
Multiresolution Tiling

David Meyers

Department of Computer Science and Engineering

University of Washington

Seattle, Washington 98195

Technical Report No. 93-12-02

December 1993



Abstract

This paper describes an e�cient method for constructing a tiling between a pair of planar

contours. The problem is of interest in a number of domains, including medical imaging, bio-

logical research and geological reconstructions. Our method requires O(n) space and appears to

require O(n log(n)) time for average inputs, compared to the O(n

2

log(n)) time and O(n

2

) space

required by the optimizing algorithm of Fuchs, Kedem and Uselton [3]. The results computed

by our algorithm are in many cases very nearly the same as those of their optimizing algorithm,

but at a small fraction of the computational cost. The performance improvement makes the

algorithm usable for large contours in an interactive system. The use of multiresolution analysis

also allows for tiling after partial reconstruction of the original contours from a low-resolution

version, with controlled loss of detail. The use of lower resolution approximations to the original

contours can result in signi�cant savings in the time required to display a reconstructed object,

and in the space required to store it.

Key Words: Surface reconstruction, Tiling, Meshes, Multiresolution analysis, Wavelets.

1 Introduction

Reconstruction of surfaces from a set of planar contours is an important problem in medical and

biological research, geology, and other areas. The problem can be broken into several subproblems

[6], one of which, the tiling problem, is the subject of this paper.

Figure 1: A pair of contours obtained from the cerebral cortex of the human brain. The contours

contain 195 (closed dots) and 172 (open dots) vertices. The spacing between the contours is 1.3

mm and the larger of the contours has a short dimension of 4.6 cm and long dimension of 7.5 cm.

A solution to the tiling problem constructs a polyhedron from two planar polygons, using the

polygons as two of the faces of the polyhedron, and triangles constructed from an edge of one

1

This work was supported in part by the National Science Foundation under grant DMS-9103002

2



Figure 2: The main steps of the multiresolution tiling algorithm. Upper Left: Input contours.

Upper Right: Tiled base case. Lower Left: Intermediate stage of sorted single wavelet recon-

struction. Lower Right: Final tiling.

polygon and a vertex of the other as the remaining faces. To be a valid solution, the polyhedron

constructed must be simple. Figure 2a and d show a pair of contours and a solution to the tiling

problem for those contours. It has been shown by O'Rourke and Subramanian [7] that such a

solution is not always possible. They show that if the shape of the polygons di�ers su�ciently,

no simple polyhedron can be constructed subject to the above restrictions. In practice, adjacent

contours are usually fairly similar in shape. There are exceptions. Consider the pair of contours

shown in Figure 1. They represent adjacent slices through the cerebral cortex of the human brain.

Notice that the shape of the contours di�ers dramatically. In cases such as the one shown in Figure 1,

the shape di�erence can be large enough that no simple polyhedral tiling can be constructed within

the de�nition of [7].

Numerous methods have been devised to solve the tiling problem. A method which computes

a tiling optimal with respect to a goal function was devised by Keppel [4], and later improved by

Fuchs, Kedem and Uselton [3]. The goal function assigns a cost to each triangle of the tiling, and

minimizes the sum over the triangles in the tiling. In part because of the computational cost of their

algorithm, numerous other methods have been devised which do not perform a global optimization.

A discussion of many of the methods can be found in [6].

3



This paper describes a new method for solving the tiling problem which represents a signi�cant

improvement in speed and space required over the algorithm of [3]. Their algorithm requires

O(n

2

log(n)) time and O(n

2

) space to construct a tiling for a pair of contours each of size n (if the

contours are of di�erent size, replace n

2

with n�m). In many cases, this performance is acceptable.

However, when the number of vertices in a contour is large, the performance of the algorithm

of [3] becomes unacceptable, particularly in an interactive environment. Contours containing 1000

vertices are encountered in actual data sets. With current hardware and su�cient memory, their

algorithm takes approximately 2 minutes to construct a tiling from a pair of contours each with 1000

vertices. With insu�cient memory, the time required increases to more than 30 minutes, something

we noticed when attempting to tile 1000 vertex contours on a \normally con�gured" DECstation

5000/125 with 20 mbytes memory. The multiresolution tiling algorithm presented here takes about

1 second to compute a tiling for the same input, on the \normally con�gured" machine.

Figure 3: Tilings computed by the method of Left: Fuchs, Kedem and Uselton and Right: our

sorted single wavelet algorithm, for the contours in Figure 1.

Since even the \optimal" algorithm of [3] can construct unacceptable tilings (Figure 3), user

interaction is a necessary part of a system for reconstructing surfaces from a set of contours. In an

interactive system, delays of the magnitude encountered with the optimizing algorithm are unac-

ceptable, and have led to the use of faster, non-optimal methods. The algorithm we describe uses

methods from multiresolution analysis to reduce the size of the contours, then uses the optimizing

tiling algorithm of [3] to construct a tiling for the reduced problem size, and �nally uses multires-

4



olution reconstruction and local optimization to construct a tiling. Our algorithm uses O(n) space

and what appears to be O(n log(n)) time. Although we do not prove this time bound, we show

experimental results that support it.

2 Multiresolution Analysis

This section provides a brief introduction to multiresolution analysis and wavelets. For a more

detailed treatment than is possible here, the reader is referred to [1] and [5]. In the following, the

notation x

n

is used to denote a discrete signal consisting of 2

n

samples (x

n

0

; : : : ; x

n

2

n

�1

).

d

c

b

a

d

b

a
...

...
d

b

a
cc

0

0

j−2

j−2
c

j−1

j−1

j

Figure 4: Filter Bank

Consider a discrete signal c

n

, and let a = f: : : ; a

�1

; a

0

; a

1

; : : :g denote a discrete low-pass �lter.

A low-resolution version of c

n

can be obtained by convolving c

n

with a (treating c

n

as a periodic

function), followed by selecting every other sample (often called downsampling). More formally

c

n�1

is obtained from c

n

by

c

n�1

i

=

X

l

a

l�2i

c

n

l

Clearly, some detail is lost in this �ltering process, since c

n�1

contains half as many samples as c

n

.

If a is appropriately chosen, this lost detail can be captured as a detail signal d

n�1

:

d

n�1

i

=

X

l

b

l�2i

c

n

l

where the �lters a and b = f: : : ; b

�1

; b

0

; b

1

; : : :g are called conjugate mirror �lters or analysis �lters.

The original signal can be recovered from c

n�1

and d

n�1

by convolution with a pair of synthesis

�lters p and q:

c

n

i

=

X

l

[p

i�2l

c

n�1

l

+ q

i�2l

d

n�1

l

]

The process of computing c

n�1

and d

n�1

from c

n

is known as decomposition and its inverse, recov-

ering c

n

from c

n�1

and d

n�1

is known as reconstruction. The decomposition process can be applied

5



recursively to c

n�1

to form c

n�2

and d

n�2

and so on, forming a �lter bank, illustrated in Figure 4.

The result of applying such a �lter bank to a signal c

n

is the set of sequences c

0

; d

0

; : : : ; d

n�1

.

Since the original signal can be recovered by the set of sequences c

0

; d

0

; : : : ; d

n�1

, they can be

thought of as a transform of the original signal, sometimes referred to as a wavelet transform. Note

that the number of elements in the wavelet transform is the same as in the original sequence c

n

.

Use of the �lter bank outlined above makes it possible to compute the wavelet transformation in

linear time if the analysis and synthesis �lters are of �nite width.

The multiresolution analysis framework developed by Mallat [5] provides a particularly con-

venient framework for understanding the relationship between the analysis and synthesis �lters

mentioned above. Rather than starting with the �lters, Mallat's idea was to associate a function

f

j

(x) with each sequence c

j

according to

f

j

(x) =

X

k

c

j

k

�(2

j

x� k)

where �(x) is a function that Mallat called a scaling function. Scaling functions are required to be

re�nable; that is, there must exist unique coe�cients : : : ; p

�1

; p

0

; p

1

; : : : such that

�(x) =

X

k

p

k

�(2x� k)

As suggested by the notation, the re�nement coe�cients turn out to form the synthesis �lter p.

More formally, given a scaling function �(x), Mallat de�nes an in�nite set of linear spaces V

j

by

V

j

= Span(�(2

j

� k) j k 2 f: : : ;�1; 0; 1; : : :g)

The fact that �(x) is re�nable implies that these spaces are nested: V

0

� V

1

� V

2

� � �.

By de�nition, the translates of the scaling function �(2

j

(x)) form a basis for V

j

. Let W

j

denote

the orthogonal complement of V

j

in V

j+1

. A wavelet is a function  (x) with the property that

translates of  (2

j

x) form a basis for W

j

.

The analysis �lters are formed by the coe�cient sequences that make the following relation

hold:

�(2x� l) =

X

k

[a

l�2k

�(x� k) + b

l�2k

 (x� k)]

Finally, the synthesis �lter q is de�ned to be the sequence satisfying

 (x) =

X

k

q

k

�(2x� k)

6



For multiresolution analysis of contours, we use the linear B-spline (or \hat function") as the

scaling function �(x). For the wavelet function  (x) we use the \single knot wavelet" of DeRose,

Lounsbery and Warren [2]. To obtain  (x), �rst de�ne �(x) to be the projection of �(2x� 1) 2 V

1

into V

0

. Then de�ne  (x)

 (x) = �(2x� 1)� �(x):

This de�nition of  (x) has an unfortunate consequence:  (x) has in�nite support. For our purposes,

it is su�cient to slightly modify the de�nition of  (x) so that the support is �nite. We do that

by solving the projection of �(2x � 1) into V

0

for a limited number of non-zero terms. This

modi�cation has the consequence that  (x) is no longer orthogonal to V

0

. One implication of this

loss of orthogonality is that the sequence c

n�1

is no longer the best least squares approximation

to c

n

(see [2] for more detail). By appropriately choosing the number of non-zero terms in the

projection of �(2x � 1) into V

0

, orthogonality can be approached as closely as desired. Another

approach to the problem of in�nite support is to truncate an in�nite sequence. That approach

maintains orthogonality but sacri�ces the ability to exactly reconstruct because of errors introduced

by truncation. We choose to sacri�ce orthogonality in favor of exact reconstruction.

To apply wavelet analysis to contours, we treat a contour as a sequence of knots with equally

spaced values of a parameter t. Each knot has associated values of x and y. We apply the wavelet

transform to x and y independently, each with respect to the parameter t.

Wavelet and Scaling Function

Psi(x)

Phi(x)

Y

X

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

-2.00 -1.00 0.00 1.00 2.00 3.00

Figure 5: The single knot wavelet and linear B-spline scaling function.

7



i -4 -3 -2 -1 0 1 2 3 4 5

a

i

1/24 -1/12 -1/8 1/3 2/3 1/3 -1/8 -1/12 1/24 0

b

i

0 0 0 0 -1/2 1 -1/2 0 0 0

p

i

0 0 0 1/2 1 1/2 0 0 0 0

q

i

0 1/24 1/12 -1/8 -1/3 2/3 -1/3 -1/8 1/12 1/24

Table 1: The non-zero terms of the analysis �lters a and b and the synthesis �lters p and q

The functions �(x) and  (x) are plotted in Figure 5. Table 1 shows the non-zero terms of

analysis �lters a and b and synthesis �lters p and q.

Our choice of � and  was motivated by the fact that a polygon of n vertices can be considered

to be a piecewise linear function de�ned on a set of n knots. Thus, the properties of the � and  

we chose are well suited to the nature of the data with which we are working.

3 Multiresolution Tiling

Multiresolution analysis motivates a new approach to solving the tiling problem. The �rst step is to

reduce the size of the problem by using multiresolution analysis to �nd low resolution approxima-

tions to the original contours (Figure 2). These low resolution contours are tiled using the method

of [3]. Detail is then added to the low resolution tiling by adding wavelets, inserting edges at newly

added vertices, and improving the tiling by local edge swapping. The resulting tiling is no longer

guaranteed to be optimal with respect to the goal function used for computing the low resolution

tiling, but can be computed much faster, particularly for contours with large n. Since the tiling

begins with an optimized base case, and maintains local optimality, the �nal tiling constructed is

often very nearly identical to that computed by the optimizing algorithm. Signi�cant di�erences

between the methods occur most often in areas where the pair of contours have very di�erent shape,

for example, when one contour has an indentation in an area that the other does not.

To achieve an overall speedup, the reconstruction and local optimization process must be fast.

If addition of a single wavelet coe�cient to the reconstruction requires as much as O(n) time, the

overall process will require O(n

2

) time. Since addition of a single wavelet coe�cient to a contour

can be done in constant time using the �lter bank algorithm, it is only necessary to demonstrate

that the additional time required for the addition of edges and local optimization of the tiling is

8



Fuchs

SSW

FB

Execution Time (seconds)

N

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

0.00 200 400 600 800 1000

Figure 6: Execution time versus N for the Fuchs, Kedem, Uselton algorithm and the Filter bank

(FB) and sorted single wavelet (SSW) multiresolution algorithms.

su�ciently small. It is possible to imagine a situation in which insertion of an edge or movement

of a vertex could alter a local con�guration so that a previously undesirable edge swap becomes

desirable. That edge swap could conceivably allow a \cascade" of previously unswappable edges

to become swappable. If such situations are common, it could take O(n) time to optimize locally

after addition of an edge, or movement of a vertex. Although we o�er no proof of an upper bound

for this process, we present data to support the assertion that for the average case it is very nearly

a constant time operation to optimize a tiling locally after local modi�cation by adding a vertex

and edge or moving a vertex (Figure 6, Table 2).

3.1 Contour Decomposition

Decomposition of a contour into a set of wavelet coe�cients and a lower resolution contour is done

using the �lter bank method described in Section 2. If the number of vertices in a contour is not a

power of 2, we add vertices using the following method:

9



� Place the original contour edges into a priority queue based on their length.

� Remove and bisect the longest edge in the queue by adding a new vertex at its midpoint.

� Insert the two new edges into the queue.

� Repeat until the required number of vertices have been added.

Since the number of vertices in a contour is at most doubled by this process, no more than a constant

factor of 2 is added to the overall complexity of computing a tiling for the resulting contour. With

appropriate choice of priority queue implementation, this addition of vertices requires at most

O(n log(n)) time for a contour of n vertices.

3.2 Reconstruction

The reconstruction of a contour from its low resolution version can be done using several di�erent

methods. The �lter bank algorithm described in Section 2 is one. It is easy to implement, and

reconstruction of a contour from its low-resolution version requires O(n) time. Another method is

to reconstruct by adding wavelet coe�cients one at a time. This method is not as easy to implement

as the �lter bank algorithm, and the reconstruction of the original contour from its low-resolution

version requires O(n log(n)) time, but it has some advantages over the �lter bank approach, which

will be discussed below. Local optimization of the tiling is done after each step of the reconstruction

of the contours from their low-resolution approximations.

3.2.1 Filter Bank

Computing a tiling using the �lter bank method involves the following steps: First, use the �lter

bank to decompose each contour to a low-resolution version. Next compute a tiling for this pair of

low-resolution contours using the optimizing tiling method of [3]. Finally, reconstruct the original

contours by repeating the following steps for each level of the �lter bank (see Figure 7):

� Construct a new polygon for each contour using one level of the �lter bank. This bisects

each edge of both contours, thereby introducing a new vertex into each triangle of the tiling

from the lower resolution level, so that the former triangles are now quadrilaterals, with three

vertices on one of the contours and the fourth on the opposite contour.

10



Figure 7: A tiling example, illustrating vertex and edge addition during reconstruction. Newly

added vertices are open circles, newly added edges are dotted lines.

� For each new vertex added to a contour, construct an edge from that vertex to the quadri-

lateral vertex on the other contour, splitting the quadrilateral into 2 triangles.

� Place all the old cross edges into a list of suspect edges.

� Locally optimize the tiling as described in Section 3.3.

� Repeat until the original resolution is reached (For a contour of 2

n

vertices and a low resolution

contour of 2

m

vertices where m < n, this will require n �m iterations).

The �lter bank method is easily implemented and the reconstruction of contours from their low-

resolution versions only requires linear time. The amount of time required for local optimization of

the tiling at each level of the �lter bank reconstruction determines the overall cost of the algorithm.

We have collected experimental results generated by using this algorithm to construct tilings for

contours obtained from the human brain (Figure 6). These data suggest that the optimization step

requires approximately constant time to add one vertex and edge to the tiling (Table 2), with the

result that the overall cost of the �lter bank tiling method is O(n log(n)) or better.

11



3.2.2 Single Wavelet

The �lter bank reconstruction process doubles the resolution of each contour at each step, and

requires that wavelet coe�cients be added in the inverse of the order they were found during

analysis. By adding wavelet coe�cients one at a time, it is possible to use them in any desired

order, and to avoid using them if their magnitude is below some threshold value. It is particularly

useful to reconstruct by adding the wavelet coe�cients in decreasing order of their magnitude.

+

0

4

8

12

0

1

3

5

6

7

9

11

0

1

3 4

5

6

7 8

9 11

12

0

Wavelet

Function

Result of
adding
wavelet to
function

o o

o

o

o

o

o o

o

Figure 8: Illustration of Single Wavelet reconstruction in one dimension. The wavelet has intrinsic

knots at t values of 1, 3, 5, 6, 7, 9, 11. The function initially has knots with t values 0, 4, 8,

12. After addition of the wavelet, the function will have knots at t values 0, 1, 3, 4, 5, 6, 7, 8, 9,

11, 12. Open circles indicate knots added to the function and wavelet for which values must be

interpolated before adding the wavelet to the function.

Adding wavelets in sorted order has two bene�ts. First, it allows for data compression. Re-

construction using only wavelets with coe�cient magnitude larger than some threshold value can

reduce the number of vertices in a contour while preserving as much detailed structure as is consis-

tent with the reduced number of vertices. Second, reconstruction by addition of wavelets in order

of decreasing magnitude causes the contours to approach their original shape as rapidly as possible.

Intuitively, it seems plausible that this should produce a better tiling because the local optimization

process operates on a close approximation of the �nal shape as early as possible. In practice, this

12



approach seems to produce a better tiling than reconstruction using single wavelet reconstruction

in the order generated by �lterbank decomposition.

The initial steps in computing a tiling using the single wavelet method are the same as those in

the �lter bank method. Figure 8 illustrates the process of adding a wavelet to a one-dimensional

function f(t). For a two-dimensional contour, both the x and y coordinates of a vertex are modi�ed

by the x and y components of the wavelet coe�cient. Starting from a tiled pair of low-resolution

contours, the single wavelet method proceeds as follows:

� Select a wavelet to add. The method we use is to alternate contours at each iteration, and

use the wavelets in descending order of the magnitude of the vector formed by their x and y

coe�cients.

� Determine the region of the contour in
uenced by the wavelet. Add knots to the contour as

necessary. Any knots intrinsic to the wavelet but not already present in the contour must

be added to the contour, and values for their x and y scaling function coe�cients must be

computed. The set of knots in the contour becomes the union of the set of knots intrinsic to

the wavelet and the knots previously in the contour. If any knots are added to the contour

at this step, edges must be added to split quadrilateral or larger faces into triangles (see

Figure 7).

� Add knots to the wavelet if necessary. Any knots present in the region of the contour in-


uenced by the wavelet but not intrinsic to the wavelet must be added to the wavelet, and

values interpolated for x and y for the added knots. The x and y values of the intrinsic knots

are computed by multiplying the wavelet function values at those knots by the wavelet coef-

�cients. Values for knots added to the wavelet because they are in the contour are obtained

by interpolating between the values at the intrinsic knots. The wavelet contains the union of

its intrinsic knots and all knots of the contour within its range of in
uence after this step.

� Update the positions of the vertices a�ected by the wavelet by adding the values of x and y

at the wavelet knots to the corresponding x and y values of the contour knots at each knot

in the wavelet knot sequence.

� Place all edges incident on any vertex in
uenced by addition of the wavelet onto a list of

suspect edges.

13



� Locally optimize the tiling by the method described in Section 3.3.

� Repeat until all wavelets have been added, or until the coe�cients of the remaining wavelets

are below a threshold value.

In contrast to the �lter bank reconstruction, reconstruction of a polygon using this single wavelet

algorithm requires O(n log(n)) time. The main reason for using single wavelet reconstruction is to

add wavelets in sorted order of coe�cient magnitude. Because sorting already costs O(n log(n))

time, this ine�ciency relative to the �lter bank reconstruction is not a major cause for concern.

3.3 Local Optimization

Local optimization of the tiling after addition of a wavelet involves identifying a subset of suspect

edges and examining them to determine if the local geometry allows an edge swap, and if so,

swapping the edge orientation if doing so reduces the goal function. The initialization of the list of

suspect edges for the �lter bank reconstruction method di�ers from that used in the single wavelet

reconstruction method. Only edges connecting vertices on di�erent contours need to be considered,

since contour edges cannot be swapped. The basic idea is that edges must be examined if the

connectivity or geometry has changed in their immediate surroundings.

Filter bank reconstruction proceeds in levels which double the resolution of the contour at

each step. Initializing a suspects list for this reconstruction method is straightforward: all edges

connecting a vertex from one contour to a vertex from the other contour in the tiling from the

previous level are adjacent to a newly added edge, and are placed onto the suspects list.

Single wavelet reconstruction adds an indeterminate number of vertices to a contour at each

step. The number can range from 0 to 7 in our implementation. The maximum depends on the

number of non-zero terms in the analysis and reconstruction �lters. If no vertices are inserted

during addition of a wavelet, maintenance of a suspects list based on adjacency to new edges would

not place any edges into the suspects list. Since all of the vertices within the range of the wavelet

may move, this is not a good strategy. The strategy we use is to insert all edges incident on any

vertex within the range of the added wavelet into the suspects list. Once the suspects list has been

initialized, optimization proceeds in the same manner used for �lter bank reconstruction.

14



After the list of suspect edges has been initialized, optimization proceeds by removing an edge

from the suspects list and examining it to determine whether a swap of its orientation reduces the

goal function, performing the swap if it does. If a swap is performed, edges adjacent to the swapped

edge are rendered suspect, and placed onto the suspects list. The optimization process terminates

when the list is empty.

The amount of time required for this local optimization is critical to the complexity of our

algorithm. We have not been able to prove an upper bound for the process, but data collected

in tests using contours ranging in size from 16 to 1024 vertices suggest that the number of edges

examined per vertex added during reconstruction is very nearly constant for contours ranging

in size from 128 to 1024 vertices. These data imply an expected performance for the �lter bank

reconstruction ofO(n) and for the single wavelet reconstruction of O(n log(n)) if wavelet coe�cients

are added in order of decreasing magnitude. Since addition of vertices can require O(n log(n)) time,

the expected complexity implied by our data is O(n log(n)) for both the �lter bank and sorted single

wavelet methods.

3.4 Choice of base case size

The base case is a pair of low-resolution contours computed by using �lter bank decomposition on

the original contours. An optimal tiling is computed for the base case using the algorithm of Fuchs,

Kedem and Uselton [3] in step 2 of our algorithm. The size of this base case needs to be chosen to

balance overall execution time and quality of the resulting tiling. Since the base case is of constant

size, its tiling can be computed in constant time.

The smallest possible base case is a pair of quadrilaterals. Reducing the original contours to

this size should result in the maximum speedup of the multiresolution tiling method over that of

[3]. However, the quality of tiling constructed is likely to depend on how far removed the base

case is from the original contour. Constructing an initial optimal tiling from a pair of contours

that contain most of the key shape features of the originals is likely to produce a better �nal tiling

than constructing the initial tiling from a base case that contains few of the shape features of the

original.

One option is to allow the user to specify the base case size. In that manner the user can make

15



SSW 256

FB 256

Area Ratio (Opt/MRTile)

Base Size
0.90

0.92

0.94

0.96

0.98

1.00

20.00 40.00 60.00 80.00 100.00 120.00 140.00

Figure 9: Tiling quality as a function of base case size for the contours of Figure 1. SSW: Sorted

single wavelet reconstruction. FB: Filterbank reconstruction.

the tradeo� between acceptable tiling result and execution time. In an interactive environment,

this is probably the best solution. In a non-interactive environment, a base case size of 64 seems to

work well (Figure 9). For contours of that size, the execution time of the Fuchs algorithm and the

sorted single wavelet algorithm are approximately equal (see Figure 6). Contours containing 64 or

fewer vertices can be tiled using the Fuchs, Kedem, Uselton algorithm without signi�cant loss of

performance since a base case that size can be computed in roughly the same time it would take

to reconstruct from a smaller base case.

4 Results

We have implemented both the �lter bank and single wavelet reconstruction versions of the al-

gorithm described above. To evaluate their performance we timed execution on pairs of contours

obtained from the digital anatomist project, Department of Biological Structure, University of

Washington. In those data, contour size ranges from 20 to over 700 vertices. Each timing run

computed a tiling using the Fuchs algorithm and a tiling using one of the multiresolution methods.

Various statistics were gathered by counting the number of times certain key pieces of code were

executed. The resulting tilings were compared with respect to the goal function optimized by the

Fuchs algorithm. The results of these tests are shown in Figures 6 and 9, and Table 2.

16



n 16 32 64 128 256 512 1024

FB Edges Examined 45.6 132.3 299 614 1264 2491 5136

FB Examined/n 2.84 4.14 4.68 4.80 4.94 4.86 5.02

SSW Edges Examined 275 921.3 2134 4675 9576 20113 39672

SSW Examined/n 8.59 14.40 16.67 18.26 18.70 19.64 19.38

Table 2: Number of edges examined during the optimization process for contours ranging in size

from 16 to 1024 vertices by the Filter bank (FB) and Sorted single wavelet (SSW) reconstruction

methods. A base case size of 8 was used.

Table 2 shows the number of edges examined during the local optimization phase of recon-

struction for the sorted single wavelet and �lter bank reconstruction methods. Contour size ranges

from 16 to 1024 vertices. After in initial rise in the number of edges considered per contour vertex,

the number per vertex remains nearly constant for contours ranging in size from 64 to 1024 ver-

tices. These data suggest that for average inputs, a nearly constant number of edges needs to be

considered when during local optimization.

Figure 6 shows the timing results obtained for each of the Fuchs, Filter Bank (FB), and Sorted

Single Wavelet (SSW) algorithms using a base case size of 8. For n = 1024, with a base case size

of 64 the FB algorithm is 70 times faster than the Fuchs algorithm. The Fuchs algorithm takes

nearly 80 seconds of CPU time, while the FB method takes slightly over one second.

Figure 9 shows how the selection of base case size a�ects the quality of the tiling for the set of

contours shown in Figure 1. Notice that larger base case improves tiling quality (measured as the

ratio between the cost of the optimal tiling and the cost of the multiresolution tiling), and that a

base case size of 64 seems to be at the point on the curve where further increase in base case size

only marginally improves the �nal result.

Figure 3 shows the tilings produced for a pair of contours from the cerebral cortex of the human

brain. The contours contain 195 and 172 vertices. The goal function value for the optimal tiling

was 9.9 and that for the multi-resolution tiling was 10.7, seven percent larger than the optimum

value. Notice that there are areas in both tilings that may not be acceptable. In part a, the tiling

connects the long indentation on the lower edge of the smaller contour to the center of the edge

of an indentation on the other contour, which probably is not what happens in the real object. In

part b the indentation in the smaller contour is connected to an indentation of the larger contour,

but it is unclear whether or not the tiling in that area violates the constraint that the polyhedron

17



produced by a tiling must be simple. Simply put, the \correct" tiling in this region is ambiguous,

and depends on the nature of the material from which the contours were derived, and no algorithmic

approach is likely always to yield results acceptable to a trained human user.

Figure 10: Tilings of the contours in Figure 1 using the sorted single wavelet algorithm with thresh-

old values of Left: 0.001, Center: 0.0025, and Right: 0.005. The threshold value multiplied by

the magnitude of the largest wavelet coe�cient determines the magnitude of the smallest coe�cient

used.

Figure 10 shows a series of reconstructions of single contours using the sorted single wavelet

method in which coe�cients smaller than a threshold value were discarded. The number of vertices

in the contours decreases signi�cantly, while the overall shape of the contours retains much of the

original detail. For many purposes, the resolution of the tiling shown in part c may be adequate.

The low-resolution version requires signi�cantly less space to store, and less time to display.

5 Conclusions

We have described a multiresolution approach to improving the performance of a well known

algorithm for solving the tiling problem, that of Fuchs, Kedem and Uselton [3]. Their algorithm

computes a tiling which is optimal with respect to a goal function that assigns a cost to each triangle

in the tiling. Perhaps the most commonly used such goal function is to minimize the sum of the area

of the triangles. An unfortunate problem is that this optimal algorithm requires O(n

2

log(n)) time

and O(n

2

) space. In practice, these costs are too great for use in an interactive system if contours

18



much larger than 250 vertices are to be encountered. While testing their algorithm on contours of

1000 vertices, we found that the amount of memory required caused a machine with 20 mbytes of

memory to thrash. The time required to construct a tiling was approximately 35 minutes for a pair

of 1000 point contours. The method we present requires linear space, a signi�cant improvement

over the quadratic space requirement of the Fuchs algorithm. This space saving is very important if

a system is to be used on computers with modest memory resources. The multiresolution method

took just 1.1 seconds to compute a tiling for the same 1000 vertex contours. When run on a machine

with su�cient memory to avoid thrashing (65 mbytes), the Fuchs, Kedem, Uselton algorithm took

approximately 80 seconds to compute a tiling.

A problem with all known tiling algorithms is that they can produce unacceptable tilings. In

fact, O'Rourke and Subramanian [7] have shown that the tiling problem is not always solvable.

Problems arise when the pair of contours to be tiled di�er greatly in shape. That these problems

occur in real data sets can be seen by examining the pair of contours shown in Figure 1. Tilings

computed for this pair of contours by the \optimal" Fuchs algorithm, and by our \Sorted Single

Wavelet" algorithm are shown in Figure 3. Some areas of each tiling are probably not acceptable

reconstructions of the brain tissue from which the contours were obtained. The problem is that the

input is not su�ciently precise to resolve ambiguity in the problem areas, even though the spacing

between the planes of the contours is only 1.3 mm.

Since unacceptable tilings can occur, a practical system for reconstructing surfaces from con-

tours must be interactive. The computational cost of the Fuchs, Kedem, Uselton algorithm [3], both

in time and space required, have caused implementors of practical systems to use other methods.

The method we present in this paper is dramatically faster than the method of [3]. It does not

guarantee a globally optimal tiling, but in view of the need for user interaction in many complex

cases (even when using a globally optimal algorithm), that may not be a large defect. In many

cases the tilings produced by the multiresolution method are equivalent to the optimal tilings. In

general, the optimal tiling di�ers signi�cantly from the multiresolution results only in complex cases

for which neither algorithm produces a completely acceptable result.

19



5.1 Future Work

When the shape of a pair of contours is signi�cantly di�erent, it becomes di�cult or impossible to

construct an acceptable tiling [7]. Some of the data sets we have used to test our methods exhibit

this characteristic. User interaction therefore remains an important part of a practical system.

Relaxing the speci�cation of a solution to the tiling problem to allow inclusion of triangles in the

plane of either of the sections could avoid the di�culties encountered when the shape of adjacent

contours di�ers greatly. Detection of shape di�erences and their location can be used to �nd areas

in which the tiling would be better done in the plane of a contour rather than between contours.

The use of multiresolution analysis may help to make such methods fast enough to use interactively.

6 Acknowledgements

The author would like to thank Tony DeRose for the suggestion that multiple resolution analysis

might be pro�tably applied to the tiling problem, and many helpful discussions along the way.

References

[1] Charles K. Chui. An Introduction To Wavelets. Academic Press, Inc., 1992.

[2] Tony D. DeRose, Michael Lounsbery, and Joe Warren. Multiresolution analysis for surfaces

of arbitrary topological type. Technical Report 93-10-05, University of Washington, Dept. of

Computer Science and Engineering, 1993.

[3] H. Fuchs, Z.M. Kedem, and S.P. Uselton. Optimal surface reconstruction from planar contours.

Communications of the ACM, 20(10):693{702, October 1977.

[4] E. Keppel. Approximating complex surfaces by triangulation of contour lines. IBM J. Res.

Develop., 19:2{11, January 1975.

[5] Stephane Mallat. A theory for multiresolution signal decomposition: The wavelet representa-

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):674{693, July

1989.

[6] David Meyers, Shelley Skinner, and Kenneth Sloan. Surfaces from contours. ACM Transactions

on Graphics, 11(3):228{258, July 1992.

[7] Joseph O'Rourke and Vinita Subramanian. On reconstructing polyhedra from parallel slices.

Technical Report TR # 008, Smith College Department of Computer Science, Northampton,

MA 01063, June 20, 1991.

20


