
Evaluating Runtime-Compiled Value-Speci�c Optimizations 1

Evaluating Runtime-Compiled Value-Speci�c Optimizations

David Keppel, Susan J. Eggers and Robert R. Henry

Technical Report 93-11-02

Abstract

Traditional compiler optimizations are either data-

independent or optimize around common data values

while retaining correct behavior for uncommon values.

This paper examines value-speci�c data-dependent op-

timizations (VSO), where code is optimized at runtime

around particular input values. Because VSO optimizes

for the speci�c case, the resulting code is more e�cient.

However, since optimization is performed at runtime,

the performance improvement must more than pay for

the runtime compile costs. We describe two VSO im-

plementation techniques and compare the performance

of applications that have been implemented using both

VSO and static code. The results demonstrate that

VSO produces better code and often for reasonable in-

put sizes. The machine-independent implementations

showed speedups of up to 1.5 over static C code, and

the machine-dependent versions showed speedups of up

to 4.3 over static assembly code.

1 Introduction

Traditional compiler optimizations are performed stat-

ically and are either data-independent, or optimize for

common data values while retaining correct behavior for

uncommon values. Here we examine data-dependent op-

timizations that are performed at runtime and are based

on the actual values of key variables. These runtime-

compiled, value-speci�c optimizations (VSO) rely on in-

put variables whose values are constant over some re-

gion of the program's execution and are used to pro-

duce better code. For example, a runtime optimizer can

assign these \runtime constants" to instruction imme-

diates, thereby saving loads and stores and freeing up

additional registers; similarly, dynamically unreachable

The �rst two authors may be reached as at the Uni-

versity of Washington, Department of Computer Science

and Engineering, FR-35; Seattle, Washington 98195 or as

fpardo,eggersg@cs.washington.edu. The third author may be

reached at Tera Computer Company, 400 N. 34th Street, Suite

300; Seattle, Washington 98103 or as rrh@tera.com.

E
xe

cu
tio

n
T

im
e

Of Items of Input Data

Unoptimized Static Code

Optimized Static Code

Low−Optimization Dynamic Code

High−Optimization Dynamic Code

y

x

b

m

Figure 1: Startup and Asymptotic Costs

code can be eliminated, as can any tests that would have

branched around it. In general, VSO can use all infor-

mation available to a static compiler, plus information

present only at runtime. Thus, runtime-compiled, value-

speci�c optimizations can generate better code than is

possible with static compilation.

Since the optimizer is invoked at runtime, the gener-

ated code must run enough faster that it pays for the

time spent optimizing. The payback depends on both

the runtime cost of optimizing, and how much faster and

how many times the runtime-generated code executes.

Thus, it is important to perform only the optimizations

that have the highest payback for the time invested, and

to perform them using only values that are stable long

enough that the optimized code gets executed repeat-

edly. If, as in Figure 1, the general cost of executing

some code fragment is y = mx + b, the dynamically-

compiled code will typically have a larger startup cost,

b, caused by the cost of optimizing at runtime, but a

smaller incremental (asymptotic) cost m, due to bet-

ter optimizations. Thus, for su�ciently large inputs, x,

the VSO'd code will be executed enough times that the

overall cost, y, will be lower than for statically-optimized

code.

VSO is partial evaluation [Par91] applied at program

Evaluating Runtime-Compiled Value-Speci�c Optimizations 2

runtime. However, all data values are available at run-

time; applying partial evaluation blindly can cause the

partial evaluator to slowly consume all input values, in-

stead of producing code optimized around the key values.

Thus, it is necessary to control partial evaluation and

compilation, so that they do little work, yet still produce

substantially better code; the application can then run

the improved code on the remaining data. Ultimately,

we would like VSO to be performed automatically, as is

often done with static partial evaluation. However, we

�rst need to demonstrate that optimizing at runtime pro-

vides performance improvements at modest cost. Thus,

in these experiments we use partial evaluation applied

manually.

The goal of this research is to experimentally exam-

ine the costs and bene�ts of using VSO and to deter-

mine where speci�c optimizations can be successfully

applied. Our benchmarks for the experiments are �ve

applications for which we expect speedups from VSO.

The experiments consider the performance of four imple-

mentations of each program: traditional, statically com-

piled code; VSO performed using an application-speci�c

compiler and a general-purpose retargetable code gener-

ator; hand-written static assembly code; and VSO per-

formed using an application-speci�c compiler with an

application-speci�c and machine-dependent code gener-

ator. For each VSO implementation we identi�ed code

that was both a bottleneck in the application and was

executed repeatedly with some values held constant. We

then supplied a small application-speci�c dynamic com-

piler that was invoked at runtime, once key input values

were known. The dynamic compiler generated an opti-

mized version of the bottleneck code.

We examine several aspects of runtime-compiled,

value-speci�c optimizations. First, we identify bottle-

necks in our workload that are amenable to VSO. Sec-

ond, we report the costs of compiling at runtime, the

speedups achieved when executing VSO'd code, and the

breakeven point where VSO becomes pro�table. Our re-

sults show that most programs in our workload achieved

asymptotic speedups in the range of 1.06 to 1.50 over

well-optimized static C code. In addition, despite the

cost of optimizing at runtime, the speedups were usu-

ally achieved with reasonable input sizes. Third, al-

though VSO has usually been performed with machine-

dependent code [Tho68, PLR85, Loc87, MP89, KEH91,

CK93], we show the above speedups using retargetable

code generation, linking and instruction cache
ushing.

Fourth, we describe what optimizations are actually per-

formed and show that runtime-compiled VSO can enable

optimizations that can't be performed statically. Thus,

VSO can sometimes produce code that is faster than

even hand-crafted static assembly. Finally, we show that

by using very de�nite runtime information, VSO with a

fast code generator produces code of the same calibre as

that produced by a slower, high-quality code generator.

In this paper we use runtime code generation (RTCG)

to produce code that is better than the best pos-

sible static code. Some previous studies have used

RTCG to dynamically improve unoptimized code pro-

duced by a fast compiler for an edit-compile-debug en-

vironment [Han73, Bro76]. In those cases, however, the

best dynamically-generated code was only as good as

the best statically-generated code. Other studies have

used dynamic type information to eliminate the high

overheads of type dispatch in dynamically-typed lan-

guages [Mit70, DB77, GW78, DS84, CUL89]. With

VSO, types are known statically; yet we can still op-

timize using the speci�c values of variables.

1

The rest of this paper is organized as follows: Section 2

brie
y describes why VSO fell from favor and why it is

again useful. Section 3 describes the workload and the

bottleneck of each application where we applied VSO.

Section 4 describes the methodology and experimental

framework. Section 5 presents and analyzes the results:

the speedup of the VSO'd applications as a whole; the

breakeven point at which VSO became pro�table; the

cost of generating code at runtime; and the optimiza-

tions that were seen in practice. Finally, we conclude

in Section 6 with a summary of the contributions of the

paper.

2 Historical Perspective

In early systems, memory was tight and most programs

were written in assembly. VSO was used where per-

formance was important; implemented as ad hoc self-

modifying code, these sequences were often smaller and

faster [KEH91].

Changing technology reduced the demand for VSO.

Memories grew, reducing the I/O component of mem-

ory access times. The proliferation of architectures and

implementations, coupled with software maintainance

costs, meant portability became an issue. Portability

was achieved using high-level languages, and most lacked

constructs for expressing VSO. Compilers encouraged

a distinction between compile-time and run-time, al-

though in principal it is easy to perform compilation

at runtime. Finally, there were still many opportunities

for improving static code, so development time was best

spent improving static optimizations.

Technology and workload changes make VSO attrac-

tive once again. First, advances in software methodol-

ogy have solved some portability problems; for example,

machine dependencies have been encapsulated with re-

targetable code generators [Sta89, FH91] and portable

interfaces for instruction cache
ushing [Kep91]. More-

over, these tools are now available as library services

rather than being bundled in compilers and so on. Sec-

1

We note that there is a fuzzy distinction between type and

value; for example, VSO can also use range information.

Evaluating Runtime-Compiled Value-Speci�c Optimizations 3

ond, static optimizers have improved, so additional static

optimizations are progressively harder to discover; in ad-

dition, with tighter code, small (runtime) optimizations

have a higher percentage payo�. Third, memory access

times are once again a bottleneck; VSO uses processor

cycles to eliminate memory references. Finally, the VSO

breakeven point depends on input size but not on ma-

chine speed. Thus, as machines get faster and are used to

process larger data sets, there is a greater likelihood that

runs of a given application will reach the VSO breakeven

point.

3 Workload

Our workload was chosen to satisfy several criteria.

First, we selected applications with wide applicability.

The second critera was ease of implementation; since

each application has four implementations, it was impor-

tant to use applications that could be built in a modest

amount of time. Finally, VSO, like other optimization

techniques, is only sometimes applicable; since this study

examines the costs and bene�ts of applying VSO, we se-

lected programs where we expected it to yield speedups.

We identi�ed potential applications as those with one

or more variables that were used repeatedly in a critcal

inner loop and whose values changed only occasionally at

runtime. We inspected the bottleneck code to estimate

important features of the application's behavior: what

optimizations, and thus what speedups, might be pro-

duced using VSO; how often the key variables changed,

and thus how many times the VSO'd code would be

used. The code generation cost was usually estimated

using the size of the statically-generated code, although

VSO'd code can be larger or smaller than its static coun-

terpart.

The remainder of this section describes the applica-

tions that make up our workload and the routines where

we applied VSO.

Sorting The application sorts a collection of records.

The order of �eld comparisons is selected by the user,

and thus is known only at program runtime. The sorting

routine calls a record comparison predicate to determine

the relative order of a given pair of records. The pred-

icate compares individual �elds to determine the order.

The static code must use a predicate that can be param-

eterized for any possible sort order. VSO can generate

a predicate that is speci�c to the user's sort order.

Cache Simulation A uniprocessor cache simulator

reads a list of memory addresses and performs table

(cache) lookup to simulate some cache con�guration.

The simulation produces cache behavior metrics, such as

cache hit ratios. The core table lookup must be
exible,

to simulate a variety of cache sizes, associativities, etc.

VSO builds a cache lookup function that is optimized

to the particular line size and associativity

2

of the cache

being simulated [PHH88].

Debugging Debuggers implement conditional break-

points, which halt a program if certain program vari-

ables satisfy a user-speci�ed condition. The debugger

detects that a conditional breakpoint has been reached,

evaluates the conditional expression, and, if the program

is continuing, resumes execution. Breakpoints are gen-

erally detected by patching the program text with a

trap or jump to code that implements the conditional

breakpoint. The code that resumes execution also needs

to simulate the instruction that was displaced by the

patch. Static code alternatives, therefore, must use an

interpreter to evaluate the breakpoint conditional and

simulate the displaced instruction. VSO code evaluates

the conditional directly and often executes the displaced

instruction directly [Kes90].

Data Decompression The compression algorithm is

optimized for fast decompression using table lookup.

The table maps bytes in the compressed input data

stream to strings of bytes in the decompressed output

stream. The static code reads a byte from the com-

pressed input stream and uses it as a table index; it

then reads the length and address of the output string

and dispatches to an unrolled copy loop. VSO gener-

ates a decompressor inner loop that corresponds to the

lookup table used for the particular �le; it uses each in-

put byte to dispatch directly to an unrolled copy that

outputs the appropriate string.

Bitblt The bitblt (bit block transfer) algorithm is typ-

ically used as a graphics kernel operation, and is an

example where VSO has been used successfully in the

past [Loc87, PLR85]. The bitblt function has several

parameters (source and destination alignment; transfer

operation) that alter control
ow in the innermost loop

of a loop nest. These parameters are constant across

any given call; therefore, control
ow is the same for all

iterations in any given invocation. The VSO version of

bitblt compiles a new version of the function each time

it is called. Past studies have achieved VSO speedup

by generating partially-unrolled inner loops without in-

ner loop control
ow. We extensively optimize the static

2

Note that VSO optimizes on the user-speci�ed associativity

and line size, but not on other con�guration parameters. Careful

simulator design allowed us to build a fast simulator in which

table lookup computations are a principal bottleneck. The de-

sign has not sacri�ced generality: reported performance is for a

simulator that computes metrics for each memory line, and that

supports di�erent line sizes and associativity in each cache, multi-

level caches, both uni�ed and split I/D caches, write-through and

writeback memory update policies, and invalidations in lower-

level caches caused by a loss of inclusion in higher-level caches.

Evaluating Runtime-Compiled Value-Speci�c Optimizations 4

code version so that it, too, has most of these optimiza-

tions. Here, VSO does a still better job of unrolling the

inner loop, and also eliminates redundant assignments.

4 Experimental Framework

This section discusses our experimental methodology:

the optimization and code generation strategies, the

benchmark measurement techniques, and the metrics

used to evaluate and compare the implementations.

Each application was implemented four ways: as static

code, written in C; with VSO performed using an

application-speci�c compiler and a general-purpose re-

targetable code generator (called an IR compiler be-

low); as static assembly code; and with VSO per-

formed using an application-speci�c compiler and an

application-speci�c and machine-dependent code gener-

ator (a template compiler). All experiments were run on

a SPARCstation-2.

The static C code represents a traditional implementa-

tion of each program using a retargetable code generator.

The IR-based VSO counterparts show code quality that

can be achieved using retargetable compiler technology.

The static assembly code represents an upper bound on

performance with static code. The VSO implementa-

tions using a template compiler provide a measure of

the best possible performance.

4.1 Static Code

The static code versions of each application were exten-

sively hand-optimized. For example, key loops were un-

rolled by hand in order to turn our state-of-the-practice

static compiler, GCC [Sta89], into a state-of-the-art

compiler. We feel this yields code close to the best code

a static compiler could produce, and represents what

real programmers do when faced with the challenge of

speeding up their programs. Comparing VSO'd code

to the best static code also yields conservative results;

VSO would show better speedups if compared to less-

optimized code.

The static assembly code was similarly tuned. For ex-

ample, Figure 2 shows prototypical assembly code that

implements a record comparison predicate. The routine

iterates through a list of <type, o�set> tuples. For each

type, the routine dispatches to a code fragment that per-

forms the given �eld comparison. Here, the assembly

code version has been implemented as a threaded-code

interpreter, with type �elds encoded as pointers to the

corresponding code fragments, in order to reduce the

dispatch costs.

4.2 Template Compiler

Each template compiler is speci�c to both the applica-

tion and the target machine. The application program-

cmp: ! call cmp(p0,p1) iteration

mov vec,r1 ! tuple list 1

L0: ld (r1),r2 ! get <type> 12

ld (r1+4),r3 ! get <offset> 12

add #8,r1 ! ptr++ 12

j *r2 ! dispatch 12

INT:

ld (p0+r3),r4 ! int compare 12

ld (p1+r3),r5 ! ... 12

sub r5,r4,r0 ! ... 12

bz L0 ! continue if = 12

ret ! return <, > 2

CHAR:

ldb (p0+r3),r4 ! char compare

ldb (p1+r3),r5 ! ...

sub r5,r4,r0 ! ...

bz L0 ! continue if =

ret ! return <, >

... ! other compare types

DONE:

mov #0,r0 ! records are =

ret

Figure 2: A prototypical static code function that com-

pares two records by comparing �elds in an order de-

scribed by a list of <type, o�set> tuples, stored in global

variable vec. type is encoded as a pointer to a corre-

sponding code fragment, INT, CHAR, etc., with DONE in-

dicating no more �elds to compare. Registers p0 and p1

hold pointers to the records being compared; register r0

holds the return value, which is negative if p1 is less than

p2, zero if equal, and positive if greater. The numbers

on the right show instructions that are executed, and in

which iteration, when comparing two records using the

tuple list fINT,24g, fINT,16g, where the �rst pair of

�elds have identical values and the second pair of �elds

are di�erent; eighteen instructions are executed.

mer writes machine code sequences with \holes" called

templates. The template compiler is invoked at run-

time and generates code by concatenating templates in a

data-dependent way. For example, if the template com-

piler unrolls a loop by N , it concatenates N copies of the

inner loop template and �lls the \holes" with constants,

addresses and register numbers. Code generation is one-

pass and fast, typically tens of instructions per generated

instruction. Since the code sequences are hand-written,

code quality is good unless there are major variations in

the structure of the generated code. However, portabil-

ity is poor, since retargeting is done by rewriting ma-

chine code sequences and, in some cases, higher-level

Evaluating Runtime-Compiled Value-Speci�c Optimizations 5

t_int:

.s0 3,20 ! 3 holes; 20 bytes

.s1 [0],INT1 ! actual value

.s1 [1],INT1 ! actual value

.s1 [2],PCR2 ! pc-relative

ld (p0+[0]),r4

ld (p1+[1]),r5

sub r5,r4,r0

bz [2]

ret

Figure 3: A prototypical template that compares two

integer �elds. There are similar templates for other �eld

types, the function prologue, and so on. The notation

[N] indicates a \hole" that is �lled during function com-

pilation with a �eld o�set for loads and the address of

the next comparison fragment for the branch. .s0 and

.s1 are symbol table entries. .s0 holds the number of

holes and the size of the template. The other symbols

describe each hole; the �rst two holes are �lled with in-

teger values and the third is �lled with a pointer that is

encoded as a pc-relative value. As in Figure 2, p0 and

p1 are pointers to the records being compared.

parts of the compiler. Template compilers have been

used by most systems that perform VSO [Tho68, PLR85,

Hol87, Loc87, KL89, MP89, Kes90, CK93].

Figure 3 depicts a prototypical template for compar-

ing two integer �elds in a record; it corresponds to the

INT fragment in Figure 2. The template is a code frag-

ment with \holes", plus symbol table information used to

patch the holes during compilation.

3

The template com-

piler in Figure 4 uses one template for each �eld type,

plus a template for the function prologue and an epilogue

template for the case of equal records. The compiler tra-

verses the tuple list, building a function with one code

fragment per tuple. Figure 5 shows its output when the

tuple vector describes a sort on two integer �elds. This

code is optimized to the speci�c values in the sort vec-

tor, and has no fetches or control
ow operations that

depend on the user-speci�ed sort order: all operations

depend directly on record values. Consequently, it ex-

ecutes half as many instructions as the comparison ex-

ample of Figure 2.

4.3 IR Compiler

Our other VSO implementation technique eliminates the

machine-dependent template compiler and instead uses a

3

Our assembler lacks a notation for holes and the correspond-

ing symbol table information. We thus encode symbol tables by

hand. Since our experiments use each symbol table just two ways,

each is implemented as two code fragments.

d=tcp(codebuf,t_entry) // prologue

for i=1..vec.n // unroll

x=vec[i].offset // get <offset>

switch(vec[i].type){ // dispatch

case INT:

d=tcp(d,t_int,x,x,d+tsz(t_int))

case CHAR:

d=tcp(d,t_char,x,x,d+tsz(t_char))

...

case DONE:

d=tcp(d,t_done)

iflush(codebuf)

return(codebuf)

}

i=i+1

}

Figure 4: A template compiler, which builds a sort pred-

icate by concatenating templates in a data-dependent

way. The compiler �rst generates a function prologue,

then builds a function body with one fragment for each

�eld to compare. Loop unrolling, fetching the o�set, and

type dispatch are all performed here during code genera-

tion, instead of being performed each time the predicate

is invoked, as in Figure 2. The routine tcp copies a

template and �lls the template holes with the remain-

ing arguments, for example, the �eld o�set, x, and the

address of the following �eld comparison fragment.

codebuf: ! iterations

M0: ld (p0+24),r4 ! 1

ld (p1+24),r5 ! 1

sub r5,r4,r0 ! 1

bz M1 ! 1

ret

M1: ld (p0+16),r4 ! 2

ld (p1+16),r5 ! 2

sub r5,r4,r0 ! 2

bz M2 ! 2

ret ! 2

M2: mov #0,r0

ret

Figure 5: A dynamically-compiled value-speci�c record

comparison routine. The routine �rst compares two in-

teger �elds at o�set 24, then two integer �elds at o�set

16. The VSO implementation is fully unrolled and has

no dispatching. The numbers to the right correspond to

the iteration numbers shown in Figure 2.

Evaluating Runtime-Compiled Value-Speci�c Optimizations 6

retargetable code generator that generates code from an

intermediate representation (IR). The application pro-

grammer still writes an application-speci�c compiler, but

its output is a machine-independent IR. Executable ma-

chine code is generated from a directed acyclic graph IR

using a retargetable code generator. IR code generators

are primarily used by dynamic compilers, which are al-

ready IR-based [Han73, CUL89, VP89]; a few systems

that are not inherently IR-based also use IR code gener-

ators [PHH88].

The IR compiler has a number of advantages over a

template compiler. First, a portable IR frees the applica-

tion programmer from writing machine-dependent code.

Second, simple optimizers can rewrite the IR, which also

frees the programmer from worrying about detailed opti-

mizations. Third, the code generator can work on larger

code sections than a template compiler; template com-

pilers use �xed code sequences and cannot generally per-

form optimizations across template boundaries, much as

local code generators do not optimize across basic block

boundaries.

4

However, the IR compiler is slower than a template

compiler. The IR compiler needs multiple passes to build

the IR, perform optimizations, generate code and link.

Also, where the template compiler can statically pre-

compute �xed subexpressions, the IR compiler gener-

ates a portable IR at runtime and, therefore, must defer

machine-dependent computations until application run-

time.

The application-speci�c IR compiler is similar to the

template compiler. At program runtime, statically-

compiled IR fragments are combined by copying and

then �lling holes using symbol table information. Holes

that represent constants are set to point at IR fragments

that represent constants; holes that represent unbound

variables are set to point to IR fragments that repre-

sent variable references. As with the template com-

piler, the IR compiler performs machine-independent op-

timizations such as loop unrolling, type dispatch, and

fetching and inlining the o�set.

For a particular application, much of the IR detail is

the same from invocation to invocation. Thus, our IR

compilers build IR from \precompiled" IR fragments,

analogous to templates in a template compiler. Each

application combines IR fragments to create a complete

IR that is passed to the code generator. Using IR frag-

ments can save time, because IR nodes do not need to

be manipulated individually.

We could reduce the programmer e�ort by using a lan-

guage that allows IR fragments to be speci�ed directly.

The fragment in Figure 6 shows what a fragment might

look like. The static compiler would translate each frag-

4

For example, the code in Figure 5 is good but still subopti-

mal. M0 must contain a branch, so its template has a branch.

The same template generates M1, so M1 has an unneeded branch

on zero.

FRAGMENT

irf_int (char *p0, char *p1) {

int off;

} {

int diff;

diff = *(int*)(p1+off) - *(int*)(p0+off);

if (diff != 0) {

return (diff);

}

}

Figure 6: An IR fragment written in a hypothetical

high-level language. This fragment corresponds to the

assembly template in Figure 3. IR fragments are dy-

namically inlined into an \empty" function fragment to

build an IR tree that represents a predicate like that in

Figure 5. In this example, p0 and p1 are set to reference

the corresponding parameters in the blank function frag-

ment. off is a runtime constant �lled in during runtime

compilation.

ment to IR and symbol table information which would be

saved away for later use [FST91]. At runtime the frag-

ments would be combined as with our IR compiler. Since

current languages don't provide constructs for building

fragments, we built the IR fragments by hand, avoiding

the need to write or extend a compiler.

We could further reduce the progammer e�ort by

translating whole functions to IR and allowing the ap-

plication programmer to parameterize the IR in stages.

Although this is closer to our goal of automated VSO, it

also has a higher runtime cost, because all optimization

opportunities are discovered at runtime, once parameter

values are known. We speculate that, given a function

and a list of parameters and possible values for each

parameter, the static compiler could discover optimiza-

tion opportunities statically. It could thus derive the IR

fragments and the IR compiler, and would have runtime

behavior equivalent to our IR compiler.

4.4 IR Code Generation Costs

We lack a code generator that reads an IR and pro-

duces machine code directly. Thus, for our experiments

we simulate a retargetable code generator by building

the IR, converting it to C and then calling a retar-

getable C compiler. We estimate that generating ma-

chine code directly from IR takes one thousand instruc-

tions per generated instruction. This is conservative,

since locally-optimal code generators can produce as-

sembly code in a few hundred instructions per generated

instruction [FH91].

Evaluating Runtime-Compiled Value-Speci�c Optimizations 7

Our code generation cost estimates use a fast and sim-

ple code generator rather than a slower code generator

with procedural optimizations, because, as we show in

Section 5.3, a simple code generator can produce good

code with VSO. Good code is possible, because VSO

promotes variables to constants, which has the e�ect of

enabling loop unrolling and thus increasing basic block

size, reducing register pressure, and so on. Thus, the

code generator is often left only with simpler machine

mapping tasks. Delay-slot �lling and generating ma-

chine code instead of assembly code should add only

tens of instructions per instruction. Although procedu-

ral register allocation is expensive, our applications typ-

ically need only a few registers; a code generator that

performs simple allocation, again at tens of instructions

per instruction, appears su�cient. Further, most of the

applications are relatively insensitive to code generation

costs and optimization so, for example, doubling the es-

timated cost yields similar results (see Section 5.2).

4.5 Metrics and Measurement

The metrics are (1) the dynamic compile time,

5

(2)

the asymptotic speedup and (3) the breakeven point at

which the total running time of two implementations is

equal. The asymptotic speedup is the performance im-

provement for very large inputs; alternatively, it can be

viewed as the speedup on processing each data item after

breakeven has been reached. The breakeven point is the

input size at which statically-optimized code and VSO'd

code have the same cost. For smaller inputs, the VSO'd

code is slower; for larger inputs, faster. To determine the

asymptotic speedup and breakeven point, we measured

the running time with a variety of input sizes.

We tried various tools to perform measurements. Un-

fortunately, all had problems, such as limited resolu-

tion, intrusion and changes in the code generation strat-

egy. To minimize the side-e�ects, all measurements

were made using elapsed time (wallclock) timers and the

short-running phases were placed inside of a loop that

executes the phase repeatedly, increasing the running

time relative to the timer accuracy. Note that repeating

a phase arti�cially improves cache hit ratios and, there-

fore, arti�cially reduces running times.

5 Results

Tables 1 and 2 summarize the important measure-

ments for the workloads. Table 1 shows the asymp-

totic speedup and the breakeven point for each imple-

mentation of each application. The column Asymptotic

Speedup shows speedups relative to the static C code,

5

An idle processor could perform VSO in parallel with other

program computations. However, we report results for a unipro-

cessor, where VSO costs cannot be overlapped.

showing relative performance of the various strategies

6

.

The column Breakeven Point shows IR breakeven com-

puted relative to static C and template breakeven com-

puted relative to static assembly, comparing static and

dynamic code produced with the same code generation

technology. Table 2 summarizes the VSO costs using

both the IR and template compilers. The IR compiler

costs are broken down into IR build, code generation

and linking costs, with code generation cost estimated.

VSO with a template compiler is one-pass and cannot

be subdivided.

In this section we consider four general aspects of

VSO: (1) the speedups for applications as a whole and

the input sizes for which VSO provides speedups; (2) the

costs of performing VSO; (3) the tradeo� between run-

time compile costs and runtime-generated code quality,

and (4) the optimizations that were achieved in prac-

tice using VSO. We note that speedups, build time and

breakeven are all data-dependent and it is easy to con-

struct pathological cases with especially good and bad

behavior. However in practice, we observe typically

small data-dependent variations.

5.1 Breakeven & Speedup

Table 1 shows asymptotic speedups for applications

as a whole, even when substantial time is spent in code

that is not improved with VSO. We measured overall

speedups, because they better re
ect the overall impact

of VSO optimizations. Raw speedups of just the VSO'd

code can ignore important aspects of an application's

overall behavior, such as time spent executing statically-

optimized code and cache and I/O e�ects. For example,

sorting divides its time between record comparison and

the basic sorting algorithm but only record comparison is

VSO'd. The sorting application using VSO IR -O1 had a

1.40 asymptotic speedup; the VSO'd predicate alone had

a 1.90 asymptotic speedup. Likewise, the cache simula-

tor reads a compact binary-format input and is thus an

order of magnitude faster than simulators that read text

on each run; yet I/O is still about 25% of the running

time.

7

Most applications show good speedups with reason-

able input sizes. For example, sorting with VSO pays o�

when more than about 1,200 records are being sorted.

Thus, statically compiled code should be used for sorting

directory listings with tens or hundreds of entries, but

6

The speedup of template over assembly is computed by divid-

ing the template's asymptotic speedup by the assembly's asymp-

totic speedup. For example, the relative speedup of the assembly

implementations of the debugger is 5:4=1:25, which is 4:3.

7

We note that studying the raw speedups of just the VSO'd

routines is also interesting. These speedups would more closely

re
ect optimizations due solely to VSO. Also, VSO'd code such

as the sort predicate can be used in other domains such as graph

traversal, where the overhead of the non-VSO'd code is di�erent;

raw speedups would help in predicting the performance of the

other applications.

Evaluating Runtime-Compiled Value-Speci�c Optimizations 8

Application Implementation Asymptotic Breakeven

Speedup (m) Point

Sorting static C 1.00 {

VSO IR -O0 0.72 never

VSO IR -O1 1.40 1250 records

VSO IR -O2 1.44 1200 records

static assembly 1.20 {

VSO template 1.65 10 records

Cache Simulation static C 1.00 {

Direct-Mapped VSO IR -O0 0.80 never

VSO IR -O1 1.06 1000 refs

VSO IR -O2 1.06 1000 refs

static assembly 1.09 {

VSO template 1.14 75 refs

traditional 0.15 never

Cache Simulation static C 1.00 {

4-Way Associative VSO IR -O0 0.80 never

VSO IR -O1 1.10 1000 refs

VSO IR -O2 1.10 1000 refs

static assembly 1.07 {

VSO template 1.14 150 refs

traditional 0.20 never

Debugger static C 1.00 {

VSO IR -O0 1.34 2000 crossings

VSO IR -O1 1.50 1500 crossings

VSO IR -O2 1.50 1500 crossings

static assembly 1.25 {

VSO template 5.40 700 crossings

traditional 0.0036 never

Decompression static C 1.00 {

VSO IR -O0 0.53 never

VSO IR -O1 0.97 never

VSO IR -O2 0.97 never

VSO IR cc -OX 1.13 1.19Mb

static assembly 1.28 {

VSO template 1.56 24Kb

Bitblt static C 1.00 {

VSO IR -O1 1.25 megapixels

Table 1: Asymptotic speedups and breakeven points for the �ve applications. Template and static assembly code

speedups are computed relative to static C, showing overall code quality. IR breakeven points are computed relative

to static code and template breakeven points are computed relative to static assembly, showing breakeven compared to

the best static code with the same code generation strategy. The notation -On describes the code generation strategy,

with higher numbers indicating more optimization. Entries marked \{" are base cases for computing breakeven. The

cache simulator entries marked \traditional" read text input for each run, instead of predecoding to a compact format.

The debugger entry marked \traditional" re
ects a conventional implementation with high IPC overhead.

Evaluating Runtime-Compiled Value-Speci�c Optimizations 9

Application Implementation Compile Time (ms) % of RT at

build cgen link total breakeven

Sorting VSO IR 5 10 8 23 29%

template 0.033 27%

Cache Simulation VSO IR 2 1 7 10 6%

Direct-Mapped template 0.02 5%

Cache Simulation VSO IR 10 3 10 23 9%

4-Way Assoc. template 0.05 7%

Debugger static C 4 {

VSO IR 6 2 6 17 40%

static assembly 5 {

VSO template 17 83%

Decompression VSO IR 63 45 11 119 12%

template 3 18%

Table 2: Startup costs for VSO implementations. The code generation cost for the IR compiler (cgen) is estimated.

The remaining costs are measured using wallclock timers. Debugger startup costs include the time to download from

the debugger to debuggee. The rightmost column is the percentage of time spent during a run in which the breakeven

point is just reached. The VSO IR breakeven point is computed using -O1 speedups. The �gures for template compilers

re
ect breakeven compared to static assembly code. Entries marked \{" are base cases for computing breakeven points.

The right column (% of RT at breakeven) is the percentage of execution time spent in code generation for program

runs that reached breakeven.

VSO'd code is appropriate for sorting larger collections

of records from a database.

For cache simulation, the asymptotic speedup is

smaller, only 5-10%, but the breakeven point is at only

1,000 references. Since memory reference traces are typ-

ically millions of references, VSO \always" pays. Many

other cache simulators read text input that is then con-

verted [HLL

+

93]. Our simulators read trace input in a

compact, binary form that is shared from run to run of

a simulator. The binary form reduces both the I/O and

per-run conversion costs. The traditional cache simula-

tor entries in Table 1 show the slowdown for a conven-

tional cache simulator, highlighting both the value of the

binary form and the quality of our static-code implemen-

tations.

The debugger payo� depends on how the conditional

breakpoint is being used. The data in Table 1 shows be-

havior for a simple conditional expression. Using a more

complicated expression would tend to improve the ad-

vantage of VSO'd code; setting a breakpoint in a more

complicated loop would tend to diminish VSO's asymp-

totic speedup, but not the breakeven point. Predicting

debugger breakeven is harder than with other applica-

tions, because it is di�cult to predict how many times

the VSO'd code will be used. However, we note that the

worst VSO times are tiny compared to the user response

time. Thus, using VSO does not a�ect the observed time

to set a breakpoint.

Previous conditional breakpoint studies have com-

pared VSO with implementations that require several

protection domain crossings on each invocation of the

conditional expression [Kes90]. Even with faster IPC

mechanisms, crossing costs would still dominate. Here,

we make the fairest comparison by implementing both

static and VSO'd versions so that the conditional expres-

sion executes in the debuggee, without domain crossings.

Thus, we report just the speedup due to VSO. In Table 1,

the debugger implementation marked traditional repre-

sents a debugger that requires a domain crossing each

time the conditional expression is invoked.

For decompression, GCC performs global common

subexpression elimination on the VSO'd code, which re-

duces code size but increases the running time by adding

an extra branch to most iterations. Since most iterations

are short, the extra branches hurt performance substan-

tially and thus VSO delivers no speedup. We were un-

able to make GCC optimize for time instead of space,

which would have produced code more representative

of code from a fast local code generator. However, the

host C compiler at a low optimization (marked cc -OX)

does not optimize for space and produces code represen-

tative of code from a local code generator. Since the

code lacks the space-saving optimization, VSO shows

speedups. For other applications, GCC was unable to

apply the space-saving optimization, and thus code qual-

ity was unhurt.

For bitblt, the build time, speedup, and breakeven

all depend on the size, shape and alignment of the

source and destination regions. Although the VSO'd

code shows asymptotic speedups, the IR build time is

Evaluating Runtime-Compiled Value-Speci�c Optimizations 10

more than the static code running time on a typical

screen region. Here, VSO would pay only for atyp-

ically large regions or if the VSO'd bitblt could be

cached for later reuse.

8

VSO'd bitblt was pro�table

in other experiments [PLR85, Loc87], because they used

less-optimized static code and their compiler was hand-

coded and machine-dependent and thus fast; yet even

there, small regions used static code.

For all applications, the static assembly code imple-

mentations are faster than the static C code implemen-

tations, showing that there is still room for some static

optimization. Note, however, that VSO'd code is of-

ten faster than the hand-crafted assembly code (sorting,

debugging, associative cache simulation); thus, VSO ex-

poses optimizations that cannot be performed statically.

5.2 Code Generation Costs

VSO startup costs must be repaid before VSO is prof-

itable. For implementations based on the IR compiler,

the cost is composed of the times to build the IR (build in

Table 2), generate machine code (cgen) using a 20 MIPS

processor,

9

and link the code into the running program

(link). Cache
ush times were negligible [Kep91]. For

the debugger, there is an additional cost (re
ected in the

total column) to move code and data from the debugger

to the debuggee.

Build, code generation and link costs have similar ra-

tios for all programs, with code generation time typically

the smallest. We believe, however, that the build and

link times can be reduced substantially, because both

the IR and the linker are more general than is needed for

VSO. VSO IR manipulation is more complicated than

with a traditional IR, because the VSO IR supports holes

and hole �lling operations; our IR is even more general,

supporting hole deletion, which is unused in practice.

Similarly, the linker [HO91] links �les, rather than code

generated in-core, so there is overhead for opening and

reading �les, converting disk formats to core formats,

etc. (For example, 60% of the linker time is typically

spent in the open and read system calls.) Thus, we ex-

pect that a linker designed for in-core linking could easily

be an order of magnitude faster. Improving build and

link times would substantially reduce the startup cost

and thus move the breakeven point to smaller inputs.

Even fast retargetable code generators are slow com-

pared to the template compilers, because template com-

pilers produce machine code directly, are one-pass and

8

Although the bitblt source is small, static replication and spe-

cialization causes bitblt to grow to about 25 kilobytes of machine

code. Some versions of bitblt can merge regions with di�erent bit

depths, color operations, and so on [May92]. Since case-by-case

specialization leads to combinatorial space explosion, advanced

static optimizations are probably impossible with these versions

of bitblt.

9

The estimated code generation costs are computed by multi-

plying the estimated instruction count by the processor's speed.

are specialized to both the application and the target

machine. Specializing the retargetable code generator

and IR to the application [Hen87] and target machine

would improve the template compilers' performance.

Our reported template compiler costs are conserva-

tive. We focused on code quality and ease of develop-

ment, and ignored compiler speed. For example, tem-

plates are small, aligned and their size is known stati-

cally; each template could be copied at a cost of just a

few instructions. However, our compilers copy templates

using calls to a general-purpose copy routine that checks

for alignment and overlap and is thus an order of magni-

tude more expensive than necessary. Similarly, template

holes are often patched using calls to small out-of-line

routines instead of using inlined code.

The right column of Table 2 shows that programs

with similar breakeven points may spend vastly di�er-

ent amounts of time performing code generation. For

example, at breakeven, code generation is less than 10%

of the time for simulation but is 40% to 80% of the de-

bugger's time. Yet both applications reach breakeven

with a small number of invocations of the VSO'd code.

Simulation has a low breakeven because its compile costs

are low. On the other hand, debugging has high enough

speedups that its relatively high compile costs are paid

back quickly.

5.3 Code Generation Strategies

Our estimated code generation costs are based on the

cost of a fast, locally-optimal code generator. The goal

of -O0 optimization is \to produce code quickly" [Sta89].

Code is generated on a statement-by-statement basis and

has many redundant loads and stores. It is thus worse

than that produced by a fast, locally-optimal code gener-

ator. -O1 optimization performs common optimizations,

such as CSE, jump optimization, register allocation, and

delay slot �lling. The -O2 optimization level is more ex-

pensive and performs more sophisticated optimizations,

such as strength reduction and induction variable elimi-

nation.

Intuitively, better optimization should produce more

e�cient code at greater time cost. However, all three

code generation strategies produced similar code except

that -O0 had more loads, stores and un�lled branch de-

lay slots. The advanced optimizations of -O2 were of

little use when applied after VSO, because VSO had al-

ready applied them in the application-speci�c compiler.

VSO \promotes" variables to constants and then uses

the constants to perform optimizations such as constant

inlining, loop unrolling and dead code elimination. As

shown in Table 1, sophisticated optimizers rarely pro-

duce better code.

For some applications, VSO can expose additional op-

portunities for optimization. For example, the sorting

predicate could have been dynamically inlined in the

Evaluating Runtime-Compiled Value-Speci�c Optimizations 11

Application Loop Dead Code Constant Constant

Unrolling Elimination Folding Inlining

Sorting

p p p

Cache Simulation

p p

Direct-Mapped

Cache Simulation

p p p

4-Way Associative

Debugger

p p p

Decompression

p

Bitblt

p

Figure 7: Optimizations enabled due to VSO's better runtime information.

sorting routine. For large data sets, the added compile

cost would be paid for by the reduction in procedure

call overhead (fewer jumps, better register allocation).

However, since one of our goals was to keep the imple-

mentations simple, we did not study these additional

optimizations.

5.4 Optimizations

Figure 7 describes the optimizations seen in practice us-

ing VSO. Loop unrolling eliminates both branches and

operations needed to compute loop termination. For all

applications except bitblt, loops were unrolled com-

pletely, eliminating all looping overhead. Dead code

elimination discards both code that is dynamically un-

reachable and branches around that code. Constant

folding takes advantage of runtime variables that are

constant over the lifetime of the VSO'd code, folding

their values with static constants and other runtime con-

stants. Constant inlining promotes runtime constants

from memory variables to instruction immediates, re-

ducing both the number of memory references and the

number of instructions executed.

6 Conclusions

In this paper we have studied the bene�ts of applying

runtime-compiled, value-speci�c optimizations to gener-

ate code optimized for speci�c data values. VSO can

be applied to code that has variables that are changed

rarely and are used in an important inner loop. We

have shown that for some types of applications, VSO

more than compensates for the runtime compile costs

and produces good speedups over highly tuned static

code and at reasonable input sizes. For our workload,

the machine-dependent approach used in previous work

showed speedups of up to 4.3 over well-optimized as-

sembly code. We also demonstrated that VSO produces

speedups with retargetable compiler technology, as high

as 1.5. Occasionally, applying VSO did not produce

speedups. This occurred when the runtime compiler op-

timized for space over execution time, when the code

generation strategy was too simple, or when the asymp-

totic speedup was too small to support the cost of com-

piling for typical inputs.

Counter to what might be expected, increasing lev-

els of runtime compiler optimizations did not produce

more e�cient code. Higher levels of optimization were

of little use when applied after VSO, because VSO per-

forms the optimizations as a consequence of promoting

program variables to input constants. Thus, a sim-

ple and fast code generator can produce high quality

runtime-generated code. Even using IR build and link

techniques that were more general (and thus slower)

than needed and conservative cost estimates for IR code

generation, runtime compiler costs were typically small

enough to reach the breakeven point at realistic input

sizes. Sometimes, the code produced using IR-compiled

VSO (always, for template-compiled VSO) was better

than hand-crafted assembly code, showing that VSO ex-

poses optimizations that cannot be performed statically.

This paper advances the study of VSO in several re-

spects. We showed that VSO is a general technique that

optimizes on the current values of heavily used, rarely

changed variables, and that doing so can produce code

better than the best static code. We demonstrated that

VSO can use retargetable code generation technology,

not just machine-dependent code, and still be pro�table.

We developed a cost model that incorporates compile

cost and the size of the input data, and used that model

to decide when to apply VSO. Finally, we showed that

with VSO, a fast and simple code generator can produce

code comparable to code from a slower, optimizing code

generator.

REFERENCES 12

7 Acknowledgements

Craig Chambers, Jim Larus and David Wall reviewed

earlier versions of this paper and greatly improved its

presentation. Thanks also to Robert Bedicheck for ex-

plaining the internals of gdb, from which our debugger is

derived [Sta87]. This work was supported by NSF PYI

Award #MIP-9058-439, NSF #CDA-8619-663 and Sun

Microsystems.

References

[Bro76] P. J. Brown. Throw-away Compiling. Software {

Practice and Experience, 6:423{434, 1976.

[CK93] R. F. Cmelik and D. Keppel. Shade: A Fast

Instruction-Set Simulator for Execution Pro�ling.

Technical Report UWCSE 93-06-06, University of

Washington, 1993.

[CUL89] C. Chambers, D. Ungar, and E. Lee. An E�cient

Implementation of SELF, a Dynamically-Typed

Object-Oriented Language Based on Prototypes.

OOPSLA '89 Proceedings, pages 49{70, October

1989.

[DB77] E. J. Van Dyke and K. A. Van Bree. A Dy-

namic Incremental Compiler for an Interpretive

Language. Hewlett-Packard Journal, pages 17{24,

July 1977.

[DS84] P. Deutsch and A. M. Schi�man. E�cient Im-

plementation of the Smalltalk-80 System. 11th

Annual Symposium on Principles of Programming

Languages, pages 297{302, January 1984.

[FH91] C. W. Fraser and R. R. Henry. Hard-Coding

Bottom-Up Code Generation Tables to Save Time

and Space. Software { Practice and Experience,

21(1):1{12, January 1991.

[FST91] A. Fyfe, I. Soleimanipour, and V. Tatkar. Compil-

ing from Saved State: Fast Incremental Compila-

tion with Traditional Unix Compilers. USENIX,

pages 161{171, Winter 1991.

[GW78] L. J. Guibas and D. K. Wyatt. Compilation and

Delayed Evaluation in APL. Fifth Annual ACM

Symposium on Principles of Programming Lan-

guages, pages 1{8, 1978.

[Han73] G. J. Hansen. Adaptive Systems for the Dynamic

Run-Time Optimization of Programs. PhD thesis,

Carnegie-Mellon University, March 1973.

[Hen87] R. R. Henry. Code Generation by Table Lookup.

Technical Report 87-07-07, University of Washing-

ton Computer Science, 1987.

[HLL

+

93] M. D. Hill, J. R. Larus, A. R. Leback, M. Tal-

luri, and D. A. Wood. Wisconsin Architectural

Research Tool Set. Computer Architecture News,

21(4), August 1993.

[HO91] W. Wilson Ho and Ronald A Olsson. An Ap-

proach to Genuine Dynamic Linking. Software-

Practice and Experience, 21(4):375{390, April

1991.

[Hol87] G. J. Holzmann. PICO - A Picture Editor. AT&T

Technical Journal, 66(2):2{13, March 1987.

[KEH91] D. Keppel, S. J. Eggers, and R. R. Henry. A Case

for Runtime Code Generation. Technical Report

UWCSE 91-11-04, University of Washington De-

partment of Computer Science and Engineering,

November 1991.

[Kep91] D. Keppel. A Portable Interface for On-The-Fly

Instruction SpaceModi�cation. Proceedings of the

Fourth International Conference on Architectural

Support for Programming Languages and Operat-

ing Systems, pages 86{95, April 1991.

[Kes90] P. Kessler. Fast Breakpoints: Design and Imple-

mentation. Proceedings of the ACM SIGPLAN

'90 Conference on Programming Language Design

and Implementation, pages 78{84, June 1990.

[KL89] P. J. Koopman, Jr. and P. Lee. A Fresh Look at

Combinator Graph Reduction (Or, Having a TI-

GRE by the Tail). ACM SIGPLAN 1989 Sympo-

sium on Programming Language Design and Im-

plementation, pages 110{119, July 1989.

[Loc87] B. N. Locanthi. Fast BitBlt With asm() and CPP.

European Unix Users Group Conference Proceed-

ings (EUUG), September 1987.

[May92] T. May. Personal Communication, May 1992.

[Mit70] J. G. Mitchell. The Design and Construction

of Flexible and E�cient Interactive Programming

Systems. Technical Report Ph.D. Dissertation,

Carnegie-Mellon University, 1970.

[MP89] H. Massalin and C. Pu. Threads and In-

put/Output in the Synthesis Kernel. Proceedings

of the 12th ACM Symposium on Operating Sys-

tems Principles, pages 191{201, December 1989.

[Par91] Proceedings of the Symposium on Partial Evalua-

tion and Semantics-Based Program Manipulation.

SIGPLAN Notices, 26(9), September 1991.

[PHH88] S. Przybylski, M. Horowitz, and J. Hennessy. Per-

formance Tradeo�s in Cache Design. Proceedings

of the 15th Annual International Symposium on

Computer Architecture, pages 290{298, May 1988.

[PLR85] R. Pike, B. N. Locanthi, and J. F. Reiser. Hard-

ware/Software Trade-o�s for Bitmap Graphics on

the Blit. Software - Practice and Experience,

15(2):131{151, February 1985.

[Sta87] R. M. Stallman. GDB Manual: The GNU Source-

Level Debugger. Free Software Foundation, Cam-

bridge, Massachusetts, January 1987.

[Sta89] R. M. Stallman. Using and Porting GNU

CC. Free Software Foundation, Cambridge, Mas-

sachusetts, September 1989.

[Tho68] K. Thompson. Regular Expression Search Algo-

rithm. Communications of the Association for

Computing Machinery, 11(6):419{422, June 1968.

[VP89] S. Vegdahl and U. F. Pleban. The Runtime En-

vironment for Screme, a Scheme Implementation

on the 88000. Proceedings of the Third Inter-

national Conference on Architectural Support for

Programming Languages and Operating Systems,

pages 172{182, April 1989.

