
Probabilistic Planning with Information

Gathering and Contingent Execution

Denise Draper, Steve Hanks, Dan Weld

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

Technical Report 93{12{04

December 19, 1993

Probabilistic Planning with Information Gathering and Contingent

Execution

�

Denise Draper Steve Hanks Daniel Weld

Department of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195

fddraper, hanks, weldg@cs.washington.edu

January 20, 1994

Technical Report 93-12-04

Abstract

One way of coping with uncertainty in the planning process is to plan to gather information

about the world at execution time, building a plan contingent on that information. Literature on

decision making discusses the concept of information-producing actions, the value of information,

and plans contingent on information learned from tests, but these concepts are missing from AI

representations and algorithms for plan generation.

This paper presents a planning algorithm that models information-producing (sensing) ac-

tions and constructs plans whose executions depend on the nature of the information gathered

from sensors. We build on the buridan probabilistic planning algorithm

[

Kushmerick et al., To

appear

]

, extending the action representation to model the behavior of imperfect sensors, and

combine it with a framework for contingent action that extends the cnlp algorithm

[

Peot and

Smith, 1992

]

for conditional execution. The result, c-buridan, is an implemented planner that

extends the functionality of both buridan and cnlp.

�

This research was funded in part by NASA GSRP Fellowship NGT-50822, National Science Foundation Grants

IRI-9206733 and IRI-8957302, and O�ce of Naval Research Grant 90-J-1904.

i

Contents

1 Introduction 1

2 Representation: States, Actions, and Plans 3

2.1 Propositions : 3

2.2 States : 3

2.3 Actions : 4

2.4 Information-producing actions : 6

2.5 Plan steps & contexts : 8

2.6 Assessing goal probability : 8

2.7 Planning problems and solutions : 9

3 Plans and planning 9

3.1 Initial and goal steps : 10

3.2 Plans : 10

3.3 The planning algorithm : 11

3.4 Example : 14

3.5 Example : 16

3.6 Contexts and plan structures : 17

4 Propagation of Step Contexts 17

4.1 Forward propagation : 18

4.2 Reverse propagation : 19

5 Summary and Related work 20

5.1 Related work : 21

5.2 Probabilistic planning : 21

5.3 Conditional planning : 21

5.4 Future work : 22

ii

1 Introduction

One way of coping with uncertainty in the planning process is to plan to gather information about

the world at execution time, building a plan contingent on the results of that information: before

driving a mountain pass in the winter we might listen to a radio broadcast, planning an alternate

route if the weather report predicts snow. Before buying a car we might ask a mechanic to examine

the car, buying it if and only if the report says it's in good working order.

Information-producing actions and contingent plans are complementary: it doesn't make sense

to improve one's information about the world if that information can't be exploited later in the

plan, and it doesn't make sense to build a contingent plan if there is no way to improve one's state

of information about the world at execution time.

Planning with information-producing actions and contingencies requires several extensions to

classical plan and action representations:

� we need to represent the agent's incomplete state of information about the world

� we need to represent the di�erence between changes an action makes to the world and changes

an action makes to the agent's state of information about the world

� we need to represent a plan whose actions depend on information obtained during execution.

This paper presents a representation and algorithm for probabilistic planning with information-

producing actions and contingent execution. We extend the buridan

[

Kushmerick et al., To appear

]

probabilistic action representation to allow actions with both informational and causal e�ects, and

combine it with a framework for building contingent plans that builds on the cnlp algorithm

[

Peot

and Smith, 1992

]

. The resulting algorithm, c-buridan, takes as input a probability distribution

over initial world states, a goal expression, a set of action descriptions, and a probability threshold,

and produces a contingent plan that makes the goal expression true with a probability no less than

the threshold.

Consider the following example, which the paper will develop fully. A manufacturing robot is

given the task of processing a widget. Its goal is to have the widget painted (PA) and processed

(PR). Processing the widget consists of identifying it as either
awed (FL) or not
awed (FL), then

rejecting or shipping the widget (reject or ship), respectively. The robot also has an operator paint

that usually makes PA true.

Although the robot cannot immediately tell whether or not the widget is
awed, it does have

a sensing operator inspect that tells it whether the widget is blemished (BL). The sensor usually

reports bad if the widget is blemished, and ok if not. Initially any widget that is
awed is also

blemished. Two things complicate the sensing process:

� Painting the widget removes a blemish but not a
aw, so executing inspect after the widget

has been painted conveys no information about a
aw.

� The sensor is sometimes wrong: if the widget is blemished then 90% of the time the sensor will

report bad, but 10% of the time it will erroneously report ok. If the widget is not blemished,

however, the sensor will always report ok.

Assume that initially there is a 0.3 chance that the widget is both
awed and blemished (i.e.

that FL and BL are both true) and a 0.7 chance that it is neither
awed nor blemished.

1

A planner that cannot observe the widget and exploit the information from the sensor can at

best build a plan with a success probability 0.7: it assumes the widget will not be
awed, paints it

and ships it.

An information-gathering planner can generate a plan that works with probability .97: it �rst

senses the widget, then paints it. Then if the sensor reported ok, it ships the widget, otherwise

it rejects the widget. This plan fails only in the case that the widget was initially
awed but the

sensor erroneously reports ok, which occurs with probability (0:3)(0:1) = 0:03.

1

Building this plan requires reasoning about several new concepts:

� Information-producing actions: the planner must distinguish between an operator that makes

the widget blemished (or removes a blemish) and one that observes whether it is blemished.

Both change the probability that BL is true, but the latter also provides information about

FL while the former does not.

� Imperfect sensing actions: the fact that the sensor can incorrectly report that the widget is

unblemished a�ects the probability that the plan will succeed.

� Informational dependencies: inspecting the widget before it is painted conveys information

about whether or not the widget is
awed; doing so after the widget is painted does not.

� Contingent execution: the ship and reject actions are both in the plan, but should be executed

under di�erent circumstances|the former when the inspect action reports ok, the latter when

it reports bad.

The c-buridan planner confronts these problems, and generates the contingent plan described

above. c-buridan's main technological advances are:

1. An action represent that extends the buridan planner to include information-producing (sen-

sory) actions. c-buridan uses the traditional Bayesian framework for representing imperfect

evidence sources (sensors), but the symbolic component of its representation allows actions

to be manipulated by a plan-generation algorithm as well. c-buridan's action representa-

tion allows arbitrary symbolic and probabilistic dependencies between the world's state at

execution time and the report returned by the sensor

2. A plan representation and generation algorithm that supports contingent planning. Step

execution can depend on reports generated by prior information-producing actions. The

c-buridan plan representation generalizes traditional conditional plan representations (

[

War-

ren, 1976

]

,

[

Peot and Smith, 1992

]

,

[

Etzioni et al., 1992

]

) in that it allows conditional branches

to be \merged" (see Section 3.6).

This paper describes the implemented c-buridan system by developing the widget-shipping

example introduced earlier in this section. It begins with the action and plan representation, then

describes the planning algorithm, and ends with a discussion of e�ciency issues and directions for

future work.

1

Actually a planner can generate an even better plan by sensing the part repeatedly.

2

2 Representation: States, Actions, and Plans

Here we present the formal de�nition of a state, an action, a plan, a planning problem, and what

it means for a plan to solve a planning problem. Much of this representation is identical to the

buridan planner, and the reader is referred to

[

Kushmerick et al., To appear

]

for more detail.

2.1 Propositions

We begin by de�ning a set of domain propositions, each of which describes a particular aspect of

the world. Domain propositions for our example are:

� FL|the widget is
awed

� BL|the widget is blemished

� PR|the widget is processed

� PA|the widget is painted

� ER|an execution error occurs

A domain proposition means that aspect of the world is true and a negated domain proposition,

e.g. FL, means that aspect of the world is false.

2.2 States

A state is a complete description of the agent's model of the world at a particular point in time. We

represent a state as a set of domain propositions in which every proposition appears exactly once,

negated or non-negated. In our example we know that initially the widget has not been processed

or painted, and that there is as yet no error. But there is some chance it is
awed and blemished

and some chance it is neither. Thus there are two possible initial states:

s

1

= f FL; BL; PR; PA; ER g (1)

s

2

= f FL; BL; PR; PA; ER g (2)

We will use ~s to refer to a random variable over states, and ~s

I

the particular distribution over

initial states. This random variable is de�ned as follows for our example:

P[~s

I

= s

1

] = 0:3

P[~s

I

= s

2

] = 0:7

The probability of an arbitrary event X given the random variable ~s is computed from the proba-

bilities of X given individual states in the standard manner:

P[X j~s] �

X

s

P[X js]� P[~s = s]; (3)

For completeness, we de�ne the probability of a set X of domain propositions given a state to be

1 i� the conjunction of propositions in X is true in that state:

P[X js] =

(

1 if X � s

0 otherwise

(4)

3

Then we can compute, for example:

P

�

fPR;PAgj~s

I

�

= P

�

fFL;PAgjs

1

�

� P[~s

I

= s

1

] + P

�

fFL;PAgjs

2

�

� P[~s

I

= s

2

]

= 1� 0:7 + 0� 0:3 = 0:7

2.3 Actions

An action describes the e�ects the plan operator has on the world when it is executed. The nature

of the e�ects can depend both on the state in which the step is executed as well as random factors

(not modeled in the state). Figure 1 shows a diagram of the paint action: an error results if an

attempt to paint the widget is made when it has already been processed; otherwise with probability

0.95 the widget will become painted and all blemishes removed and with probability 0.05 the action

will not change the state of the world at all. Notice that the leaves of the tree do not contain states;

rather they indicate changes to a state (like strips adds and deletes).

paint

PA BL ERβα γ

PRPR

p(0.95) p(0.05)

Figure 1: The paint action usually paints the widget (PA) and removes blemishes (BL).

We can describe an action formally as a set of consequences. Each consequence is a triple of

the form hT

�

; �

�

; E

�

i, where T

i

is a set of domain propositions known as the consequence's trigger,

p

i

is a probability, and E

i

is a set of e�ects associated with the consequence. The representation

for the paint action is

paint = f (fPRg, 1.0, fERg)

(fPRg, 0.95, fPA, BLg)

(fPRg, 0.05, fg) g

The changes resulting from a set of e�ects E is de�ned by a function result(E ; s) in the manner

of a strips add and delete list: negate all the propositions that appear negated in Ethen remove

negations from all propositions that appear in Ewithout negation (see

[

Kushmerick et al., To appear

]

for the full de�nition).

An action induces a change from a state s to a probability distribution over states, which we

de�ne in terms of the probabilities that its consequences will occur. First of all, for any consequence

hT

�

; �

�

; E

�

i we de�ne

P[hT

�

; �

�

; E

�

ijs] = P[T

i

js]� p

i

(5)

Notice that T

i

is a set of domain propositions, therefore P[T

i

js] will be either 0 or 1 for any state

s, and so this probability will either be 0 or p

i

for any consequence. Furthermore, we require the

triggers of an action to have following two properties:

� an action's triggers T are mutually exclusive and exhaustive, so for any state s one trigger

will have probability 1 and the rest will have probability 0,

� for any single trigger T

i

, the associated probabilities p

j

will sum to 1.

4

reject

PR PR ER ERβα γ

PRPR

FL FL

ship

PR PR ER ERβα γ

PRPR

FL FL

Figure 2: The ship and reject actions

As a result we know that

P

hT

�

; �

�

; E

�

i2A

P[hT

�

; �

�

; E

�

ijs] = 1 for any action A and any state s. The

tree-structured form of our actions (e.g. Figure 1) makes it easy to construct actions which have

these properties.

Now we can de�ne the probability that executing an action A starting from state s results in a

new state t:

P[t js;A] =

(

P[hT

�

; �

�

; E

�

i js] if hT

�

; �

�

; E

�

i 2 A and t = result(E

i

; s)

0 otherwise

(6)

The form of an action's consequences noted above guarantees that

P

t

P[t js;A] = 1 for any action

A and any state s.

In the example scenario the distribution after executing paint looks like this:

P

�

fFL;BL;PR;PA; ERgj~s

I

; paint

�

= 0:285

P

�

fFL;BL;PR;PA; ERgj~s

I

; paint

�

= 0:015

P

�

fFL;BL;PR;PA; ERgj~s

I

; paint

�

= 0:665

P

�

fFL;BL;PR;PA; ERgj~s

I

; paint

�

= 0:035

And given this probability distribution we can compute the marginal probabilities of various com-

binations of domain propositions. For example:

P[fPAgj~s

I

; paint] = 0:95

P[fBLgj~s

I

; paint] = 0:015

P[fPR; ERgj~s

I

; paint] = 0:0

P[fFLgj~s

I

; paint] = 0:3

Figure 2 shows twomore actions pertaining to the example: ship and reject. The ship successfully

processes the widget if it is not
awed and not already processed. Shipping a
awed widget or trying

to ship a widget that has already been processed will cause an execution error. The reject step

works similarly: the step processes the widget successfully if it is
awed and it has not already

been processed.

2.3.1 Action sequences

We will often reason about executing a sequence of actions|we will use hA

1

;A

2

; : : : ;A

n

i to mean

executing A

1

, then A

2

, and so on, and hi to mean a sequence of 0 actions.

State probabilities after executing a sequence of actions are de�ned as an extension of Equation

6:

P[u js; hi] =

(

1 if u = s

0 otherwise

(7)

5

P[u js; hA

1

;A

2

; : : : ;A

n

i] =

X

t

P[t js;A

1

]� P[u j t; hA

2

; : : : ;A

n

i] (8)

2.4 Information-producing actions

We have so far represented actions as a mapping from a state to a probability distribution over

states, where the new distribution is de�ned by the e�ects the action will have on the world if

it is executed in the input state. By contrast consider an action inspect that reports on whether

or not the widget is blemished (whether or not BL is true). We want to retain the de�nition

of actions as mappings from mutually exclusive triggers into sets of e�ects, but we also want to

distinguish between the e�ects the action has on the world and the e�ects it has on the agent's state

of information

[

Etzioni et al., 1992

]

. Executing inspect does not change the probability that BL is

true, but it does provide the agent with information about whether BL is true or not. Executing

inspect and receiving a report that BL is true does change BL's posterior probability, but the nature

of that report will not be known until the step is actually executed.

We model the information produced by an action by allowing it to report on which of its

consequences actually occurred at execution time. We do so by placing an observation label on each

of an action's consequences. The observation label corresponds to the sensor's report: when the

action is executed the agent will be informed of the observation label of the consequence that was

actually realized in the world.

There is an important distinction between our representation and the approach employed by

other sensing representations (e.g.

[

Peot and Smith, 1992

]

), which assert the results of a information-

gathering act just as if the information-gathering act had made the result true. Confusing the

changes an action makes to the world with the changes an action makes to the agent's information

about the world can lead to anomalous behaviors, like attempting to make a proposition true by

repeatedly sensing it. c-buridan avoids this and similar di�culties, since inserting an information-

producing action into a plan does does not change the probability that the observed proposition

is true when the the plan is executed. However the conditional probability that the observed

proposition is true given that a particular report has been received does change, as we will explain

below.

inspect

βα γ

BL BL

p(0.90)p(0.10)

OK BADOK

Figure 3: The inspect action models an imperfect sensor

Consider the inspect action in Figure 3.

2

There are two di�erent observation labels, bad, and

ok. Also notice that two consequences are labeled with ok, so the agent would be unable to

ascertain which of these two consequences actually occurred.

2

This version of inspect is overly simple in that it allows the widget to be inspected after it has been processed.

A more realistic version of the action would have a fourth consequence with trigger PR, which would make ER true.

6

The observation labels must be included in an action's de�nition, so now an action's consequence

consists of four parts: hT

i

; �

i

; E

i

; o

i

i, where T

i

is the trigger, p

i

is the probability the consequence

will be realized if the trigger is true, E

i

is the e�ects the consequence will have if it is realized, and

o

i

is the observation label reported if the consequence is realized.

Information-producing actions are those with more than one observation label; the information

they convey is de�ned by their discernible equivalence classes, or decs, indicated by the ovals in

Figure 3. Actions like paint have no informational e�ect|they have a single observation label

attached to all their consequences, thus they have a single dec. Executing the action provides no

information as to which consequence actually came about.

Notice the di�erence between the causal and informational e�ects of executing an action. The

changes an action makes to the world are recorded in the change sets of its consequences, and

the planner uses the contents of the actions' e�ect sets when adding steps and links to a plan.

Although the actions in our example problem are either essentially causal in their e�ects (paint) or

informational in their e�ects (inspect), there is no reason that an action cannot both change the

world and provide information about it as well|an action can have both propositions in its change

sets and more than one observation label, and the planner can exploit both of these properties.

The immediate information provided by the execution of inspect can be characterized as follows:

if it generates the report bad then consequence
 de�nitely occurred and BL is de�nitely true, but

if it generates the report ok then either � or � occurred, and BL may or may not be true.

We can characterize the inspect action more precisely using these conditional probabilities that

appear in the action's consequences:

P[bad jBL] = 0:9 P[ok jBL] = 0:1

P

�

bad jBL

�

= 0:0 P

�

ok jBL

�

= 1:0

which is a standard probabilistic representation of an uncertain evidence source (see, e.g.,

[

Pearl,

1988, Chapter 2

]

).

The probabilities of domain propositions conditioned on sensor reports is handled using Bayes

rule in the standard way. Suppose inspect is executed in the initial state (where PR is known to be

false and P[BL] = 0:3), and the report ok is received:

P[BL jok] =

P[ok jBL]P[BL]

P[ok jBL]P[BL] + P

�

ok jBL

�

P

�

BL

�

=

(0:1)(0:3)

(0:1)(0:3)+ (1:0)(0:7)

= :041

If instead the report badis received:

P[BL jbad] =

P[bad jBL]P[BL]

P[bad jBL]P[BL] + P

�

bad jBL

�

P

�

BL

�

=

(0:9)(0:3)

(0:9)(0:3)+ (0:0)(0:7)

= 1:0

The inspect action can also provide information about propositions other than BL. Since BL

and FL are initially perfectly correlated in the example, we have P[FL jBL] = 1 and therefore can

conclude P[FL jbad] = 1 and P[FL jok] = 0:041. Executing paint destroys this correlation, however,

so executing inspect after paint would not provide any additional information about FL(but it

still would about BL). The point is that the information content of an action cannot be fully

characterized by examining the operator alone|it depends on what probabilistic relationships

hold in the plan at the time the action is executed.

Finally we should note that sensing actions like inspect are useless by themselves: the fact that

the probability of FL changes depending on whether inspect reports ok or bad is of no use to

7

the planner if it can't make the execution of subsequent plan steps sensitive to which of the two

reports are received. Section 3.4.1 discusses how the execution of steps in a plan can depend on

the observation labels generated by previous steps.

2.5 Plan steps & contexts

A plan step is a triple: haction; index; contexti.

The step index allows multiple instances of the same action to appear in the plan, in particular

allowing their observation labels to be distinguished. Suppose that there were two instances of

inspect in a plan, one with index i, the other with index j. The two observation labels of the �rst

step would be \OK-i" and \BAD-i" while the second step's observation labels would be \OK-j"

and \BAD-j." Our example plans will have only one instance of any action, so we will omit these

indexes in the paper.

A step's context dictates the circumstances under which the step should be executed. In par-

ticular, each context is a set (implicit conjunction) of observation labels from previous steps in the

plan; only when the step's context matches the observations actually produced during execution

can it can be executed.

Suppose, for example, we have the following sequence of steps:

hinspect; 1; Ti,

hship; 2; fokgi

hreject; 3; fbadgi

and suppose the agent executes the inspect step, receiving the report bad. It then considers

executing the next step in the sequence. It skips ship, since that step's context does not match the

report produced by execution of inspect. The agent next decides to execute the third step, reject,

since the step's context does match the report produced by inspect.

In summary, we require that an agent keep track of the execution context|the reports (obser-

vation labels) produced by the steps executed in the plan so far. Plan steps are executed only when

the execution context matches the step's context.

2.6 Assessing goal probability

Here we de�ne the probability that the a sequence of steps satis�es some goal expression G. The

de�nition is an extension of Equation 8 that takes into account each step's context and its relation

to previously executed steps in the sequence.

In particular, the e�ect of executing a step given an execution context is either (i) the e�ect of

executing the corresponding action (if the contexts match) otherwise, (ii) no change (if the step's

context doesn't match the execution context). To make this precise, we start with the analogue of

Equation 7, stating that if there are no steps in the sequence then the probability depends only on

the initial probability. Here C is an execution context (a conjunction of observation labels), and

the probability computed is that the world will be in state u after a particular sequence of steps is

executed, given that the execution context is C and that the world is currently in state s.

P[u jC; s; hi] =

(

1 if u = s

0 otherwise

(9)

8

Next, if the �rst step in a sequence is not executable it does not change any probabilities, nor does

it change the execution context. Recall that both the step's context and the execution context

are boolean combinations of observation labels, so we can de�ne \executability" in terms of logical

entailment: S is executable in context C just in case C ` context(S).

P[u jC; s; hS

1

; S

2

; : : : ; S

n

i] = P[u jC; s; hS

2

; : : : ; S

n

i] (10)

if C 6` context(S

1

)

Finally, if a step is executable in the current context it changes both the probability distribu-

tion over states and the execution context, both according to its set of consequences action(S) =

fhT

i

; �

i

; E

i

; o

i

ig:

P[u jC; s; hS

1

; S

2

; : : : ; S

n

i] =

X

hT

i

; �

i

; E

i

; o

i

i2action(S

1

)

P[hT

i

; �

i

; E

i

; o

i

ijs]P[u j(C^ o

i

);result(E

i

; s); hS

2

; : : : ; S

n

i] (11)

if C ` context(S

1

)

2.7 Planning problems and solutions

A planning problem consists of:

� A probability distribution over initial states ~s

I

.

� A goal expression G|a set (conjunction) of domain propositions describing the desired �nal

state of the system.

� A set of actions like paint, inspect, ship, and inspect, de�ning the agent's capabilities.

� A probability threshold � specifying a lower bound on the success probability for an acceptable

plan.

The planning algorithm produces a sequence of steps hS

1

; : : : ; S

n

i, where each step is an instance

of an action along with the circumstances under which the action should be executed. Such a

sequence is a solution to the problem if the probability of the goal expression after executing the

steps is at least equal to the threshold. In other words, hS

1

; : : : ; S

n

i solves the planning problem

just in case P[G j~s

I

; hS

1

; : : : ; S

n

i] � � . Section 2.6 de�nes this probability.

3 Plans and planning

Our planner takes a problem (initial probability distribution, goal expression, threshold, set of

actions) as input and produces a solution sequence|a sequence of steps whose probability of

achieving the goal exceeds the threshold. Here we describe its data structures and the algorithm it

uses to produce a solution.

9

goal

“success”α

PR ER PA
initial

FL BL PR ER PA FL BL PR ER PA

p(0.7) p(0.3)

βα

Figure 4: The initial plan

3.1 Initial and goal steps

The planner initially converts the problem's initial and goal states into two steps, initial and goal.

The initial step codes the initial probability distribution, and the goal step has a single consequence

with the goal state as its trigger. Figure 4 shows initial and goal actions for the example.

3.2 Plans

Following buridan

[

Kushmerick et al., To appear

]

, the planner manipulates a data structure called

a plan, consisting of a set of steps, ordering constraints over the steps, and a set of causal links.

The initial and goal actions each appear exactly once in every plan, with the initial step ordered

before all others and the goal step ordered after all others. A plan with only these two steps and

this single ordering is called the initial, or null plan, and is the algorithm's starting point.

3.2.1 Causal links

Causal links record decisions about the role the plan's steps play in achieving the goal. A link

connects a consequence of a \producing" step with a proposition p in a trigger of a \consuming"

step. A causal link makes explicit the dependency between the two steps, recording the fact that

increasing the probability of the producing step's designated consequence will tend to increase the

probability that p will be true when the consuming step is executed, which will tend to make the

plan more likely to succeed.

3

For example, the planner might create a link from the � consequence of a paint step to the PA

trigger proposition of the goal step, indicating that paint is supposed to make PA true for use by

goal. We will use the notation paint

�

PA

!goal to refer to this link.

More generally the notation S

i�

p

!S

j

refers to a link whose producer is consequence � of S

i

,

which produces proposition p for S

j

.

4

Since the goal expression appears in the plan as a set of

triggers in the single consequence of the goal step, planning to achieve the goal proceeds by adding

steps that produce the goal propositions and linking from the appropriate consequences of these

steps to the goal step, then creating links to the triggers of these new consequences as well.

3

We say that adding links will \tend" to increase the probability of success because the circumstances under which

two links will produce the desired result can be correlated, hence there is no guarantee that adding a link will increase

the probability of the supported proposition. For example, suppose a link records a desire to make p true, but its

producing step will do so only if some other proposition q is true. Now suppose we create a second link to make p

true, but it too does so only if q is true. Adding the second link does not increase the probability that p will be true:

either both links will generate p or neither will. Adding multiple links to the same consuming proposition can never

decrease the probability that it will be true, but the possibility of correlation with other links means that it might

not increase the probability either.

4

We will refer to the j

th

step in a plan either with the notation S

j

, or by using its name, e.g. paint. Referring

to a step by name is not generally a good idea since there could be several steps with the same name in the plan.

However, since our example has only one step for each action, there is no ambiguity.

10

3.2.2 Subgoals

A plan's links determines a set of subgoals for the planner, each a pair of the form hp; S

j

i, where

p is some proposition and S

j

is some step in the plan. The presence of such a pair indicates that

raising the probability that p is true at the time S

j

is executed will tend to increase the probability

that the plan will succeed. A pair hp; S

j

i is a member of a plan's subgoals just in case either

� j is the index of the goal step and p is a member of the problem's goal expression G (meaning

that p is one of the explicit goals of the planning problem), or

� p is a proposition in one of the triggers of an consequence � of S

i

, and the plan contains a link

of the form S

i�

q

!S

j

for some S

j

and some proposition q.

In other words, the subgoals represent the set of propositions that participate in chains of causal

links ending at the goal. We will introduce additional subgoals in Sections 3.3.2 and 3.4.1.

3.2.3 Threats to links

The process of adding steps and links to the plan can generate con
icts. Suppose that a plan

contains a link of the form S

i�

p

!S

j

. The link actually represents two commitments on the planner's

part: (1) to make S

i

realize its consequence �, resulting in p becoming true, and (2) to keep p true

from S

i

's execution until S

j

's execution. Therefore any step that

1. possible occurs after S

i

, and

2. possibly occurs before S

j

, and

3. has an e�ect that makes p false

is called a threat to the link S

i�

p

!S

j

.

3.2.4 Summary

The plan data structure consists of a set of steps, a set of ordering constraints, and a set of

causal links. Every plan contains the initial and goal steps that describe the planning problem.

From a plan's links one can compute a set of subgoals and a set of threats. The subgoals indicate

propositions in the plan for which adding additional links might make the plan more likely to

succeed. The threats indicate con
icts in the plan that might prevent success. Planning therefore

involves creating links to subgoal propositions and resolving threats to those links. We call these

two options the possible re�nements to the plan.

3.3 The planning algorithm

Here is a brief description of the planning algorithm:

1. Begin with the null plan, containing only steps initial and goal, the ordering (initial < goal),

and no causal links.

2. Iterate:

11

(a) Assess the current plan: compute the probability that the current plan achieves the goal.

Report success if that probability is at least as great as the threshold.

(b) Otherwise nondeterministically choose a re�nement to the current plan. Report failure

if there are no possible re�nements. Otherwise apply the re�nement to the current plan

and repeat.

Any implementation of the algorithm will of course have to manage the nondeterministic choice

using backtracking or some other search technique.

3.3.1 Assessment

A plan de�nes a partial order over its steps, which in turn de�nes a set of legal execution sequences.

Calculating the probability that such a set of steps could achieve a goal is a complex task. Here,

we present a very simple algorithm for performing this calculation, based closely on the de�nition

of step execution. The algorithm simply iterates over all step sequences consistent with the plan's

ordering constraints. For each totally ordered sequence, the algorithm calculates the probability

distribution over the states that could possibly result. When it has �nished iterating over the steps

in a particular total order, it sums the probabilities of all the states in the distribution in which

the goal is true. If the probability is greater than � , the algorithm returns the successful sequence,

otherwise it continues to the next total order. If no sequence has a success probability greater than

� the assessor reports failure.

The probability distribution is represented as a set of triples (s

j

; p

j

; c

j

) where s

j

is a state as

de�ned in Section 2.2, p

j

is a probability, and c

j

is a context (as de�ned in the previous section).

Context c

j

is the conjunction of all the observation labels that were observed in the execution that

produced state s

j

.

For each totally ordered sequence hS

1

; : : : ; S

n

i consistent with the plan:

1. Initialize fringe := f(s

i

, p

i

, T)g where P[~s

I

= s

i

] = p

i

is the initial probability distribution

provided by the user and T is a context that is always true.

2. Loop for S = S

1

; S

2

; : : : ; S

n

:

(a) Loop for (s

j

; p

j

; c

j

) 2 fringe:

i. When c

j

` context(S) do:

A. Remove (s

j

; p

j

; c

j

) from fringe

B. Loop for (T

i

; p

i

; E

i

; o

i

) 2 action(S):

Add to fringe the triple (result(E

i

; s

j

); p

j

� p

i

� P[T

i

js

j

]; c

j

^ o

i

)

3. If � �

P

f(s

j

; p

j

; c

j

)2fringeg

p

j

� P[G js

j

] then return hS

1

; : : : ; S

n

i.

The algorithm computes the probability distribution over states generated by each action in

the sequence, �nally summing the probabilities of all �nal states in which the goal is true.

This simple version of plan assessment is often quite ine�cient; we include it here only to keep

the presentation simple.

[

Kushmerick et al., To appear

]

discusses four di�erent plan-assessment

algorithms and compares their performance. One of the most interesting assessment algorithms

presented in that paper uses the plan's set of causal links to estimate the success probability without

enumerating any total ordered sequences.

12

3.3.2 Re�nement

A plan re�nement adds structure to a plan, trying to increase the probability that the plan will

achieve its goal expression. Recall that the probability of goal achievement can be increased in one

of two ways:

� if hp; S

i

i is a subgoal, then adding a new link from some (possibly new) plan step to this

proposition might increase the probability that p is true at S

i

, and therefore might increase

the success probability,

� if a causal link is currently part of the plan but some other step in the plan threatens the link

then eliminating the threat might increase the probability of the link's consumer proposition,

and therefore might increase the success probability.

Adding links and steps to the plan is the same as for deterministic causal-link planners: for

some pair hp; S

j

i selected to be the link's consumer, a link S

i�

p

!S

j

can be inserted for any existing

step S

i

that can be ordered before S

j

and whose consequence � asserts p, or between any new step

with a consequence � that asserts p, where the new step is constrained to occur before S

j

. However,

notice that the existence of a link to a trigger proposition does not ensure that the proposition will

be true|that will depend on whether or not the producing consequence is actually realized. As a

result the planner needs to be able to introduce multiple links to a proposition to try to increase

the probability that it will be true.

Threat resolution in c-buridan is also similar to threat resolution in deterministic causal-link

planners. Promotion and demotion (i.e., the addition of ordering constraints on the threatening

steps) works in precisely the same way as in the deterministic case. Two additional threat-resolution

mechanisms, confrontation and branching, have no analogue in classical planning, however.

Confrontation was introduced in the buridan probabilistic planner and is adopted without

change from that system

[

Kushmerick et al., To appear

]

. The idea behind confrontation is that

a plan can be su�ciently likely to work even if some action in the plan makes a goal or subgoal

false, as long as the falsifying consequence of that action is su�ciently unlikely to occur. Since the

consequences of any action are mutually exclusive, the planner can make a particular consequence

of an action less likely to occur by making a di�erent consequence of that same action more likely

to occur. If consequence � of some step S

t

threatens a link by making p false, then the threat

can be confronted by choosing some consequence of S

t

that does not make p false and adopting its

trigger as a subgoal.

The last way of resolving threats is called resolution by branching, and has no analogue in

classical planning or in buridan. We explain the details in Section 3.4.1, but provide a brief

overview here. Intuitively, branching ensures that the agent will never execute the threatening step

when the link's consuming step is depending on an e�ect of the link's producing step. Resolution

by branching works by making the context in which S

t

occurs incompatible with the context in

which the link proposition is required by the link's consumer.

In summary, the algorithm's re�nement phase consists of nondeterministically choosing to work

on a subgoal or to resolve a threat:

1. Choose either a subgoal to support or a threatened link to protect.

2. If the choice is a subgoal of the form hp; S

j

i, choose some step S

i

whose consequence � asserts

p. S

i

must either be a new step (instance of an action), or an existing step in the plan that

can be ordered before S

j

. Add the link S

i�

p

!S

j

to the plan, and order (S

i

< S

j

).

13

3. If the choice is a link S

i�

p

!S

j

threatened by some consequence of a step S

t

, then choose to

either

� (demote) add the ordering (S

t

< S

i

) to the plan,

� (promote) add the ordering (S

j

< S

t

) to the plan,

� (confront) choose some consequence � of S

t

that does not contain p and adopt the trigger

of S

t�

as a subgoal, or

� (branch) restrict the context of S

t

so it is incompatible with either the context of S

i

or

S

j

.

3.4 Example

Recall that the example problem consists of

� An initial probability distribution over states, which is converted to an initial plan step

(Figure 4).

� A goal expression fPR, PA, ERg (the widget should be processed and painted, and the plan

should not have an error). The goal expression is converted to a �nal plan step (again

Figure 4).

� A set of actions: paint, reject, ship, and inspect (Figures 1, 2, and 3.)

� A success threshold of � = 0:8.

The initial set of subgoals consists of the goal propositions: fhPR; goali; hPA; goali; hER; goalig.

Suppose the planner makes the following choices. First it supports hER; goali with a link from

consequence � of initial. Next it supports hPA; goali by adding a step paint, linking its � consequence

to the goal, thus adopting hPR; painti as a subgoal, since PR is a trigger for the � consequence. This

pair can in turn be supported by a link from the initial step. Now hPA; goali has probability 0.95

of being true but the plan has success probability 0 because PR is false.

Next the planner supports hPR; goali by adding a ship step, linking its � consequence to the

goal, and as a result two new pairs, hFL; shipi and hPR; shipi, become subgoals. Both of these pairs

can be linked to the initial step's � consequence.

The resulting partial plan has three threats:

� The link initial

�

PR

!paint is threatened by ship, in particular its � and � consequences. (In

other words, ship might make PR true, but paint requires it to be false.)

� The link initial

�

ER

!goal is threatened both by paint (consequence
) and by ship(consequences

� and
).

The �rst threat can be resolved by demoting the ship step, ordering it after paint. The second

two threats cannot be resolved by adding ordering constraints: no step can be ordered before the

initial step or after the goal step, so these two threats must be confronted or branched. Suppose the

planner decides to use confrontation. The planner chooses non-threatening consequences for each

step: ship

�

and paint

�

, notes in the links that the threat was confronted (initial

�

ER

ship

�

;paint

�

!goal),

14

goal

“success”α

PR ER PA

initial

FL BL PR ER PA FL BL PR ER PA

p(0.7) p(0.3)

βα

ship

PR PR ER ERβα γ

PRPR

FL FL

paint

PA BL ERβα γ

PRPR

p(0.95) p(0.05)

Figure 5: A plan with success probability 0:665

and adopts as subgoals the triggers of the non-threatening consequences: hPR; shipi, and hPR; painti

(as it happens, both were subgoals already).

Figure 5 shows the resulting plan. Temporal ordering among the steps goes from top to bottom:

initial < paint < ship < goal, links appear as arrows from consequence boxes to trigger propositions,

and confronted threats appear as arrows from the non-threatening consequence (e.g. ship

�

) to the

threatened link (initial

�

ER

ship

�

;paint

�

!goal).

This plan, which is the one that the non-contingent planner buridan would produce, will work

just in case the widget is initially not
awed and the paint step works, which translates into a

success probability of (0:7)(0:95) = 0:665. The success probability can be increased somewhat by

adding additional paint steps to raise the probability that PA will be true, but without introducing

information-producing actions and contingent execution no planner can do better than 0.7.

At this point a reasonable re�nement to the plan in Figure 5 would be to support the pair

hPR; goali by adding a reject step and linking it to the goal. The problem with this strategy is that

it introduces a pair of irreconcilable threats: reject makes PR true, which threatens the link from

initial to ship, and likewise ship makes PR true, threatening a link from initial to reject. Adding

orderings can resolve only one of these two threats, and confronting the threat means that the

planner will be trying to make reject's � consequence come true (so it will produce PR for the goal)

15

and simultaneously trying to make reject's
 consequence come true (so it won't produce PR before

ship is executed). It cannot do both successfully, since any two consequences of a single action

are mutually exclusive, so decreasing the probability of one threat increases the probability of the

other. This plan appears in Figure 6, with threatened links appearing in grey. The solution is to

execute one or the other (but not both) depending on the state of FL.

goal state

“success”α

PR ER PA

initial state

FL BL PR ER PA FL BL PR ER PA

p(0.7) p(0.3)

βα

ship

PR PR ER ERβα γ

PRPR

FL FL

paint

PA BL ERβα γ

PRPR

p(0.95) p(0.05)

reject

PR PR ER ERβα γ

PRPR

FL FL

Figure 6: ship and reject threaten each other

Here the need for information gathering and conditionals becomes apparent: the planner needs

to be able to insert steps that provide information about the state of FL and needs to be able to

make the steps executed in the plan depend on that information. We next introduce a method

for resolving threats based on making the context of the participating steps incompatible, i.e. by

making context(S

i

) ^ context(S

j

) ^ context(S

t

) unsatis�able.

3.4.1 Threat resolution by branching

We call this new threat-resolution strategy \branching" because we will introduce contingency

branches into the plan that prevent the threat from materializing.

5

Branches are a new element in

5

[

Peot and Smith, 1992

]

refers to this approach as \conditioning." We adopt an alternative term because of a

possible confusion with the use of the term in probabilistic reasoning, e.g. \conditioning on new evidence."

16

a plan's structure, analogous to causal links. A branch connects an information-producing step to

a subsequent step, indicating the observation labels of the �rst that enable execution of the second.

We will add two branches to our example plan: inspect=fokg)ship and inspect=fbadg)reject.

The �rst means that ship should be executed only if the execution of inspect generates an observation

label of ok, the second means that reject should be executed only if the execution of inspect generates

an observation label of bad. These restrictions are realized by adding the appropriate observation

label to the steps' contexts.

The general procedure for resolving a threat S

t

to a link S

i�

p

!S

j

by branching is as follows:

1. Choose to make context(S

t

) incompatible with either context(S

i

) or context(S

j

). Let S

s

be

the step chosen.

2. Choose some information-producing step S

p

that can be ordered both before S

s

and before

S

t

. S

p

must also be executable in some context compatible with both S

s

and S

t

, that is,

context(S

p

)^context(S

s

)^context(S

t

) must be satis�able. S

p

need not be in the plan already|

it can be added to the plan in order to resolve the threat.

3. Choose a set c = fc

1

; : : : c

n

g and a disjoint set c

0

= fc

0

1

; : : : c

0

m

g of S

p

's observation labels.

4. Add ordering constraints to the plan: (S

p

< S

s

), (S

p

< S

t

)

5. Add branches to the plan: S

p

=c)S

t

and S

p

=c

0

)S

s

6. Make step contexts more restrictive:

� context(S

t

) := context(S

t

) ^ (c

1

_ c

2

: : :_ c

n

)

� context(S

s

) := context(S

s

) ^ (c

0

1

_ c

0

2

: : :_ c

0

m

)

7. Add to the plan's subgoals all pairs of the form hp; S

p

i, where p is any proposition in any of

S

p

's triggers.

3.5 Example

Return now to the example which progressed as far as Figure 6|the planner had added both ship

and reject steps in order to raise PR's probability over 0.7. Doing so led to a threat (both ship and

reject require PR to be false initially and make it true) that could not be resolved by ordering or

by confrontation. This threat can be solved by branching, however. Suppose that the planner �rst

notices that the reject step is threatening the link of the form initial

�

PR

!ship.

1. It chooses to make the contexts of the link's consumer ship and the threatening step reject

incompatible.

2. It chooses an information-producing action inspect and adds it to the plan.

3. It chooses subsets of inspect's observation labels: c = fbadg, c

0

= fokg.

4. It adds ordering constraints to the plan, (inspect < reject), (inspect < ship), ensuring that the

information-producing step will be executed before the actions whose contexts depend on its

observation label.

17

5. It adds branches inspect=fokg)ship and inspect=fbadg)reject to the plan.

6. It restricts the steps' contexts as follows:

� context(reject) := T ^ fbadg = bad

� context(ship) := T ^ fokg = ok

goal

“success”α

PR ER PA

ship

PR PR ER ERβα γ

PRPR

FL FL

paint

PA BL ERβα γ

PRPR

p(0.95) p(0.05)

initial

FL BL PR ER PA FL BL PR ER PA

p(0.7) p(0.3)

βα

inspect

βα γ

BL BL

p(0.90)p(0.10)

reject

PR PR ER ERβα γ

PRPR

FL FL

BAD

OK

OK BADOK

Figure 7: A successful plan

Now ship and reject are restricted to mutually exclusive execution contexts, and the plan is

shown in Figure 7.

The resulting plan admits two execution sequences:

� inspect, then paint, then ship or reject,

� paint, then inspect, then ship or reject.

The �rst sequence has success probability .9215: it will fail only if the paint step fails or if the

widget was blemished and the inspect step incorrectly reports ok. The second sequence has success

probability 0.665, however: when paint is executed it makes BL false with probability .95, (and with

18

probability 0.05 it fails to make PA true, which means the plan will fail anyway). In any execution

path in which paint succeeds, it will also make BL false, which means that inspect will certainly

report ok, and the widget will be shipped regardless of whether or not it was initially
awed.

The assessment algorithm in Sections 3.3.1 and 2.6 will �nd and return the high-probability

sequence, and the planner will terminate successfully. It is interesting to note, however, that the

planner could further re�ne this plan, adding an ordering constraint so only the high-probability

sequence is valid. How can the planner recognize and eliminate the bad sequence? Recall that all

the trigger propositions of the inspect step are subgoals at this point|in particular, the planner can

choose to support hBL; inspecti with a causal link from the initial step's � consequence. Then paint

will threaten the link, since its � consequence makes BL false. One way this threat can be resolved

is by ordering paint to come after the link's consumer, ordering it after inspect. The resulting plan

has only one consistent ordering: inspect then paint then ship or reject, which has success probability

0.9215.

3.6 Contexts and plan structures

At this point we should mention a novel feature of our method of inducing conditional plan execution

using restricted step contexts introduced by branching: the fact that our algorithm can generate

plans whose executions \branch" then \rejoin." Suppose, for example, that we added an additional

goal condition to the plan, that the planner notify a supervisor when it �nished processing a

widget. Assume that notify's single precondition is that the widget be processed (PR). c-buridan

can handle this easily, inserting the notify step along with a link from its single outcome to the goal

step, then creating links from both ship and reject's � consequences to its trigger condition PR (see

Figure 8). Note that since notify's execution context is T because it participates in no threats, so

the execution sequence represented by this plan is inspect, paint, either ship or reject, notify. Other

conditional planners, e.g. cnlp and Warplan-C

[

Warren, 1976

]

generate a new plan branch each

time a conditional is inserted in the plan, and do not allow the branches to contain common steps.

BAD
reject

inspect

OK
ship

paintinit notify goal

TT T

Figure 8: A plan with merged branches

4 Propagation of Step Contexts

The c-buridan planning algorithm described in the previous section restricts a step's context only

when doing so is necessary to resolve a threat. This policy produces correct plans, but admits

ine�ciency. Suppose, for example, that the ship action had an additional precondition HB (have

box), and the planner had an additional operator get-box that had no preconditions and made HB

true. At some point the planner would insert a get-box step in the plan and link it to ship, resulting

in the situation pictured in Figure 9(a).

19

Notice that get-box's context will be unrestricted since it causes no threats nor is its link

threatened by any other steps. Get-box will therefore be executed in all contexts, including those

contexts in which reject will be executed instead of ship. We might want to restrict the context

of this step so it is executed only when it is \useful," which in this case means in exactly those

contexts in which ship is executed.

OK OK

OKOK
ship ship

inspect inspect

get-boxget-box

(a) (b)

OKT

T T

Figure 9: Restricting have-box's context so that it is only executed when needed.

Since a step's reasons for being in a plan are recorded in the plan's link structure, we look there

to determine when a step is useful. A step S is useful in a plan only when:

� At least one of the steps that produces propositions it consumes is executed, and

� At least one of the steps that consumes propositions it produces is executed.

If the �rst condition is not true, no previous step in the plan will produce the state that S requires

to be e�ective, and since S can't do anything useful it might as well not be executed. If the second

condition is not true then no subsequent step will be able to exploit whatever e�ects S was put in

the plan to accomplish, therefore it might as well not be executed.

If we allow a step's context to be an arbitrary boolean expression (rather than a simple conjunction

as assumed previously), we can constrain a step's context as follows:

� A step's context should at least be restricted to the disjunction of the contexts for all the

steps that act as producers of causal links consumed by that step.

� A step's context should at least be restricted to the disjunction of the contexts for all the

steps that act as consumers of causal links produced by that step.

The �rst constraint is enforced by a forward propagation of contexts through the plan whenever

a new link or branch is added. The second constraint is enforced by a backward propagation sweep

through the plan before it is returned as a solution. The second constraint allows us to restrict the

context of get-box to be only ok (Figure 9(b)), since its only link in the plan is to ship, and ship's

context is restricted to circumstances in which inspect reports ok.

4.1 Forward propagation

Forward propagation enforces the �rst constraint by computing a step's context as follows:

let B = the set of branches pointing to S,

C = the set of consequences of S,

T (c) = the set of trigger conditions for consequence c;

20

P (t) = the set of steps producing links to trigger condition t;

then,

context(S) = (

^

b2B

branchlabel(b)) ^ (

_

c2C

^

t2T (c)

_

p2P(t)

context(p))

where branchlabel(b) is the set of observation labels associated with branch b.

The �rst clause represents the context information dictated by S's immediate branches (i.e.

those assigned when it was involved in threat resolution by branching). The second clause formalizes

the de�nition above: it is the disjunction of the contexts of all steps that produce propositions

consumed by S's trigger propositions.

The context of a step S is recomputed whenever a new link or branch is made to it, and changes

to its context are propagated recursively to the consumers of all links for which S acts as producer.

Notice that adding a new causal link to S can actually \widen" S's execution context (i.e.

the step can be executable in more contexts as it consumes more links), and when a step's context

widens it can threaten links that it did not threaten before. So whenever a step's context is changed,

the algorithm must also check to see whether the step poses new threats to any links currently in

the plan.

4.1.1 Empirical implications of context propagation

We noted initially that context propagation was not necessary to produce successful plans|

foregoing the propagation phase means at worst that some steps might be executed unnecessarily

in some contexts. We then introduced the propagation algorithm that is run every time a link

or branch is added to a plan, one that requires traversing the plan's link structure and scanning

it for new threats as well. The question therefore arises whether this additional computational

step is worth the e�ort|perhaps the forward propagation should be performed only once, after a

successful plan is built, to make sure its steps are executed only when necessary.

While it is an open empirical question as to whether frequent context propagation is a good

idea, we should point out an additional bene�t of context propagation: its potential to make the

plan-generation process itself more e�cient. Recall that propagation serves to restrict a step's

context, and that a step can threaten a link only if its context is compatible with the link's context.

Therefore restricting a step's context can serve to eliminate threats that would otherwise have to

be resolved by the planner.

4.2 Reverse propagation

Forward propagation ensures that an action will only be executed when its causal links can in fact

provide support for those consequences necessary for plan success. Reverse propagation, on the

other hand, ensures that an action will only be executed when one of its consequences is actually

needed|the context of a step S is conjoined with disjunction of the contexts of S's consumers.

There is an added restriction however: if S's context expression mentions an observation label

L, then S must be ordered after the step that generates L. For example, in Figure 9, get-box must

be ordered after inspect, since its new context is derived from that step. If the plan's ordering

constraints do not permit this ordering, then all occurrences of the observation label L must be

removed from S's context.

The algorithm for reverse propagation is therefore as follows:

21

1. Let < S

1

; : : :S

n

> be a sequence of steps representing a consistent ordering of the steps in

plan P

2. Loop for S= S

n

, S

n�1

, : : : , S

1

:

(a) Let C be the set of steps that consume either links or branches from S.

(b) context(S) := context(S) ^ clean(

W

c2C

context(c))

(c) Order S after all the steps that generate observation labels that appear in context(S)

where clean(expr) removes from expr all the observation labels produced by steps that cannot be

ordered before S.

4.2.1 Reverse propagation and completeness

One big di�erence between forward and reverse context propagation is that the latter actually adds

ordering constraints to the plan. Forward propagation restricts a step's context, but does not add

additional structure (links or orderings) to the plan.

Ordering constraints are added during plan re�nement when links are created and when threats

are resolved|both are necessary to preserve the probabilistic dependency between a link's producer

and its consumer. Reverse context propagation, on the other hand, can order a step S

p

after a

sensing step S

s

not because S

p

's execution should directly depend on the consequent of S

s

, but

because S

p

is a link producer for some third step S

c

whose execution does depend on the result of

S

s

. Ordering S

p

after S

s

prevents the planner from later deciding that S

p

should be ordered before,

so after reverse propagation S

p

could never produce a link consumed by S

s

or any prior step even

though semantically there is no reason why it could not do so. A planner that performs reverse

propagation on every partial plan (i.e. after every plan re�nement) is therefore incomplete.

Once again the question of whether and when to do reverse context propagation is an open

empirical question|one can either perform reverse propagation on every partial plan and accept

the incomplete algorithm as a concession to e�ciency, or alternatively a planner could run the

reverse propagation algorithm only once as a post-processing step, once a successful plan has

already been found. Reverse propagation does not change the plan's probability of success, so it

cannot make a successful plan unsuccessful.

5 Summary and Related work

c-buridan is an implemented algorithm for plan generation that combines information-producing

actions with a framework that allows the conditional execution of actions. Novel features of the

representation include:

� The representation allows planning with actions whose e�ects and information content depend

on both the prevailing world state and random chance.

� The action representation can encode a variety of senor models, including anything from

asymmetrically noisy sensors to sensors that provide complete and
awless information about

the world.

22

� The representation for information-producing actions is a natural extension of symbolic plan-

ning operators, yet admits a traditional Bayesian semantics for representing the information

content of an action and for updating belief on the basis of observation.

� Causal and informational e�ects of an action can be combined arbitrarily|there is no dis-

tinction made between sensing and e�ecting actions.

� The framework allows reasoning about informational dependencies: the fact that an action

can provide indirect information about the state of the system, and the fact that other actions

can create or destroy dependencies among state variables.

� Our approach to restricting step contexts does not require tree-structured plans|plans can

diverge initially in their execution contexts, then rejoin to execute steps that are needed in

several contexts.

� While we have not proven that the c-buridan algorithm is complete, it can solve problems

that stumped buridan and ones that cnlp could not solve.

5.1 Related work

Related work in conditional planning includes work in decision analysis as well as previous proba-

bilistic planners and AI work on (deterministic) conditional planning.

5.1.1 Decision analysis

The concept of planning to gather information (and assessing the value of that information) is

a common topic in the Decision Analysis literature, particularly the work on sequential decision

making

[

Winkler, 1972

]

. Our approach uses the same Bayesian framework, but the emphasis is

di�erent in that we take our task to be one of building a good plan automatically from schematic

action descriptions and an input problem. Work in decision analysis is generally more concerned

with structuring the problem, eliciting domain and preference models from experts, and evaluat-

ing alternatives provided by experts rather than on algorithmic approaches to generating those

alternatives.

Graphical structures like in
uence diagrams can be used to solve sequential decision-making

problems, including those that allow information-gathering steps

[

Matheson, 1990

]

. We do not

consider in
uence diagrams a solution to the planning problem in and of themselves, however|

they do not address the problem of generating plans from action schemas and problem descriptions.

5.2 Probabilistic planning

Our work extends the buridan planner

[

Kushmerick et al., To appear

]

: we added to buridan the

idea of information-producing steps and step contexts, as well as the threat-resolution technique

of branching (which is due to cnlp, see below), and the algorithms for context propagation. See

[

Kushmerick et al., To appear

]

for a discussion of related probabilistic planning algorithms.

23

5.3 Conditional planning

Our approach to contingent planning borrows much from the cnlp algorithm of

[

Peot and Smith,

1992

]

. In particular we adapted their method of threat resolution by conditioning: that information-

producing actions generate execution contexts, and that one way to resolve a threat is to force the

threatening step and the threatened link to appear in mutually exclusive contexts.

cnlp and c-buridan use di�erent underlying representations. cnlp adopts a standard strips

(logical) semantics, whereas our c-buridan n manipulates a probabilistic representation. Our

inspect action would look like this in cnlp:

Name: Observe-widget

Pre: Unk(blemished)

(not (processed))

+a1: (blemished)

+a2: (not (blemished))

(It seems as though the �rst precondition, that the state of blemished be unknown, is not

necessary|it indicates that it will never be useful to insert a step into a plan if (1) its only e�ect is

to provide information about a proposition and (2) the state of that proposition has already been

determined previously in the plan.)

Observation labels in c-buridan play the same role as in cnlp|the annotations +a1 and +a2

above represent reports the sensor might produce at execution time, which are used in building

execution contexts for subsequent steps.

cnlp's action model cannot represent a situation in which an operator performs di�erently

depending on the prevailing world state or on unmodeled (chance) factors. cnlp therefore cannot

model sensing operators like our inspect operator, whose behavior is state dependent and noisy. The

fact that actions have multiple possible consequences complicates the planning process somewhat:

since a link to a proposition does not guarantee the proposition's truth, we have to admit the

possibility of multiple (disjunctive) causal support for propositions, and a step's context can contain

disjunctions as well (whereas in cnlp a step's context is a conjunction of observation labels).

Our algorithm for introducing contingencies di�ers from cnlp as well: cnlp's approach is based

on the idea that every time a new execution context is introduced into the plan (by conditioning

or branching) a new instance of the goal step is also added with that context. The planner thus

tries to build a plan that satis�es all instances of the goal step, i.e. a plan that will work under all

circumstances. The resulting plans are tree-structured: once two branches in the plan are created

to condition on possible sensor reports, subsequent steps in separate branches cannot share steps.

We noted in Section 3.6 that our algorithm can represent plans in which certain steps (like ship and

reject) should be executed in restricted execution contexts, but that subsequent steps (like notify)

should be executed unconditionally.

5.4 Future work

Our preliminary work on c-buridan has produced a good framework for posing the problem of

conditional and informational planning, but the system is limited both by its representation and

by its computational e�ciency. Future work in the following areas is therefore indicated:

24

Computational properties Our initial experiments with buridan showed us that the compu-

tational complexity of building probabilistic plans is signi�cantly worse than building plans using

a logical representation language. And the problem becomes worse still when the planner can in-

sert information-gathering actions and conditionals. To put it bluntly, while c-buridan is fully

implemented, signi�cant search control knowledge is necessary to enable solution of even simple

examples like the one presented in this paper.

Consider the question of when it might be advantageous to insert an information-producing

action into a plan. It can be di�cult to ascertain exactly what propositions a particular sensing ac-

tion provides information about. Recall from the example above that the inspect operator provides

direct information only about whether the widget is blemished, but the planner really cares only

about whether the widget is
awed. Information about BL turns out to convey information about

FL in this particular case, but the relationship depends on the particular planning problem and

indeed even the particular plan being constructed|the information content of an sensing operator

cannot be determined by examining the operator alone. The basic computational problem is that

any information-producing action can potentially provide information about any proposition. A

practical planner will need fast heuristic methods for deciding what information it needs to gather

in order to build a successful plan, and what information-producing operators are likely to provide

it with that information.

More expressive languages c-buridan's utility is limited by its propositional representation

language. Related work is concerned with building and reasoning about plans using more expres-

sive representation languages:

[

Hanks, 1993

]

explores the problem of assessing a plan's quality,

but using a probabilistic framework that allows reasoning about sets and quantities.

[

Golden et

al., 1994

]

is an e�ort to incorporate a richer sensing model, based on uwl

[

Etzioni et al., 1992

]

,

into the ucpop partial-order planner. Its inference rules allow e�ective reasoning about locally

complete information, enabling the planner to satisfy universally quanti�ed goals under incomplete

information, and to eliminate redundant sensing operations.

Value of information c-buridan generates a plan with a particular probability of success. It

is more common to analyze both plans and information-producing actions within plans in terms of

their utilities or values: a value or utility model associates a value with a plan, then an information-

producing action can be evaluated in terms of the value it contributes to a plan.

[

Matheson,

1990

]

demonstrates how to evaluate plans in this way, but does not provide an algorithm for

generating plans.

[

Haddawy and Hanks, 1993

]

point out that planning to maximize the probability

of goal success corresponds to planning to maximize expected value only for a particular extremely

restricted class of utility models. c-buridanmust therefore be extended to generate plans according

to a criterion of expected-utility maximization, at which point information-gathering actions can

be evaluated in terms of the utility they add to the plan. We intend to apply the framework for

utility models developed in

[

Haddawy and Hanks, 1993

]

to this planner, but doing so �rst requires

extensions to the representation language as noted above.

Formal properties We need to complete proofs that the (nondeterministic) c-buridan algo-

rithm is sound and complete. We can use the formal framework developed to prove these properties

for non-contingent buridan, but need to extend the plan semantics to account for information-

25

gathering actions and branches. Previous work

[

Etzioni et al., 1992

]

contains a compatible semantics

for contingent plans, but uses a non-probabilistic language.

We also need to explore the relationship between our algorithm and algorithms from the decision

sciences like value iteration

[

Howard, 1960

]

and other dynamic programming approaches

[

Rai�a,

1968

]

.

References

[

Allen et al., 1990

]

J. Allen, J. Hendler, and A. Tate, editors. Readings in Planning. Morgan

Kaufmann, San Mateo, CA, August 1990.

[

Etzioni et al., 1992

]

O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, and M. Williamson. An

Approach to Planning with Incomplete Information. In Proc. 3rd Int. Conf. on Principles of

Knowledge Representation and Reasoning, October 1992.

[

Golden et al., 1994

]

K. Golden, O. Etzioni, and D. Weld. xii: Planning for Universal Quanti�-

cation and Incomplete Information. Technical report, University of Washington, Department of

Computer Science and Engineering, January 1994.

[

Haddawy and Hanks, 1993

]

Peter Haddawy and Steve Hanks. Utility Models for Goal-Directed

Decision-Theoretic Planners. Technical Report 93{06{04, Univ. of Washington, Dept. of Com-

puter Science and Engineering, September 1993.

[

Hanks, 1993

]

Steve Hanks. Modeling a Dynamic and Uncertain World II: Action Representation

and Plan Evaluation. Technical report, Univ. of Washington, Dept. of Computer Science and

Engineering, September 1993.

[

Howard, 1960

]

Ronald A. Howard. Dynamic Programming and Markov Processes. MIT Press,

1960.

[

Kushmerick et al., To appear

]

N. Kushmerick, S. Hanks, and D. Weld. An Algorithm for Proba-

bilistic Planning. Arti�cial Intelligence, To appear.

[

Matheson, 1990

]

James E. Matheson. Using In
uence Diagrams to Value Information and Control.

In R. M. Oliver and J. Q. Smith, editors, In
uence Diagrams, Belief Nets and Decision Analysis,

pages 25{48. John Wiley and Sons, New York, 1990.

[

Pearl, 1988

]

J. Pearl. Probablistic Reasoning in Intelligent Systems. Morgan Kaufmann, San

Mateo, CA, 1988.

[

Peot and Smith, 1992

]

M. Peot and D. Smith. Conditional Nonlinear Planning. In Proc. 1st Int.

Conf. on A.I. Planning Systems, pages 189{197, June 1992.

[

Rai�a, 1968

]

Howard Rai�a. Decision Analysis: Introductory Lectures on Choices Under Uncer-

tainty. Addison-Wesley, 1968.

[

Warren, 1976

]

D. Warren. Generating Conditional Plans and Programs. In Proceedings of AISB

Summer Conference, pages 344{354, University of Edinburgh, 1976.

26

[

Winkler, 1972

]

Robert L. Winkler. Introduction to Bayesian Inference and Decision. Holt, Rine-

hart, and Winston, 1972.

27

