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Abstract

When multiple jobs compete for processing resources
on a parallel computer, the operating system kernel’s
processor allocation policy determines how many and
which processors to allocate to each. In this paper we in-
vestigate the issues involved in constructing a processor
allocation policy for large scale, message-passing paral-
lel computers supporting a scientific workload.

We make four specific contributions:

e We define the concept of efficiency preservation as
a characteristic of processor allocation policies . Ef-
ficiency preservation is the degree to which the de-
cisions of the processor allocator degrade the pro-
cessor efficiencies experienced by individual appli-
cations relative to their efficiencies when run alone.

e We identify the interplay between the kernel pro-
cessor allocation policy and the application load
distribution policy as a determinant of efficiency
preservation.

e We specify the details of two families of processor
allocation policies, called Equipartition and Fold-
ing. Within each family, different member policies
cover a range of efficiency preservation values, from
very high to very low.

e By comparing policies within each family as well
as between families, we show that high efficiency
preservation is essential to good performance, and
that efficiency preservation is a more dominant fac-
tor in obtaining good performance than is equality
of resource allocation.

1 Introduction

Processor scheduling in parallel computers is a two-
level procedure: at the lower level, the kernel allocates

0This material is based upon work supported by the ARPA
Fellowship for High Performance Computing administered by the
Institute for Advanced Computer Studies, University of Maryland
(MDA972-92-J-1017), the National Science Foundation (Grants
CCR-9123308 and CCR-9200832), the Washington Technology
Center, and Digital Equipment Corporation Systems Research
Center and External Research Program.

processors to applications, while at the higher level the
applications decide which of their ready parallel opera-
tions to execute on each processor. In this paper we are
concerned with (kernel) processor allocation policies for
large scale, message passing machines.

Current kernels for message passing multiprocessors
employ only very simple processor allocation policies.
The typical scheme is to define a basically static set
of processor partitions that may be allocated to jobs.
Once a job is assigned to a partition, it runs there to
completion. This static division of the machine provides
a relatively stable resource allocation on which the exe-
cuting job can depend, but the fragmentation problems
assoclated with 1t impact performance adversely.

Existing systems employ this static form of partition-
ing because dynamic reassignment of processors among
jobs has been thought to be too expensive, due to the
communication costs associated with relocating code
and data. However, hardware advances continue to in-
crease the bandwidth of interconnection networks, and
recent software advances [20, 17] show how to reduce
the latency currently imposed by large message startup
costs to a negligible level. Our goal in this paper is to
lay the foundation for processor allocation policies to
be employed in the next generation of multiprocessor
kernels, which will enjoy high network bandwidths and
low message startup costs.

When a parallel application is run in a multiprogram-
ming environment, the processor allocation policy em-
ployed in the kernel may induce efficiency losses for that
application beyond those inherent to its parallel execu-
tion. These losses result from a mismatch between the
resources actually allocated to the application and the
model of the available resources used in making appli-
cation decisions, such as load assignment.

The extent to which an allocation policy induces effi-
ciency losses is one of its important characteristics. To
quantify this, we define the notion of efficiency preser-
vation as a characteristic of processor allocation policies.
We then use this measure to help evaluate two specific
proposed policies.

Our specific policy proposals fall into two families,



called Folding and Equipartition. Fach trades effi-
ciency preservation against equality of resource alloca-
tion among competing jobs. Under Folding, a newly
loaded job is allocated a partition of processors ob-
tained by dividing the largest currently allocated parti-
tion in half, with the threads’ running on those proces-
sors “folded” onto the remaining processors allocated
to their job. In this way, the policy ensures both
that no processors are needlessly idle and that jobs
that exhibit good load balance when run alone will be
load balanced when run in a multiprogrammed envi-
ronment. To achieve equal long-term allocation of re-
sources, the Folding policies periodically reallocate pro-
cessors among the running jobs. By varying the rate of
reallocations, the Folding policies vary from one empha-
sising high efficiency preservation to one emphasising
equal resource allocation.

The Equipartition family of policies reallocates pro-
cessors as equally as possible whenever a job arrives or
departs, but makes no other reallocations. Equiparti-
tion has very low overhead and good equality of allo-
cation, but potentially poor efficiency preservation. By
comparing members of the Folding policy family to each
other and to members of the Equipartition family, we
are able to compare the importance of efficiency preser-
vation and equal resource allocation to the performance
of processor allocation policies.

1.1 Previous Work on Processor Alloca-
tion Policies

Distributed Memory Systems. An early and
fundamental result on processor scheduling for paral-
lel machines is due to Ousterhout [12]. He noted that
because the threads of a parallel application synchro-
nize frequently, the rate of progress of the application
will be determined by the scheduling quantum unless all
threads of the processor are “co-scheduled”, that is, run
at once. This effect forces processor allocators to oper-
ate on a per-job granularity, rather than a per-thread
one.

Feitelson and Rudolph [5, 6] build upon these obser-
vations, describing variants of gang scheduling. They
propose a hierarchical scheme for assigning applications
to processors, and examine the fragmentation it experi-
ences when used in conjunction with gang scheduling for
jobs whose sizes differ according to a number of distri-
butions. Because many jobs may be allocated to each
processor, the processors must be time-shared among
them.

Zhou and Brecht [22] describe a pool-based schedul-
ing mechanism. Pools are a logical construct, used by

I Throughout this paper we will use “thread” to mean “kernel
thread”. While user-level threads can be useful in the message-
passing environment we consider, exploiting them fully requires
application structures more complicated than are currently rou-
tinely employed.

the kernel to balance the allocation of jobs across the
processors. Unlike the work of Feitelson and Rudolph,
there i1s only a single level to the allocation structure
in pool-based scheduling. Additionally, in pool-based
scheduling the kernel can effectively restrict a job’s
choice of parallelism by restricting its threads to only
one or a few pools. Pool-based scheduling may time-
share partitions.

Setia et al. [13] examine the benefits of time-sharing
and dynamic partitioning. They conclude that time-
sharing can be effective in reducting mean response
time.

Chen and Shin [2] examine processor allocation for
cube-connected message passing machines. Like Feit-
elson and Rudolph, they assume that arriving jobs de-
clare the number of processors required for execution.
The goal of their work is to describe efficient schemes
for finding sub-cubes to satisfy arriving jobs.

Dussa et al. [4] examine the benefits of dynamically
repartitioning processors on job arrival and departure,
using experiments on a ring connected Transputer-based
system, as well as a simple analytic model. They con-
clude that for this hardware and the two-job workload
considered that dynamic repartitioning can be benefi-
cial, primarily because of its ability to discriminate be-
tween jobs based on their total duration and because the
sub-linear speedup of typical applications makes them
more efficient when run on fewer processors.

Shared-Memory Systems. Much of the recent
work on processor allocation policies has considered
Tucker and Gupta [18]
describe “process-control”, which is fundamentally a

shared memory machines.

space-sharing approach. Under process control, an ar-
riving job creates a thread per processor of the machine,
but based on feedback from the kernel, idles threads in
excess of its current processor allocation. This allows
a natural form of co-scheduling, which would not be
possible if the number of active threads exceeded the
processor allocation, even with space sharing. Proces-
sors are reallocated among jobs only on job arrival and
departure.

Zahorjan and McCann [21] compare time sharing to
space sharing, and conclude that space sharing is prefer-
able. They also describe a more aggressive form of co-
scheduling than is used in process control, as well as a
more aggressive approach to reallocating processors in
response to transient changes in job parallelism. Mec-
Cann et al. [10] further refine this policy, and report on
results from a prototype implementation of it.

Gupta et al. [7] and Vaswani and Zahorjan [19] ex-
amine the importance of cache affinity to the decisions
made by the kernel processor allocator. Their results
agree in showing that cache affinity is not exploitable by
the kernel, except in very special circumstances. (Squil-
lante and Lazowska come to somewhat contradictory



conclusions, based on results from an analytic model
[16].)

Majumdar et al [9], Sevcik [14, 15], and Leutenegger
and Vernon [8] examine the relationship between job
characteristics, such as maximum parallelism and total
service time, and the performance of various scheduling
disciplines. They find that, as in uniprocessor systems,
average response time can be improved by allocating
resources preferentially to smaller jobs, and that in the
absence of a priori job characterizations, allocating an
equal fraction of total processing power to each job is
an effective heuristic.

Building on the Results of Previous Work. In
examining the results obtained by prior work, we con-
clude that feasible processor allocation policies should
have the following characteristics:

e Co-scheduling — The dispatching of a job’s threads
must be coordinated, so that no thread waits to
synchronize with a thread that is not running.

e Space-sharing — A set of processors should be
shared among multiple jobs by giving each exclu-
sive use of a subset, rather than by alternating as-
signment of the full set among them.

e High processor efficiency — When a job departs,
its processors must be reassigned to another job.

e Equal allocation — Each running job should be al-
located a reasonably equal portion of the resources,
for reasons of fairness as well as performance.

1.2 Paper Outline

In the next section we describe the hardware and soft-
ware environments considered. Section 3 discusses the
efficiency preservation measure of processor allocation
policies. In Section 4 we define two specific processor
allocation policies, called Folding and Equipartition. In
Section 5 we use simple algebraic models to perform
a static analysis, obtaining the fundamental efficiency
preservation behaviors of the two disciplines in the ab-
sence of job arrivals or departures. In Section 6 we use a
Markovian birth-death model to obtain mean response
times under homogeneous job arrivals and departures.
In Section 7 we use simulation to deal with variance,
examining the fairness of the policies and their char-
acteristics under heterogeneous workloads. Section 8
summarizes our results.

2 The Hardware and Software Environ-
ments

We consider the particular case of mesh-connected
parallel machine of 222" nodes, as shown in Fig-
ure la. Each node contains a single processor and suffi-
cient memory to multiprogram a number of threads of

a single application. Nodes communicate only by mes-
sages; there is no shared memory. This model captures
the important attributes of the Intel Paragon, and we
will make parameterizations of it based on the specifi-
cations of that machine. However, much of our work
applies to machines with a tree interconnection struc-
ture (such as the CM-5), and to machines where each
processing node contains a small cluster of processors.
Additionally, it should not be hard to translate our ideas
to other interconnection structures.

Task (1,j)::
repeat (c) {
communicate ();
compute();

}
End Task;

1 (a) Hardware

1(b) Software

Figure 1: Hardware and software configurations

The performance afforded by a particular kernel pro-
cessor allocation policy is intimately tied to decisions
made by the applications it supports. We consider in
this paper a workload composed of scientific applica-
tions written in a single-program-multiple-data (SPMD)
style. This is a common style for both hand-written
codes and those produced by parallelizing compilers.

Figure 1b shows the particular software structure we
consider, the simple but quite common “communicate-
compute” model, in which all nodes pass through co-
ordinated phases of communication followed by local
computation. We assume the particular case of nearest-
neighbor communications, although most of our quanti-
tative results are not strongly affected by this, and the
policies and analysis techniques are applicable for more
general patterns.

As mentioned earlier, the interaction of the kernel-
level and application-level policies has an important ef-
fect on performance. In this paper, we make a very
weak assumption about the requirements placed on the
application regarding the policies it employs. This con-
servative assumption is appropriate for general purpose
system software, which must accommodate as wide a
variety of application software as possible. We assume
that load balancing and data placement decisions for
the application have been made in the context of a fixed
“virtual machine”, which in our case is identical to the
full physical machine (i.e., a grid of 222" processors).
This targeting may be done either explicitly, by the pro-
grammer, or implicitly, by the compiler. The use of a
virtual machine model for this purpose is a common con-
cept in many languages intended for implementation of
parallel programs.



We assume that when a job begins execution, it
spawns a number of threads equal to the number of pro-
cessors in the virtual machine, and partitions its work-
load as equally as possible among them. After that,
it is unable to alter the load distribution. We also as-
sume that the application does not alter the number
of threads in response to changes in processor alloca-
tion. Considerable effort is required to implement dy-
namic remapping, and determining when to remap can
be complicated [11]. This effort may be justified only
for very irregular and dynamic computations [1].

Our hardware and software models reflect an impor-
tant class of system and applications, and capture the
most central aspects of the processor allocation prob-
lem for other classes. However, we have not attempted
to include all aspects of all parallel systems. We intend
our results to be appropriate for systems supporting the
large number of applications of the type we model, and
as well to serve as the basis for policies intended to sup-
port other forms of parallel applications.

3 Efficiency Preservation

When a parallel program is run in a multiprogram-
ming environment, the number of processors it is allo-
cated at any point in time is determined by the kernel,
through its processor allocation policy. If not carefully
designed, this policy can induce efficiency losses beyond
those inherent in the application. For instance, if an ap-
plication that has partitioned its load into eight pieces
is allocated exclusive use of five processors, a great deal
of processing capacity will likely be lost.

To quantify this notion, we define efficiency preser-
vation as a characteristic of processor allocation poli-
cies. To do so, first define application efficiency for
some application app running under policy policy on
p processors, AEpolicy app(P), as the ratio of the total
computation time of the application when run on p pro-
cessors (excluding waiting time due to load imbalance
synchronization losses) to the product of the applica-
tion’s elapsed time and p.

We define the efficiency preservation of a processor al-
location policy policy for some application app by con-
sidering what happens when J copies of app are run
under policy on a machine with P processors. Then
efficiency preservation measure is

Z]"]:l A

R AEpoticy,app(Aj)
J AEtniprogramming,app(P
P (1)

where A; is the number of processors the policy allo-
cates to copy j of the application. Because allocation
policies can impose overheads, /P can in theory be as
small as zero. Because at least some applications exhibit
significantly sub-linear speedups, E P can in theory be
much larger than one.

The efficiency preservation measure provides a natu-

EPyoticy,app(J, P) =

ral explanation for a number of conclusions reached in
prior work. For instance, it is easy to see that a policy
that statically divides the processors into K equal sized
partitions and runs a single job in only one partition will
have difficulty achieving an efficiency preservation much
greater than J/K, and so should be expected to per-
form poorly. Similarly, because applications typically
exhibit sub-linear speedup, 1t 1s beneficial to schedule
many of them at once, assigning each a few proces-
sors, rather than rotating possession of many processors
among them. This is expressed in the efficiency preser-
vation measure by the growth in application efficiency
with diminishing allocation, and thus the growth in ef-
ficiency preservation. Finally, because efficiency preser-
vation is diminished by the overhead required to im-
plement a time-sharing scheme, efficiency preservation
argues against their use.

While efficiency preservation provides useful infor-
mation about a processor allocation policy, it is not a
complete characterization. For one thing, it ignores the
cost of reallocating processors when jobs arrive and de-
part. For most policies these costs are small, since job
arrivals and departures are relatively infrequent. How-
ever, some policies can experience longer term 1ll effects
from arrivals or departures. For instance, a policy that
dynamically partitions a machine but never changes the
assignment of any job once made will not respond well
to job departures. Another shortcoming of efficiency
preservation as a measure is that high efficiency preser-
vation alone does not guarantee good performance, as
measured, say, by mean response time. For instance, a
policy that dedicates the entire machine to individual
jobs in FCFS order will have efficiency preservation of
1.0. However, this policy is as unattractive for paral-
lel machines as 1t is for sequential ones. Despite these
shortcomings, efficiency preservation does provide im-
portant information that is useful in comparing alter-
native processor allocation policies.

Finally, note that the dependence of the efficiency
preservation measure on the application considered is
critical, as the interplay between the kernel’s processor
allocation policy and the application’s load management
policy can have a profound effect. Revisiting our earlier
example, if an application that has divided its work into
eight pieces is allocated five processors, its application
efficiency will be very poor if it is incapable of reallocat-
ing its work in response to this processor allocation. On
the other hand, if the application is able to dynamically
repartition its work into an arbitrary number of equally
balanced pieces, application efficiency may not suffer.
Thus, in general 1t is not reasonable to compare the
performance of alternative processor allocation policies
without specifying at least some of the characteristics
of the applications they are intended to support.



4 Description of the Policies

In this section we describe the Folding and Equiparti-
tion processor allocation policies. These policies assume
that no a priori information is available on job charac-
teristics, such as duration. Experience with uniproces-
sor systems, as well as prior work on parallel machine
scheduling [8], indicates that providing roughly equal al-
location of resources to the jobs is appropriate in these
circumstances.

Our allocation policies apply to sets of jobs that fit
simultaneously in memory and the 2™+ processors of
the mesh. If more jobs are ready to run than can be
supported by the hardware resources, another level of
scheduling is required. We confront this issue in Sec-
tion 7.

Given J jobs in the running set, the processor allo-
cation policy determines which processors to assign to
each. We limit our attention to assignments of rectan-
gular blocks of processors: if other shapes are allowed,
messages between processors belonging to one job will
be routed over links connecting processors belonging to
other jobs. For reasons of predictability, we wish to
avoid this sort of interference.

In addition to choosing the processor partition for a
job, the allocation policy must also choose a location
for each of its threads. To make 1t possible for users to
tune their applications, thread adjacency when running
on a restricted rectangle of processors must be the same
as when running on the full grid.

The simplest thread mapping scheme, and the ba-
sis of all the schemes used in our proposed policies, is
simply a linear contraction from a 2M 2V grid onto an
RxzC grid. A thread that would be located on processor
(4, ) of the full machine is located on node map(i, j) of
the RxC' subgrid, where

i = (5] [5])

The maximum number of threads assigned to any of
a job’s processors is an important measure, since the
synchronization constraints of the job limits its perfor-
mance to that of its most slowly progressing thread.
The theoretical minimum possible maximal number of
threads assigned to a single processor under any thread
mapping function is J%%f In general, the adjacency
preserving mapping (Equation (2)) gives maximal load-
ing % % , which can be considerably larger. Ad-
dressing this shortcoming is one of the problems con-
fronting processor allocation policies.

4.1 The Folding Policy

The motivation for the Folding policy is high effi-
ciency preservation. The Folding policy allocates par-
titions such that the adjacency preserving mapping of
threads to processors results in a perfectly equal alloca-
tion of threads. Under the assumption that the threads

of the application are load balanced when run on the
full machine, they will also be load balanced when run
under Folding in competition with other jobs.

Folding: Basic Operation. Folding chooses new
partition sizes whenever a job arrives or departs. On job
arrival, if the machine 1s idle, it is allocated as a whole
to the new arrival. If not, the largest currently allocated
partition 1s divided in half, with the new job taking one
of the resulting partitions and the existing job the other.
Both jobs have their threads mapped to their allocated
processors in the manner described above. Thus, each
job arrival disturbs at most one currently running job.

When a job departs, two partitions must be recom-
bined. Unfortunately, this is not always a simple op-
eration. We defer discussion of job departures to Sec-
tion 4.1.

Figure 2: Partitioning of processor mesh for 3 to 8 jobs

Figure 2 shows the partitions produced by Folding for
J = 3 to 8 jobs, for M = N. In the general case, when
a job arrives and a single other job holds the entire ma-
chine, the machine is split along its largest dimension.
After that, splits alternate directions, so that a parti-
tion of size 2+ /2 is split along the machine’s largest
dimension if ¢ is even and along the other dimension if
¢ 1s odd.

Folding: Realizing Equal Resource Alloca-
tions. Unless J, the number of jobs, is a power of two,
Folding allocates partitions of two different sizes, with
the larger partitions containing a factor of two more
processors than the smaller partitions. There are two
potential drawbacks to unequal processor allocations.
First, the jobs will not experience fair service, which
might be one of the goals of the kernel resource alloca-
tor. Additionally, mean job response time might suffer
if there are jobs of significantly different sizes presented
to the system.

To provide equal resource allocation for all jobs, the
Folding policy must rotate ownership of the large and
small partitions. To achieve this, we define a rotation
policy. The rotation policy is invoked at fixed intervals,
and determines how many and which processors to move
from one job to another. The goal of the rotation policy
is to ensure that over a sufficiently long interval, each job
will receive an equal percentage of the total processing
power of the machine.

Many different rotation policies are possible. In de-
signing a rotation policy, it is desirable to limit processor
reassignments to jobs running on adjacent rectangular



subgrids, so that rotation traffic does not interfere with
the execution of other, uninvolved jobs. It is also desir-
able to use a scheme that achieves equal allocation after
only a small number of rotations, that is, with small
overhead.

One technique for reducing the required number of
rotations is to perform them hierarchically: a system
running an even number of jobs is treated as two sys-
tems, each with half the jobs and half the processors.
For example, when six jobs are present, we rotate two
independent systems of three jobs, each on half the ma-
chine. (See Figure 2.)

The rotation policy we propose here has the prop-
erty that each job can determine whether or not it is
involved in an exchange of processors at each rotation
instant using information about only two neighboring
jobs, rather than the state of the entire machine. Fig-
ure 3 shows the sequence of partition allocations made
under our rotation policy for a system running five jobs.
To understand the procedure used, consider performing
a cyclic walk that touches each partition and moves only
between adjacent partitions. (It is easy to show that
because of the way in which we form partitions, such
a walk must exist.) In Figure 3 the jobs are numbered
according to their position in this cyclic walk. At rota-
tion instants, the rotation policy we use reassigns half
the processors from a job holding a large partition to a
job holding a small partition if the former immediately
follows the latter in this cyclic walk. This reallocation
results in the exchange of the large and small partitions
between the two jobs, and so preserves the cyclic walk.
Other partitions remain unchanged.

1 1
1 1
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Figure 3: Folding rotation for J =5 Jobs

We evaluate rotation policies according to two mea-
sures, rotation cycle length and rotations per job. Imag-
ine running the system at a constant multiprogramming
level for a long period. After some initial transient, the
sequence of allocations produced by a well behaved ro-
tation policy will be partitionable into cycles, each of
which delivers the same total processing power to each
job. The rotation cycle length, N(J), is the number
of reallocation intervals or rotations in each such cycle.
For example, in Figure 3 the cycle length 1s five. The
second measure, f(.J), is the number of rotations partic-
ipated in by each job within the rotation cycle of N(.J)
rotations. In Figure 3, f(J) is four.

To understand the behavior of the rotation policy we

have proposed in terms of N(J) and f(.J), we represent
it as an operation on strings. Let the symbol ‘s’ rep-
resent a small partition, and ‘b’ a large one, and form
a string R by performing the cyclic walk over the jobs
described above. For instance, the string corresponding
to Figure 3a is ‘ssbbb’, and for Figure 3b is ‘sbsbb’. Our
rotation policy is simply to replace each occurrence of
‘sb’ in R with ‘bs’, considering the first symbol of R to
follow the last.

Let S be the number of small partitions and B the
number of large partitions. It is straightforward to show
for any such string R that after no more than min(S, B)
rotations, R contains no consecutive ‘s’s when S < B,
and no consecutive ‘b’s when B < 5. Once this equi-
librium condition is reached, each string R that occurs
at all occurs every J + 1 rotations, that is, repeats after
J rotations. (Because the length of the string must be
odd due to our hierarchical rotation scheme, the string
may not reoccur any sooner.) To see this, note that if
B < S, each ‘b’ will be preceded by an ‘s’ in R. Thus, at
each rotation, each ‘b’ will move one symbol to the left,
and so after J rotations the string will be in its orig-
inal configuration. (A similar argument applies when
S < B.) This reasoning also shows that all jobs will be
allocated large partitions for the same number of reallo-
cation intervals during a cycle, and so equal allocation
is assured.

This analysis leads to the following expressions for
the cycle length and the number of reallocations per
job per cycle:

N(K) if J=K=x2
N(J)=4{ 0 ifJ=1 (3)
J otherwise
FK) if J=K=x2
f(N)y=<¢ 0 if J=1 (4)
2% min(S, B) otherwise

Folding: Job Departures with Rotations. An
examination of Figure 3 shows that reallocating the pro-
cessors freed by a departing job may not be possible with
only local operations. For example, if job 5 departs in
any of the configurations shown in Figure 3, we can-
not make only local adjustments without violating the
constraint on partition sizes imposed by Folding.

One way to handle job departures in such cases is to
compute a new set of partitions and perform a global
assignment of jobs to those partitions. A simpler way
to achieve the same effect is to mark the freed partition
as available; but to leave it in the rotation string R that
controls rotation reallocations, and then step through
the normal rotation sequence as fast as possible until
the idle processors have been allocated. (Note that it
1s possible for the freed processors to constitute a small
partition. We do not steal processors from a succeeding
large partition in this case, and as well modify the rules



so that a preceding small partition is combined with the
free small partition.)

It is not evident whether this scheme is more or less
expensive than simply remapping all the jobs to new
partitions on any departure. We have adopted it be-
cause 1t greatly simplified implementation of the simu-
lation model of Section 7. We believe that this is an
indication that it would be an attractive approach in a
real system, for the same reason.

Folding: The Family of Policies FOLD;. The
family of Folding policies is generated by varying the
rate at which rotations take place. We denote by
FOLDy the Folding policy with inter-rotation time [.
At one extreme, FOLD. never rotates. This gives a
policy with very high efficiency preservation, but un-
equal allocation to running jobs. By decreasing the time
between rotations, equality of allocation is enhanced,
but at the cost of diminished efficiency preservation.

4.2 The Equipartition Policy

Equipartition emphasizes equal allocation over effi-
clency preservation by partitioning the processors as
evenly as possible among the running jobs. The number
and size of the partitions change only when jobs enter
or leave the system; there is no need to perform periodic
rotations. We describe two variants of the Equipartition
policy.

Basic Equipartition: FQUI. As pointed out ear-
lier, the thread mapping function (Equation (2)) allo-

cates % % to at least one processor in an RxC
partition. Because the progress of the job is limited by

its most slowly executing thread, reducing this maximal
loading is an important goal.

The key to reducing the maximal processor loading is
to ensure that at least one dimension of each allocated
partition is a power of two. We propose a policy, EQU I,
that has this property, and additionally tries to reduce
the reallocation overhead necessary to move from one
configuration to another by minimizing the number of
processors that must be reassigned to different jobs.

17 col. of
! processors
i‘rows, of
partitions _—
! .
Regular 1 Remainder

Section ! Section

Figure 4: Partitioning under Equipartition

Figure 4 shows the general case. We divide the mesh
into two sections, the regular section and the remainder

section. We divide the regular section into 2% rows,
each of which contains Y = |J/2X| partitions. The
remainder section contains J — 2%V partitions. (When
J 1s a power of two, this will be zero, and so there
will be no remainder section.) To make the partitions
in the regular section as square as possible, we choose
X = % .

To ensure that each partition in the regular section
has at least one dimension that 1s a power of two, we
simply assign 2 =X rows of processors from the 2M+V
mesh to each row of partitions in the regular section.

To ensure that the partitions in the remainder section
(if any) have a power of two dimension, we allocate 7
columns of processors to them, where

7 = oliesi=[ k] 2] (5)

This 1s a power of two approximation to the fair share
of the 2M+N total processors.” The remaining 2V — Z
columns of processors are allocated among the parti-
tions of the regular section as evenly as possible.

A Higher Efficiency Preservation Equiparti-
tion: EQUI,. Consider a single partition allocated
by EQUI, and denote its size as 2°xC, for some i. The
maximally loaded processor in that partition will con-
tain 2V~ [2M /(] threads. The purpose of EQU I is
to reduce that maximal loading.

EQU I, performs the same partitioning as FQUI,
that is, it assigns partitions of exactly the same size.
However, it violates the simple mapping function of
threads onto processors (Equation (2)) in order to re-
duce the maximal loading to [2M+¥ =%/, the theoret-
ical minimum for this partitioning. This is done by bal-
ancing the thread assignment among the processors of
each row of the partition. There are a total of 2M+N—?
threads assigned to each row. Thus, it is possible to
achieve the minimal load balance by averaging within
rows only; there is no need to resort to averaging be-
tween rows.

In general, performing this averaging requires mov-
ing only a few threads from where the simple mapping
scheme would place them. However, the fact that even
a few are not where that mapping would place them
means that some more complicated procedure must be
followed to determine to which processor a message
should be sent. A fairly simple scheme to do this is
possible (but because this is not central to the purpose
of this paper, we omit its details to help shorten the
discussion). We make the optimistic assumption that
the added messaging complexity results in a negligible
increase in communication costs.

2A closer approximation to equitable allocation is possible if
the number of processors in the remainder section is a power of
two. In this case, each partition will have a power of two num-
ber of processor rows, so the number of columns allocated to the
remainder section need not be a power of two.



5 Static Analysis:
tion and Fairness

Efficiency Preserva-

In this section we compare efficiency preservation and
fairness under Folding and Equipartition when there are
a fixed number of identical running programs, that is,
in the homogeneous, static case.

We use the following notation. The values in paren-
theses indicate the baseline setting for the experiments
discussed throughout the remainder of the paper. These
values are based, in part, on the workload characteris-
tics described in [3], and on the characteristics of the
Intel Paragon hardware.

o 2M x9N “the size of the mesh of processors (24x2%).

e J, the (static) number of jobs in the system (vari-

able).

e t, the average per-thread compute time of each ap-
plication step (100 msec.).

e 6, thread compute time spread: individual thread
per-step compute times are chosen from U (¢t — 8, +

8) (0 msec.)

e s, the per-thread cost of the communication phase
of each application step when run on 2Mx2V pro-
cessors. (1 msec.).

e ¢, the context switch time required to schedule a
new thread (0.5 msec.).

e (' the size of a thread’s code segment (512KB).

e D the size of the thread’s data and stack segments
(4096KB).

e X, the interconnection network link bandwidth

(200MB/sec.).

e [ the inter-rotation time for the Folding policy
(variable).

e [, the limit on the number of threads per node,

or equivalently, the number of jobs in the system
(2M*)

While current production systems impose high mes-
sage start-up costs that can have a significant perfor-
mance impact, recent work, [20, 17] has shown that
these costs can be almost entirely avoided. Our pa-
rameterization anticipates the next generation of system
software that will incorporate these advances.

5.1 Efficiency Preservation: Derivation

As explained in Section 3, efficiency preservation is
given by

ZJ ] AEpolzcy app('A ) ( )
_ Luj=1 AEBUniprogramming,app(F
EPpolicy,app(Ja P) = pP ) =

(6)

where A; is the size of the partition allocated under
policy to job j. (Because which application we are con-
sidering is clear, we hereafter drop the subscript app
on all quantities.) Therefore, to compute the efficiency
preservation of a policy, we must first give an expression
for application efficiency.

Let ¢; denote the length of each of thread ¢’s compute
phases. Then we have for job j

oM+N

AE A (Zi:l tl) * (1 - %Ovpolicy)
Policy( j) = maXpeP(]’)(Cp +Sp +Xp) *A]' (7)

where A; is the size of the partition allocated under
policy to j, P(j) is the set of processors in the partition
assigned to j, Cj, and X, are the total compute and com-
munication times respectively that processor p spends
per application step, S, is a context switch time if more
than one thread is mapped to p and zero otherwise, and
%OVpolicy 1s the fraction of time each processor spends
on policy overhead functions. In the specific case of
perfectly load balanced computations (¢; = t), we can
simplify the ratio in this expression, using the fact that
the maximum number of threads mapped toMa sm}%le
processor for a partition of size R;xCj is %
under ek/l[l [])Voh(nes we consider except FQU I, for Wthh
it is R ZC . When thread compute times can vary, we
use Monte- arlo simulation to obtain numerical results
for this term.

%OVUniprogramming and %OVEquipartition are Zzero
(for both variants of Equipartition). To compute
%OVroldging we make use of the following assumptions:

e Each processor can send or receive only a single
message at a time.

e Because of the large amount of data transferred in
moving a thread, communication time is dominated
by bandwidth considerations, not latency.

e When folding a job currently allocated a large par-
tition onto half of its processors, only thread data
must be sent, since a copy of the code segment al-
ready exists on the destination processors. The
code segment must be sent, however, to unfold a
job onto an expanded partition.

e All processors of a partition stop application pro-
cessing while folding or unfolding is taking place in
it.

e Thread transfer times are sufficiently well synchro-
nized that folding a job along a single dimension
from 2K processors onto K processors requires K
steps. This is accomplished by first transferring
the tasks at node 2k to node 2k — 1 in parallel for
k = 1..K (one step), and then successively trans-
ferring the resulting paired sets of threads to their
final destinations ((2K — 2)/2 steps).



With these assumptions one can derive that

%OVrotding =
(#rotations in N(J)I) * (#procs/rotation) *
(#seconds/(proc/rotation)) /(2N « N(J)I)

(8)

The last term represents the total number of processor-
seconds available in an interval of length N(J)I, the
first term the total number of rotations in that interval,
the next term the total number of processors involved
in each rotation, and the next term the time required
to complete a rotation.

It is easy to see that the number of rotations that
occur in N(.J) rotation steps is N(J)* f(J)/2, since each
rotation is composed of two jobs. Since each rotation
involves a fold followed by an unfold, and each of these
involves a number of processors equivalent to the size of
a large partition, the number of processors per rotation
is 2M+N/2|_logJJ )

We compute upper bound
#seconds/(proc/rotation) by assuming that each fold
takes place along the larger dimension of a large parti-
tion. Both the job folding from a large partition onto a
small one, and the job unfolding in the opposite direc-
tion, must relocate half (i.e., 24+N=1) of their threads.
It takes time D/X to fold a thread, and time (D+C')/X
to unfold one. Finally, parallelism equal to the narrower
dimension of a large partition 1s possiFEggiQnﬁr]oving the
threads. This is equal to 2™n(MN) 977571

Combining these terms and simplifying, we get

f(J) * 2max(M,N)— L Llog22 J] J _1*(2D+C)
I+X 9)

an for

%OVrotding =
5.2 Efficiency Preservation: Results
We present quantitative results on efficiency preser-

vation for each of our policies, using the baseline pa-
rameterization given at the beginning of this section.
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Figure b: Efficiency preservation for perfectly load bal-
anced jobs (6 =0)

Figure 5 shows efficiency preservation when thread
compute times are constant (§ = 0). As expected,
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EQU I shows significant efficiency losses when J is not
a power of two. While EQU I is a noticeable improve-
ment, it still experiences large efficiency losses, although
the magnitudes of these losses decrease with increasing
J.

The efficiency preservation of the Folding policies
shows some sensitivity to the choice of inter-rotation
interval. In general, though, they have much better be-
havior than the Equipartition policies for all but unre-
alistically small inter-rotation times. FOLD,, attains
values slightly greater than 1.0 as J increases. This
reflects the decreased off-processor communication re-
quired as the applications i1s folded onto smaller and
smaller partitions.
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Figure 6: Efficiency preservation for thread compute

times from U(100 — 6,100 + &) msec.

Figure 6 shows how variation in application thread
compute times affect efficiency preservation for the
FOLD. and EQUI policies. We present results for
task times taken uniformly from (100 — 48,100+ 4) msec.
for 6 = 0, 5, 10, and 20 msec. As can be seen, the effi-
clency preservation measures of our disciplines increase
with increasing variance in thread compute times, indi-
cating that they are even more effective for applications
with load imbalance than those that are perfectly bal-
anced. The intuition behind this is quite simple: there
is less variation among the total per-processor compute
times when many threads are allocated to each proces-
sor than when there is only one thread per processor.
This is a quite general phenomenon, and is likely to be
violated only if the high load threads are located in a
clustered way.

Note that, as desired, efficiency preservation reflects
on the performance of the processor allocation policy
for the workload, not the performance of the application
itself. It is clear that application performance decreases
with increasing thread compute time variation, since the
application is less well load balanced.

5.3 Equal Allocation: Results

The computation rate of a parallel application is lim-
ited by its most slowly progressing thread. For this rea-



son, we use the maximal number of threads assigned
to any of a job’s processors as our measure of fairness,
rather than the total number of processors the job is
allocated.

Under an ideal policy, the maximal number of threads
assigned to any processor would be J for all J jobs. To
evaluate fairness, we compute the ratio of two values
to this ideal average: the largest (over all partitions)
maximal number of threads assigned to any processor
in a single partition, and the smallest maximal thread
assignment. To compute the thread assignment values
for the members of the Folding family that employ rota-
tion, let ' be the elapsed time of the application when
run alone on the machine. When run in competition
with other jobs; the application passes through some
number of complete intervals of length N(.J)I, followed
by a partial interval. During the complete intervals, it
finishes fraction (N(J) « I)/(F * J) of its work, since
it 18 allowed use of an equal share of the machine in
each such interval. We obtain upper and lower bounds
on fairness by assuming that during the partial interval
some job is allocated large partitions only, and another
small partitions only.
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Figure 7: Fawrness of FEquipartition: relatively most

heavily and most lightly loaded jobs

Figure 7 shows the fairness ratios for FQUI and
EQUI,, and Figure 8 the same results for members
of the Folding family. These results demonstrate the
benefits of reducing N(J) for J even by dividing the
system of rotations into two.

In Figure 8 we express the inter-rotation time of the
Folding policies, I, as ¢ * E, for various values of ¢ > 0.
This allows the results to be independent of the value
of . For I > E (¢ > 1), the bounds are equivalent
to the case I = oco. For I < FE, intuitively the worst
case is when I is just greater than E /2. Figure 8 shows
the bounds on fairness in this case (¢ = 8/15). We also
show results for I just greater than E/4 (¢ = 4/15).
From these samples, it is clear that fairness is very near
the ideal once the inter-rotation time is at least a small
factor smaller than the duration of the job when run
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Figure 8: Fairness of Folding: relatively most heavily
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alone.

6 Birth-Death Analysis:
sponse Times

Mean Re-

In the previous section we examined two static prop-
erties of the Folding and Equipartition disciplines: ef-
ficiency preservation and fairness.
examine a dynamic property, the mean response time
afforded under homogeneous arrivals.

To do this, we employ a simple, load dependent
Markovian birth-death model, the states of which rep-
resent the number of jobs that are ready to run. We
define parameter L of the model as a limit on the num-
ber of simultaneously runnable jobs. This limit might
result, for instance, from the limited memory capacity
of the system.

For each processor allocation policy we consider, we
set the completion rate, u(S), in each state S < L to
1/(E* EPyoticy(S, 2M+NY) where E is the elapsed time
the job would experience if run alone on the machine.
This represents the equilibrium rate of job completions
under policy given a constant workload of J jobs. For
each state S > L, we set u(S) = p(L).

We set the arrival rate of the model, A, to produce
a desired target system load, p. In particular, if F is
the elapsed time required by the application when run
alone on the full machine, we set A = p/E.

This model captures the policy costs of induced load
imbalance under Equipartition, of rotations under Fold-
ing, and of context switching under both policies. How-
ever, it does make a number of approximations; for in-
stance, it ignores the costs of repartitioning due to job
arrivals and departures. Its major benefits are its sim-
plicity and low computational cost, which makes it easy
to parameterize and allows us to obtain many perfor-
mance estimates quickly. For example, on a workstation
on which our simulator (described in Section 7) requires
about 30 minutes to produce a single response time esti-
mate, our birth-death model computes about one hun-
dred such estimates in under a second. Comparisons

In this section we



of the results of the birth-death model to those of the
detailed simulation show that the birth-death model is
very accurate, despite the approximations it makes.

6.1 Unlimited Memory Resources

In this subsection we examine response times under
the assumption that each node has sufficient memory
to multiprogram an arbitrary number of threads. In the
next subsection we consider the case of limited memory.

Figure 9 show the estimates of the mean blow-up fac-
tor under two Equipartition and three Folding policies
against system load for jobs with deterministic thread
compute times, using the baseline parameterization of
Section 5. The mean blow-up factor represents the fac-
tor by which the job’s elapsed time exceeds its mini-
mum, and is defined as the mean response time divided
by the mean time to complete if run in isolation, F.

We note that, in general, response time is smaller un-
der the Folding than under the Equipartition policies.
This reflects their better efficiency preservation prop-
erties, and the fact that equal allocation of resources is
unimportant to performance when there is a single class
of jobs, as considered in this section. However, the re-
sults for FOLDsg also make clear that there is a danger
in choosing too small an inter-rotation interval for the
Folding policies. As the system load increases, FOLDy
becomes less efficient, for I < oo. Thus, a value of I suf-
ficiently large to achieve good performance at moderate
loads may become unstable at high loads.
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Figure 9: Mean blow-up factor versus system load (6 =

0)

The explanation for this phenomenon is that as load
increases, the average number of jobs in the system also
increases. Since each job makes progress at a rate that
is inversely proportional to the number of competitors,
when [ is a constant, the rotation overhead per unit of
application progress grows with increasing load. Even-
tually, the relative rotation load exceeds capacity.

There is a remedy to this drawback, which is to use
an inter-rotation interval of length .J « I, where J is the
current number of running jobs. Figure 9 shows that

12

the performance of FOLDsg.; is stable at high loads
and very similar to FOLDsp. Even in the absence of
this modification, it is not difficult to find values of 1
that provide reasonable fairness and are stable up to
very high loads. In the rest of this paper, we will use
inter-rotation interval lengths that vary with .J.

6.2 Limited Memory Resources

In Figure 10, we graph mean blow-up factor against
L, the multiprogramming limit, for the FQU I, and
FOLDg policies, and a number of system load factors
(p). (We show relatively high load factors because for
p < 0.5 the number of simultaneously present jobs is
almost always very small.) The results show how per-
formance would be affected if the memory capacities of
the nodes limited the number of threads that could be
multiprogrammed at each, or if a policy were to im-
pose such a limit voluntarily in an attempt to improve
performance.
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Figure 10: Mean blow-up factor versus multiprogram-
ming limit (§ =0)

The results show that performance under the the
Folding policy improves with increasing multiprogram-
ming limit. This occurs because Folding has high ef-
ficiency preservation, which grows slightly higher with
increased numbers of jobs in the system due to the bet-
ter locality of communication of those jobs.

In contrast, Equipartition shows some tendency to-
wards a local minimum, especially for high loads. This
reflects the efficiency losses that Equipartition induces
for most values of J larger than 4. The effect is not ex-
tremely pronounced, however, and in the next section
we revisit the question of multiprogramming limit in the
context of heterogeneous workloads, where there is an
additional benefit to high limits.

7 Simulation Analysis:
Workloads

Heterogeneous

In this section, we use simulation to investigate the
behavior of the policies under heterogeneous loads, as



well as their dynamic fairness properties. We ob-
tained simulation point estimates using the batch means
method. All results have a 90% confidence interval of
width 5% of the point estimate.

The workload we study is composed of two job
classes. The basic behavior of both classes is iden-
tical to that of the job class we have used to this
point, that is, they are SPMD jobs performing repeated
communication-compute cycles. The two classes differ
from each other only in the mean number of cycles re-
quired to complete. For the shorter class of jobs, we
set the mean such that the job would complete in 30
seconds if run alone on the full machine. For the longer
class, a job would complete in 15 minutes. The number
of cycles for an individual job of either class is chosen
according to a geometric distribution.

As in the previous section, we divide our discussion
into the memory constrained and unconstrained cases.

7.1 Unlimited Memory Resources
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Figure 11: Mean response times (p = 0.5, § =5)

We compute mean performance measures for the
short and long job class under a variety of workload
mixes. In each case, we set the overall arrival rate, A,
so that pAEspors + (1 — p)AEiony = 0.5, where E, is
the mean elapsed time experienced by class r jobs if
allocated the full machine.

Figure 11 shows the mean response times of the long
and short job classes against p, the fraction of arrivals
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that are short jobs. We see from these results that the
Folding policies dominate the Equipartition ones, and
that the best Folding policy (FOLDy,) yields response
times about 10% smaller than the best Equipartition
policy (EQUI,).

Figure 12 compares the fairness of the policies. Here
we graph the coefficient of variation of the blow-up fac-
tors of the jobs. In addition to the Equipartition and
Folding policies, we also show results for Uniprogram-
ming under both FCFS and processor sharing (PS).
These serve to give some scale to the results, since it is
well known FCFS has poor behavior for heterogeneous
workloads, while PS has very good behavior.

From the figure, it is evident that all our policies
behave very similarly with respect to fairness, and that
even FOLD,, performs about as well on this measure
as could be hoped for any policy. We attribute this
to the fact that all the policies employ space sharing,
and thus provide at least some service to each ready
job. In addition, the constant stream of job arrivals and
departures provides an opportunity to shift resources
without resorting to time-sharing.

7.2 Limited Memory Resources

Figure 13 shows how response time is affected under
EQU Iy and FOLD., when memory resources are suffi-
cient to support at most L jobs at a time. The memory
admission policy can have a significant effect on perfor-
mance for heterogeneous workloads. Because there can
be a significant performance penalty of small memory
limits on short job performance, we modeled preemp-
tive admission policies. Every ) time units, enough
jobs are preempted so that any queued jobs can be as-
signed to processors. () is a system definable parameter
whose value depends on the cost of preempting proces-
sors. Define O as the overhead of preempting proces-
sors. This overhead is highly dependent on the avail-
ability of /O bandwidth for swapping jobs in and out
of the system. The I/O bandwidth varies widely among
systems. Given a cost of preempting processors, O, the
interval between preemptions, (), can be set so that a



desired percentage overhead due to preemptions, O/Q,
is incurred. Our simulations used two values for O/Q
ranging from less than 1% up to 3%.
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Figure 13: Response time wversus multiprogramming

limit (p =0.5, 8§ =5)

We note that in terms of overall mean response time,
small memory limitations are detrimental to Folding,
but may be beneficial to Equipartition. The drawback
of small multiprogramming limits under both policies
is the reduced opportunity to put an arriving short job
into service quickly The drawback to large multipro-
gramming limits for Equipartition is that it is inefficient
for odd numbers of jobs in the system. The fact that the
average response time grows with increasing L indicates
that the penalty can outweigh the benefit.

Figure 14 shows how the coefficient of variation of
blow-up factor for all jobs varies with multiprogram-
ming limit. We see that both Folding and Equipartition
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behave about the same, and that the blow-up factor is
significantly larger for small values of L than for large
ones.

From this data, we conclude that there is little or
no penalty to the factor of two difference in resource
allocation possible under FOLD,, and so this policy
appears to dominate the others.

8 Conclusions

We have examined issues in the the design of proces-
sor allocation policies for message-passing parallel com-
puters running scientific workloads, making a number
of contributions.

First, we have defined a measure of processor al-
location disciplines, called efficiency preservation, and
showed that it gave useful information for comparing
the expected performance under alternative proposed
policies. We also argued that this measure must neces-
sarily be taken relative to a particular workload, as the
suitability of an allocation policy is intimately tied to
the workload to be supported.

In addition, we have proposed two specific families
of processor allocation disciplines for mesh-connected
machines. One, called Folding, emphasizes efficiency
preservation over equality of resource allocation, while
the other, Equipartition, is just the opposite. Using a
static analysis, we examined the efficiency preservation
of the two disciplines, finding that Folding is superior
by this measure. Using a simple Markovian birth-death
model, we evaluated mean response time under a homo-
geneous load, and found a member of the Folding family
to perform best. Finally, we used simulation to exam-
ine both mean response time and fairness for a mixed
workload of long and short jobs. We found here that
the Folding policy continued to afford better response
time performance, at little or no penalty in fairness.
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