
Concord: Re-Thinking the Division of Labor in a

Distributed Shared Memory System

J. William Lee

Department of Computer Science and Engineering

University of Washington

Technical Report 93-12-05

Concord: Re-Thinking the Division of Labor in a Distributed

Shared Memory System

J. William Lee

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195

Abstract

A distributed shared memory system provides the

abstraction of a shared address space on either a net-

work of workstations or a distributed-memory multi-

processor. Although a distributed shared memory sys-

tem can improve performance by relaxing the memory

consistency model and maintaining memory coherence

at a granularity speci�ed by the programmer, the chal-

lenge is to o�er ease of programming while maintain-

ing high performance. Concord meets this challenge

by carefully splitting responsibilities among the pro-

grammer, the compiler, and the runtime system. Con-

cord has allowed a single programmer to port several

real, large shared-memory parallel programs onto an

Intel iPSC/2 in a few weeks and achieve reasonable

speedup.

1 Introduction

A distributed shared memory system provides the

abstraction of a shared address space across multi-

ple processors | either a network of workstations or

a distributed-memory multiprocessor. This abstrac-

tion frees the programmer from dealing with commu-

nication explicitly, making it easier to port and write

parallel programs. However, building a distributed

shared memory system that performs well for real sci-

enti�c and engineering applications has proved to be

di�cult.

In this paper, we describe an approach that at-

tempts to provide a practical way of writing parallel

programs for real applications and running these pro-

grams e�ciently on distributed-memory multiproces-

sors. The key in our approach is a careful division of

responsibilities among the programmer, the compiler,

and the runtime system.

Previous distributed shared memory systems have

explored the bene�ts of various divisions of respon-

sibilities. Amber [4], Orca [17], and Midway [2] can

avoid introducing false sharing by maintaining coher-

ence at a granularity speci�ed by the programmer: the

programmer speci�es the granularity of coherence ei-

ther by de�ning objects [4, 17] or by associating locks

with program data [2]. DASH [14], Munin [3], and

Midway [2] reduce the overhead of maintaining coher-

ence via relaxed memory consistency models; these re-

laxed consistency models guarantee the shared mem-

ory to be consistent as long as the programmer writes

correct programs, either by correctly synchronizing

threads [7] or by correctly associating locks with pro-

gram data [2].

Following the direction of Amber, Orca, and Mid-

way, our approach also maintains memory coherence

at a granularity speci�ed by the programmer and guar-

antees the shared memory to be consistent only for

correct programs. Because this approach avoids in-

troducing false sharing and reduces the overhead of

maintaining coherence, it can potentially deliver high

performance. The major challenge in this approach,

however, is to o�er ease of programming while main-

taining high performance. De�ning objects in a par-

allel program to match the right size for high perfor-

mance can be di�cult, because objects are designed

to represent logical entities in a program. Associat-

ing locks with program data can also complicate pro-

gramming, because an error in the process may lead

to inconsistent memory [2].

Our approach meets this challenge by carefully

splitting the responsibilities:

� To simplify programming, the runtime system

and the compiler cooperate to make it easier for

the programmer to partition shared data at �ne

granularity. The runtime system imposes few re-

strictions on how the set of data within a single

data partition can be laid out in memory: this

set of data can be scattered in the virtual ad-

dress space, and can also grow or shrink at run-

time (e.g., a linked list). The latter is possible

1

because, in our approach, the programmer can

specify a unit of sharing using a function that

traverses the data in the unit of sharing.

� To help debugging under the relaxed memory con-

sistency model, the compiler and the runtime sys-

tem cooperate to provide runtime error checking.

The runtime system provides primitives to check

if accesses to a region of memory are allowed, and

the compiler provides an option to insert a check

before every access to shared memory. Runtime

error checking has been proposed before [13], but

we believe that we are the �rst to implement it in

a general DSM system and report experience of

using it for real applications.

� To further improve performance, the runtime sys-

tem incorporates a new update-based consistency

protocol and coalesces coherence messages using

information from the programmer. The latter is

done by providing asynchronous primitives to ac-

quire synchronization objects. The programmer

may bracket multiple asynchronous acquire prim-

itives in a pair of runtime system calls, as long

as the order of these acquire operations does not

matter. With this information from the program-

mer, the runtime system coalesces coherence mes-

sages while processing these acquire operations in

parallel.

Our prototype system, the Concord DSM system,

supports an extended C language. It consists of a pre-

compiler and a runtime system. Currently, Concord

can run applications on either a network of worksta-

tions or an Intel iPSC/2.

The rest of this paper is organized as follows. The

next section describes the design and implementation

of Concord. Section 3 reports the performance of Con-

cord and our experience of programming using Con-

cord. Section 4 discusses our approach and compares

it with related work. Section 5 concludes.

2 The Design and Implementation of

Concord

Similar to previous systems in this class, Concord

lets the programmer manage parallelism explicitly us-

ing threads. All threads share a single address space

and synchronize with each other using the primitives

provided by the system. Concord supports two types

of synchronization objects: barriers, and a new type

of synchronization object called folders.

2.1 The Folder Abstraction

Brie
y, a folder is a synchronization object that

can be associated with a set of shared data. Fold-

ers not only provide a set of primitives to synchronize

threads, but also guard shared data against accesses

from threads: threads may access data associated with

a folder only after it has acquired the folder explicitly.

The folder abstraction is designed mainly for two

reasons. First, we'd like to have an abstraction that

represents a logical unit of sharing, with few restric-

tions on how the data in the unit of sharing can be

laid out in memory. Second, we'd like to have a syn-

chronization object that not only supports multiple

producer-consumer type of synchronization, but also

�ts well with the programming model of associating

data with synchronization objects. This is important

because some parallel programs may require synchro-

nization more complicated than barriers and critical

sections.

A folder represents a unit of sharing. The pro-

grammer may associate a folder with shared variables,

subarrays, and functions that traverse through some

shared data. The traversal function may walk through

any program data structure, calling a built-in function

to pick up the data associated with the folder along

with the traversal. For convenience, we say a folder

\contains" the data it is associated with.

As synchronization objects, folders extend locks

with read and write primitives, versions, and \yield"

write primitives. There are four basic folder primi-

tives: acquiring a folder to read or write, and releasing

a folder after reading or writing it. There are primi-

tives to acquire a folder with a speci�c version, or a

range of versions. There are also yield write primi-

tives. A thread calling a yield write primitive waits

for a certain number of threads to have read the cur-

rent version of the folder before the thread grabs the

folder to write.

Versions and yield write primitives support mul-

tiple producer-consumer type of synchronization. A

consumer may request to read a folder with certain

versions, waiting for the producers to write the data

in the folder. A producer may request to write a folder

using a yield primitive, waiting for the consumers to

read the current version of the folder.

There are also two asynchronous acquire primitives

that never block the calling thread. Programmersmay

put multiple asynchronous acquire primitives inside a

pair of runtime system calls, coalesceStart() and coa-

lesceEnd(), as long as the order of the acquire opera-

tions does not matter. The call coalesceEnd() returns

when the calling thread has obtained all the folders

2

requested. These primitives are designed to tell the

underlying system to coalesce coherence messages be-

tween the pair of runtime system calls. It is di�cult for

a DSM system to coalesce coherence messages auto-

matically, because when the DSM system is processing

an acquire request, the system does not know when the

next acquire will occur and if the system can process

the next acquire in parallel.

2.2 The Consistency Model

The consistency model supported by Concord, Con-

cord consistency , is similar to entry consistency [2]: a

thread is guaranteed to access the most up-to-date

data in a folder after it has obtained the folder. Due

to the asynchronous acquire primitives, Concord con-

sistency is more \relaxed" than entry consistency: In

Concord, a thread is guaranteed to obtain a folder ei-

ther (1) at the point where the thread calls a normal

acquire to obtain the folder, or (2) at the point where

the thread calls coalesceEnd() after calling an asyn-

chronous acquire to obtain the folder.

In order for the underlying system to guarantee

the shared memory to be consistent, the program-

mer must also follow two rules in associating folders

with program data. First, folders that are passed be-

tween threads concurrently must be disjoint. Second,

a thread associating a folder with a set of data must

have the right to write the set of data.

Essentially, Concord guarantees that the shared ad-

dress space is always consistent for correct programs.

Ensuring that a program is correct, however, is one of

the major di�culties in programming using Concord.

This di�culty is alleviated by help from the language,

the compiler, and the runtime system.

2.3 The Language

The programming language, High C, augments C

with a few language constructs and built-in data types

and primitives. The new built-in data types include

threads, folders, and barriers. The major work in de-

signing High C was to provide succinct language con-

structs for associating program data with folders. We

describe two language constructs below.

The programmer may associate data with a folder

simply by \assigning" the folder with a list of vari-

ables, subarrays, or traversal functions enclosed in a

pair of \<" and \>" symbols. For example, the fol-

lowing code segment associates a folder f with a vari-

able class, a sub-block of an array students, and a

traversal function speakers(). The parameter hd is

computed when this statement is executed, and the

resulted value is passed to speakers() each time the

underlying system decides what f contains.

f = < class, students[4:5], speakers(hd) >;

Because scienti�c and engineering programs often

use arrays, High C provides a way to partition an ar-

ray in a single statement. For example, the follow-

ing code segment partitions a two dimensional array

of size (XN�XB)�(YN�YB) into XN�YN blocks of size

XB�YB. Here, the operator \<�" initializes each indi-

vidual array element with the expression following the

operator, and the temporary index variables i and j

implicitly go through the range of each dimension of

the array.

float data [XN*XB][YN*YB];

folder envelope [i:XN][j:YN] <-

< data[i*XB:(i+1)*XB-1][j*YB:(j+1)*YB-1] >;

There is no pre-de�ned scheme for data partition-

ing. This approach is in contrast to the approach of

High Performance Fortran [9]. Our approach attempts

to provide the programmer with a few simple mecha-

nisms for partitioning shared data.

2.4 The Compiler

The High C compiler supports the extended lan-

guage constructs and runtime error checking. Our pro-

totype High C compiler is modi�ed from gcc. It trans-

lates a High C program into a C++ program and then

invokes a normal C++ compiler to generate the exe-

cutable code. Below we outline a few source-to-source

transformations performed by the High C compiler.

To support the operator \<�" that initializes indi-

vidual array element, the High C compiler generates

nested loops, with the number of nested loops equal

to the number of dimensions of the array.

To support runtime error checking, the compiler

provides an option to insert error checking primitives

before every access to shared memory. The compiler

transforms each reference to shared memory into a

comma expression and inserts an error checking prim-

itive into the comma expression.

To support traversal functions with arbitrary pa-

rameters, the compiler generates an envelope function

for each traversal function. This is necessary because

the underlying runtime system can only call functions

with �xed number of parameters through generic func-

tion pointers. The envelope function calls the traversal

function, taking two �xed size parameters: one points

to a data structure that packs all the parameters of

the traversal function, and the other indicates the size

of this data structure.

3

2.5 The Runtime System

The Concord runtime system consists of a user-level

thread package, an interrupt-driven message passing

platform, and a set of runtime routines. These run-

time routines manage synchronization, maintainmem-

ory coherence, support error checking primitives, al-

locate memory in the global shared heap, map user-

level threads onto processors, coalesce coherence mes-

sages, and handle marshaling, unmarshaling of folders.

The message passing platform provides a machine-

independent interface on top of both Unix sockets and

the iPSC/2 message passing primitives. The runtime

system contains about 16,000 lines of C++ code, most

of which are machine independent.

2.5.1 Synchronization Management

Concord implements two kinds of synchronization

primitives: barriers and folder primitives. In our im-

plementation of barriers, threads on the same proces-

sor rendezvous with each other via a count variable.

User-level thread systems on di�erent processors ren-

dezvous with each other in a way similar to the tourna-

ment barrier [8]. The synchronization of folder prim-

itives is combined with the management of memory

coherence, as described below.

2.5.2 Coherence Management

Concord maintains memory coherence in two levels.

First, Concord ensures the consistency of folder data

structures. Each processor detects uninitialized folder

data structures using an approach similar to Amber

[4]. Second, through the consistent folder data struc-

tures, Concord maintains the replication and consis-

tency of program data using both an invalidation-

based and an update-based consistency protocol.

Concord's invalidation-based consistency protocol

is similar to existing invalidation-based consistency

protocols. Each local folder has two states: valid and

invalid. A processor with a valid folder not only has

the most recent data, but also has the right to read

it. For each folder, each processor maintains a \best

guess" of the owner of the folder, the processor that

is writing the folder or wrote the folder the last time.

A read acquire operation that �nds a valid local folder

satisfying the request simply increments a count. Oth-

erwise, the request is forwarded to the owner, possibly

going through a chain of \best guesses." The owner

maintains a list of folder requests in the increasing or-

der of the smallest version requested, with requests

for an arbitrary version always at the head of the list.

A write acquire operation always contacts the owner.

It invalidates all valid copies of the requested folder

before it grabs the folder to write.

Unlike in a page-based invalidation consistency pro-

tocol, in Concord, processors do not always acknowl-

edge invalidations immediately; a processor only ac-

knowledges an invalidation of a folder when the num-

ber of threads reading the folder on the processor

reaches zero.

Concord only uses its update-based consistency

protocol under the direction of the programmer.

When a runtime system call informs the system that a

folder has a stable sharing pattern, Concord switches

the consistency protocol of the folder to the update-

based protocol. The owner of the folder then starts

to remember all the processors that have requested

the folder. In the reply to these requests, the owner

promises all these processors to update their local copy

of the data. When a read acquire operation �nds a

valid local folder that can satisfy the request, it in-

crements a count and returns. Otherwise, the read

acquire operation simply waits on its local processor

for either the next update or a version that can satisfy

the request. As in the invalidation-based consistency

protocol, each write acquire operation still invalidates

all other valid copies of the requested folder. A write

release operation eagerly sends the new version of the

folder to all the processors sharing the folder and sets

all these copies as valid. These update messages are

not acknowledged.

This update-based protocol is correct. Because

write acquire primitives invalidate other valid copies

of a folder, the synchronization of folder primitives is

ensured. Furthermore, this protocol avoids the pit-

fall described by Bal and Tanenbaum [1] because an

update of a folder can only cause an event in the com-

putation of a processor when a thread on the processor

acquires the folder.

When a folder has a stable sharing pattern, this

update-based protocol can be more e�cient than the

invalidation-based protocol for two reasons. First, new

data is propagated sooner. Second, readers do not

send messages to request folders.

The update-based consistency protocol incorpo-

rates an optimization to further exploit the stable

sharing pattern. In the update-based consistency pro-

tocol, each processor keeps track of how many times a

folder is read between invalidations. According to this

information, a processor may voluntarily give up the

right to read a folder in a read release operation, as-

suming the folder is read equal number of times after

each update. In this way, the next writer of the folder

will not have to invalidate the copy of the folder on

the processor.

4

2.5.3 Marshaling and Unmarshaling Folders

When Concord transfers a folder, it marshals the

folder into a message bu�er, sends the message, and

unmarshals the folder at the destination node. If a

folder is associated with a function, Concord uses the

function to both marshal and unmarshal the folder.

This is done by switching the role of the built-in in-

clude() function called along the traversal. When Con-

cord marshals a folder, the include() function copies

the included program data into a message bu�er.

When Concord unmarshals a folder, the include()

function copies data from the message bu�er into its

place in the virtual address space, possibly using the

virtual address speci�ed in program data previously

unmarshaled along the traversal.

2.5.4 Coalescing Coherence Messages

To coalesce coherence messages, on each processor,

Concord allocates a request registry and a reply reg-

istry. Whenever they are \open," they capture outgo-

ing folder requests and replies, coalesce them, and send

several requests or replies in a single message. Con-

cord always marshals a folder into and unmarshals a

folder from a message bu�er directly, avoiding a po-

tential extra copy.

The registries are opened whenever there is a good

opportunity to coalesce messages. In particular, the

coalesceStart() operation always opens the request

registry. The coalesceEnd() operation always
ushes

out all the request messages.

2.5.5 Supporting Error Checking Primitives

When error checking is turned on, each thread in Con-

cord keeps track of the folders it has acquired to either

read or write. An error checking primitive checks ac-

cesses to a range of memory against this list of folders,

in the same way as marshaling and unmarshaling fold-

ers.

3 Performance

This section evaluates the performance of Concord

and reports our experience of using Concord to pro-

gram applications, including three applications from

the SPLASH benchmark: Water, Barnes-Hut, and

LocusRoute [16]. These three applications are real

scienti�c and engineering applications, as claimed by

their creators. Two of them, Barnes-Hut and Locus-

Route, have irregular data structures. They represent

the kind of applications for which it is very di�cult to

write message passing programs.

Application Lines of code in Code increase

original programs in High C

Water 1500 18%

Barnes-Hut 2750 52%

LocusRoute 6400 16%

Table 1: The sizes of the original SPLASH benchmark

programs and the amount of code increased.

3.1 Programming Experience

The porting of the three SPLASH benchmark pro-

grams took a few weeks for a single programmer. In

general, the derived High C programs neither modify

the major data structures nor change the structure of

computation. The major modi�cation to the original

programs is to use folders to block shared data. Ta-

ble 1 shows the sizes of the three SPLASH benchmark

programs and the amount of code added in the High

C programs. The percentage of code added to Barnes-

Hut is more than that for the other two programs be-

cause Barnes-Hut is a very complicated program: it

re-partitions a tree of bodies at the beginning of each

iteration of its main loop.

Our experience suggests the following conclusions.

First, the runtime error checking is essential for pro-

gramming under the Concord relaxed memory consis-

tency model. Error checking helps debugging: it is

extremely di�cult to debug a parallel program with-

out knowing that some threads access stale data. Er-

ror checking also helps the programmer to understand

the sharing of a complicated program. This is because

error checking can often identify accesses to shared

memory that the programmer is not aware of initially.

Runtime error checking may slow down a program con-

siderably. But this is usually not a problem: program-

mers typically debug scienti�c and engineering pro-

grams with a small problem size and increase problem

size only for production runs.

Second, programming in High C is not too di�cult,

especially for programs that have a straightforward

way to partition the shared data, such as Red/Black

SOR, Water, and LocusRoute. For these programs,

once the programmer understands how threads share

data, adding the extra code required for the relaxed

memory consistency model is often mechanical. The

language support reduces the possibility of making er-

rors, and the runtime error checking makes errors easy

to detect.

Third, programming in High C is easier than writ-

ing message passing programs. In High C, threads

5

Sp
ee

du
p

Number of Processors

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32

LocusRoute
Barnes-Hut
Water
Red/Black SOR

Figure 1: Speedup of applications programmed using

the Concord DSM system.

Application Problem size

Red/Black SOR 512 � 512 data points

Water 512 water molecules

Barnes-Hut 8192 bodies

LocusRoute 3817 wires & 20 channels

Table 2: The problem sizes of the measured runs.

communicate through shared variables, the meanings

of which are determined statically. In a message pass-

ing program, threads communicate by sending mes-

sages, the meanings of which are often determined by

the order of the messages.

3.2 Application Performance

Figure 1 shows the speedup of the four applications

using 1 to 32 processors. The problem sizes of the mea-

sured runs are reported in table 2. The performance

is measured on an Intel iPSC/2.

The iPSC/2 we used is a relatively slow machine.

Its 386-based processor ranks about 0.3 MFLOPS and

2-3 VAX MIPS. A round trip short message on the

iPSC/2 takes about 700 microseconds. Compared to

DASH [14], the iPSC/2 processor is about 10-30 times

slower. Sending a round trip short message on the

iPSC/2 is about 170 times slower than fetching a re-

mote cache line on DASH in the worst case.

As shown in the �gure, all applications achieve good

speedup except LocusRoute. Compared with the mea-

sured runs of these three applications on the DASH

application reduction in Reduction in

of messages runtime

Red/Black SOR 71% 10.1%

Barnes-Hut 34% 8.4%

LocusRoute 1.4% 1.4%

Table 3: The advantage of using asynchronous acquire

primitives

prototype [14], our measured runs used the same prob-

lem sizes for Water and LocusRoute, and a smaller

problem size for Barnes-Hut. Although the relative

performance of communication on the iPSC/2 is much

lower than that on DASH, our performance results for

Water and Barnes-Hut are comparable with the re-

sults on the DASH prototype. The speedup of Locus-

Route is, however, poorer.

Red/Black SOR, Water, and Barnes-Hut achieve

good speedup mainly because the folders allocated

in these programs capture correctly the information

about sharing. This information allows Concord to

avoid false sharing and perform \scattered-gather,"

transferring data scattered in memory in a single mes-

sage. The traversal functions turned out to be very

useful. Water uses a traversal function to associate a

folder with certain components of a block of molecules.

Barnes-Hut uses a traversal function to associate a

folder with certain components of a subtree of bodies.

LocusRoute performs poorly mainlybecause Locus-

Route has low locality and the iPSC/2 provides rel-

atively slow message passing primitives. LocusRoute

routes wires on a chip, accessing a cost array while

making routing decisions. On the average, it only

takes 52 milliseconds of CPU time to route a wire.

During this time, on 32 processors, a processor sends

on the average 73 messages due to low locality in ac-

cessing the cost array.

3.3 E�ect of Asynchronous Acquire

Primitives

Table 3 shows the e�ectiveness of using asyn-

chronous acquire primitives in three applications when

they run on 32 processors. The results depend on

the applications because some applications have more

opportunities to coalesce messages than others. On

the average, for these four applications, the use of

asynchronous acquire primitives reduces the number

of messages by 27% and the runtime by 5%.

6

3.4 E�ect of the Update-based Consis-

tency Protocol

For Red/Black SOR, using the update-based con-

sistency protocol instead of the invalidation-based

consistency protocol reduces the number of messages

by 41% and the runtime by 9.4%. But the update-

based consistency protocol is not very useful for the

three SPLASH benchmark applications because these

applications are very dynamic.

4 Discussion and Related Work

There is a large body of literatures about dis-

tributed shared memory systems [15, 14, 4, 17, 6]. Be-

low we compare our approach with Munin [3], Tread-

Marks [12], and Midway [2]. We also discuss brie
y

the tradeo� between our approach and the approach

of compiling data-parallel languages such as High Per-

formance Fortran [9]. The latter has received consid-

erable support from both academia and industry.

Munin implements release consistency and employs

multiple consistency protocols. It incorporates an

update-based multiple-writer protocol that uses the

di� operation to �nd out the updates within a page.

This approach reduces the impact of false sharing, but

eager update-based protocols may send more messages

than necessary for dynamic programs. TreadMarks al-

leviates this problem by implementing release consis-

tency lazily, reducing communication considerably for

dynamic programs [12].

Compared with Concord, both Munin and Tread-

Marks provide a programming model that is much

closer to the conventional shared-memory program-

ming model. But Concord may potentially achieve

better performance because the programmer asso-

ciates data with folders. Concord's update-based con-

sistency protocol also di�ers from Munin's update-

based consistency protocol in two ways: (1) Concord's

protocol also synchronizes threads. (2) While Munin

ushes all updates when releasing a lock, Concord only

ushes a folder when releasing the folder. Unfortu-

nately, due to di�erences in processor and network

speed, it is di�cult to compare our performance re-

sults with theirs.

Although Concord requires the programmer to do

more work, Concord also helps the programmer in de-

bugging programs. The runtime error checking can

identify in some cases race conditions, a common type

of program error that is often considered as one of

the most important barriers in programming shared-

memory programs [11, 5]. Thus it is di�cult to deter-

mine if it is more di�cult and how much more di�cult

it is to program in Concord than either in Munin or

TreadMarks.

Midway is probably the existing DSM system that

is closest to our approach. Midway reduces the over-

head of maintaining coherence via entry consistency,

which requires the programmer to associate program

data with locks. To simplify programming, Midway

supports multiple consistency models. Midway also

lets a compiler insert code to manage logical time-

stamps for programmer-speci�ed \cache" lines. This

approach can reduce the size of coherence messages.

But because a processor has to update a logical time-

stamp each time the processor writes shared data, this

approach may increase the computation inside the in-

ner loop of a parallel program. Nevertheless, it is di�-

cult to assess the cost of managing logical time-stamps

from the limited performance results published about

Midway [2].

Unlike Midway, Concord attempts to simplify pro-

gramming through the language, the folder abstrac-

tion, and the runtime error checking. The folder prim-

itives include not only lock primitives, but also primi-

tives for multiple producer-consumer type of synchro-

nization.

Concord always transfers a complete folder. This

scheme may send more data than necessary, and it

relies on the programmer to partition data at a �ne

granularity to achieve good performance. On the other

hand, this scheme avoids managing Midway's logical

time stamps, and locking at a �ne granularity can also

increase the parallelism in a program.

High Performance Fortran (HPF) is a data-parallel

language. It augments Fortran with parallel loops

and data distribution annotations. Programming in

HPF can be easy because the program annotations are

treated as hints. Reasonable performance has been

achieved by compilers for relatively small and static

data-parallel programs [10]. Achieving good perfor-

mance for larger and more dynamic programs may be

harder, because runtime analysis causes overhead and

static analysis can be di�cult for large programs due

to interprocedure analysis and symbolic computation.

Compared to HPF, our programming language,

High C, may be harder to program for data-parallel

applications. But High C programs are not limited

to data-parallel programs. High C programs can po-

tentially perform better because the programmer ex-

presses parallelism explicitly.

5 Conclusion

Concord is one attempt to provide a distributed

shared memory system practical for real scienti�c and

7

engineering applications. By carefully dividing re-

sponsibilities among the programmer, the compiler,

and the runtime system, Concord has allowed a single

programmer to port several real, large shared-memory

parallel programs onto an Intel iPSC/2 in a few weeks

and achieve reasonable speedup.

Our performance measurement and programming

experience suggest the following conclusions. First,

with appropriate support from the runtime system,

the compiler, and the language, it is not too di�cult

for the programmer to partition shared data logically

at a �ne granularity. The performance gain can be

signi�cant. Second, runtime error checking is essential

for programming under some relaxed memory consis-

tency models. Third, both Concord's update-based

consistency protocol and asynchronous acquire prim-

itives can improve the performance of some applica-

tions signi�cantly.

Acknowledgments

The author is grateful to Ed Lazowska, Brian Ber-

shad, Ed Felten, and Mike Feeley for useful conver-

sations and helpful comments. This work was sup-

ported in part by the National Science Foundation

(Grants No. CCR-8907666, CDA-9123308, and CCR-

9200832), the Washington Technology Center, Digital

Equipment Corporation, Boeing Computer Services,

Intel Corporation, Hewlett-Packard Corporation, and

Apple Computer.

References

[1] H. E. Bal and A. S. Tanenbaum. Distributed Pro-

gramming with Shared Data. In Proceedings of the

IEEE CS 1988 InternationalConference on Computer

Languages, pages 82{91, Oct. 1988.

[2] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon.

The Midway Distributed Shared Memory System. In

Proceedings of the 38th IEEE Computer Society In-

ternational Conference (COMPCON '93), pages 528{

537, Feb. 1993.

[3] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Im-

plementation and Performance of Munin. In Proceed-

ings of the 13th ACM Symposium on Operating Sys-

tems Principles, pages 152{164, Oct. 1991.

[4] J. S. Chase, F. Amador, E. D. Lazowska, H. M. Levy,

and R. J. Little�eld. The Amber System: Parallel

Programming on a Network of Multiprocessors. In

Proceedings of the 12th ACM Symposium on Operat-

ing Systems Principles, pages 147{158, Dec. 1989.

[5] J.-D. Choi and S. L. Min. Race Frontier: Reproducing

Data Races in Parallel-Program Debugging. In Pro-

ceedings of the third ACM SIGPLAN Symposium on

the Principles and Practice of Parallel Programming,

pages 145{154, Apr. 1991.

[6] M. J. Feeley and H. M. Levy. Distributed Shared

Memory with Versioned Objects. In Proceedings of the

1992 Conference on Object-Oriented Programming:

Systems, Languages, and Applications, pages 247{

262, Oct. 1992.

[7] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,

A. Gupta, and J. Hennessy. Memory Consistency and

Event Ordering in Scalable Shared-Memory Multipro-

cessors. In Proceedings of the 17th Annual Interna-

tional Symposium on Computer Architecture, pages

15{26, June 1990.

[8] D. Hensgen, R. Finkel, and U. Manber. Two Al-

gorithms for Barrier Synchronization. International

Journal of Parallel Programming, 17(1):1{17, 1988.

[9] High Performance Fortran Forum. High Performance

Fortran Language Speci�cation. Version 1.0 DRAFT,

Jan. 1993.

[10] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Pre-

liminary Experiences with the Fortran D Compiler.

In Proceedings of Supercomputing '93, pages 338{350,

Portland, Oregon, Nov. 1993.

[11] A. H. Karp and R. G. B. II. A Comparison of 12

Parallel Fortran Dialects. IEEE Software, 5(5):52{66,

Sept. 1988.

[12] P. Keleher, A. Cox, S. Dwarkadas,

and W. Zwaenepoel. TreadMarks: Distributed Shared

Memory on Standard Workstations and Operating

Systems. In Proceedings of the 1994 Winter USENIX

Conference, pages 115{131, Jan. 1994.

[13] M. S. Lam and M. C. Rinard. Coarse-Grain Parallel

Programming in Jade. In Proceedings of the Third

ACM SIGPLAN Symposium on the Principles and

Practice of Parallel Programming, pages 94{105, Apr.

1991.

[14] D. Lenoski, J. Laudon, T. Joe, D. Nakahira,

L. Stevens, A. Gupta, and J. Hennessy. The DASH

Prototype: Implementation and Performance. In Pro-

ceedings of the 19th Annual International Symposium

on Computer Architecture, pages 92{103, May 1992.

[15] K. Li and P. Hudak. Memory Coherence in Shared

Virtual Memory Systems. ACM Transactions on

Computer Systems, 7(4):321{359, Nov. 1989.

[16] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH:

Stanford Parallel Applications for Shared-Memory.

Computer Architecture News, 20(1):5{44, Mar. 1992.

[17] A. S. Tanenbaum, M. F. Kaashoek, and H. E. Bal.

Parallel Programming Using Shared Objects and

Broadcasting. Computer, pages 10{19, Aug. 1992.

8

