, which is generated as part of the tailored

protocol, to keep information about each message.

For messages in receiver-bu�ered mode, the system keeps a Nat beginRecv oper-

ation outstanding at all times. This causes any incoming instance of that message

to be directed to the bu�er that the protocol compiler allocated for it. When the

library is initialized, it issues a Nat beginRecv for each receiver-bu�ered message,

then performs a barrier synchronization. This ensures that there is an outstanding

Nat beginRecv for each receiver-bu�ered message before any communication pattern

can start. Whenever a Nat endRecv is executed for a receiver-bu�ered message, the

corresponding Nat beginRecv is reissued immediately. The system makes sure that

at most one instance of each message is \alive" at any time by placing a barrier

synchronization at the beginning of each communication pattern.

146

For a message in synchronizing mode, the system carries out a small synchroniza-

tion between sender and receiver for each instance of the message. When the receiver

makes its beginRecv call, it makes a Nat beginRecv call, then signi�es its readiness

to receive the message by sending a zero-length message to the sender. The sender

waits for this zero-length message before transmitting the main message data.

int beginSend(void* buf, int nbytes, int dest, int tag)

{

if(currentCommunicationPattern != NULL){

message = stateMachine.getIdOfThisMessage();

check parameters;

advance state machine to next state;

if(message->bufferingMode == Blast){

return Nat_beginSend(buf, nbytes, dest, message->msgID);

}else if(message->bufferingMode == ReceiverBuffered){

return Nat_beginSend(buf, nbytes, dest, message->msgID);

}else{

save message parameters to per-message data structure

return a magic cookie;

}

}else{

return Nat_beginSend(buf, nbytes, dest, tag);

}

}

Figure C.1: Pseudocode for the beginSend operation.

147

int beginRecv(void* buf, int maxSize, int tag)

{

if(currentCommunicationPattern != NULL){

message = stateMachine.getIdOfThisMessage();

check parameters;

advance state machine to next state;

if(message->bufferingMode == Blast){

return Nat_beginRecv(buf, maxSize, message->msgID);

}else if(message->bufferingMode == ReceiverBuffered){

store arguments to this call in message descriptor;

return message->recvID;

}else{

ret = Nat_beginRecv(buf, maxSize, message->msgID);

Nat_send(NULL, 0, message->sender, message->msgID);

return ret;

}

}else{

return Nat_beginRecv(buf, maxSize, tag);

}

}

Figure C.2: Pseudocode for the beginRecv operation.

148

int endSend(int cookie)

{

if(currentCommunicationPattern != NULL){

message = stateMachine.getIdOfThisMessage();

check parameters;

advance state machine to next state;

if(message->bufferingMode == Synchronizing){

Nat_recv(NULL, 0, message->msgID);

return Nat_send(use the saved parameters);

}else{

return Nat_endSend(cookie);

}

}else{

return Nat_endSend(cookie);

}

}

Figure C.3: Pseudocode for the endSend operation.

149

int endRecv(int cookie)

{

if(currentCommunicationPattern != NULL){

message = stateMachine.getIdOfThisMessage();

check parameters;

advance state machine to next state;

if(message->bufferingMode == ReceiverBuffered){

ret = Nat_endRecv(message->recvCookie);

copy message body from message buffer to application buffer;

message->recvCookie = Nat_beginRecv(message->buffer,

message->maxSize,

message->msgID);

return ret;

}else{

return Nat_msgwait(cookie);

}

}else{

return Nat_msgwait(cookie);

}

}

Figure C.4: Pseudocode for the endRecv operation.

void beginPattern(int patternNum)

{

check patternNum for legality;

currentCommunicationPattern = descriptor[patternNum];

initialize state machine for new pattern;

Nat_barrierSynch();

}

Figure C.5: Pseudocode for the beginPattern operation.

150

void endPattern(int patternNum)

{

patternNum = NULL;

}

Figure C.6: Pseudocode for the endPattern operation.

void initPrototype()

{

for(all messages){

if((message is destined for this processor) &&

(message->bufferingMode == ReceiverBuffered)){

message->recvCookie = Nat_beginRecv(message->maxSize,

message->buffer,

message->msgID);

}

}

Nat_barrierSynch();

}

Figure C.7: Pseudocode for the initPrototype operation.

