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Abstract

The scalability and performance of parallel applications on distributed-memory multiproces-

sors depends to a great extent on the performance of communication. Although the communi-

cation hardware on distributed-memory multiprocessors can transfer data quickly, applications

often fail to achieve communication performance matching the hardware's capacity. Two key

impediments to achieving high performance communication are ow control and protection

boundaries.

This paper proposes and evaluates two techniques to reduce the cost of ow control and

the cost of crossing protection boundaries. First, to optimize the common case, processors may

send messages optimistically without ensuring that the destination processor of the message has

enough bu�er space to receive the message. Second, to avoid crossing protection boundaries

through expensive traps and software interrupts, the kernel and the user-level address space

may cooperate and communicate asynchronously through shared data structures. Implemented

using these two techniques, our prototype system on an Intel iPSC/2 improves the performance

of message passing primitives by a factor up to 2.5 and the performance of real applications by

up to 30%.

1 Introduction

The scalability and performance of parallel applications on distributed-memory multiprocessors

depends to a great extent on the performance of communication. Poor performance of communi-

cation not only limits the granularity of programs that can run successfully, but also degrades the

performance of course-grain programs and limits their scalability.

Although most communication hardware can transfer data quickly, applications often fail to

achieve communication performance matching the hardware's capacity. For example, on an Intel

Delta multicomputer, the hardware can deliver a short message in less than one microsecond, but
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the user-level application requires 67 microseconds. This communication gap [Felten 92a] is caused

by the communication software, which typically performs ow control, manages message bu�ers,

crosses protection boundaries, and ensures protection.

In this paper, we propose two new ideas to reduce this communication gap. The �rst idea

attempts to decrease the cost of ow control on machines with a reliable network, such as a wormhole

routing network. The second idea attempts to lower the cost of crossing protection boundaries on

multicomputers, such as an Intel Paragon, that prohibit the user-level application from accessing

the network interface directly. Briey, the two ideas are as follows:

� An optimistic ow control protocol. In this protocol, each processor may send a message

optimistically without ensuring that the destination processor has enough bu�er space to

receive the message. The processor retransmits messages failed due to bu�er overow using a

protocol that takes advantage of the reliable network. This optimistic protocol is in contrast

to conservative protocols, in which each processor sends messages only after it ensures that

the receiver has enough bu�er space [Pierce 88].

� Crossing the protection boundaries in a communication system through a short cut | shared

kernel/user data structures. Through such shared data structures, a communication system

may free message bu�ers managed in another protection domain, and the kernel may deliver

messages to an application when the application promises to poll messages.

The motivation behind the optimistic protocol is to optimize the common case. When running

parallel applications, each processor typically sends a limited number of messages at each step of

the computation, and processors often consume incoming messages quickly. Thus processors are

likely to have enough bu�er space to receive messages.

The motivation behind the second idea is that traps, upcalls, and software interrupts are in-

herently expensive [Anderson et al. 91, Anderson et al. 92]. The idea of letting kernel and user

communicate asynchronously through shared memory is not new: Marsh et al. used this technique

to integrate kernel support with a user-level thread package on NUMA shared memory multiproces-

sors [Marsh et al. 91]. However, we believe we are the �rst to propose the extensive use of shared

data structures in communication systems on distributed-memory multiprocessors. Our approach

focuses on how a communication system may cross protection boundaries asynchronously instead

of synchronously, and still maintain the same message passing semantics.

The goal of this work is two fold: (1) to propose and evaluate the two ideas described above,

and (2) to build a fast communication facility suitable for implementing distributed applications,

such as distributed shared memory systems.

To achieve this goal, we designed and implemented a communication facility called Express

Messages, incorporating the two ideas described above. Express Messages currently runs on an

Intel iPSC/2. It integrates message passing with a user-level thread package. The thread package

executes message handlers in the context of user-level threads. It also polls incoming messages

from the kernel transparently to the application programmer: messages are polled either when the

user-level thread management system has no ready threads to run or when it is processing previous

incoming messages.
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The latency and throughput achieved by Express Messages are signi�cantly better than that

achieved by the native iPSC/2 message passing library: For small and medium messages, Express

Messages reduces the latency by up to a factor of 2.5 and increases the throughput by up to a

factor of 2.8.

Our experiments also show that Express Messages can e�ectively cut the communication time

in real applications. Through a distributed shared memory system, we run two shared-memory pro-

grams on top of both the iPSC/2 message passing library and Express Messages. Express Messages

reduces the application run time by from 0% to 30%. We found that, for these applications, mes-

sages sent optimistically rarely fail, and the applications often poll a large percent of the incoming

messages through the user-level thread package.

The rest of the paper is organized as follows. The next section further motivates our approach

by describing the problem that confronts high performance communication. Section 3 details the

two ideas we propose. Section 4 describes the design and implementation of Express Messages.

Section 5 evaluates the performance of Express Messages and the e�ectiveness of the two ideas.

Section 6 describes some related work. Section 7 concludes.

2 Sources of the Communication Gap

In this section, we motivate our approach by describing the sources of software overhead in con-

ventional communication systems on distributed-memory multiprocessors. We can attribute the

software overhead to two main reasons: protocol processing and protection boundaries [Felten 92a].

2.1 Protocol Processing Overhead

Protocol processing includes two tasks: bu�er management and ow control. The challenge in

bu�er management is to reduce overhead and avoid copying messages. To reduce message copying,

a communication system may map message bu�ers into both the kernel and the user-level address

space [Schroeder & Burrows 90, Brustoloni & Bershad 93].

The challenge of ow control is to deliver messages between user-level processes reliably with a

small cost. The cost of ow-control typically includes extra computation, as well as extra protocol

messages. For example, the Intel NX/2 operating system, which runs on many of the Intel multi-

computers with reliable networks, uses a conservative ow control scheme [Pierce 88]: each node

sends a message only after it ensures that the destination node has enough bu�er space to receive

the message. Speci�cally, NX/2 partitions messages into short and long messages. Each node re-

serves some short message slots for each other node. A node may send a short message directly, as

long as it has a short message slot to the destination node. However, each node has to send a long

message using a three-way protocol: The sender �rst sends a short message to reserve the required

bu�er space; after receiving a grant message from the receiver, the sender then transfers the long

message itself. In NX/2, the maximum size of short messages is 100 bytes.

It is inherently di�cult for a conservative ow control scheme to avoid sending protocol messages

in order to deliver medium or long messages reliably. The reasons are as follows: First, in general,
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each processor does not know how much bu�er space is left on another processor. In order for a

processor to make sure that there is enough bu�er space on another processor, it has to reserve

that much bu�er space either by sending a protocol message or by reserving the required bu�er

space in advance. Second, each processor in general does not know the size and destination of the

messages it is going to send, because applications may decide these parameters at runtime. So

in order to reserve space for future messages, a processor must in general reserve bu�er space on

all processors. This makes reserved bu�er space a scarce resource, increasingly so for machines

with a large number of processors. If processors use reserved bu�er space to send medium or long

messages, this scarce resource would be exhausted quickly, and the communication system will tend

to send protocol messages frequently in order to reserve more bu�er space.

2.2 Protection Boundaries

The problem of protection boundaries is two fold. First, because the kernel can not trust the user,

it has to verify the parameters in system calls. Second, and more importantly, it can be costly to

cross protection boundaries. Conventional communication software crosses protection boundaries

through traps, upcalls, or software interrupts. These operations may save registers and ush cache

and TLBs; they are inherently expensive [Anderson et al. 91, Anderson et al. 92, Felten 92a].

The protection boundaries problem described above exists only on machines that prohibit ap-

plications from accessing the network interface directly. By mapping the network interface into the

user level, Thinking Machines' CM-5 eliminates the need to cross protection boundaries in com-

munication systems [TMC 91, Felten 92a]. However, such a hardware solution has its cost: CM-5

has to support \all fall down" mode; it has to provide two separate networks, one for the operating

system kernel and one for the user-level application; and it has to pay extra overhead when users

time-slice partitions.

3 Two Techniques to Reduce the Communication Gap

We propose to reduce the communication gap in two ways: (1) reducing the cost of ow control

through an optimistic protocol, and (1) lowering the cost of crossing protection boundaries through

shared kernel/user data structures.

3.1 The Optimistic Flow-Control Protocol

The basic idea of the optimistic ow-control protocol is to send short and medium messages op-

timistically and use a conservative protocol to retransmit failed messages. The protocol divides

messages into short, medium, and long messages. The size of short messages is subject to the same

constraint as in the NX conservative protocol. The size of medium messages may be as large as a

page, for example.

The basic scheme is as follows:

� Under certain condition as described below, each processor sends short and medium messages

4



optimistically, without ensuring that the destination processor has enough bu�er space to

receive the message. (Below, we call these messages optimistic messages.)

� In all other situations, each processor sends messages using the NX conservative protocol: it

sends short messages directly, and it sends medium and long messages using the three-way

protocol.

� If a receiver runs out of bu�er space to receive an optimistic message, the receiver replies

the sender with a negative acknowledgment. The sender then retransmits the failed message

using a conservative protocol.

� Each processor frees an optimistic message only after the processor knows for sure that the

message has been accepted by its receiver. A processor accepts a message when it commits

resources to bu�er the message.

There are two challenges in designing the optimistic protocol: (1) How can each processor know

what optimistic messages have been accepted by their destination processors? Can this be done

without requiring processors to reply to every optimistic message with a positive acknowledgment?

(2) How does the system maintain the order of messages? These two issues are discussed below.

3.1.1 Freeing Optimistic Messages

We let messages piggyback information about what optimistic messages have been accepted, rather

than requiring processors to acknowledge every optimistic message. This is done through sequence

numbers. For each of the other remote processor d processor s communicates with, processor s

maintains three sequence numbers: out(s, d) is the sequence number for the next optimistic message

from processor s to processor d; in(s, d) is the sequence number of a past optimistic message from

processor d to processor s: processor s has accepted all optimistic messages from processor d up

to this message; safe(s, d) is the processor s's best guess of processor d's in(d, s): all optimistic

messages from processor s to processor d with sequence number less than safe(s, d) should have

been accepted

1

. Whenever processor s sends a message to processor d, it attaches in(s, d), which

is used by processor d to update its safe(d, s).

In general, each processor frees optimistic messages lazily. When a processor detects that its free

bu�er space is low, it frees optimistic messages according to the safe sequence numbers maintained

by the processor. Because messages usually go both ways during parallel computation, this scheme

is likely to free most of the optimistic messages.

It is possible, however, that messages may go only one way, as depicted in Figure 1. In the �gure,

application messages only ow from processor A to processor B . Our solution takes advantage of

the fact that the underlying network delivers messages reliably and maintains the order of messages.

When processor A runs out of bu�er space to send messages, it sends processor B a short inquiry,

to which processor B must reply. When processor A receives the reply, it knows for sure that it has

1

Sequence number overow is handled in the same way as in conventional communication systems.
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Figure 1: Freeing optimistic messages in the \worst case."

received all the negative acknowledgments for optimistic messages sent before the inquiry; those

messages should either have been accepted or have been retransmitted.

3.1.2 Maintaining the Order of Messages

Each processor maintains the order of incoming messages using a FIFO queue. Whenever a proces-

sor hears about an incoming application message the �rst time, it appends an element at the end

of the FIFO queue to remember its order. When the processor receives a retry message, it �nds

the order of the message by searching through the FIFO queue.

The use of the FIFO queue poses a problem: the FIFO queue of a processor may overow

if the processor can not keep up with the speed of incoming optimistic messages. We solve this

problem by giving each processor a limited amount of optimism: Each processor can only send short

and medium messages optimistically when the di�erence between the corresponding out and safe

sequence numbers is under a threshold. This scheme bounds the number of elements in any FIFO

queue representing failed messages. Because a processor can always reject incoming optimistic

messages when the FIFO queue �lls up, the processor can always make sure that the FIFO queue

never overows.

In essence, each processor reserves a certain number of elements in each other's FIFO queue for

failed optimistic messages. This is similar to reserving short message slots. However, because the

size of each element in the FIFO queue is small, each processor can a�ord to let other processors

be reasonably optimistic.

3.2 Crossing the Protection Boundaries through Kernel/User Shared Data

Structures

Crossing the protection boundaries through traps, upcalls, or software interrupts is expensive, but

there is a short cut: the kernel and the address space may communicate asynchronously through

data structures mapped into both address spaces [Marsh et al. 91]. The di�culty, however, is to
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maintain the same message passing semantics when the kernel and the address space communicate

asynchronously instead of synchronously.

To illustrate, consider a parallel program running on top of an RPC system implemented at

the user level. Each processor may multiplex both user-level application threads that perform real

computation and user-level server threads that processes incoming RPC calls. When the kernel

receives an incoming RPC call, it may notify a user-level server thread either synchronously through

an upcall or asynchronously through shared memory. But if the kernel noti�es the server through

shared memory, the address space may ignore the incoming call for a long time because application

threads may enter a long computation phase. Due to this delay of processing incoming messages,

the processor that issued the call may idle for a long time waiting for the reply. This is especially

a problem in distributed shared memory systems [Chase et al. 89, Bershad et al. 93], in which a

request may hop across several processors through a chain of \best guesses" before it fetches some

remote data.

Our approach to the problem is to let the kernel and the address space form a contract: If an

address space promises to poll messages, the kernel must place incoming messages at certain place

in the user's address space. If the address space does not promise to poll messages, the kernel must

crawl out to the user level synchronously through upcalls or software interrupts. In this way, the

kernel and the address space cooperate to guarantee that incoming messages are never ignored.

4 The Design and Implementation of Express Messages

Express Messages is a thread and communication system implemented using the two techniques

described above. In Express Messages, the kernel implements the optimistic ow-control protocol,

and a user-level thread package contracts with the kernel: the user-level thread package polls

messages either when it has no ready threads to run or when it is processing previous incoming

messages. This approach makes polling transparent to application programmers.

4.1 The Message Passing Interface

Express Messages provides user-level threads, thread synchronization objects, and message passing

primitives. The message passing primitives include routines to allocate message bu�ers and a single

send primitive. The send primitive takes three parameters: a unique identi�er for the remote

destination process, a pointer to a message, and a pointer to a message handler. A thread sending

a message continues as soon as send returns: the message bu�er is freed automatically later when

the message has been transferred reliably. When the message arrives at the destination process,

a user-level server thread processes the message automatically by executing the message handler

with message body as argument.

Express Messages supports an execution model in which the same program image is loaded

onto all the participating processors. Each process multiplexes user-level threads on a single pro-

cessor. This execution model was chosen mainly for two reasons. The �rst reason is simplicity.

Applications that run on distributed-memory multiprocessors, including message passing programs
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and distributed shared memory systems, often load the same program image onto all participating

processors. These applications do not require a general naming and binding facility such as those

found in RPC systems. The second reason is performance. User-level threads provide a way to

manage parallelism with inexpensive primitives [Anderson et al. 92]. User-level threads also pro-

vide a way to hide communication latency by allowing the communication of one thread to overlap

with the computation of other threads [Felten 92b].

Many characteristics of Express Messages are motivated by our desire to support the imple-

mentation of e�cient distributed applications, especially distributed shared memory systems:

� Express Messages invokes message handlers automatically, and message handlers may block.

This feature helps to implement distributed applications because, in a distributed application,

incoming messages may be unanticipated and message handlers may have to share synchro-

nization objects with application threads.

� The send primitive is one-way asynchronous. Compared to the request-reply model used in

RPC systems, this approach exposes more power [Lampson 83, Walker et al. 90, Ananda et al. 91].

� The system maintains the order of messages. Maintaining the order of messages makes it

easier to reason about correctness in a distributed application.

� In each process, there is a single server thread processing incoming messages one after another.

Because each processor only has a limited amount of physical memory, a robust system has

to bound the number of server threads that may be created in a process during computation.

We choose a single server thread for simplicity and performance.

4.2 Implementation

As mentioned earlier, we implemented Express Messages on an Intel iPSC/2, which runs the native

Intel NX/2 operating system and incorporates a reliable hypercube network [Pierce 88]. The DMA

controller of the network can perform scattered-gather. The NX/2 operating system provides

virtual memory, but it does not provide paging.

We modi�ed the NX/2 kernel and implemented a user-level thread package. Where the original

NX/2 anticipates a short incoming message, the modi�ed kernel anticipates a message of size up

to a page. The modi�ed kernel still handles its native iPSC/2 messages in the same way as it used

to, making it possible for existing iPSC/2 message passing programs to run as before. The new

kernel can also perform the optimistic ow-control protocol for the new type of messages, and it

can upcall into the user level. The user-level thread package schedules and synchronizes user-level

threads, allocates message bu�ers, processes upcalls, polls incoming messages, and implements a

thin layer of ow control at the user level.

4.2.1 Bu�er management

Message bu�ers are mapped into both the kernel and the user-level address space. The output

message bu�er is managed mainly by the thread package, and the input message bu�er is managed
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mainly by the kernel. Both the thread package and the kernel allocates short, and medium and

long messages di�erently: short messages are allocated through a free list, and medium and long

messages are allocated at the granularity of a page.

In most cases, Express Messages does not copy messages while delivering messages from the

output bu�er of one process into the input bu�er of another process. The kernel always sends

messages directly from their original bu�er space. The kernel receives di�erent messages in di�erent

ways: an optimistic message is received into a page and mapped into its destination process; a

short message sent via the conservative protocol is received into a page and then copied into a

short message slot; a medium or long message sent via the conservative protocol heads directly into

the pre-allocated bu�er. This scheme minimizes copying in the kernel while retaining protection.

Both the input and output message bu�ers are freed lazily through kernel/user shared data

structures. For example, after the kernel has transferred a short message, the kernel inserts the

message into a list shared by the kernel and the address space. When the address space runs out of

bu�er space to send short messages, the address space may examine the list and claim all messages

returned by the kernel.

4.2.2 Flow Control

The kernel implements the optimistic ow-control protocol described in Section 3.1. The actual

implementation is process-based rather than processor-based: In Express Messages, each process

maintains information about ow control and the kernel acts on behalf of the process to carry

out the ow-control responsibility. Because each application using Express Messages starts one

process on each participating processor, there is no basic di�erence between the process-based and

processor-based approach.

Because messages are allocated and eventually consumed at the user level, there is also a thin

layer of ow control in the user level thread package. On the send side, when an address space runs

out of output bu�er space, the address space blocks any thread that attempts to allocate bu�ers

and traps into the kernel, informing the kernel to return all the messages already accepted. Those

blocked threads may be unblocked later by the user-level scheduler when the scheduler discovers

that the kernel has returned more bu�ers. On the receive side, when the kernel requests the address

space to return bu�ers synchronously, the address space traps into the kernel every time a message

handler returns. The kernel may request the user level to return bu�ers synchronously when it

runs of of bu�er space or short message slots.

4.2.3 Polling

The user-level thread package polls incoming messages from the kernel through the FIFO queue

used in the optimistic protocol. The FIFO queue is a circular queue mapped into both the kernel

and the address space. The address space maintains a pointer to the front of the queue, while

the kernel maintains another pointer that indicates up to which message the address space may

consume. The address space polls messages simply by comparing the two pointers and grabbing
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messages from the queue. Security is not compromised: both the FIFO queue and the pointer

maintained by the kernel are mapped read-only at the user level.

4.2.4 Complying with the Contract

In Express Messages, the address space polls messages either when it has no ready thread to run, or

when the single server �nishes processing an incoming message. The address space promises to poll

messages either when the user-level scheduler is running the idle polling loop or when the server is

handling an incoming message. The information about the promise reaches the kernel via a bit in

a kernel/user shared data structure. When the address space does not promise to poll messages,

the kernel upcalls into the user level to deliver incoming messages. The address space responds to

an upcall by starting the server thread, which runs at a user-level priority higher than application

user-level threads.

This contract not only makes it possible for the kernel to cross into the user-level quickly, but

also simpli�es the implementation. Without the contract, an upcall may occur while the address

space is still processing previous upcalls. With the contract, the address space may safely assume

that upcalls will not occur until the server thread revokes its promise of polling messages.

Our implementation chooses to use a single upcall stack to avoid managing upcall stacks and

passing them between the kernel and the address space. This scheme, however, poses a minor

problem: If the kernel upcalls after the server has revoked its promise but before the server has

completely switched to another thread, the kernel may overwrite the upcall stack which is still in

use. We solve this problem by detecting such a situation. If before the upcall, the kernel discovers

that the stack pointer of the interrupted process is still within the upcall stack, the kernel does not

push the whole process state onto the upcall stack; instead, it simply upcalls and inform the upcall

handler of such event.

4.2.5 Critical Sections

Critical sections pose problems. User-level thread packages on uniprocessors typically use critical

sections to guarantee atomicity. However, an upcall may occur when an application thread is inside

a critical section, and the message handler triggered by the upcall may also need to enter the same

critical section.

We use a lazy strategy to solve this problem. When the server detects that a critical section

it is going to enter is occupied, it resumes the interrupted process, which must be currently in the

critical section. When the resumed process exits the same critical section, it hands o� the processor

back to the server, at which point the server enters the critical section and continues.

Our lazy scheme is in contrast to the eager recovery schemes used in Scheduler Activations,

which always give the interrupted thread a chance to exit critical sections at the time of the upcall

[Anderson et al. 92, Barton-Davis et al. 93]. Such an eager scheme is necessary on shared-memory

multiprocessors, because if a thread is preempted in a critical section, it may impede the progress

of other threads on other processors. This problem, however, does not exist on uniprocessors. Our
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Figure 2: The best-case latency of the iPSC/2 message passing library and Express Messages.

lazy scheme simpli�es the implementation and optimizes the case in which the server does not

block.

5 Performance

In this section, we describe the performance of Express Messages measured on the Intel iPSC/2.

We focus on the e�ect of the two techniques described in Section 3 on the performance of message

passing primitives, as well as real applications.

5.1 The Performance of Message Passing Primitives

Figure 2 compares the latency achieved by Express Messages and the native iPSC/2 message passing

library. The latency is measured by a simple ping-pong program, in which two processes on two

nodes send messages back and forth. Each measured run of the program represents the best case

in each system: in the case of iPSC/2 messages, messages are not copied, and short message slots

are piggybacked both ways. In the case of Express Messages, all messages less than about a page

are sent optimistically, and optimistic messages never fail.

There are two lines in the �gure representing the latency of Express Messages. One of them,

Express Messages with polling, is measured when both processes in the ping-pong program have no

ready thread to run. The other, Express Messages with upcall, is measured when both processes run

an application thread that spins in a loop while a message is bounced between the two processes.

The di�erence in latency is about 27 us. This relative large di�erence is due to the cost of an upcall:

the upcall saves all the registers and the state of the oating point unit on the upcall stack.

As shown in the �gure, the latency achieved by Express Messages is signi�cantly lower than that

achieved by the iPSC/2 message passing library. More importantly, the latency of iPSC/2 messages
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curve \Forced conservative Express Messages" is measured when optimistic messages are manually

disabled in Express Messages.

increases dramatically at 100 bytes, but the latency of Express Messages increases gradually as the

message size increases, until the message size reaches about the 4k page size (which is not shown

in the �gure). This di�erence is the inherent advantage of the optimistic protocol.

Figure 3 compares the throughput achieved by Express Messages and the iPSC/2 message pass-

ing library. The throughput is measured by an application, in which one process sends thousands

of messages to another. In the Express Messages program, the receiver has no ready thread: the

user-level scheduler consumes messages through polling.

Again, Express Messages signi�cantly outperforms the iPSC/2 message passing library. The

di�erence in throughput is mainly due to two reasons. First, the iPSC/2 message passing system

may copy a message if the message arrives at its destination before the corresponding receive is

posted. Express Messages, on other hand, never copies messages when it passes messages larger

than 100 bytes. This di�erence contributes mainly to the gap between the two curves \iPSC/2

Messages" and \Forced conservative Express Messages." The latter is measured when optimistic

messages are manually disabled in Express Messages, in which case Express Messages is forced to

use the NX conservative protocol to send messages. Second, the iPSC/2 message passing system

sends a lot more protocol messages. The number of protocol messages sent by the iPSC/2 message

passing system is always twice the number of application messages, as long as the application

message is bigger than 100 bytes. On the other hand, the number of protocol messages sent by

Express Messages is typically a small fraction of the number of application messages. For example,

for messages of 500 bytes, Express Messages sends 88% of the messages optimistically. None of

the optimistic message fails because the receiver receives these messages quickly. The number of

protocol messages sent by Express Messages is only 24% of the number of application messages.

This inherent advantage of the optimistic protocol contributes to the di�erence between the two
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Application Red/Black SOR LocusRoute

Performance improvement 7.1% 33%

Table 1: Performance improvement of running on top of Express Messages over running on top of

the iPSC/2 message passing library.

curves \Express Messages" and \Forced conservative Express Messages."

5.2 Application Performance

In order to measure the e�ect of Express Messages on real applications, we ported a distributed

shared memory (DSM) system, the Concord DSM system, onto Express Messages. Concord at-

tempts to provide a practical DSM system for real applications through a careful division of re-

sponsibilities among the programmer, the compiler, and the runtime system [Lee 93]. Currently,

the same machine-independent code of Concord has been implemented on top of three message

passing platforms: Unix sockets on a network of workstations, the iPSC/2 message passing library

on an iPSC/2, and Express Messages on the iPSC/2.

In this section, we evaluate the e�ectiveness of Express Messages through two shared memory

programs that run on top of Concord. The �rst application is Red/Black SOR. Red/Black SOR

solves the two dimensional Laplace equation using the successive over-relaxation method. The

second application is LocusRoute from the SPLASH benchmark [Singh et al. 92]. LocusRoute is a

commercial quality VLSI standard cell router. The original LocusRoute code consists of 6400 lines

of C code.

We �rst compare the performance of the two programs running on top of Express Messages and

the iPSC/2 message passing library. Table 1 shows the speedup of the two programs running on top

of Express Messages over running on top of the iPSC/2 message passing library. In the measured

run, the Red/Black SOR program used 32 processors to perform Red/Black over-relaxation on 512

� 256 data points; the LocusRoute program used 16 processors to route 1266 wires.

As shown in the table, Express Messages speeds up these two programs by 7.1% to 33%. The

speedup of two programs are very di�erent because the two applications spend di�erent amount time

in communication. The Red/Black SOR program spends a small percent of time in communication,

while LocusRoute spends a large percent of time in communication.

5.2.1 The E�ectiveness of the Optimistic Protocol

To assess the e�ectiveness of the optimistic protocol, we gathered statistics when the Red/Black

SOR program and the LocusRoute program run on top of Express Messages. These statistics are

shown in table 2.

As shown in the table, when these two applications run, processors send almost all the mes-

sages optimistically and few optimistic messages fail. This is not surprising: For example, in the

Red/Black SOR program, threads exchange boundary data points with their neighbors. As long
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Application Red/Black SOR LocusRoute

Percent of messages sent optimistically 100% 99.9%

Percent of optimistic messages failed 0% 0%

Table 2: Some statistics gathered when the two programs run on top of Express Messages.

Application Red/Black SOR LocusRoute

Performance improvement 2.5% 11%

Table 3: The performance bene�t of using the optimistic protocol over the conservation protocol.

as the amount of bu�er space is more than the space occupied by boundary points of a few data

blocks, optimistic messages should never fail during the inner loop of the computation.

How does the optimistic protocol a�ect performance? In order to answer this question, we

manually disabled optimistic messages in Express Messages and measured the speedup of using

the optimistic protocol in Express Messages over using solely the conservative protocol in Express

Messages. The result is shown in table 3.

The bene�t of the optimistic protocol ranges from 2% to 11%. These values are signi�cantly

lower than those in table 1. We believe that this is mainly because the iPSC/2 message passing

primitives may be copying messages.

5.2.2 The E�ectiveness of Crossing Protection Boundaries through the Short Cut in

Shared Memory

Figure 2 shows delivering incoming messages through shared data structures save 27 microseconds

from the latency of a one way message. This advantage, however, will only bene�t applications if

applications receive messages through polling. Table 4 shows the percent of messages polled when

these two applications run. As shown in the table, majority of the messages are polled.

The fact that the thread package polls for a majority of the messages suggests that the thread

package might as well poll all messages. To assess the e�ect of this alternative choice, we disabled

upcalls in Express Messages and measured the performance degradation due to polling-only. The

results are shown in table 5.

Table 5 shows that there can be a huge win to let the kernel and the address space form a

Application Red/Black SOR LocusRoute

Percent of messages polled 94% 83%

Table 4: The percent of messages polled when the two programs run on top of Express Messages.
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Application Red/Black SOR LocusRoute

performance degradation 0% 39%

Table 5: Performance degradation of polling-only compared to having a contract.

contract. Polling-only degrades performance of LocusRoute by 39%. This is because LocusRoute

uses a work heap model and it is very dynamic: incoming messages may often �nd that a thread

management system is not idle. The performance degradation for the Red/Black SOR program

is zero. This is because, in Red/Block SOR, threads execute in lock-step using barriers: they are

likely to be either all computing or all communicating.

6 Related Work

There is a large body of literature related to improving the performance of communication systems.

Below we compare our work with four other systems that either have similar goals or use similar

techniques.

Protocol compilation [Felten 93] is a technique in which a compiler generates tailored protocols

to reduce the cost of protocol processing. The key observation of this approach is that the compiler,

unlike processors, may have global knowledge of how a parallel program runs, and this knowledge

may be used to reduce the cost of protocol processing. For example, the compiler may ensure

that processors have enough bu�er space to receive messages. Felten's prototype protocol compiler

successfully speeds several message passing programs by 0-20%. This approach, however, works only

for data parallel programs. There are still many open research problems related with this pioneering

work: For example, can compilers recognize communication pattern automatically? Can runtime

compilation work successfully for programs in which the size and destination of messages can only

be determined at runtime? Unlike Felten's approach, our approach | the optimistic protocol |

requires no help from either the compiler or the programmer, and it can reduce protocol overhead

for any application in which processors are likely to have enough bu�er space to receive messages.

Our approach also reduces the copying of messages, though we require the programmer to allocate

message bu�ers from dedicated memory regions.

Active Messages [von Eicken et al. 92] is a communication system that attempts to reduce the

cost of protocol processing using a minimum protocol approach. Because Active Messages invokes

message handlers while interrupts are masked o�, it does not need a ow-control scheme, and it

requires only two message bu�ers. This simplicity reduces message latency dramatically. How-

ever, Active Messages is a low-level communication system. Using Active Messages as a high-level

communication system confronts three di�culties. First, it is di�cult to ensure security on multi-

computers that do not use a separate network for operating systems. If a user-level message handler

refuses to return to the kernel either because of an error or a malicious act from a programmer, the

message handler may block messages destined to other processes as well as the operating system.

Second, it is di�cult to structure applications that use Active Messages. A message handler doing
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useful work may have to share synchronization objects, such as locks, with application threads.

When a message arrives at a processor, an application thread on the processor may hold some of

the locks required by the message handler, preventing the message handler from running without

blocking. Third, it is di�cult to avoid deadlock. Because there is only a single send message bu�er,

a message handler may �nd that the send message bu�er is still in use when the message handler

attempts to send a message. To avoid deadlock, the message handler must bu�er the message

somewhere else, and the application must send the message later. Unlike Active Messages, Express

Messages is a high-level communication system. In Express Messages, message handlers execute

while interrupts are enabled; message handlers can block; and the ow control in Express Messages

frees the programmer from manually bu�ering and re-sending messages in order to avoid deadlock.

Optimistic implementation of bulk data transfer protocols [Carter & Zwaenepoel 89] is a tech-

nique to speed up transferring bulk data across a packet-based network. Using this technique, a

bulk data transfer protocol optimistically predicts that, during receipt of bulk data, the next packet

that comes from the network is the next packet of the bulk data transfer. By being optimistic,

the protocol may avoid an extra copy of packets. Although our approach shares similar philosophy

in protocol design, our techniques and our targeted network environment are very di�erent. Our

optimistic protocol is designed to speed up transferring medium messages across reliable networks,

and the protocol attempts to avoid sending protocol messages by making optimistic assumptions.

URPC [Bershad et al. 91] is an RPC system for shared-memory multiprocessors. URPC lets

two address spaces on the same machine communicate through a short cut | shared memory

regions pairwise mapped into both address spaces. In URPC, each address space polls incoming

RPC calls. The e�ectiveness of URPC for normal RPC calls relies on its optimistic assumption: (1)

the client has other work to do, and (2) the server is polling, or will soon poll, incoming messages.

Unfortunately, as argued in section 2.1 and demonstrated in section 5.2.2, the optimistic assumption

does not always hold for parallel computing on distributed-memory multiprocessors. Our approach

of polling di�ers from URPC mainly in that, in our approach, the kernel and the address space

forms a contract to make sure that messages are always delivered quickly.

7 Conclusion

The basic ideas behind our approach are relatively simple: Processors may send medium messages

optimistically because other processors may consume messages quickly, making enough room for

these messages. Software communication system may cross protection boundaries through ker-

nel/user shared data structures because the kernel and the address space may cooperate, making

it possible to replace synchronous operations with asynchronous operations.

Implementing the two ideas turned out to be non-trivial. The optimistic protocol is complicated

because it must retransmit failed messages and maintain the order of messages without paying a

big cost in the common case. The cooperation between the kernel and the address space can also

be complicated because the kernel may synchronously crawl out to the user level either when the

address space is in a critical section or when the address space is changing its promise.

Despite its complexity, our prototype communication system achieved performance signi�cantly
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better than that achieved by the iPSC/2 message passing library. The latency and throughput of

message passing primitives are improved by a factor up to 2.5, and the performance of two real

applications is improved by 0-30%. Our measurements show that, in running parallel applica-

tions, messages sent optimistically rarely fail, and the communication system can often cross the

protection boundaries through the short cut | kernel/user shared data structures.
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