
Complexity of Sub-Bus Mesh Computations

�

Anne Condon

Department of Computer Science

University of Wisconsin

Madison, WI 53706

Richard E. Ladner

Jordan Lampe

Rakesh Sinha

Department of Comp. Sci. and Eng.

University of Washington

Seattle, WA 98195

September 20, 1994

Abstract

We investigate the time complexity of several fundamental problems on the sub-

bus mesh parallel computer with p processors. The problems include computing the

PARITY and MAJORITY of p bits, the SUM of p numbers of length O(logp) and the

MINIMUM of p numbers. It is shown that in one dimension the time to compute any

of these problems is �(log p). In two dimensions the time to compute any of PARITY,

MAJORITY, and SUM is �(

logp

log log p

). It was previously shown that the time to compute

MINIMUM in two dimensions is �(log log p) [21, 31].

�

This is a revision of University of Washington Technical Report No. 93-10-02. This paper will appear in

SIAM Journal on Computing. Condon's research was supported by NSF, grant numbers CCR-9100886 and

CCR-9257241. Ladner's and Lampe's research was supported by NSF, grant number CCR-9108314. Part of

Ladner's research was done while visiting Victoria University of Wellington, New Zealand. Sinha's research

was supported by NSF/DARPA grant number CCR-8907960 and NSF grant number CCR-8858799.

0

1 Introduction

A sub-bus mesh computer is a single-instruction multiple-data (SIMD) two-dimensional

array of processors, where processors can broadcast data vertically or horizontally on seg-

mented busses. To segment a bus, some of the processors on the bus are active while others

are inactive. Each active processor can broadcast on the bus to all processors up to the

next active processor. Thus, all the intervening inactive processors receive the data that

has been broadcast. The sub-bus mesh computer architecture has been implemented on the

commercially available MasPar MP-1 [5].

Typically, there are p processors in a

p

p �

p

p two-dimensional array, where

p

p is a

power of two. We will also consider one-dimensional meshes. For each of the problems we

will consider, we assume there are p inputs, distributed one per processor.

The purpose of this paper is to present upper and lower bounds on the time to compute

several fundamental functions including the PARITY and MAJORITY of p bits, the SUM of

p numbers of length O(log p), and the MINIMUM of p numbers. Reisis and Prasanna Kumar

appear to be the �rst to consider e�cient algorithms for the sub-bus mesh architecture

[26]. To our knowledge this is the �rst paper to prove extensive results on the power and

limitations of the sub-bus computer architecture.

1.1 Results

There are simple algorithms for computing the Boolean OR and AND in constant time on a

one- or two-dimensional sub-bus mesh computer [26]. Two other natural Boolean functions

are PARITY and MAJORITY. We show that PARITY and MAJORITY are computable

in time �(log p) on a one-dimensional sub-bus mesh. The proofs of the lower bounds use

a new technique for bounding the amount of information about the input which can be

distributed on a one-dimensional mesh. The proof of the lower bound for MAJORITY can

be used to show lower bounds for some other symmetric Boolean functions. We also consider

the problem of computing the MINIMUM on a one-dimensional sub-bus mesh, and show

that MINIMUM is computable in �(log p) time. The lower bound for MINIMUM on the

one-dimensional sub-bus mesh uses the same technique as the lower bound for PARITY.

We then show that PARITY and MAJORITY are computable in time �(

log p

log log p

) on

a two-dimensional sub-bus mesh computer. The lower bounds follow from the fact that a

CRCW PRAM can simulate a sub-bus mesh computer to within a constant factor of the

time and within a polynomial number of processors. Thus, the CRCW PRAM lower bounds

on PARITY and MAJORITY [4] apply to the sub-bus mesh computer. The upper bounds

follow from an algorithm for SUM, the sum of p numbers of length O(log p), which runs

in time O(

logp

log logp

). The SUM algorithm is non-trivial, using mixed radix arithmetic, the

Chinese remainder theorem and recursion to achieve the result. The obvious algorithm for

SUM takes time �(log p). The two-dimensional bound of
(

log p

log logp

) for SUM on the CRCW

PRAM follows from the lower bound on PARITY.

1

1.2 Related Results

The mesh or array parallel computer architecture has been investigated for a number of

years, with numerous articles on its many variants [13, 17, 18, 22, 21, 26, 29]. The sub-bus

mesh architecture was �rst investigated by Reisis and Prasanna Kumar where they gave

constant time algorithms for the OR of p bits and the MINIMUM of

p

p numbers (all on one

row), and an O(log p) algorithm for combining p data items with an associative operator

[26]. Two variants of the mesh computer are closely related to the sub-bus mesh. First,

there is the full-bus mesh where processors can broadcast vertically or horizontally, but on

a vertical (horizontal) broadcast at most one processor per column (row) can be active. The

MPP of Goodyear and NASA is an example of a full-bus two-dimensional mesh computer

[3]. Full-bus meshes are generally less powerful than sub-bus meshes. Both PARITY and

MINIMUM require
(p

�

) time for some � > 0 on full-bus meshes [2, 25].

Second, there is the recon�gurable mesh, which allows the topology of the mesh to be

changed by the executing program [18]. Several prototype, but no commercial, recon�g-

urable mesh computers have been built. PARITY can be computed in constant time on

the recon�gurable, two-dimensional mesh [18]. Thus, our results demonstrate that the sub-

bus mesh computer architecture is strictly more powerful than the full-bus mesh computer

architecture, but strictly less powerful than the recon�gurable mesh computer. In other

work on the PARITY function, MacKenzie [19] independently obtained a lower bound of

(log p=k) for computing PARITY on a restricted p� k recon�gurable mesh model, which

is exactly our one-dimensional sub-bus mesh model for k = 1. However, he did not extend

this to other symmetric functions.

The SUM function has also been previously studied on the recon�gurable mesh. Nakano

[23] and Nakano, Masuzawa and Tokura [24] developed algorithms for SUM on the recon-

�gurable mesh that also use Chinese remaindering. Their results do not apply directly to

the sub-bus mesh architecture. MINIMUM has also been previously studied on the two-

dimensional recon�gurable mesh, and the techniques used can be applied directly to show

that MINIMUM can be computed in �(log log p) time on the two-dimensional sub-bus mesh.

From the work of Hao, MacKenzie and Stout [12], a lower bound of
(log log p) is obtained

for computing MINIMUM on a two-dimensional sub-bus mesh. Their proof is based on a

PRAM simulation of the mesh model, and applies a result of Fich et al [11] in which an

equivalent lower bound is proved for the CRCW PRAM. However, this proof requires that

the inputs be very large. Another lower bound of
(log log p) for computing MINIMUM

on the two-dimensional sub-bus mesh follows from the general lower bound for the parallel

comparison model of Valiant [31] and applies to comparison-based algorithms. A matching

upper bound is due to Miller et al [21], and is basically an implementation of the parallel

MINIMUM algorithm of Valiant [31].

The parallel random access machine (PRAM) is probably the most well studied theo-

retical model of parallel computation. There are a number of variants of the PRAM de-

pending on whether reads or writes to the same memory location can be done concurrently.

The variant most closely related to the sub-bus mesh is the CRCW PRAM (concurrent

read/concurrent write PRAM) (see [14] for an introduction to the PRAM model). In this

2

version more than one processor can read or write the same memory location at the same

time. A simultaneous write can be resolved in a number of ways. The ability of the sub-bus

mesh to broadcast on segments of the bus is very much like a combination of a concurrent

read and a concurrent write. Those processors which are actively broadcasting are executing

a concurrent write while those which are inactive are executing a concurrent read. Indeed

the sub-bus mesh can compute OR in constant time just as a CRCW PRAM can. We show

that CRCW PRAM can simulate a sub-bus mesh computer to within a constant factor of

the time. This simulation immediately implies that lower bounds for the CRCW PRAM

are also lower bounds for sub-bus mesh. Interestingly, some CRCW PRAM algorithms can

be translated into sub-bus mesh algorithms. For example, the constant time OR algorithm

and Valiant's MINIMUM algorithm can be implemented on the sub-bus mesh. By contrast,

some CRCW PRAM algorithms, such as the constant time CRCW PRAM MINIMUM

algorithm of Fich, Radge, and Wigderson [10], appear to be impossible to implement on

the sub-bus mesh. More generally, the CRCW PRAM is strictly more powerful than the

sub-bus mesh regardless of the number of dimensions. This is because problems like SORT

require time
(p

�

) on mesh computers, but can be done in time O(log p) on a PRAM.

The sub-bus model is also incomparable with the EREW (exclusive read, exclusive write)

PRAM model. To see this, note that computing the OR of p bits requires
(log p) time

on a CREW PRAM [9], whereas the sub-bus mesh can compute OR in constant time. By

contrast, p integers can be sorted in O(log p) time on an EREW PRAM with p processors

[1, 7, 16], but, by a simple bisection bandwidth argument, this task requires time
(p

�

) on

mesh computers [30].

1.3 Organization of the Paper

In section 2 we present our model of the sub-bus mesh computer. In section 3 we prove

our upper and lower bounds for the one-dimensional sub-bus mesh computer. In section

4 we give two-dimensional algorithms for PARITY and SUM. In section 5 we give our

simulation of a two-dimensional sub-bus mesh by a CRCW PRAM thereby yielding our

two-dimensional lower bounds for PARITY, MAJORITY, and SUM. In section 6 we present

two-dimensional upper and lower bounds for MINIMUM. Finally, we have our conclusions

in section 7.

2 Sub-bus Mesh Computer Model

For the purposes of this paper we present a simple version of the sub-bus mesh computer

architecture. Actual machines have a richer organization.

The sub-bus architecture can be easily explained for the one-dimensional mesh or linear

array of processors. There are p processors, numbered consecutively 0 to p� 1 on a circle.

Processor 0 is the front-end which runs the parallel program. Each processor is a RAM with

its own memory which is referenced using plural variables. In addition, there are singular

variables for which there is only one copy which is stored at the front-end processor. There

3

is a special plural variable PID which always holds the processor's number. Processor

operations include direct and indirect Boolean operations, arithmetic operations, shifts,

and comparisons. In addition, the front-end can perform normal branching operations and

issue parallel instructions.

A parallel instruction issued by the front-end has the form \if <condition> then

<statement>." Each processor evaluates the condition, which can be any sequence of

non-branching operations on plural or singular data which evaluates to a Boolean value.

If the condition is true then the processor is said to be active, otherwise it is said to be

inactive. Only the active processors execute the statement part of the instruction.

There are two kinds of statements, local operations and segmented broadcasts. A local

operation is just a typical non-branching RAM operation executed on plural or singular

data at each processor. A segmented broadcast has the form

broadcast direction[distance].plural variable plural variable;

The direction can be either left or right. The variable distance must be singular. When

an active processor i executes the instruction broadcast right[d].y x then the location

y at the processors (i+ 1) mod p; (i+2) mod p; :::; (i+ j) mod p receive the value stored in

location x of processor i, where processors (i+1) mod p; (i+2) mod p; :::; (i+ j� 1) mod p

are inactive and either j = d or j < d and processor (i+ j) mod p is active. The segmented

broadcast to the left is similar. In either case, the circle is partitioned into non-overlapping

segments. Each segment behaves like a sub-bus of the bus which includes all the processors.

The MasPar MP-1 implements the segmented broadcast as xnetc. Table 1 describes the

result of a segmented broadcast.

broadcast right[2].y = x

PID 0 1 2 3 4 5 6 7

active no no yes yes no no no yes

x a b c d e f g h

y h h * c d d * *

Table 1. Demonstration of segmented broadcast. The * indicates that the value of y did

not change because of the broadcast.

In two dimensions there are also p processors where p is a square number. The mesh

processors are arranged in a

p

p�

p

p array. The coordinates of a mesh processor's number

are stored in PIDx and PIDy. A mesh processor's number is stored in PID = PIDy *

p

p +

PIDx. The sub-busses go in four directions up, down, right, and left. Processor (x; y) is

immediately up from processor (x; (y+1) mod

p

p) and immediately to the left of processor

((x + 1) mod

p

p; y). So vertical busses go up and down, while horizontal busses go right

and left all in a circular fashion. The front-end processor is processor (0; 0).

2.1 Time of Sub-Bus Mesh Algorithms

For the purpose of analyzing our algorithms we consider time to be evaluated using the

unit cost RAM criterion where the values operated upon must have length O(log p). Each

4

sequential operation by the front-end, each parallel operation used in evaluating the con-

dition in a parallel instruction, and each statement of a parallel instruction costs 1 in our

model. We do not charge for the broadcast of parallel instructions by the front-end to the

mesh processors. We assume that cost is dominated by the cost of executing the parallel

instruction.

As mentioned earlier, the RAM instructions include the usual direct and indirect Boolean

operations, arithmetic operations, shifts, and comparison. In addition, we permit any

�xed �nite set of RAM instructions for our processors, provided each instruction can be

implemented in uniform NC [8, 28], that is, each instruction can be built from log

O(1)

p

hardware and runs in time log

O(1)

log p. The set of RAM operations is independent of p.

Thus, the total hardware in the sub-bus mesh computer of p processors is p log

O(1)

p. The

running time of log

O(1)

log p per RAM instruction is fast enough to be considered to be

constant time in the mesh of processors.

For the purpose of proving our lower bounds we allow our model to be even more

general. We do not restrict the length of the values operated on and do not restrict the

RAM operations in any way. There is one exception. The two-dimensional lower bound for

MINIMUM is done in the so-called \comparison model" where the only RAM operations

allowed on input values are comparison, copy, and broadcast. Thus, with one exception, the

lower bounds re
ect the cost of computing functions due to the sub-bus mesh architecture,

not any limitations on the individual processors. The two-dimensional lower bound for

MINIMUM is still quite general, but is limited to the comparison model of the sub-bus

mesh computer.

2.2 Examples of Sub-Bus Mesh Algorithms

Below we give two examples of sub-bus mesh algorithms both of which will be building

blocks in subsequent algorithms. Both examples can be found in the paper by Reisis and

Prasanna Kumar [26]. In our terminology if x is a plural variable then we indicate its value

at processor i by x

i

or at processor (i; j) by x

i;j

.

Our �rst program computes the OR in constant time.

CONSTANT-TIME-OR on one-dimensional mesh

input: plural boolean x

output: OR of all values x

i

in plural variable y

begin

y false

if x = true then

broadcast left[p].y true

end

In CONSTANT-TIME-OR, if any of the values x

i

are true, then one or more of the

processors will make sure to broadcast true into all processors' y's. However, if none of

5

the x

i

bits are true, then no processor will run the broadcast step, and so all the y

i

's will

remain false. Clearly, using DeMorgan's law AND can also be computed in constant time.

Our second program computes the MINIMUM of

p

p values in constant time on a two-

dimensional

p

p�

p

p mesh.

CONSTANT-TIME-MINIMUM of

p

p values on a two-dimensional mesh

input: plural integer/real variables x

0;0

; : : : ; x

p

p�1;0

output: MINIMUM value x

i;0

in plural variable y

other: plural boolean t

begin

if PIDy = 0 then

broadcast down[

p

p� 1].x x

if PIDx = PIDy then

broadcast left[

p

p].y x

t x > y

if t then

broadcast up[

p

p� 1].t true

if not t then

broadcast left[

p

p].y x

end

In CONSTANT-TIME-MINIMUM, the �rst two broadcasts have the e�ect of setting

x

i;j

= x

i;0

and y

i;j

= x

j;0

. The comparison x

i;j

> y

i;j

is then equivalent to the comparison

x

i;0

> x

j;0

. If such a comparison holds then x

i;0

is not the minimum. The statement \if

t then..." computes, in one step, the \or" of the outcomes of these comparisons. Thus,

after the broadcast up, if t

i;0

= false then x

i;0

is the minimum. This minimum is then

broadcast to the �rst row of the mesh.

3 One-Dimensional Bounds

In this section we give precise upper and lower bounds on the parallel time to compute

PARITY, MINIMUM, MAJORITY and SUM on the one-dimensional sub-bus mesh com-

puter.

3.1 Upper Bounds in One Dimension

As observed by Reisis and Prasanna Kumar [26], all our problems can be computed by

a one-dimensional algorithm which works for any associative binary operator and runs in

O(log p) time. Let � be any binary associative operation. The value REDUCE-�(x) is

x

0

� x

1

� ::: � x

p�1

stored in processor 0. The following algorithm simply computes the

expression for REDUCE-�(x) as a balanced binary tree.

6

REDUCE-� on one-dimensional mesh

input: plural variable x.

output: y

0

= x

0

� x

1

� :::� x

p�1

other: plural variable z, singular integer i

begin

y x

i 1

while i < p do begin

if PID mod i = 0 then

broadcast left[i].z y

if PID mod 2i = 0 and PID + i < p then

y y � z

i i � 2

endwhile

end

Both SUM and MINIMUM can be expressed as REDUCE-� operations where � is

integer addition in the case of SUM and the minimum of two numbers in the case of

MINIMUM. PARITY and MAJORITY are easily computable in constant time from SUM.

Thus we have:

Theorem 3.1 [26] On a one-dimensional sub-bus mesh with p processors, PARITY, MA-

JORITY, SUM, and MINIMUM can be computed in time O(log p).

3.2 Lower Bounds in One Dimension

Our lower bounds for the one-dimensional sub-bus mesh computer are based on the limited

communication bandwidth of this architecture. Thus, in proving our lower bounds, we use

a simpli�ed model, in which internal computations in a processor are \free" and only the

time taken for communication is measured. It will be clear that any lower bound for this

model applies also to the upper bound model.

As before, there are p processors, numbered 0; 1; : : : ; p� 1, connected by a circular sub-

bus. The computation proceeds in rounds; we charge 1 time unit for a round. In each

round of the computation, the processors �rst communicate and then perform arbitrary

internal computation. The communication is controlled by the front-end, processor 0, just

as in the upper bound model described in section 2. Once this is done, processors can do

arbitrary internal computation that does not require communication. There is no bound

on the length of values broadcast or computed by the processors.

An algorithm consists of both the algorithm that determines the sequence of communi-

cation instructions broadcast by processor 0, and the algorithms of processors 0; : : : ; p� 1

that determine the internal computations at each round. Since processor 0 can read any

information on the bus that passes in either direction between processor p�1 and processor

1, the communication instructions may depend on this information.

7

Let f be a function with domain D

p

. We say algorithm A computes f if for all

(x

0

; x

1

; : : : ; x

p�1

) 2 D

p

, if at the start of the algorithm each processor i has in its memory

the value x

i

, then at the end of the algorithm, every processor has in a special memory

location the value f(x

0

; x

1

; : : : x

p�1

). The tuple (x

0

; x

1

; : : : ; x

p�1

) is called the input. In all

of the results of this section, we assume that jDj � 2.

Fix an input x = (x

0

; x

1

; : : : ; x

p�1

). Processor k's view on input x at time t is a sequence

k; x

k

; (1; v

1

); (2; v

2

); : : : ; (t; v

t

) where v

i

is the value received by processor k at time i during

the broadcast instruction. String v

i

is a special symbol, say �, if no value is received. We

denote by View

k

(x; t) the view of processor k at time t. For a �xed input x, we say x

i

is

unknown to processor k at time t if View

k

(x; t) = View

k

(x

0

; t) for all x

0

that di�ers from x

only at component i. Otherwise, we say x

i

is known to processor k at time t.

Our main result is the following:

Theorem 3.2 On a one-dimensional sub-bus mesh with p processors and for any algorithm

A, there exists an input x such that for some i; 1 � i � p� 1, x

i

is unknown to processor 0

at time log p� 1.

This result is true, regardless of what function is being computed by A, as long as the

domain size jDj � 2. Hence, the result immediately yields a lower bound of log p for the

time to compute functions f with the property that for any (x

0

; x

1

; : : : ; x

p�1

) 2 D

p

and any

i; 0 � i � p� 1, there is some x

0

i

2 D such that

f(x

0

; x

1

; : : : ; x

i�1

; x

i

; x

i+1

; : : : ; x

p�1

) 6= f(x

0

; x

1

; : : : ; x

i�1

; x

0

i

; x

i+1

; : : : ; x

p�1

):

Clearly PARITY is an example of such a function, where D = f0; 1g, and so theorem 3.2

implies a lower bound of log p for PARITY. Also, the MINIMUM function over the integers

is an example of such a function, so again theorem 3.2 implies a lower bound of log p for

computing MINIMUM.

We now describe informally the ideas in the proof of theorem 3.2. Note that, for all

inputs x and processors k, if i 6= k then x

i

is unknown to k at time 0. Consider a processor

i at the �rst round. We consider two possibilities. The �rst is that i is inactive at round 1,

regardless of its input value x

i

. This is good since then, for any processor k 6= i, x

i

is still

unknown to processor k at time 1.

The other possibility is that i is \potentially active"; that is, i is active on at least one

possible value of its input. Then, unfortunately, at the end of round 1, x

i

may be known

to some, and possibly all, other processors. We can use this to our advantage, however, by

setting i's input x

i

to force i to be active. Then, the broadcast of processor i will block any

other broadcast which might have otherwise sent information through i.

For the purpose of this informal discussion, suppose that at round 1, all processors are

potentially active. Our strategy in this case will be to �x the values of alternate processors,

in order to force them to be active. These �xed values determine a partial assignment

� 2 (D [f�g)

p

, and partition the processors into �xed and free processors. On any input

x consistent with the partial assignment �, the broadcasts of the �xed, active processors

8

block the free processors from revealing any information about their values to too many

processors.

In general, for any t; 0 � t � log p� 1, we will de�ne a partial assignment � which �xes

the input at all but b(p� 1)=2

t

c free processors. On any input x consistent with the partial

assignment �, the input x

i

of a free processor i will be known only to a set of contiguous

processors containing i at time t.

We now state and prove the main lemma leading to the proof of theorem 3.2.

Lemma 3.1 Fix an algorithm A. For any t; 0 � t � log p�1, there is a partial assignment

� with at least b(p � 1)=2

t

c free processors with the following property. On any input x

consistent with �, the input x

i

of a free processor i will be known only to a set of contiguous

processors S

i

containing i at time t, where 0 62 S

i

. Moreover, for any two distinct free

processors i and j, S

i

\ S

j

= 0.

Proof: The proof is by induction on t. The base case is when t = 0. In this case, since no

communication has taken place, it is immediate that if � is the partial assignment which is

not �xed anywhere, then all possible inputs x are consistent with �, all processors in the

range 1; : : : ; p� 1 are free, and the value x

i

of every processor i is known only to processors

in the set S

i

= fig.

Suppose the lemma is true for t � 1 � 0, and let � be the partial assignment as in the

statement of the lemma. Suppose that at round t, active processors broadcast to the right

(the other case, when active processors broadcast to the left, is handled similarly).

We will de�ne a partial assignment �

0

which extends � and satis�es the lemma for time

t. To do this, we consider the free processors at time t � 1 in order from that with the

largest index to that with the smallest index. (We consider processors in the opposite order

in the case that the broadcast is to the left.) If free processors j; i occur consecutively in

this ordering, with j > i, we say that j is i's free neighbor to the right at time t � 1.

For each of these processors i in turn, we will determine whether i remains free at round

t, and if not, we will extend � to �x input value x

i

. If i does remain free, we will de�ne a

corresponding set S

0

i

containing i, and will show that at time t, on any input x consistent

with �

0

, x

i

is known only to processors in S

0

i

, that 0 62 S

0

i

and that S

0

i

\ S

0

j

are disjoint, for

free processors i 6= j.

Hence consider some processor i that is free at time t� 1. We say that S

i

is potentially

active if there is some input consistent with � such that some processor in S

i

broadcasts at

round t with that input. Otherwise S

i

is said to be inactive.

If S

i

is potentially active, then we de�ne i to be free at round t if and only if the

following conditions hold: (i) it is not the largest numbered free processor at time t�1, and

(ii) processor i's free neighbor to the right at time t � 1 is not free at time t. (Note that

since i's free neighbor to the right has index j > i, and since we consider the free processors

in order from the largest to the smallest, it is already determined whether j is free at time

t.) The corresponding set S

0

i

is de�ned to be the smallest contiguous set containing S

i

and

S

j

, where j is i's free neighbor to the right at time t � 1. Otherwise, i is not free at time

t and the value of x

i

is �xed in �

0

, to force some processor in S

i

to be active at round t.

9

It is important to note that since the processors in S

i

do not know the values of x

j

for the

free processors j 6= i at time t � 1, then some assignment to the input x

i

will force some

processor in S

i

to be active at round t regardless of any assignment to other inputs whose

processors are free at time t � 1.

If S

i

inactive, then we de�ne i to be free at round t and the corresponding set of

processors S

0

i

is to equal S

i

. This completes the description of �

0

and the set S

0

i

for each

free processor i.

We now argue that �

0

satis�es the lemma at time t. It is straightforward to see from

the construction that for each free processor i at time t, i 2 S

0

i

and that S

0

i

is a set of

contiguous processors. Also, for any two distinct free processors, i and j, S

0

i

\ S

0

j

= 0. This

is because the S

i

are contiguous, non-overlapping sets, and each S

0

i

is either S

i

or is formed

by \collapsing" two neighboring sets S

i

and S

j

, where processor j is free at time t� 1 but

not at time t. Finally, using the fact that no set S

i

contains processor 0, we show that

no set S

0

i

contains processor 0. This is easy to see if S

0

i

equals S

i

, since we know S

i

does

not contain processor 0. Otherwise, S

0

i

is the smallest contiguous set containing S

i

and S

j

,

where j is i's free neighbor to the right at time t � 1. Since 0 < i < j, processor 0 cannot

lie between the contiguous sets S

i

and S

j

. This, together with the fact that neither S

i

nor

S

j

contain processor 0, implies that S

0

i

does not contain processor 0.

We next show that for any x consistent with �

0

, if i is free at time t then x

i

is known

only to those processors in S

0

i

. First note that since processor 0 is not in S

i

for any processor

i that is free at time t � 1, the instruction broadcast by 0 at time t does not reveal any

information about the values of processors which are free at time t�1. Also, it is clear that

if S

i

is inactive at time t, for all x consistent with �

0

, then x

i

is still known only to those

processors in S

i

at time t.

Consider the other case, where S

i

is potentially active at time t. Then i's free neighbor

to the right at time t� 1, say processor j, is free at time t� 1 but not at time t. Moreover,

by our construction of �

0

, on any x consistent with �

0

there is a processor b in S

j

which

broadcasts at time t. Hence, on any input x consistent with �

0

, any broadcast of a processor

in set S

i

reaches only processors in the segment between this active processor and processor

b. The processors in this segment are contained in the smallest contiguous set containing

both S

i

and S

j

. Hence, x

i

is known only to processors in S

0

i

at time t.

To complete the proof, it remains to show that there are � b(p� 1)=2

t

c free processors

at time t. By the inductive hypothesis, there are � b(p� 1)=2

t�1

c free processors at time

t� 1. If i and j are two neighboring free processors at time t� 1, then at least one of these

is still free at time t. To see this, suppose that i < j and that j is not free at time t. Then

either S

i

is inactive at time t in which case i is free at time t, or S

i

is potentially active, in

which case both conditions (i) and (ii) are satis�ed, so again i is free at time t. Hence the

number of free processors at time t is at least bb(p� 1)=2

t�1

c=2c = b(p� 1)=2

t

c as required.

The proof of theorem 3.2 now follows easily from Lemma 3.1. If p � 2 then b(p �

1)=2

logp�1

c � 1. Hence by the lemma, there is a partial assignment � which is not �xed at

one free processor, say i, with the following property. On any input x consistent with �,

10

at time log p � 1, the input x

i

will be known only to a set of processors S

i

, where 0 62 S

i

.

Hence, x

i

is unknown to processor 0 at time log p� 1.

Lower bounds of log p time for PARITY and MINIMUM follow immediately from the-

orem 3.2, as discussed after the statement of that theorem. The same lower bound must

also hold for SUM since PARITY can be computed from SUM without any communication.

Thus, we have:

Theorem 3.3 On a one-dimensional sub-bus mesh with p processors, the time to compute

PARITY, SUM, or MINIMUM is at least log p.

In order to obtain lower bounds for MAJORITY and many other symmetric Boolean

functions we need to modify lemma 3.1. If � is a partial assignment de�ne �

0

to be the

number of inputs �xed to 0 in � and �

1

to be the number of inputs �xed to 1 in �. We say

a partial assignment � is b-balanced if 0 � �

b

� �

1�b

� 1. That is, � is 1-balanced if the

number of inputs assigned to 1 in � is equal to or one greater than the number of inputs

assigned to 0 in �. Similarly, � is 0-balanced if the number of inputs assigned to 0 in � is

equal to or one greater than the number of inputs assigned to 1 in �.

Lemma 3.2 Fix an algorithm A. For any bit b and for any t; 0 � t � log

3

p� 1, there is a

b-balanced partial assignment � with at least b(p� 1)=3

t

c free processors with the following

property. On any input x consistent with �, the input x

i

of a free processor i will be known

only to a set of contiguous processors S

i

containing i at time t, where 0 62 S

i

. Moreover,

for any two distinct free processors i and j, S

i

\ S

j

= 0.

Proof: This proof is similar to that of lemma 3.1. Assume we have a b-balanced partial

assignment � at time t�1 and a number n of free processors with their associated segments

satisfying the condition of the lemma. Assume also, that at time t there is a broadcast to

the right. As in the proof of lemma 3.1 a segment is inactive if no processor in the segment

would become active on any input consistent with � and is potentially active otherwise. As

before any processor i which is free at time t� 1 and whose segment S

i

is inactive remains

free at time t. Assume the free processors at time t � 1 are indexed by i

1

; i

2

; :::; i

n

where

i

j

> i

j+1

for 1 � j � n. We consider these processors three at a time, largest index to

smallest, to determine which potentially active processors remain free at time t and for

those that do not remain free, what their inputs will be assigned to in the new b-balanced

partial assignment �

0

. If n is divisible by 3 then this process will end simply. If not, there

will be a remaining group of 1 or 2 which must be dealt with.

Assume that for j � 3m, it has already been determined whether i

j

is free at time t and

if not, what the assignment to x

i

j

is in the assignment �

0

. We now consider the processors

i

3m+1

; i

3m+2

and i

3m+3

where 3m+3 � n. There are four cases to consider depending on how

many of the segments S

i

3m+1

; S

i

3m+2

; S

i

3m+3

are potentially active. If none are potentially

active then there is nothing to do. If exactly one, say S

i

3m+k

, is potentially active then

set x

i

3m+k

to a value to make �

0

b-balanced. That is, if �

0

0

= �

0

1

then assign x

i

3m+k

to b,

otherwise set it 1� b. If exactly two of the segments are potentially active, then assign the

11

input associated with one to 0 and the other to 1. Finally, if all three are potentially active

then i

3m+3

remains free, x

i

3m+2

is set so as force a processor in the segment S

i

3m+2

to be

active, and then x

i

3m+1

is set to make �

0

b-balanced.

Once the groups of three have been processed there may be one or two remaining free

processors. If exactly one of the segments in this remaining group is potentially active, then

assign the input of that processor to a value to make the partial assignment b-balanced. If

exactly two of the segments of the free processors in this remaining group are potentially

active, then assign the two inputs of the free processors to opposite values.

At the end of this process, at least bn=3c of the processors are free. If i is free at time

t and S

i

is inactive, then S

0

i

= S

i

. If i is free at time t and S

i

is potentially active, then

the corresponding set S

0

i

is de�ned to be the smallest contiguous set containing S

i

and S

j

,

where j is i's free neighbor to the right at time t�1. This happens in the fourth case above

when i = i

3m+3

and j = i

3m+2

.

It should be clear that �

0

is b-balanced partial assignment with at least b(p � 1)=3

t

c

unassigned inputs. Furthermore, for the same reasons as in the proof of lemma 3.1, for any

input x consistent with �

0

, the input x

i

of a free processor i will be known only to a set

of contiguous processors S

i

containing i at time t, where 0 62 S

i

. Clearly, the segments at

time t are disjoint.

As a consequence of lemma 3.2 we have the following theorem which allows us to �nd

a b-balanced input with a component unknown to processor 0 at a time slightly less than

the maximum time to �nd just some input with a component unknown to processor 0 as in

theorem 3.2.

Theorem 3.4 On a one-dimensional sub-bus mesh with p processors and for any algorithm

A and bit b, there exists a b-balanced input x such that for some i; 1 � i < p� 1, x

i

is set

to b, but is unknown to processor 0 at time log

3

p� 1.

Proof: If p � 2 then b(p � 1)=3

log

3

p�1

c � 1. By lemma 3.2, there is a (1 � b)-balanced

partial assignment � which is not �xed at a free processor i. Set x

i

= b, then set the

remaining unassigned inputs so as to make the input b-balanced. Since 0 is not a member

of the segment S

i

at time log

3

p� 1, then x

i

is not known to processor 0.

Theorem 3.5 On a one-dimensional sub-bus mesh with p processors the time to compute

MAJORITY is at least log

3

p.

Proof: Let A be any algorithm for MAJORITY. There are two cases to consider depending

on whether p is even or odd. If p is even then by theorem 3.4 select a 0-balanced input x

and an i such that x

i

= 0 and x

i

is not known to processor 0 at time log

3

p � 1. Clearly,

processor 0 cannot have computed the majority of the inputs by time log

3

p � 1 since its

computation would be identical for the input x and x

0

which is identical to input x except

that x

0

i

= 1. The latter input has a majority of 1's while the former does not. If p is odd

then select a 1-balanced input x and an i such that x

i

= 1 and x

i

is not known to processor

0 at time log

3

p� 1. The remainder of the argument is similar to that above.

12

For any symmetric Boolean function f on p inputs de�ne m(f) to be the k such that

p

2

� k � 0 is minimal and for some bit b the value of f on an input with exactly k inputs

equal to b di�ers from the value of f on an input with k+1 inputs equal to b. For example,

m(MAJORITY) = m(PARITY) = bp=2c and m(OR) = m(AND) = 0.

Corollary 3.1 On a one-dimensional sub-bus mesh with p processors the time to compute

any symmetric function f is at least log

3

(2m(f)).

Proof: Let f be given. Let b be such that if m(f) inputs have the value b then f has

one value and if m(f) + 1 inputs have the value b then f has another value. For simplicity

consider the case in which m(f) inputs equal 0 implies the value of f is 0 and m(f) + 1

inputs equal 0 implies the value of f is 1. If exactly p� 2m(f) inputs are set to 0 then the

restricted function has 2m(f) inputs. By a proof identical to the proof of theorem 3.5 any

algorithm to compute the restricted function must take time log

3

(2m(f)). The argument

for b = 1 is similar.

De�ne THRESHOLD

k

to be the Boolean function which is 0 with k or fewer inputs

set to 1 and 1 otherwise. Clearly, m(THRESHOLD

k

) = min(k; p� k). Thus, we have the

following:

Corollary 3.2 On a one-dimensional sub-bus mesh with p processors the time to compute

THRESHOLD

k

is at least log

3

(2min(k; p� k)).

4 Algorithms for PARITY and SUM

In this section we present asymptotically optimal algorithms for PARITY and SUM on

the two-dimensional sub-bus mesh computer. We start with the PARITY algorithm. It is

the simpler of the two, and introduces some of the key ideas which are useful in the SUM

algorithm.

4.1 PARITY Algorithm

We will introduce a series of problems, in increasing order of di�culty. The algorithm for

each problem will lead to the next one with some fresh tricks. This will help us concentrate

on one idea at a time.

Each of the algorithms below can be executed on a sub-mesh of the

p

p�

p

p mesh. By

an array or sub-array we mean a sub-mesh of the full mesh which may be non-square and

non-contiguous. In the case it is non-contiguous it is assumed that the processors between

any two processors in the sub-array are inactive so as not to interfere with communication

between the processors in the sub-array. Furthermore, any of the algorithms below can be

executed in parallel on disjoint and properly aligned sub-arrays of the full

p

p�

p

p array. If

the algorithm is executed on a m�n sub-array, then we say processor (i; j) is the processor

in the (i; j)-th position (the i-th column and j-th row) of the sub-array where 0 � i < m

and 0 � j < n. Although it is not generally the case that processor (i; j) has its PIDx = i

13

and PIDy = j, it will always be the case that i, j, and dimensions of the sub-array can be

computed from the PID of the processor and other local data in constant time.

Lemma 4.1 On an n � 2

n

array with each processor in the top row having an input bit,

the parity of the input bits can be computed in constant time.

Proof: There are 2

n

possible inputs, so we will make row j of the array responsible for

determining whether the input, thought of as an integer x with 0 � x < 2

n

� 1, actually

equals j. In particular processor (i; j) determines if the input in processor (i; 0) equals the

i-th bit of j. A downward broadcast of the input gives processor (i; j) knowledge of the

input in processor (i; 0). Then processor (i; j) compares the input of processor (i; 0) with

the i-th bit of j. A constant time AND of the outcomes of these comparisons in all the rows

in parallel, tells processor (0; j) whether the input, thought of as an n bit number, equals

j. This information can then be broadcast up to processor (0; 0). Since 2

n

�

p

p, we know

j � log p so that processor (0; 0) can compute the sum of the bits in j in constant time,

using the fact that omputing the sum of the bits of an input is in uniform NC. The parity

of the input bits is the parity of this sum.

We saw that with exponentially many rows we can compute the parity in constant time.

In general, if we have more than a constant number of rows, we can beat the straightforward

O(logn) time algorithm.

Lemma 4.2 On an n � m array with each processor in the top row having an input bit,

the parity of the input bits can be computed in time O(

logn

log logm

).

Proof: We can think of the n � m array as n= logm sub-arrays of dimension logm � m

placed side by side. As in the previous proof, we can compute the parity of groups of logm

bits in constant time. This leaves n= logm partial results in the �rst row of an array of

dimension

n

logm

� m. Repeating the process

logn

log logm

times we have the parity of all the n

bits.

So far we have been assuming that only the processors in the top row have inputs. Let

us now consider the case where each processor has an input.

Lemma 4.3 On an n�m array with each processor having an input bit, the parity of the

input bits can be computed in time O(logm+

logn

log logm

).

Proof: First, in parallel, the processors within each column run the one-dimensional PAR-

ITY algorithm described in section 3.1. This part takes time O(logm). At this point, we

have partial results stored in the top row. From the previous lemma, the parity of these

partial results can be computed in an additional O(

logn

log logm

) steps.

We are ready to give our PARITY algorithm.

Theorem 4.1 On a

p

p�

p

p mesh with each processor having an input bit, PARITY can

be computed in time O(

logp

log logp

).

14

Proof: Think of the

p

p�

p

p mesh as

p

p=m smaller arrays of dimension

p

p�m one on

top of the other. Each of these arrays computes the parity of their input bits in parallel.

By previous lemma, this takes O(logm+

log

p

p

log logm

) time and leaves

p

p=m partial results in

the leftmost column. By lemma 4.2 their parity can be computed in time O(

log

p

p

log log(

p

p=m)

).

Choosing logm =

logp

log logp

we get a total running time of O(

log p

log logp

).

4.2 SUM Algorithm

Computing PARITY is the same as computing the sum of the inputs modulo 2. Lemmas

4.1 and 4.2 can be generalized to compute the sum, modulo a small integer, of inputs on the

top row. For all the problems below we assume that the inputs are non-negative integers of

length O(log p).

Lemma 4.4 If logQ �

p

logn then on an n � n array with each processor having Q and

with each processor in the top row having an input integer, the sum of the inputs modulo Q

can be computed in time O(

logn

log logn

).

Proof: Let m =

logn

logQ

. Let us focus on an m� n sub-array which has m inputs on the top

row. There are Q

m

= n possibilities for the m inputs mod Q. For 0 � j < n, think of j as

an integer written in base Q. As in the computation of parity, processor (i; j) is responsible

for determining if the i-th input mod Q is equal to the i-th Q-ary digit of j. Processor (i; j)

learns of the input at (i; 0) by a broadcast down from the �rst row. Then, processor (0; j)

will learn from an AND on its row that the i-th Q-ary digit of j is the i-th input mod Q

for all i such that 0 � i < m. Processor (0; j) then transmits j to processor (0; 0) where

the sum mod Q of the Q-ary digits of j is computed.

The original n�n array can be divided into n=m sub-arrays of dimension m�n placed

side by side where the algorithm above is performed in parallel. What remains are n=m

numbers in the top row. Iterate this process O(

logn

logm

) = O(

logn

log logn�log logQ

) times to compute

the sum of all the n integers modulo Q.

To complete the proof we must argue that computing the sum mod Q of the Q-ary digits

of a number x is in uniform NC. We assume both Q and x are written in binary. First,

since logQ �

p

logn and n �

p

p, then the length of Q is O(

p

log p). Second, x �

p

p, so

that x is of length O(

p

log p). Thus, the lengths of Q and x can be assumed to be bounded

by the same number b, which we can assume is a power of two and of lenght O(

p

log p). To

�nd the sum mod Q of the Q-ary digits of x write x as x

0

+Q

b=2

x

1

, by dividing x by Q

b=2

.

Recursively, �nd the a

0

and a

1

which are the sums mod Q of the Q-ary digits of x

0

and x

1

respectively. Then, a = (a

0

+ a

1

) mod Q is the sum mod Q of the Q-ary digits of x. The

necessary powers of Q, division by these powers, and sum are all in uniform NC. Since the

number of levels of recursion is bounded by log

2

b, then the result a can also be computed

in uniform NC.

By the Chinese remainder theorem we know that if we can compute the sum modulo

su�ciently many small integers, we can compute the exact sum.

15

Lemma 4.5 If 6 � log t �

p

logn then on an n � tn array with each processor in the top

row having an input integer such that the sum of these integers is less than 2

t

, the sum of

the inputs can be computed in time O(

logn

log logn

).

Proof: Think of the n � tn array as t sub-arrays, each of size n � n, one on top of the

other. Let M be the product of all primes less than t. If t � 41 then M � 2

t

[27, Corollary

to Theorem 4, page 70]. Hence, if the sum of the input integers is less than 2

t

then it is

enough to compute the sum modulo M . We already know how to compute the sum modulo

small primes. Our plan is to let each n� n sub-array compute the sum modulo a di�erent

prime and then apply the Chinese remainder algorithm to compute the sum modulo M .

To begin with the processors in the top row broadcast the input values down the columns.

The jth sub-array decides whether j is a prime. This can be done in two stages. A number j

is prime if and only if it is not divisible by any number between 1 and

p

j. In the �rst stage,

assign

p

j processors in the �rst row to check for each possible divisor. In the second stage,

these processors compute an AND of their results. Only processors in the j-th sub-array

for prime j participate in all subsequent steps. The j-th sub-array computes a

j

, the sum of

all the inputs modulo j. By Lemma 4.4, this can be done in O(

logn

log logn

) time.

Next, in O(log t) steps, each processor in the j-th sub-array computes M , the product

of all primes less than t, and m

j

= M=j. The processors in the j-th sub-array compute

(a

j

m

j

)((m

j

)

�1

mod j). This can be done in constant time. The nontrivial part is com-

puting ((m

j

)

�1

mod j). There are at most j possible values for the inverse. We assign j

processors in (say) the �rst row of the j-th sub-array for each possible value of the inverse.

In one step, each of these assigned processors can check whether it has the right value of

inverse. The processor corresponding to the right value of the inverse broadcasts this to all

other processors. By Chinese remainder theorem, the exact value of sum is summation of

(a

j

m

j

)((m

j

)

�1

mod j), which can be computed in O(log t) steps.

In total the computation can be done in O(log t +

logn

log logn

) = O(

logn

log logn

) time.

Lemma 4.6 If tw � m and 6 � log t �

p

logw then on an n�m array, with each processor

in the top row having an input integer such that the sum of these integers is less than 2

t

,

the sum of the inputs can be computed in time O(

logn

log logw

).

Proof: Think of the n�m array as n=w subarrays each of dimension w �m side by side.

Since tw � m, each w �m subarray can be thought of as containing a w � tw subarray at

the top. Each w� tw subarray has its input on the top row. By lemma 4.5, the sum of the

inputs of all the w� tw subarrays can be computed in time O(

logw

log logw

) leaving n=w partial

sums in the top row. This process is repeated logn= logw times until the input is reduced

to a single number. This reduction takes time O(

logn

log logw

).

We now consider the case where each processor has an input.

Lemma 4.7 If tw � m and 6 � log t �

p

logw then on an n�m array with each processor

having an input integer such that the sum of these integers is less than 2

t

, the sum can be

computed in time O(logm+

logn

log logw

).

16

Proof: The �rst step is simply to add the columns in parallel in O(logm). We are now

reduced to the problem in the previous lemma. Hence the total time is O(logm+

logn

log logw

).

Theorem 4.2 On a

p

p �

p

p mesh with each processor having an input integer of length

O(log p), SUM can be computed in time O(

logp

log log p

).

Proof: Choose t = log(p

k

) where p

k

is an upper bound on the sum of the input integers and

log t � 6. Let c be a constant, which depends only on k, such that log t �

p

c log p= log log p.

Now, choose w such that logw = c log p= log log p. Let m = tw, so that t, w, and m satisfy

the hypothesis of lemma 4.7. Think of the

p

p �

p

p mesh as

p

p=m arrays of dimension

p

p�m one on top of the other. By lemma 4.7 the sum of these arrays can be computed in

time O(logm+

log

p

p

log logw

), leaving

p

p=m partial sums in the �rst column. We may now apply

lemma 4.6 to these inputs to �nd the full sum in an additional O(

log

p

p

log logw

) time. The total

time is then O(logm+

log

p

p

log logw

). Since logw = c log p= log log p and logm = logw + log t =

O(

log p

log log p

), the total time of the algorithm is O(

log p

log log p

).

It is interesting to note, that if we assume that the individual processors can operate on

integers of arbitrary length in constant time, then using the technique of theorem 4.2, the

sum of p integers of length 2

O(

p

logp= log log p)

can be computed in time O(

log p

log logp

).

Since MAJORITY can be computed from SUM in constant time we may now state the

theorem:

Theorem 4.3 On a two-dimensional sub-bus mesh with p processors, PARITY, MAJOR-

ITY, and SUM can be computed in time O(

log p

log logp

).

In the next section we will show these bounds are optimal.

5 Simulation of a Sub-Bus Mesh by a CRCW PRAM

In this section, we prove a
(

logp

log log p

) lower bound for computing PARITY, MAJORITY,

and SUM on the two-dimensional sub-bus mesh computer. To prove this, we show that any

algorithm for the sub-bus model can be simulated by a CRCW (concurrent read, concurrent

write) PRAM algorithm with only a constant factor loss in running time. We then apply

lower bound results for PARITY on the PRAM model. We begin this section by describing

the PRAM results. Then we describe our lower bound model and describe the simulation

in detail.

Beame and Hastad [4] considered lower bounds for the following \ideal" CRCW PRAM

model. There are p(n) numbered processors which share c(n) numbered memory cells,

where p(n) and c(n) are polynomially bounded. There is no bound on the possible contents

of a memory cell. Initially, the input bits x

0

; : : : ; x

n�1

are stored in the �rst n memory cells

and the remaining cells have value 0. Before each step t, a processor is in some state, say q.

17

At the tth step, the processor may read the value v stored in some memory cell C. Based

on C, v and q the processor moves to a new state q

0

, and may write a value v

0

to some cell

C

0

. There is no limit on the number of states of a processor nor on the resources needed

to compute v

0

and C

0

. If several processors attempt to write into the same memory cell at

the same step, the lowest numbered processor succeeds. This model is called the priority

CRCW PRAM. Beame and Hastad have shown that the time to compute any of PARITY,

MAJORITY, and SUM on the ideal CRCW PRAM is
(logn= log logn) [4].

In our lower bound model of the two-dimensional sub-bus there are p processors, num-

bered 0; 1; : : : ; p� 1, connected in a

p

p�

p

p mesh as in the two-dimensional upper bound

model. Processor 0 is the front-end. The computation proceeds in rounds costing one unit,

and in each round, the processors �rst communicate and then perform arbitrary internal

computation. The communication is done just as in the upper bound model. Again, there

is no bound on the size of values broadcast or computed. The main result of this section is

the following.

Theorem 5.1 Any problem which can be solved in time t(p) on a two-dimensional sub-bus

mesh computer with p processors can be solved in time O(t(p)) on a priority CRCW PRAM

with O(p

3=2

) processors.

Proof: Let A be a T (p)-time algorithm for solving a problem on the two-dimensional sub-

bus lower bound model. We describe an ideal CRCW PRAM that simulates A, such that

each round of A takes O(1) steps.

In the simulating PRAM, there are p processors, numbered 0; 1; : : : ; p� 1, correspond-

ing to the p processors of the sub-bus model. There are also auxiliary processors, whose

computation will be described later.

There are two special memory cells called Condition and Statement, used by processor

0 to communicate the instruction at each round. Also, corresponding to each processor

i; 0 � i � p� 1, there are the following special memory cells (we do not specify their exact

addresses, but assume they are computable by processor i). Active(i) is used to denote

at each round whether i is active. It is initialized to false at the beginning of each round.

Send(i) is used to store the value broadcast by i, at each round, if i is active. Receive(i)

is used to store the value, if any, received by i in each round. At the start of each round,

processor i sets Active(i) to false and sets Receive(i) to some special value which is not in

the range of possible values that can be broadcast by A.

We now describe the simulation of a single round of A. First, processor 0 writes the

strings <condition> and <statement> in cells Condition and Statement, respectively. Each

processor i; 0 � i � p � 1 reads these cells and decides if it is active at this round. If so, i

writes the value to be broadcast in Send(i) and sets Active(i) to true.

We next describe how each processor i determines the value it receives (if any) during

the broadcast instruction. If i receives a value, it is from one of

p

p processors on either

the vertical or horizontal bus along which i is connected. Let these processors be numbered

i

1

; : : : ; i

p

p

, where the ordering is such that if i

1

is active, then i

1

is the processor from which

i receives a message; if i

1

is not active but i

2

is then i

2

is the processor from which i receives

18

a message, and so on, so that if i

k

is active and none of i

1

; : : : ; i

k�1

are active, then i

k

is the

processor from which i receives a message. For example, if the direction of communication

is up, then the sequence is (i+

p

p) mod p; (i+ 2

p

p) mod p; : : : ; (i+

p

p

p

p) mod p.

Each processor i has

p

p auxiliary processors to help it compute the value it receives, if

any. Let the auxiliary processors of i be numbered n

i

+1; : : : ; n

i

+

p

p, where n

i

= p+i

p

p�1.

Each processor n

i

+k computes i

k

; this can be done by reading <statement>, to determine

the direction of communication. If processor i

k

is active, that is, Active(i

k

) is true, then

processor n

i

+k reads the value Send(i

k

) and writes it in Receive(i). Because of the ordering

of the auxiliary processors, and the priority write con
ict resolution assumption, the value

written in Receive(i) is the value received by processor i at that round of A, in the sub-bus

computation.

Once the cells Receive(i) have been computed, each processor i; 0 � i � p� 1 completes

the round by simulating the internal computation of the ith sub-bus processor. This com-

pletes the description of the simulation. It is clear that all the steps described can be done

by the processors of the ideal CRCW PRAM, since they have unbounded resources with

which to compute at each step, and an unbounded number of states which can be used to

store the internal con�gurations of the processors of the sub-bus mesh computer.

As a direct consequence of theorem 5.1 we have:

Theorem 5.2 On a two-dimensional sub-bus mesh with p processors the time to compute

PARITY, MAJORITY, and SUM is
(

log p

log log p

).

6 MINIMUM

In this section we survey the two-dimensional complexity of MINIMUM in the comparison

model of the sub-bus mesh. Previous work for the recon�gurable mesh shows that the time

to compute MINIMUM on the two-dimensional mesh is �(log log p). For completeness, we

include the algorithm, adapted to the sub-bus model.

Theorem 6.1 [21, 31] In the comparison model of a two-dimensional sub-bus mesh com-

puter with p processors the time to compute MINIMUM is �(log log p).

Proof: Recall, that in the comparison model we assume the only operations allowed on

input values are comparison, copy, and broadcast. With this restriction any sub-bus mesh

algorithm for MINIMUM can be thought of as a \parallel comparison tree" as de�ned by

Valiant [31]. In this model, any p comparisons of arbitrary input values can be made in one

step. Depending on the outcome of these comparisons one of 2

p

branches to the next step

can be made. Valiant showed that in the parallel comparison tree model with p processors,

(log log p) steps are necessary to determine the minimum of p inputs.

In the same paper [31], Valiant gave an algorithm for the minimum which runs in

O(log log p) time. The Valiant algorithm can be realized on the recon�gurable mesh com-

puter as shown by Miller et al [21]. In fact, their work also applies to the two-dimensional

sub-bus mesh computer. In the Valiant algorithm, assume there are p processors where

19

p = 2

2

k

for some k. With one parallel comparison the number of possible minima to con-

sider is reduced to p=2. Subsequently, if there are p=b possible minima remaining then

in one parallel comparison this number can be reduced to p=b

2

. This is done by dividing

the p=b numbers into p=b

2

groups of size b and using one parallel comparison to �nd the

minimum of all the groups simultaneously. A group of size b requires b

2

processors to �nd

the minimum in one parallel comparison. Thus, p processors are utilized to �nd the p=b

2

possible minima.

The Valiant algorithm can be realized on the two-dimensional sub-bus mesh computer.

The basic building block is the MINIMUM algorithm described in section 2.2, which in

constant time �nds the minimum of n values if they are in the �rst row of an n�n array of

processors. In the two-dimensional algorithm, if there are p=b values remaining (for b � 2)

then there are p=b

2

sub-arrays of the

p

p �

p

p array, each which is b � b with b inputs in

the �rst row of the sub-array. The left-most corner of the sub-arrays appear at processors

(ib; jb) where 0 � i; j <

p

p=b. Using the basic building block, the p=b possible minima can

be reduced to p=b

2

possible minima in constant time. These possible minima are located at

processors indexed (ib; jb) where 0 � i; j <

p

p=b. By �rst broadcasting these values to the

right, then selectively broadcasting these values up, we end up with p=b

2

remaining values

in the �rst row of p=b

2

sub-arrays each of size p=b

2

� p=b

2

. The iterative version of this

algorithm is given below:

MINIMUM of p values on a two-dimensional mesh

input: plural number variable x

output: MINIMUM value x

i;j

other: plural number variable y, boolean variable t, singular integer b

NOTE: We assume p = 2

2

k

for some k.

begin

b 2

broadcast up[1].y x

if y < x then

x y

repeat begin

Step 1

if PIDy mod b = 0 then

broadcast down[b-1].x x

if PIDx mod b = PIDy mod b then begin

y x

broadcast left[b-1].y y

endif

if PIDx mod b = 0 then

broadcast right[b-1].y y

t (x > y)

if t then

broadcast up [b-1].t true

20

if not t then

broadcast left[b-1].x x

Step 2

if b = p then

return x

0;0

if PIDy mod b = 0 then begin

if PIDx mod b = 0 then

broadcast right[b-1].x x

if PIDx mod b = (PIDy mod b

2

) / b then

broadcast up[b

2

-1].x x

endif

b b

2

endrepeat

end

To explain the algorithm in more detail, at the beginning of step 1, there are possible

minima in every processor along every b-th row. Then step 1 does the constant time

MINIMUM on each b � b block in parallel. Within each block, it distributes the b initial

values into the variables x and y for each processor. Thus, the processor in position (i; j)

in each block has the initial value of processor (i; 0) in its x register and the initial value

of processor (j; 0) in its y register. A comparison of x and y is recorded in the boolean

value t. After broadcasting t up the only processor with the value false is the processor

in position (i; 0) which has the minimum for this block. So, that processor will broadcast

its initial value x to processor (0; 0) within the block.

In step 2, we have the situation where the processors (ib; jb) have possible minima, and

we want to move them all to rows, so that the processors (i; jb

2

) all have potential minima.

This is accomplished in two sub-steps. First, broadcast the potential minima to the right.

Second, selectively broadcast the minima up. That is, each potential minima at processor

(ib+ k; jb

2

+ kb) for 0 � k < b is broadcast up.

In case p is not of the form 2

2

k

for some k then the algorithm must be modi�ed slightly.

In the modi�ed algorithm we will always maintain an active rectangular sub-mesh which is

p

p� q where q �

p

p and b divides q evenly. In attempting step 2 in may happen that b

2

does not divide r evenly. If this is the case we set q

0

= b

2

bq=b

2

c and use the upper

p

p� q

0

sub-array. The blocks below this new rectangle can easily be merged into the blocks directly

above them in constant time. Thus, in constant time we go from b � b blocks to b

2

� b

2

blocks. This is su�cient to solve the problem in time O(log log p).

7 Conclusions

We have proved tight bounds (to within constant factors) on the time needed to compute

several functions on the sub-bus mesh computer. For some of these problems, such as

21

PARITY, MINIMUM and SUM, the running times on a sub-bus mesh computer match

(to within constant factors) the running times on a general PRAM. Moreover, machines

based on the sub-bus mesh architecture are commercially available [5]. For these reasons,

we believe that the sub-bus mesh architecture deserves further study.

Our algorithms for PARITY and SUM are probably not practical for any reasonable

size p for two reasons. First the speed-up by a factor of O(log log p) has too large a con-

stant factor to be signi�cant. Second, it is doubtful that hardware designers would want to

implement the new NC functions required by the algorithm. It is possible to remove the

second factor inhibiting practicality by adding preprocessing phases to the algorithms. A

preprocessing phase uses only standard arithmetic/boolean operations to compute values

which depend only on the processor PID's and the structure of the algorithm and which in

the original algorithm would be computed as results of NC functions. Using preprocessing

many more values would be computed than are actually used in the algorithm since during

the preprocessing it is not known exactly which values will be needed later on. The nec-

essary preprocessing for the two algorithms PARITY and SUM is complicated, but can be

accomplished within the O(

logp

log logp

) time bound.

We have implemented the O(log log p) MINIMUM algorithm on a 1,024 processor Mas-

Par MP-1. The constant factor in front of the log log p forces the algorithm to run more

slowly than the standard O(log p) algorithm. However, we believe that the ideas in the

O(log log p) MINIMUM algorithm have the potential to be used in a competitive practical

algorithm for �nding the minimum on commercially available meshes with more than 1,024

processors.

Several open questions are suggested by our results. Are there simpler O(

log p

log log p

) al-

gorithms for PARITY or SUM on the two-dimensional sub-bus mesh, that may be com-

petitive on real machines? Is it possible to improve the lower bound for MAJORITY on

a one-dimensional mesh from log

3

p to log

2

p? Can our lower bound for PARITY on the

two-dimensional sub-bus mesh can be simpli�ed, or improved by a constant factor, using

the mesh model directly rather than translating results from the PRAM model?

8 Acknowledgements

We thank Eric Bach, David Barrington, and Paul Beame for several useful discussions and

suggestions. We thank Tosten Suel and Phil MacKenzie for providing us with several ref-

erences to previous work on the recon�gurable mesh. We thank the anonymous referees for

useful suggestions and for pointing out a seminal reference to the sub-bus mesh architecture.

References

[1] M. Ajtai, J. Koml�os, and E. Szemer�edi. An O(n logn) sorting network. Proceedings of

Fifteenth Annual ACM Symposium on Theory of Computing, pp. 1-9, 1983.

22

[2] A. Bar-Noy and D. Peleg. Square meshes are not always optimal. IEEE Transactions

on Computers, Vol. 40, pp. 138-147, 1991.

[3] K.E. Batcher. Design of a massively parallel processor. IEEE Transactions on Com-

puters, Vol. C-29, pp.836-840, 1980.

[4] P. Beame and J. Hastad. Optimal bounds for decision problems on the CRCW PRAM.

Journal of the ACM, Vol. 36, pp. 643-670, July 1989.

[5] T. Blank. The MasPar MP-1 architecture. Proceedings of COMPCON Spring 90 - The

Thirty-Fifth IEEE Computer Society International Conference, pp. 20-24, February

1990.

[6] G.E. Blelloch.Vector Models for Data-Parallel Computing. The MIT Press. Cambridge,

MA, 1990.

[7] R. Cole. Parallel merge sort. SIAM Journal on Computing, vol. 17, pp. 770-785, 1988.

[8] S. A. Cook. A taxonomy of problems with fast parallel algorithms, Information and

Control, Vol. 64, pp. 2-22, 1985.

[9] S. A. Cook, C. Dwork and R. Reischuk. Upper and lower time bounds for parallel

random access machines without simultaneous writes, SIAM Journal on Computing,

Vol 15, No. 1, pp. 87-97, February 1986.

[10] F. Fich, P. Radge, and A. Wigderson. Relations between concurrent write models of

parallel computation. SIAM Journal on Computing, Vol 17, pp. 606-627, 1988.

[11] F. E. Fich, F. Meyer auf der Heide, P. Ragde and A. Wigderson. Lower bounds for par-

allel random access machines with unbounded shared memory. Advances in Computing

Research, Vol. 4, pp. 1-15, 1987.

[12] E. Hao, P. D. MacKenzie and Q. F. Stout. Selection on the recon�gurable mesh. Fron-

tiers of Massively Parallel Computing, pp. 38-45, 1992.

[13] W.D. Hillis and G.L. Steele, Jr. Data parallel algorithms.Communications of the ACM,

Vol. 29, pp. 1170-1183, December 1986.

[14] J. Ja'Ja'. An Introduction to Parallel Algorithms. Addison Wesley, 1992.

[15] R.E. Ladner and M.J. Fischer. Parallel pre�x computation. Journal of the ACM, Vol.

27, pp. 831-838, 1980.

[16] T. Leighton. Tight bounds on the complexity of parallel sorting. IEEE Transactions

on Computers, vol. C-34, pp. 344-354, 1985.

[17] T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,Trees, Hy-

percubes. Morgan Kaufmann, San Mateo, California, 1992.

23

[18] H. Li and Q.F. Stout, Editors. Recon�gurable Massively Parallel Computers. Prentice-

Hall, Englewood Cli�s, New Jersey, 1991.

[19] P. D. MacKenzie. A separation between recon�gurable mesh models. Proceedings of

the 7th International Parallel Processing Symposium, pp. 84-88, 1993.

[20] Y. Matias and A. Schuster. On the power of the 2xn recon�gurable mesh. Manuscript

from ATT Bell Labs, June 1993.

[21] R. Miller, V. K. Prasanna-Kumar, D. I. Reisis and Q. F. Stout. Parallel computations

on recon�gurable meshes. IEEE Transactions on Computers, Vol. 42, No. 6, pp. 678-

692, 1993.

[22] R. Miller and Q. Stout. Mesh computer algorithms for computational geometry. IEEE

Transactions on Computers, Vol. 38, pp. 321-340, 1989.

[23] K. Nakano. An e�cient algorithm for summing up binary values on a recon�g-

urable mesh. Research Report N0. 93-003, Advanced Research Laboratory, Hatoyama,

Saitama 350-03, Japan.

[24] K. Nakano, T. Masuzawa and N. Tokura. A sub-logarithmic time sorting algorithm on

a recon�gurable array. IEICE Transactions, Vol. E74, No. 11, pp. 3894-3901, 1991.

[25] V.K. Prasanna Kumar and C.S. Raghavendra. Array processor with multiple broad-

casting. Parallel and Distributed Computing, Vol. 4, pp. 173-190, 1987.

[26] D. Reisis and V.K. Prasanna Kumar. VLSI arrays with recon�gurable buses. Supercom-

puting, 1st International Conference, Athens, Greece, June 8-12, 1987, Proceedings.

Lecture Notes in Computer Science, vol. 297, Springer-Verlag, Berlin, pp. 732-743,

1988.

[27] J.B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime

numbers. Illinois Journal of Mathematics, Vol. 6. pp. 64-74, 1962.

[28] W. L. Ruzzo, On uniform circuit complexity, Journal on Computer and System Sci-

ences, Vol. 22, pp. 365-383, 1981.

[29] Q.F. Stout. Meshes with multiple buses. 27th Annual IEEE Symposium on Foundations

of Computer Science. pp. 264-273, 1986.

[30] C. Thompson. Area-time complexity for VLSI. Proceedings of Eleventh Annual ACM

Symposium on Theory of Computing, pp. 81-88, 1979.

[31] L. Valiant. Parallelism in comparison problems. SIAM Journal on Computing, Vol. 4,

pp. 348-355, 1975.

24

