
Faster Dynamic Linking for SPARC V8 and System V.4

David Keppel and Stephen Russell

University of Washington

Technical Report 93-12-08

Abstract

Dynamic linking is again becoming common and

processor pipeline depths are increasing. These fac-

tors make it worth retuning dynamic linker imple-

mentations. This note examines the current dy-

namic linking scheme used by System V.4 running

on SPARC V8 processors and shows four alterna-

tive implementations that can improve the perfor-

mance of calls to dynamically-linked functions. Im-

provements come from reducing the number of in-

structions that must be executed to perform a call;

from reducing the dynamically cached size of the

linkage table; and by performing control transfers

using instruction immediates instead of indirecting

o� of a register. In the best case, the overhead of

calling a dynamically linked instruction is reduced

from four instructions with a register indirect to a

single instruction and no register indirect. The pa-

per also discusses issues and techniques that may

be useful for other systems that perform dynamic

using similar techniques. This note also briey con-

siders dynamic relinking.

1 Introduction

Dynamic linking [GLDW87, Sab90, See90,

HO91] introduces new code in to a running pro-

gram. It is used for a number of reasons: to re-

duce the disk space needed to store a compiled

program; so that each time a program is run it

will get the latest version of some library; so that

an application will get a library speci�c to the ma-

chine [Sys90]; so that a running program can delete

outdated versions of code and replace them with

Please address correspondence to the �rst author at the

University of Washington, Department of CS&E, FR-35;

Seattle, Washington 98195.

new versions [SF89]; and so that user commands

can be translated to native code and executed e�-

ciently [CAK

+

81, SR85, Hol87, NG87].

Dynamic linking is implemented many ways.

Here, we are concerned with the case where a pro-

grammer writes a caller that makes use of a called

routine. The compiler does not produce a direct

call to the called routine. Instead, it produces a

call to the dynamic linker. When the code is run,

the dynamic linker is invoked to �nd and load the

called routine, then modify some caller information

so that further calls will transfer directly to the

called routine.

This note focuses on the mechanism by which

a call to the dynamic linker is turned in to a call

to the dynamically-linked function. The most com-

mon mechanisms are:

� Direct: The caller is compiled so that each

call goes directly to the dynamic linker. The

dynamic linker patches the caller to instead

call the linked function.

� Address Table: The caller is compiled so

that each call loads the target address from a

link table. Table entries initially point to the

dynamic linker. The dynamic linker updates

link table entries to point to dynamically-

linked functions.

� Code Table: The caller is compiled so that

each call goes to stub code in a private seg-

ment, usually in the program's data segment.

Stubs are initialized to jump to the dynamic

linker. The dynamic linker patches stubs to

instead jump to the dynamically-linked func-

tion.

Each mechanism has tradeo�s. For example,



2 TODAY'S IMPLEMENTATION 2

direct calls run at full speed but the caller's text is

modi�ed and thus cannot be shared.

1

Also, indirect

calls through a pointer to a function are slightly

trickier since the procedure address is in a register,

not in an instruction immediate.

The code table approach requires two control

transfers instead of one and requires dynamic code

patching. However, it is useful with separate

compilation because text is sharable and because

calls can be compiled without distinguishing be-

tween calls to statically-linked and dynamically-

linked routines. In contrast, using an address table

either forces all calls to transfer via the indirect

table, or requires linker support so that calls to

statically-linked routines can use a fast calling se-

quence, while dynamically-linked calls can indirect

via the address table.

System V.4 [Sys90] running on SPARC V8

[SPA91] processors uses a code table [SPA90]. The

call overhead is typically low with today's appli-

cations and processors. However the overhead may

grow as dynamic linking is used more widely and as

processor architectures are more deeply pipelined

and perform more speculative execution.

The remainder of this note is arranged as fol-

lows: Section 2 considers one widely-used imple-

mentation. Section 3 describes four alternative

implementations. Section 4 considers the require-

ments for systems that perform dynamic relinking.

Finally, Section 5 concludes.

2 Today's Implementation

Currently, application code is compiled in to

a read-only text segment. Statically-linked calls

are linked to jump directly within the text seg-

ment. Dynamically-linked calls are linked statically

to jump to entries in a dynamic link table (DLT).

The DLT is in an executable part of the data seg-

ment. Thus, the text segment is read-only and

sharable, and the changes made by the dynamic

linker are to private segments.

The DLT is a �xed distance from the applica-

tion's call instruction.

2

There is one DLT entry

for each function that can be dynamically linked.

Logically, each dynamically-linkable function is as-

1

Systems can sometimes arrange to have a dynamically-

linked image shared among processes that use the same link-

ages [KK92, NH93].

2

Some other systems use a �xed o�set from a base register

that points to the data segment.

signed a number i and calls to routine i jump to

the i'th DLT entry.

When a segment is loaded, the �rst N words

of the DLT are initialized with code that calls the

dynamic linker. The remaining words make up the

DLT entries. Each DLT entry is initialized with

code that loads a register with an entry number

and transfers to the start of segment. A typical

DLT entry is [SPA90]:

sethi .-DLT, %g1 // Function number

ba,a DLT // Call dynamic linker

nop

Suppose that this DLT entry corresponds to the

routine foo. The dynamic linker maps foo in to

memory and initializes foo's DLT as above. Then

it patches the caller's DLT entry with code that will

jump to foo. Finally, the dynamic linker jumps to

foo. Further calls to foo jump to the DLT entry,

which jumps to foo. Returns to the caller go di-

rectly without using the DLT entry.

During dynamic linking, the dynamic linker

must patch the DLT entry in a way that is immune

to race conditions. Suppose that while the dynamic

linker is patching the DLT entry for foo, a signal

arrives and the signal handler needs to call foo.

The code in the DLT entry could then be executed

while the dynamic linker is patching the DLT en-

try. Simply turning o� interrupts does not solve the

problem, as the same condition arises when multi-

ple threads of control are executing in the same

address space.

The potential race is avoided by ensuring that

each DLT entry is updated so that every partially-

patched sequence is legal. First, the nop is replaced

with a jmpl instruction, and the instruction cache is

ushed or updated. Although branches in branch

delay slots are normally invalid, this sequence is

valid, because the delay slot instruction after a ba,a

is never executed.

sethi .-DLT, %g1

ba,a DLT

jmpl %g1+%lo(foo), %g0

If the DLT entry is executed at this point, it

will transfer control to the dynamic linker, which

will link foo and proceed normally. Note that as

long as foo is always loaded at the same address,

overwriting is idempotent: that is, the DLT entry

can be written an arbitrary number of times with

the same e�ect as if it were written just once.



3 OTHER IMPLEMENTATIONS 3

After the dynamic linker writes the jmpl, the

ba,a is replaced with an instruction that sets %g1

to have the high address bits of foo. This, in combi-

nation with the jmpl, is the �nal code that transfers

control to foo:

sethi .-DLT, %g1

sethi %hi(foo), %g1

jmpl %lo(foo)+%g1, %g0

There are several things to note about this code

fragment. First, it starts with an unused sethi,

left over from the call to the dynamic linker. Thus,

the sequence could, in theory, be one instruction

shorter. However, any shorter sequence must re-

tain the property of idempotent updates. A sec-

ond observation is that the jmpl always executes

the following (delay slot) instruction. However, by

construction, the following instruction is always the

�rst sethi of the following DLT entry (or nop for

the last DLT entry), and is thus safe to execute.

Typically, only the �rst call through a DLT en-

try invokes the dynamic linker. In the normal case

of calling an already-linked function, the above im-

plementation executes four instructions. Cache lo-

cality is slightly better than that, because each DLT

entry is three words; the jmpl's delay slot executes

the �rst instruction of the following DLT entry.

The current implementation also performs an indi-

rect branch o� a register, which may interfere with

branch prediction on some machines.

3 Other Implementations

3.1 Variation 1 { Branch Ordering

Here, we propose an implementation that takes

fewer instructions once the called routine has been

linked. Initially, the DLT entry contains a branch

to the stub that calls the dynamic linker, plus a

sethi to describe which DLT entry was called.

nop

ba DLT // Call dynamic linker

sethi .-DLT, %g1 // Function number

The dynamic linker �rst replaces the nop with

a sethi that sets the high bits of the function ad-

dress. The DLT entry can still be executed safely,

because the sethi in the branch delay slot will

correctly overwrite %g1 to tell the dynamic linker

which function was originally called.

sethi %hi(foo), %g1

ba DLT

sethi .-DLT, %g1

Next, the ba is replaced with a jmpl to foo.

The sequence of instructions is still correct because

the value of %g1 is not needed after the jmpl and

may, therefore, be clobbered safely.

sethi %hi(foo), %g1

jmpl %lo(foo)+%g1, %g0

sethi .-DLT, %g1

This sequence is faster than the original because

it executes fewer instructions. However, it still oc-

cupies three words in the cache and performs an

indirect branch o� of a register.

3.2 Variation 2 { Immediate Branches

High-performance SPARC implementations will

run faster if the branch target can be determined

soley by looking at the opcode instead of needing

to read a register value. Since the called function

may be linked at an arbitrary place in the address

space, the only SPARC immediate branch instruc-

tion that will do is the call instruction: call can

jump to any part of a 32-bit address space. All

other immediate branch instructions branch to tar-

gets that must be within 8Mb of the branch in-

struction. Since call clobbers the return program

counter (noted %rpc), it is necessary to save and re-

store the return program counter around the call.

Thus, the �nal code should look like:

movl %rpc, %g1

call foo

movl %g1, %rpc

We build the unlinked DLT entry using the

same sequence of instructions, but the call ini-

tially goes to the dynamic linker. Unfortunately,

the sequence of three instructions above does not

uniquely describe to the dynamic linker which func-

tion was called (or, equivalently, which DLT entry

to update).

In most cases, the dynamic linker could �gure

out what routine was called, because %rpc points

8 bytes past the instruction that initiated the call.

However, there are circumstances when it is impos-

sible to deduce what procedure was called:

� A call indirect through %g1, which is clob-

bered by the DLT entry.



3 OTHER IMPLEMENTATIONS 4

� A call indirect through a register that is clob-

bered in the delay slot of the call instruction.

� A call where the return pc register is set to

anywhere other than 8 bytes past the call in-

struction.

� A delay-slot instruction that overwrites the

call instruction.

Therefore, it is still necessary for the DLT en-

try to identify itself. This can be done, at some

space cost, by having the DLT entry's call branch

to code that identi�es itself and then calls the dy-

namic linker. Now the DLT consists of three seg-

ments instead of two: the N words of prologue,

some number of DLT entries, and an equal num-

ber of self-identifying code fragments. Suppose the

DLT entry is number 17, then the entry starts o�

as:

movl %rpc, %g1

call DLT_17

movl %g1, %rpc

The self-identifying code, DLT 17 calls the dy-

namic linker and sets the self-identi�cation in the

delay slot:

ba DLT

sethi .-DLT, %g1

When the dynamic linker wishes to update the

DLT entry, it simply overwrites the call instruc-

tion with the call to foo. That is the only change

to the dynamic link table entry, so the sequence of

instructions is always correct.

This scheme executes three instructions on each

call. Here, jumps use only immediates, and thus

can have better performance for highly-pipelined

SPARC implementations. However, it also requires

�ve words per DLT entry, instead of the three used

by previous schemes. Note, though, that two of

the �ve words are used only during linking, so the

normal cost is just three instructions.

Instead of putting the self-identifying code in a

separate part of the link table, it is instead possible

to put it directly in the DLT entry. However, idem-

potent sequences are four instructions. Moreover,

calls to dynamically-linked code have worse cache

locality because only three of the four table entries

are used frequently. Larger DLT entries thus cause

cache fragmentation.

3

3

A further problem is that the SPARC ABI allows at

most 3 words per DLT entry [SPA90].

3.3 Variation 3 { Compacting

Using the cache space/fragmentation observa-

tion noted in the preceding section, we would like

to make each DLT entry smaller. We can do so if

the jmpl in each entry is followed by the sethi of

the following dynamic link table entry. Here is the

�nal code we would like in a linked DLT entry:

sethi %hi(foo), %g1

jmpl %g1+%lo(foo), %g0

We can achieve this by using the secondary table

idea of variation 2. Each DLT entry starts out as a

branch to a self-identifying fragment that branches

to the dynamic linker. DLT entry number 17 starts

o� as:

ba,a DLT_17

nop

The self-identifying code, DLT 17 is the same

as in the previous section. The �rst modi�cation

replaces the nop with a jmpl. This sequence is still

well-behaved:

ba,a DLT_17

jmpl %g1+%lo(foo), %g0

Next, the ba,a is replaced with a sethi.

sethi %hi(foo), %g1

jmpl %g1+%lo(foo), %g0

This variation consumes two instructions of dy-

namic (cache) space, three instruction times to ex-

ecute, and four instructions of total memory. The

principal win here is in the dynamic reduction of

DLT size, which can improve cache utilization.

Note that this variation su�ers from the use of in-

direction o� a register.

An alternative is to allocate three words for the

DLT entry. The third instruction appears as a de-

lay slot instruction in the �nal sequence. Initially,

the third instruction is a nop. If the �rst word of the

dynamically-linked routine is anything other than

a control transfer, it can replace the nop and the

jump can proceed directly to the second instruction

of the dynamically-linked routine. This hoisting ef-

fectively reduces the overhead of an indirect call to

just two instructions, though cache locality is worse

than the form that uses just two instructions per

DLT entry. Note that hoisting must be performed

before the DLT entry is patched, in order to ensure

that the change is idempotent.



5 SUMMARY 5

3.4 Variation 4 { Near Branches

In some cases, the distance from the DLT entry

to the called routine is within the range covered by

branch instructions. In these cases, a simple branch

instruction can be used; it costs just two instruc-

tions and uses an instruction immediate instead of

a register indirect. This scheme avoids both the

register save and restore overhead of using a call

instruction, and also the register indirection prob-

lems of the sethi/jmpl pair.

A problem with this scheme is tht it only works

when the distance from DLT entry to the called

function is within the branch immediate distance,

+/{8Mb on a SPARC. Thus, the dynamic linker

must decide on an entry-by-entry basis whether

the DLT entry can be implemented using near

branches. However, this scheme requires only a sin-

gle idempotent update to the DLT entry and can

be used with any initial DLT entry format. Thus,

it can be applied as an optimization to any of the

preceding implementations.

Hoisting can reduce the e�ective cost of this

scheme to just one instruction and can poten-

tially use as little as two instructions of cache

space. Here, hoisting is done after the DLT entry

is patched. At �rst, the DLT entry jumps to the

�rst instruction of the dynamically-linked routine:

ba,a foo // Call first instruction

... // Squashed

Next, the nop is overwritten with the hoisted

instruction:

ba,a foo // Call first instruction

hoisted // Squashed

Finally, the ba,a is replaced with a ba to the

second instruction:

ba foo+4 // Call second instruction

hoisted

Care is needed, however, since the call to the

�rst instruction can be in range of the branch, while

the second instruction might be out of range.

4 Relinking

In some circumstances, it is useful to be able to

unlink dynamically-linked code and link in a new

version of that code [SF89], or move the existing

code to e.g., reduce cache conicts. This dynamic

change of the linkage bindings is called relinking.

An \obvious" way to implement relinking is to

�rst unlink the old version, then use the existing

dynamic linker mechanism to link to the new code.

Patching the DLT entry for dynamic unlinking is

straightforward: an instruction in the DLT entry is

updated to jump to the dynamic linker. The patch-

ing is race-free because unlinking needs to modify

only one instruction.

Relinking, however, can be tricky. First, the ap-

plication will fail if the library is unmapped when

there are threads in either the library or the DLT

entries that jump to the library. Second, even if the

old library is left mapped, updating DLT entries

can create races. For example, a thread may exe-

cute the sethi from a DLT entry, get suspended,

a second thread or a signal handler can rewrite the

DLT entry, and then the �rst thread can execute a

jmpl from the new sequence. Avoiding this race re-

quires simultaneous update of both the sethi and

the jmpl. The designs presented in Sections 3.2

and 3.4 are race-free because only a single instruc-

tion is changed to e�ect relinking.

With multi-instruction sequences, relinking is

still sometimes possible, but it is necessary to en-

sure that all threads are outside of the correspond-

ing DLT entries when the relinking is performed. If

all threads are outside of the DLT entries, the ef-

fect of simultaneous update can be achieved by �rst

unlinking (replacing one of the instructions with a

ba,a), then using the normal dynamic linking pro-

cedure to link to the new code.

5 Summary

The current dynamic link table entry layout re-

quires four instruction times and three instructions

of cache space for each call to a dynamically-linked

function. In addition, one of the instructions is

an indirect jump o� of a register, which hurts per-

formance in high-performance SPARC implemen-

tations.

This paper describes four alternative implemen-

tations. The implementations improve over the cur-

rent implementation by reducing the number of in-

structions that must be executed to perform a call,

by reducing the the dynamic cache size of the dy-

namic link table, and by performing control trans-

fers using instruction immediates instead of indi-

recting o� of register values. In the best case, the ef-



REFERENCES 6

fective overhead of dynamic linking can be reduced

from four instructions and a register indirect to a

single instruction and no register indirect.

Although the examples are presented for dy-

namic linking on a SPARC, the techniques pre-

sented here are often applicable to other architec-

tures.

6 Acknowledgements

Thanks to David Poole for discussing these

ideas with us.

References

[CAK

+

81] D. D. Chamberlin, M. M. Astrahan,

W. F. King, R. Alorie, J. W. Mehl,

T. G. Price, M. Schkolnick, P. Grif-

�ths Selinger, D. R. Slutz, B. W.Wade,

and R. A. Yost. Support for Repeti-

tive Transactions and Ad Hoc Queries

in System R. ACM Transactions on

Databse Systems, 6(1):70{94, March

1981.

[GLDW87] Robert A. Gingell, Meng Lee,

Xuong T. Dang, and Mary S. Weeks.

Shared Libraries in SunOS. Summer

USENIX, pages 131{145, 1987.

[HO91] W. Wilson Ho and Rondald A Ols-

son. An Approach to Genuine Dy-

namic Linking. Software-Practice and

Experience, 21(4):375{390, April 1991.

[Hol87] Gerard J. Holzmann. PICO - A Pic-

ture Editor. AT&T Technical Journal,

66(2):2{13, March 1987.

[KK92] James Kempf and Peter B. Kessler.

Cross-Address Space Dynamic Linking.

IEEE Proceedings of the International

Workshop on

Objeect-Orientation in Operating Sys-

tems (IWOOOS), September 1992.

[NG87] David Notkin and William G. Gris-

wold. Enhancement through Exten-

sion: The Extension Interpreter. Pro-

cedings of the ACM SIGPLAN '87

Symposium on Interpreters and Inter-

pretive Techniques, pages 45{55, June

1987.

[NH93] Michael N. Nelson and Graham Hamil-

ton. Higher Performance Dynamic

Linking Through Caching. Technical

Report TR-93-15, Sun Micorsystems

Laboratories Inc., April 1993.

[Sab90] Marc Sabatella. Issues in Shared

Libraries Design. USENIX Summer

Conference Proceedings, pages 11{23,

June 1990.

[See90] Donn Seeley. Shared Libraries as Ob-

jects. USENIX Summer Conference

Proceedings, pages 25{37, June 1990.

[SF89] M. E. Segal and O. Frieder. Dy-

namic Program Updating: A Software

Maintenance Technique for Minimizing

Software Downtime. Software Mainte-

nance: Research and Practice, 1:59{79,

1989.

[SPA90] System V Application Binary Inter-

face SPARC Processor Supplement.

Prentice-Hall, 1990.

[SPA91] The SPARC Architecture Manual Ver-

sion 8. Technical Report Sun Microsys-

tems Part Number 800-1399-12, Sun

Microsystems, January 1991.

[SR85] Michael Stonebraker and Lawrence A.

Rowe. The Design of POSTGRES.

Technical Report Memoradum No.

UCB/ERL 85/95, Electronics Research

Laboratory, University of California,

Berkeley, 15 November 1985.

[Sys90] System V Application Binary Inter-

face. Prentice-Hall, 1990.


