
The Challenges of Mobile Computing

George H. Forman

John Zahorjan

Computer Science & Engineering

University of Washington

March 9, 1994

Abstract

Advances in wireless networking technology have engendered a new paradigm of

computing, called mobile computing, in which users carrying portable devices have

access to a shared infrastructure independent of their physical location. This provides


exible communication between people and continuous access to networked services.

Mobile computing is expected to revolutionize the way computers are used.

This paper is a survey of the fundamental software design pressures particular to

mobile computing. The issues discussed arise from three essential requirements: the use

of wireless networking, the ability to change locations, and the need for unencumbered

portability. Promising approaches to address these challenges are identi�ed, along with

their shortcomings.

Keywords: mobile computing, hand-held computers, PDAs, surveys, wireless com-

munication, networks, disconnection, low bandwidth, data security, mobility, location

dependence, portability, low power, small user interfaces

Available as UW CSE Tech Report # 93-11-03 from ftp.cs.washington.edu.

An edited version of this paper has been accepted for publication in IEEE Computer.

1



Contents

1 Introduction 2

2 Wireless Communication 3

2.1 Disconnection : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

2.2 Low Bandwidth : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

2.3 High Bandwidth Variability : : : : : : : : : : : : : : : : : : : : : : : : : 6

2.4 Heterogeneous Networks : : : : : : : : : : : : : : : : : : : : : : : : : : 6

2.5 Security Risks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

3 Mobility 7

3.1 Address Migration : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

3.2 Location Dependent Information : : : : : : : : : : : : : : : : : : : : : : 9

3.3 Migrating Locality : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

4 Portability 10

4.1 Low Power : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

4.2 Risks to Data : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

4.3 Small User Interface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

4.4 Small Storage Capacity : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

5 Conclusion 15

6 Acknowledgments 15

1 Introduction

Recent advances in technology enable portable computers to be equipped with wire-

less interfaces, allowing networked communication even while mobile. Whereas today's

notebook computers and personal digital assistants (PDAs) are self-contained, tomor-

row's networked mobile computers

1

are part of a greater computing infrastructure.

Mobile computing constitutes a new paradigm of computing that is expected to revo-

lutionize the way computers are used.

Wireless networking greatly enhances the utility of carrying a computing device.

It provides mobile users with versatile communication to other people and expedient

noti�cation of important events, yet with much more 
exibility than cellular phones or

pagers. It also permits continuous access to the services and resources of the land-based

network. The combination of networking and mobility will engender new applications

and services, such as collaborative software to support impromptu meetings, electronic

bulletin boards that adapt their contents according to the people present, self-adjusting

lighting and heating, and navigation software to guide users in unfamiliar places and

on tours[14].

1

We use the term mobile computer to denote a portable computer that is capable of wireless networking.

2



The technical challenges to establishing this paradigm of computing are non-trivial,

however. In this paper we survey the principal challenges faced by the software design

of a mobile computing system, as distinguished from the design of today's stationary

networked systems. We discuss those issues pertinent to the software designer, without

delving into the lower level details of the hardware realization of the mobile computers

themselves. Where appropriate, we identify promising approaches that researchers

have applied, as well as their limitations.

The issues described herein divide cleanly into three sections, each stemming from

an essential property of mobile computing. Section 2 considers the implications of

using wireless communication, for example, susceptibility to disconnection, low band-

width availability, and highly variable network conditions. Section 3 discusses the

consequences of mobility, including dynamically changing network addresses, location-

dependent answers to user queries and system con�guration, and communication lo-

cality that deteriorates as mobile users move away from their servers. Section 4 inves-

tigates the pressures that portability places on the design of a mobile system, such as

low power, risk of data loss, and small surface area available for the user interface.

In order to expose a greater assortment of issues, the target in mind is large scale,

hand-held mobile computing. Of course, special purpose systems may avoid some

design pressures by doing without certain desirable properties. For instance, mobile

computers installed in the dashboards of cars would be less concerned with the porta-

bility pressures than would hand-held mobile computers.

Within the notion of mobile computing, there is considerable latitude regarding the

role of the portable device. Is it a terminal or an independent, stand-alone computer?

How many purposes shall the device serve? Should it incorporate a telephone (as

does the AT&T EO)? Should it provide the work environment of a general purpose

workstation, or something more restrictive, such as the Apple Newton MessagePad?

These design choices greatly a�ect the severity of the issues in the following sections.

For example, a portable terminal, such as the PARC Tab[14], is more dependent on

the network but less prone to loss of storage media than a stand-alone computer. It is

important to consider such questions in relation to the issues presented below.

2 Wireless Communication

Mobile computers require wireless network access, although sometimes they may phys-

ically attach to the network for a better or cheaper connection when they remain

stationary, such as during meetings or while at a desk.

Wireless communication is much more di�cult to achieve than wired communi-

cation because the surrounding environment interacts with the signal, blocking sig-

nal paths and introducing noise and echoes. As a result, wireless connections are of

lower quality than wired connections: lower bandwidths, higher error rates, and more

frequent spurious disconnections. These factors can in turn increase communication

latency due to retransmissions, retransmission timeout delays, error control protocol

processing, and short disconnections.

Wireless connections can be lost or degraded also by mobility. Users may outstep

3



the coverage of network transceivers or enter areas of high interference. Unlike typical

wired networks, the number of devices in a cell varies dynamically, and large concentra-

tions of mobile users, such as at conventions and public events, may overload network

capacity.

The sections below cover the design challenges resulting from the need for wireless

communication: more frequent disconnections, lower bandwidth, greater variation in

available bandwidth, greater network heterogeneity, and increased security risks.

2.1 Disconnection

Today's computer systems often depend heavily on the network, and may cease to

function during network failures. For example, distributed �le systems may block

waiting for other servers, and application processes may fail altogether if the network

stays down too long.

Network failure is of greater concern to mobile computing designs than traditional

designs, because wireless communication is so susceptible to disconnection. One can

either spend more resources on the network trying to prevent disconnections, or spend

those resources enabling systems to cope with disconnections more gracefully and work

around them where possible.

The more autonomous a mobile computer, the better it can tolerate network dis-

connection. For example, some applications can reduce communication by running

entirely locally on the mobile unit, rather than splitting the application and the user

interface across the network. In environments with frequent disconnections it is more

important for the mobile device to operate as a stand-alone computer, as opposed to

a portable terminal.

In some cases both round-trip latency and short disconnections can be hidden by

operating asynchronously. The X11 Window system uses this technique to achieve

good performance. As opposed to the synchronous remote procedure call paradigm

where the client waits for a reply after each request, in asynchronous operation a client

sends multiple requests before asking for any acknowledgment. Similarly, prefetching

and lazy write-back also decouple the act of communication from the actual time a

program consumes or produces data, allowing it to make progress during network

disconnections. These techniques, therefore, have the potential to mask some network

failures.

The Coda �le system provides a good example of handling network disconnections,

although it is designed for today's notebook computers where disconnections may be

less frequent, more predictable and longer lasting than in mobile computing[6]. In-

formation from the user's pro�le is used to help keep the best selection of �les in an

on-board cache. It is important to cache whole �les rather than blocks so that entire

�les can be read during a disconnection. When the network reconnects, the cache is

automatically reconciled with the replicated master repository. Coda allows �les to be

modi�ed even during disconnections. More conservative �le systems disallow this to

prevent multiple users from making inconsistent versions. Coda's optimism is justi�ed

by studies showing that only rarely are �les actually shared in a distributed system;

less than 1% of all writes are followed by a write by a di�erent user[6]. In those cases

4



where strong consistency guarantees are needed, clients can ask for them explicitly.

Hence, providing 
exible consistency semantics can allow better autonomy.

Of course, not all network disconnections can be masked. In these cases good

user interfaces can help by providing feedback to the user about which operations are

unavailable due to network disconnections.

TV HDTV

compressed video

alarm, pager voice

inquiry

telemetry

CD

video phone

file transfer

peripheral sharing

Ethernetmodem

remote file system

1Mbps 1Gbps

ATM

1kbps

information, e-mail, voice mail

fax

video conferencing

graphical user interfaces

Figure 1:

This �gure shows application bandwidth requirements laid out on a horizontal log-scale axis in bits

per second (bps). The vertical lines show the bandwidth capability of a few network technologies.

This �gure clari�es which applications are suitable for a given bandwidth technology. The newest

cellular modems are achieving speeds adequate for the everyday informational needs of mobile

users, such as electronic mail, and some day may be able to support remote �le systems.

2.2 Low Bandwidth

Mobile computing designs need be more concerned about bandwidth consumption and

constraints than designs for stationary computing, because wireless networks deliver

lower bandwidth than wired networks| cutting-edge products for portable wireless

communications achieve only 1 Mbps for infrared communication, 2 Mbps for radio

communication, and 9{14 kbps for cellular telephony, while Ethernet provides 10 Mbps,

FDDI 100 Mbps, and ATM 155 Mbps. Even non-portable wireless networks, such as

the Motorola Altair, barely achieve 5.7 Mbps.

Network bandwidth is divided among the users sharing a cell. The deliverable

bandwidth per user, therefore, is a more useful measure of network capacity than raw

5



transmission bandwidth. But because this measure depends on the size and distribu-

tion of a user population, Weiser and others promote measuring a wireless network's

capacity by its bandwidth per cubic meter[15].

To improve network capacity, one can install more wireless cells to service a user

population. There are two ways of doing this: overlap cells on di�erent wavelengths,

or reduce transmission ranges so that more cells �t in a given area.

The scalability of the �rst technique is limited, because the electromagnetic spec-

trum available for public consumption is scarce. This technique is more 
exible, how-

ever, because it allows (and requires) software to allocate bandwidth among users.

The second technique is generally preferred. It is arguably simpler, reduces power

requirements (see section 4.1), and may decrease corruption of the signal because it

may interact with fewer objects in the environment. Also, there is a hardware tradeo�

between bandwidth and coverage area| transceivers covering less area can achieve

higher bandwidths.

Certain software techniques can also help cope with the low bandwidth of wireless

links. Modems typically use compression to increase their e�ective bandwidth, some-

times almost doubling throughput. Because bulk operations are usually more e�cient

than many short transfers, logging can improve bandwidth usage by making large re-

quests out of many short ones. Logging in conjunction with compression can further

improve throughput because larger blocks compress better.

Certain software techniques for coping with disconnection can also help cope with

low bandwidth. Typical network usage occurs in bursts, and disconnections are similar

to bursts in that demand temporarily exceeds available bandwidth. For example, lazy

write-back and prefetching use the valleys to reduce demand at the peaks. Lazy write-

back can even reduce overall communication when the data to be transmitted are

further mutated or deleted before they are transmitted. Prefetching involves knowing

or guessing which �les will be needed soon and downloading them over the network

before they are demanded[10]. Bad guesses can waste network bandwidth, however.

System performance can be improved by scheduling communication intelligently.

When available bandwidth does not satisfy the demand, priority should be given to

those processes for which the user is waiting. Backups should be performed only with

\leftover" bandwidth. Mail can be trickle fed onto the mobile computer slowly before

the user is noti�ed. Although these techniques do not increase e�ective bandwidth,

they are equally important to improving user satisfaction.

2.3 High Bandwidth Variability

Mobile computing designs also contend with much greater variation in network band-

width than traditional designs. Bandwidth can shift one to four orders of magnitude

between being plugged in versus using wireless access. Fluctuant tra�c load seldom

causes this much variation in available bandwidth on today's networks.

An application can approach this variability in one of three ways: it can assume high

bandwidth connections and operate only while plugged in, it can assume low bandwidth

connections and not take advantage of higher bandwidth when it is available, or it can

6



adapt to the currently available resources, providing the user with a variable level of

detail or quality. Di�erent choices make sense for di�erent applications.

2.4 Heterogeneous Networks

In contrast to most stationary computers, which stay connected to a single network,

mobile computers encounter more heterogeneous network connections. As they leave

the range of one network transceiver they switch to another. In di�erent places they

may experience di�erent network qualities, for example, a meeting room may have

better wireless equipment installed than a hallway. There may be places where they

can access multiple transceivers on di�erent frequencies. Even when plugged in, they

may concurrently use wireless access.

Also, they may need to switch interfaces when moving from indoors to outdoors.

For example, infrared interfaces cannot be used outside because sunlight drowns out

the signal. Even if only radio frequency transmission is used, the interface may still

need to change access protocols for di�erent networks, for example when switching

from cellular coverage in a city to satellite coverage in the country. This heterogeneity

makes mobile networking more complex than traditional networking.

2.5 Security Risks

Precisely because it is so easy to connect to a wireless link, the security of wireless

communication can be compromised much more easily than wired communication,

especially if the transmission range encompasses a large area. This increases pressure

on mobile computing designs to include security measures.

Security is further complicated if users are to be allowed to cross security domains,

for example, allowing the untrusted mobile computers of hospital patients to use nearby

printers while disallowing access to distant printers and resources designated for per-

sonnel only.

Secure communication over insecure channels is accomplished by encryption, which

can be done in software, or more quickly by specialized hardware, such as the recently

proposed CLIPPER chip. The security depends upon a secret encryption key being

known only to the authorized parties. Managing these keys securely is di�cult, but

can be automated by software such as MIT's Kerberos[9].

Kerberos provides secure authentication services, provided the Kerberos server it-

self is trusted. It authenticates users without exposing their passwords on the network

and generates secret encryption keys that can be selectively shared between mutually

suspicious parties. It also allows roaming mobile units to authenticate themselves in

foreign domains where they are unknown, thus enhancing the scale of mobility. Meth-

ods have also been devised to use Kerberos for authorization control and accounting.

Its security is limited, however.For example, the current version is susceptible to o�-line

password guessing attacks and to replay attacks for a limited time window.

7



3 Mobility

The ability to change locations while connected to the network increases the volatility

of some information. Certain data considered static for stationary computing becomes

dynamic for mobile computing. For example, although a stationary computer can be

con�gured statically to prefer the nearest server, a mobile computer needs a mechanism

to determine which server to use.

As volatility increases, cost-bene�t tradeo� points shift, calling for appropriate

modi�cations in the design. For example, greater volatility of a data object reduces its

ratio of uses per modi�cation. For lower ratios, it makes less sense to cache the data,

or even to store it at all if it can be recomputed from scratch easily enough. As another

example, where management of static information is often done by hand, automated

methods are required to handle higher rates of change. Even where automated methods

exist, many are ill-suited for the dynamicism of mobile computing.

The following three sections discuss the main problems introduced by mobility: the

network address of a mobile computer changes dynamically; its current location a�ects

con�guration parameters as well as answers to user queries; and as it wanders away

from a nearby server, the communication path between the two grows.

3.1 Address Migration

As people move, their mobile computers will use di�erent network access points, or

`addresses.' Today's networking is not designed for dynamically changing addresses.

Active network connections usually cannot be moved to a new address. Once an address

for a host name is known to a system, it is typically cached with a long expiration time

and with no way to invalidate out-of-date entries. In the Internet Protocol (IP), for

example, a host IP name is inextricably bound with its network address| moving to

a new location means acquiring a new IP name. Human intervention is often required

to coordinate the use of addresses.

In order to communicate with a mobile computer, messages must be sent to its most

recent address. There are four basic mechanisms for determining the current address of

a mobile computer: broadcast[5, 4], central services[8], home bases[12], and forwarding

pointers[5]. These are the building blocks of the current proposals for `mobile-IP'

schemes.

Selective Broadcast: With the broadcast method, a message is sent to all net-

work cells, asking the mobile computer sought to reply with its current address. This

becomes too expensive for frequent use in a large network, but if the mobile computer

is known to be in some small set of cells, selectively broadcasting in those cells alone

is workable. Hence, the methods described below can employ selective broadcast to

obtain the current address when only approximate location information is known. For

example, a slightly out-of-date cell address may su�ce if adjacent cells are known.

Central Services: With the central service method, the current address for each

mobile computer is maintained in a logically centralized database. Each time a mobile

8



computer changes its address, it sends a message to update the database. Although this

database is logically centralized, the common techniques of distribution, replication,

and caching can be employed to improve availability and response time.

Home Bases: The home base method is essentially the limiting case of distributing

a central service| only a single server knows the current location of a mobile computer.

This brings with it the availability problems of aggressive distribution without repli-

cation. For example, if a home base is down or inaccessible, the mobile computers it

tracks cannot be contacted. Note that if users sometimes change home bases, another

instance of the address migration problem arises, albeit with much lower volatility.

Forwarding Pointers: With the forwarding pointer method, each time a mobile

computer changes its address, a copy of the new address is deposited at the old location.

Each message is forwarded along the chain of pointers until it reaches the mobile

computer. To avoid the ine�cient routing that can result from long chains, pointers

at message sources can be updated to re
ect more recent addresses.

Although the forwarding pointer method is among the fastest, it is prone to failures

anywhere along the trail of pointers, and in its simplest form, does not allow forwarding

pointers to be forgotten. Hence, forwarding pointers are often employed only to speed

the common case and another method is used to fall back on for failures and to allow

reclamation of old pointers.

Note that the forwarding pointer method requires an active entity at the old address

to receive and forward messages. This does not �t standard networking models, where

a network address either is a passive entity, such as an Ethernet cable, or is speci�c

to the mobile computer, which cannot remain to forward its own messages. This

mismatch introduces subtle di�culties in implementing forwarding e�ciently (such as

with intra-cell tra�c, or when multiple gateways are attached to a network address).

3.2 Location Dependent Information

Because traditional computers do not move, information that depends on location is

con�gured statically, such as the local name server, available printers, and the time

zone. A challenge for mobile computing is to factor out this information intelligently

and provide mechanisms to obtain con�guration data appropriate to the present loca-

tion.

Besides this dynamic con�guration problem, mobile computers need access to more

location sensitive information than stationary computers if they are to serve as guides

in places unfamiliar to their users, for example, to answer queries like \where is the

�ction section (in this library)?" or \where is the nearest open gas station heading

north?"

Whereas such queries require static location information about the world, Badrinath

and Imielinski are studying a related class of queries that depends on the dynamic

locations of other mobile objects, for example, determining where the nearest taxi

is[4].

9



Privacy: Answering these queries requires knowing the location of another mobile

user. In some cases this may be sensitive information, more so if given at a �ne

resolution. Even where it is not particularly sensitive, such information should be

protected against misuse, for example, to prevent a burglar from determining when

the inhabitants of a house are far away.

Privacy can be ensured by denying users the ability to know another's location.

The challenge for mobile computing is to allow more 
exible access to this information

without violating privacy, for there are many legitimate uses of location information,

including contacting colleagues, routing telephone calls, logging meetings in personal

diaries, and tailoring the content of electronic announcement displays to the viewers[15].

3.3 Migrating Locality

Mobile computing engenders a new kind of locality that migrates as users move. Even

if a mobile computer spends the e�ort to �nd the server that is nearest for a given

service, over time it may cease to be the nearest due to migration. Because the physi-

cal distance between two points does not necessarily re
ect the network distance, the

communication path can grow disproportionately to actual movement. For example, a

small movement can result in a much longer path when crossing network administrative

boundaries. A longer network path means communication traverses more intermedi-

aries, resulting in longer latency and greater risk of disconnection. This also consumes

more network capacity, even though the bandwidth between the mobile unit and the

server may not degrade.

To avoid these disadvantages, service connections may be dynamically transferred to

servers that are closer[3]. When many mobile units converge, such as during meetings,

load balancing concerns may outweigh the importance of communication locality.

Table 1: Characteristics of Personal Digital Assistant products and the AT&T EO tablet

computer. Each has a pen interface and a black & white re
ective LCD screen. The portable

PC is included for comparison. (These data were gathered from advertisements, company

representatives, and product reviews, such as those in PC Magazine, October 1993.)

Product RAM MHz CPU Batteries Weight Display

(hours,# & type) (lbs.) (pixels, sq.inches)

Amstrad Pen Pad PDA600 128 KB 20 Z80 40, 3 AAs 0.9 240�320, 10.4

Apple Newton MessagePad 640 KB 20 ARM 6{8, 4 AAAs 0.9 240�336, 11.2

Apple N. MessagePad 110 1 MB 20 ARM 50, 4 AAs 1.25 240�320, 11.8

Casio Z-7000 PDA 1 MB 7.4 8086 100, 3 AAs 1.0 320�256, 12.4

Sharp ExpertPad 640 KB 20 ARM 20, 4 AAAs 0.9 240�336, 11.2

Tandy Z-550 Zoomer PDA 1 MB 8 8086 100, 3 AAs 1.0 320�256, 12.4

AT&T EO 440 Personal

Communicator

4{12 MB 20 Hobbit 1{6, NiCad 2.2 640�480, 25.7

Portable PC 4{16 MB 33{66 486 1{6, NiCad 5{10

640�480, 84

(or 1024�768)

10



4 Portability

Today's desktop computers are not intended to be carried, so their design is liberal in

their use of space, power, cabling, and heat dissipation. In contrast, the design of a

hand-held mobile computer should strive for the properties of a wristwatch: small, light

weight, durable, water-resistant and long battery life. Concessions can be made in each

of these areas to enhance functionality, but ultimately the value provided to the user

must exceed the trouble of carrying the device. Similarly, any specialized hardware to

o�oad from the CPU tasks such as data compression or encryption should justify its

consumption of power and space.

In the sections below we describe the design pressures caused by portability con-

straints: low power, heightened risk of data loss, small user-interfaces, and limited

on-board storage. These pressures are evident in the designs of the recent PDA prod-

ucts listed in Table 1, as will be related below.

Table 2: Power consumption of the components of a portable computer and accessories.

(The data for the computer components were derived from the Sharp PC 6785 manual. The

data for the accessories were obtained from manufacturers; starred �gures are estimates for

PCMCIA products that are soon to be released.)

Device Power (Watts)

base system (2MB, 25 MHz CPU) 3.650

base system (2MB, 10 MHz CPU) 3.150

base system (2MB, 5 MHz CPU) 2.800

screen backlight 1.425

hard drive motor 1.100

math co-processor .650


oppy drive .500

external keyboard .490

LCD screen .315

hard drive active (head seeks) .125

IC card slot .100

additional memory (per MB) .050

parallel port .035

serial port .030

Accessories:

1.8" PCMCIA hard drive 0.7{3.0

cellular telephone active 5.400

cellular telephone standby .300

infrared network{ 1 Mbps

�

.250

PCMCIA modem{ 14400 bps 1.365

PCMCIA modem{ 9600 bps .625

PCMCIA modem{ 2400 bps .565

global positioning receiver

�

.670

11



4.1 Low Power

Batteries are the largest single source of weight in a portable computer. While reducing

battery weight is important, too small a battery can undermine portability| users may

have to recharge frequently, carry spare batteries, or use their mobile computer less.

Minimizing power consumption can improve portability by reducing battery weight

and lengthening the life of a charge.

Power consumption of dynamic components is proportional to CV

2

F , where C is

the capacitance of the wires, V is the voltage swing, and F is the clock frequency.

This function suggests three ways to save power. (1) Capacitance can be reduced

by greater levels of VLSI integration and multichip module technology. (2) Voltage

can be reduced by redesigning chips to operate at lower voltages. Historically, chips

operate at �ve volts, but to save power, the Apple MessagePad operates at three volts.

Manufacturers are rapidly developing a line of low-power chip sets for 2.5 and 3.3 volt

operation. (3) Clock frequency can be reduced, trading o� computational speed for

power savings. PDA products have adopted this concession, as shown in Table 1. In

some notebook computers, the clock frequency can be changed dynamically, providing

a 
exible tradeo�; for example, the Sharp PC 6785 can save power by dynamically

shifting its clock from 25 MHz down to 10 MHz or even 5 MHz, as seen in Table 2. In

order to retain more computational power at lower frequencies, processors are being

designed that perform more work on each clock cycle[1].

Power can be conserved not only by the design but also by e�cient operation.

Power management software can power down individual components when they are

idle, for example, spinning down the internal disk or turning o� screen lighting. Li et

al. determined recently that for today's notebook computing it is worthwhile to spin

down the internal disk drive after it has been idle for just a few seconds[7]. Applications

can conserve power by reducing their appetite for computation, communication and

memory, and by performing their periodic operations infrequently to amortize the

startup overhead. Since cellular telephone transmission typically requires about ten

times as much power as reception, trading talking for more listening can also save

power. The potential savings of these techniques can be evaluated using Tables 2 and 3,

which show example power budgets for notebook computers. Although screen lighting

consumes a large amount of power, it has been found to greatly improve readability,

for example, on EO models it enhances contrast from 6:1 to 13:1. Nevertheless, PDA

products have elected to omit screen lighting in favor of longer battery life.

4.2 Risks to Data

Making computers portable heightens their risk of physical damage, unauthorized ac-

cess, loss, and theft. This can lead to breaches of privacy or total loss of data. These

risks can be reduced by minimizing the essential data that is kept on board| notably,

a mobile device that serves only as a portable terminal is less prone to data loss than a

stand-alone computer. This is the approach taken for PARC's Tabs and for Bershad's

BNU system[13].

To help prevent unauthorized disclosure of information, data stored on disks and

removable memory cards can be encrypted. For this to be e�ective, users must not

12



Table 3: Power consumption breakdown by subsystems of a portable computer. These data

were obtained from the Compaq LTE 386/s20 manual.

System % Power

display edge-light 35%

CPU/Memory 31%

hard disk 10%


oppy disk 8%

display 5%

keyboard 1%

leave authenticated sessions (logins) unattended.

To safeguard against data loss, one can keep a copy that does not reside on the

portable unit. One solution is to have the user make backup copies, but users often

neglect this chore, and data modi�ed between backups is not protected. With the

addition of wireless networks to portable computers, newly produced data can be copied

immediately to secure, remote media. This can be accomplished with replicated �le

systems such as Coda and Echo[6].

4.3 Small User Interface

The size constraints on a portable computer require a small user interface. Desktop

windowing environments may be su�cient for today's notebook computers, but for

smaller, more portable devices current windowing technology is inadequate. On small

displays it is impractical to have several windows open at the same time regardless of

screen resolution, and it can be di�cult to locate windows or icons when stacked atop

one another deeply. Also, window title bars and borders either consume signi�cant

portions of screen space or become di�cult to operate with the pointing device.

Duchamp and Feiner have investigated the use of head-mounted virtual reality

displays for portable computers[3]. As the user turns his head, the image displayed

in the eye shifts to give the sensation that there is a screen all around. This e�ec-

tively increases the screen area available for windowing systems. Disadvantages of

this approach include the hassle of the head gear, low-resolution (one tenth that of

conventional displays), eye fatigue, and the requirement for dim lighting conditions.

Buttons vs. Recognition: The shortage of surface area on a small computer

can cause us to trade buttons in favor of recognizing the user's intention from analog

input devices: handwriting recognition, gesture recognition, and voice recognition.

Although handwriting is about three times slower than typing on average, handwriting

recognition allows the keyboard to be eliminated, which reduces size and improves

durability. This approach has been adopted by all the PDA products in Table 1.

Handwriting recognition rates for high-end systems are typically 96{98% accurate

when trained to a speci�c user. (Tappert et al. give a thorough survey[11].) With

context information, recognition rates can be enhanced e�ectively to 100%, but context

13



constraints do not help for all kinds of input, such as when entering words that are

not in the dictionary. Popular reports indicate that the Apple Newton's handwriting

recognition, while among the best of the PDAs, is nevertheless a source of frustration.

Finally, recognition of the user's intention in a general setting is inherently hard because

the interpretation of pen strokes is ambiguous. For example, by drawing a circle a user

may intend to select an object or an area, write a zero, degree sign, or the letter `o'.

Speech production and recognition seem an ideal user interface for a mobile com-

puter in that they require no surface area and allow hands-free and even eye-free

operation. The voice commanded VCR programmer by Voice Powered Technology

demonstrates the feasibility of this interface on a hand-held device for a narrow do-

main. Speaker-independent recognition rates of nearly 96% have been reported for the

Sphinx research project; 98% for speaker-trained recognition. However, general pur-

pose speech input and output places substantial storage and processing demands on a

mobile device. Also, speech is inappropriate in common situations: it disturbs others

in quiet environments, it cannot be recognized clearly in noisy environments, and it

can compromise privacy. Finally, speech is ill-suited for skimming data because of its

sequential nature.

Pointing Devices: The mouse is the standard pointing device for desktop com-

puters, but does not suit mobile computers. Pens have become the standard input

device for PDAs because of their ease of use while mobile, their versatility and their

ability to supplant the keyboard.

Switching to pens requires changing both the user interface and the software in-

terface because mice and pens are really quite di�erent[3]. Users with pens can jump

to absolute screen positions and enter path information more easily than with mice;

it is nearly impossible to write with a mouse. Pen positioning resolution on current

tablet computers is several times that of screen resolution, for example, on the EO

pen resolution is 0.1mm while screen resolution is 0.23{0.3mm. Parallax between the

pen tip and the screen image can mislead pointing; with mice, there is no parallax

because the mouse cursor provides feedback in the image plane. Finally, the mouse

cursor obscures much less of the screen than is obscured by one's hand when writing

with a pen.

4.4 Small Storage Capacity

Storage space on a portable computer is limited by physical size and power require-

ments. Traditionally, disks provide large amounts of non-volatile storage. To a mobile

computer, however, disks are a liability. They consume more power than memory

chips, except when o�-line, and may not be non-volatile when subject to the indelicate

treatment a portable device endures. Hence, none of the PDA products have disks.

Coping with limited storage is not a new problem. Solutions include compressing

�le systems, accessing remote storage over the network, sharing code libraries, and

compressing virtual memory pages[2]. Although today's networked computers have had

great success with distributed �le systems and remote paging, relying on the network is

less appropriate for mobile computers that regularly encounter network disconnections.

14



A novel approach to reducing program code size is to interpret script languages,

instead of executing compiled object codes, which are typically many times the size

of the source code. This approach is embodied by General Magic's Telescript and

Apple Technology Group's Dylan and NewtonScript. An equally important goal of

such languages is to enhance portability by supporting a common programming model

across di�erent machines.

5 Conclusion

In this paper we have examined the repercussions of three principal features of mobile

computing: wireless communication, mobility, and portability. Wireless communica-

tion brings challenging network conditions, making access to remote resources often

slow or sometimes temporarily unavailable. Mobility causes greater dynamicism of

information. Portability entails limited resources available on board to handle the

changeable mobile computing environment. The challenge for mobile computing de-

signers is how to adapt the system designs that have worked well for traditional com-

puting. To date, few prototype mobile computing systems have been built that include

the wireless network[3, 15].

6 Acknowledgments

Support for this work was provided in part by the National Science Foundation (Grants

CCR-9123308 and CCR-9200832), Tektronix Inc. (a graduate fellowship), the Wash-

ington Technology Center, and Digital Equipment Corporation (Systems Research Cen-

ter and External Research Program). We thank Robert Bedichek, Brian Bershad, Blake

Hannaford, Marc Fiuczynski, Brian Pinkerton, and Stefan Savage for helpful pointers

and clarifying discussions that signi�cantly improved this paper.

References

[1] Anantha Chandrakasan, Samuel Sheng, and R.W. Brodersen. Design Considera-

tions for a Future Portable Multimedia Terminal. In Third Generation Wireless

Information Networks, Kluwer Academic Publishers, pages 75{97, 1992.

[2] Fred Douglis. On the Role of Compression in Distributed Systems. In 5th SIGOPS

Workshop on Models and Paradigms for Distributed Systems Structuring, 6 pages,

Sept 1992.

[3] Dan Duchamp, Steven K. Feiner, and Gerald Q. Maguire, Jr. Software Technology

for Wireless Mobile Computing. IEEE Network Magazine, pages 12{18, Nov 1991.

[4] T. Imielinski and B. R. Badrinath. Data Management for Mobile Computing.

SIGMOD Record, 22(1):34{39, March 1993.

15



[5] John Ioannisdis, Dan Duchamp, and Gerald Q. Maguire Jr. IP-based Protocols

for Mobile Internetworking. In Proceedings of SIGCOMM '91 Symposium, pages

235{245, Sept 1991.

[6] James J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda

File System. ACM Transactions on Computer Systems, 10(1):3{25, Feb 1992.

[7] Kester Li, Roger Kumpf, Paul Horton, and Thomas Anderson. A Quantitative

Analysis of Disk Drive Power Management in Portable Computers. Technical Re-

port, Computer Science Division, University of California at Berkeley, 1993.

[8] ChaoyingMa. On Building Very Large Naming Systems. In 5th SIGOPSWorkshop

on Models and Paradigms for Distributed Systems Structuring, 5 pages, Sept 1992.

[9] B. Cli�ord Neuman. Protection and Security Issues for Future Systems. In Work-

shop on Operating Systems of the 90s and Beyond, Springer-Verlag Lecture Notes

in Computer Science #563, pages 184{201, July 1991.

[10] Carl D. Tait and Dan Duchamp. Detection and Exploitation of File Working Sets.

In 11th International Conference on Distributed Computing Systems, pages 2{9,

May 1991.

[11] C.C. Tappert, C.Y. Suen, and T. Wakahara. On-line Handwriting Recognition|

A Survey. In 9th International Conference on Pattern Recognition, 2:1123{1132,

1988.

[12] Fumio Teraoka and M. Tokoro. Host migration transparency in IP networks: the

VIP approach. Computer Communication Review, 23(1):45{65, Jan 1993.

[13] T. Watson and B. N. Bershad. Local Area Mobile Computing on Stock Hardware

and Mostly Stock Software. In USENIX Proceedings of the Mobile and Location-

Indepent Computing Symposium, pages 109{116, Aug 1993.

[14] Mark Weiser. The Computer for the 21st Century. Scienti�c American, 265(3):94{

104, Sept 1991.

[15] Mark Weiser. Some Computer Science Issues in Ubiquitous Computing. Commu-

nications of the ACM, 36(7):75{84, July 1993.

16


