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Abstract

In parallel programming, the need to manage communication costs, load imbalance, and ir-

regularities in the computation puts substantial demands on the programmer. Key properties

of the architecture, such as the number of processors and the costs of communication, must be

exploited to achieve good performance. Coding these properties directly into a program compro-

mises the portability and exibility of the code because signi�cant changes are usually needed

to port or enhance the program. We describe a parallel programming model that supports the

concise, independent description of key aspects of a parallel program|such as data distribution,

communication, and boundary conditions|without reference to machine idiosyncrasies. The in-

dependence of such components improves portability by allowing the components of a program

to be tuned independently, and encourages reuse by supporting the composition of existing com-

ponents. The architecture-sensitive aspects of a computation are isolated from the rest of the

program, reducing the need to make extensive changes to port a program. This model is e�ective

in exploiting both data parallelism and functional parallelism. This paper provides programming

examples, compares this work to related languages, and presents performance results.

1 Introduction

The diversity of parallel architectures puts the goals of performance and portability in conict.

Programmers are tempted to exploit machine details|such as the interconnection structure and the

granularity of parallelism|to maximize performance. Yet software portability is needed to reduce

the high cost of software development, so programmers are advised to avoid making machine-

speci�c assumptions. The challenge, then, is to provide a parallel language that minimizes the

tradeo� between performance and portability.
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Such a language must allow a programmer to write

code that assumes no particular architecture, allow a compiler to optimize the resulting code in

a machine-speci�c manner, and allow a programmer to perform architecture-speci�c performance

tuning without making extensive modi�cations to the source code.

1

We de�ne a program to be portable with respect to a given machine if its performance is competitive with

machine-speci�c programs solving the same problem [2].
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In recent years, a parallel programming style has evolved that might be termed aggregate data-

parallel computing. This style of programming is characterized by:

� Data parallelism. The program's parallelism comes from executing the same function on

many elements of a collection. Data parallelism is attractive because it allows parallelism

to grow automatically|or scale|with the number of data elements and processors. SIMD

architectures exploit this parallelism at a very �ne grain.

� Aggregate execution. Multiple elements are placed on a processor and manipulated sequentially

because, in practice, the number of data elements far exceeds the number of processors. This is

attractive because it places groups of interacting elements onto the same processor, vastly re-

ducing communication costs. Moreover, this approach uses good sequential algorithms locally,

which is often more e�cient than simply multiplexing parallel algorithms. Another bene�t is

that data can be passed between processors in batches to amortize communication overhead.

Finally, when a computation on one data element is delayed waiting for communication, other

elements may be processed.

� Loose synchrony. Although strict data parallelism depends on the \same" function being

executed on every element, local variations in the nature or positioning of some elements

can require di�erent implementations of the same conceptual function. For instance, data

elements on the boundary of a space have no neighbors with which to communicate, but data

parallelism normally assumes that interior and exterior elements be treated the same. By

executing a slightly di�erent function on the boundaries, these exceptional cases are easily

handled.

These features make the aggregate data-parallel style of parallel programming attractive be-

cause it can yield e�cient programs when executed on typical MIMD architectures. However,

without linguistic support this style of programming promotes inexible programs through the

embedding of performance-critical features as constants, such as the number of processors, the

number of data elements, boundary conditions, the processor interconnection, and system-speci�c

communication syntax. If the machine, its size, or the problem size changes, signi�cant program

changes to the �xed quantities are generally required. As a consequence, several languages have

been introduced to support key aspects of this style. However, unless all aspects of this style are

supported, performance, scalability, portability, or development cost can su�er.

For instance, good locality of reference is an important aspect of this programming style. Low-

level approaches [25] allow programmers to hand-code data placement. The resulting code typically

assumes one particular data decomposition, so if the program is ported to a platform that favors

some other decomposition, extensive changes must be made or performance su�ers. Other lan-

guages [4, 5, 15] give the programmer no control over data decomposition, leaving these issues

to the compiler or hardware. But because the best choice of data decomposition depends on

characteristics of the application, compilers can make poor data placement decisions. Many recent

languages [6, 22] provide support for data decompositions, but hide communication operations from

the programmer and thus do not encourage locality at the algorithmic level. Consequently, there is

a reliance on automated means of hiding latency. Unfortunately, these techniques|multithreaded

hardware, multiple lightweight threads, caches, and compiler optimizations that overlap commu-

nication and computation|cannot always hide all latency. The trend towards relatively faster

processors and relatively slower memory access speeds exacerbates the situation.
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Other languages provide inadequate control over the granularity of parallelism, requiring either

one data point per process [21, 40], assuming some larger �xed granularity [14, 29], or including no

notion of granularity at all, forcing the compiler or runtime system to choose the best granularity

[15]. Given the diversity of parallel computers, no particular granularity can be best for all machines.

Computers such as the CM-5 prefer coarse granularities; those such as the J Machine prefer �ner

granularity; and those such as the MIT Alewife and Tera computer bene�t from having multiple

threads per process. Also, few languages provide su�cient control over the algorithm that is applied

on aggregate data, preferring to multiplex the parallel algorithmwhen there are multiple data points

on a processor [40, 41].

Many language models do not adequately support loose synchrony. The boundaries of parallel

computations often introduce irregularities that require signi�cant coding e�ort. Languages with

SIMD semantics force all processes to execute the branches of a conditional in lock-step. Because all

processes execute the same code, this solution leads to programs with many conditionals, increasing

code size and making them di�cult to understand and modify, as well as potentially ine�cient.

Programming in a typical MIMD-style language is not much cleaner. For instance, writing a

slightly di�erent function for each type of boundary process is problematic because a change to the

algorithm is likely to require all versions to be changed.

In this paper we describe language abstractions|a programming model|that fully support

the aggregate data-parallel programming style. This model can serve as a foundation for portable,

scalable MIMD languages that preserve the performance available in the underlying machine. Our

belief is that for many tasks, programmers|and not compilers or runtime systems|can best handle

the performance-sensitive aspects of a parallel program. This belief leads to three principles for

designing our language abstractions.

First, we provide abstractions that are e�ciently implementable on all MIMD architectures,

along with speci�c mechanisms to handle the common types of parallelism, data distribution,

and boundary conditions. Our model is based on a practical MIMD computing model called the

Candidate Type Architecture (CTA) [42].

Second, the insigni�cant but diverse aspects of computer architectures are hidden. If exposed to

the programmer, assumptions based on these characteristics can be sprinkled throughout a program,

making portability di�cult. Examples of characteristics that are hidden include the details of

the machine's communication style and the processor (or memory) interconnection topology. For

instance, one machine might provide shared memory and another message passing, but either can

be implemented with the other in software.

Third, architectural features that are essential to performance are exposed and parameterized

in an architecture-independent fashion. A key characteristic is the speed, latency, and per-message

overhead of communication relative to computation. As the cost of communication increases relative

to computation, communication costs must be reduced by aggregating more processing onto a

smaller number of processors, or by �nding ways to increase the overlap of communication and

computation.

The result is the Phase Abstractions parallel programming model, which provides control over

granularity of parallelism, control over data partitioning, and a hybrid data and function parallel

construct that supports concise description of boundary conditions. The core of our solution is

the ensemble construct that allows a global data structure to be de�ned and distributed over

processes, and allows the granularity|and the location of data elements|to be controlled by load-

time parameters. The ensemble also has a code form for describing what operations to execute
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on which subarrays and for handling boundary conditions. Likewise, interprocessor connections

are described with a port ensemble, providing similar exibility. By using ensembles for all three

components of a global operation|data, code and communication|they can be scaled together

with the same load time parameters. Because the three parts of an ensemble and the boundary

conditions are speci�ed independently, reusability is enhanced.

The remainder of this paper is organized as follows. We �rst present our solution to the

problem by describing our architectural model and the basic language model|the CTA and the

Phase Abstractions. Section 3 then gives a detailed illustration of our abstractions, using the

Jacobi Iteration as an example. To demonstrate the expressiveness and programmability of our

abstractions, Section 4 shows how simple array language primitives can be built on top of our model.

In Section 5 we discuss the advantages of our programming model with respect to performance and

portability, and in Section 6 we present experimental evidence that the Phase Abstractions support

portable parallel programming. Finally, we compare Phase Abstractions with related languages

and models, and close with a summary.

2 Phase Abstractions

In sequential computing, languages such as C, Pascal and Fortran have successfully combined e�-

ciency with portability. What do these languages have in common that make them successful? All

are based on a model in which the execution of a program is a sequence of operations that manip-

ulate some in�nite random-access memory. This programming model succeeds because it preserves

the characteristics of the von Neumann machine model, which itself is a faithful representation of

sequential computers. While these models are never literally implemented|unit-cost access to in-

�nite memory is only an illusion provided by virtual memory, caches and backing store|the model

is accurate for the vast majority of programs. There are only rare cases, such as programs that

perform extreme amounts of disk I/O, where the deviations from the model are costly the to the

programmer. It is critical that the von Neumann model capture machine features that are rele-

vant to performance. If some essential machine features were ignored, better algorithms could be

developed using a more accurate machine model. Together, the von Neumann machine model and

its accompanying programming model allow languages such as C and Fortran to be both portable

and e�cient.

In the parallel world, the Candidate Type Architecture (CTA) plays the role of the von Neumann

model,

2

and the Phase Abstractions the role of the programming model. Finally, the sequential

languages are replaced by languages based on the Phase Abstractions, of which Orca C is an

example [31, 33].

The CTA. The CTA [42] is an asynchronous MIMD model. It consists of P von Neumann

processors that execute independently. Each processor has its own local memory, and the proces-

sors communicate through some sparse but otherwise unspeci�ed communication network. Here

\sparse" means that the network has a constant degree of connectivity. The network topology is

intentionally left unbound to provide maximum generality. Finally, the model includes a global

controller that can communicate with all processors through a low bandwidth network. Logically,

2

The more recent BSP [44] and LogP [8] models present a similar view of a parallel machine and for the most part

suggest a similar way of programming parallel computers.
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the controller provides synchronization and low bandwidth communication such as a broadcast of

a single value.

Although it is premature to claim that the CTA is as e�ective a model as the von Neumann

model, it does appear to have the requisite characteristics: It is simple, makes minimal architec-

tural assumptions, but captures enough signi�cant features that it is useful for developing e�cient

algorithms. For example, the CTA's unbound topology does not bias the model towards any par-

ticular machine, and the topologies of existing parallel computers are typically not signi�cant to

performance. However, the distinction between global and local memory references is key, and this

distinction is clear in the CTA model. Finally, the assumption of a sparse topology is realistic for

all existing medium and large scale parallel computers.

The Phase Abstractions extend the CTA in the same way that the sequential imperative pro-

grammingmodel extends the von Neumann model. The main components of the Phase Abstractions

are the XYZ levels of programming and ensembles [1, 19, 43].

2.1 XYZ Programming Levels

A programmer's problem-solving abilities can be improved by dividing a problem into small, man-

ageable pieces|assuming the pieces are su�ciently independent to be considered separately. Ad-

ditionally, these pieces can often be reused in other programs, saving time on future problems.

One way to build a parallel program from smaller reusable pieces is to compose a sequence of

independently implemented phases, each executing some parallel algorithm that contributes to the

overall solution. At the next conceptual level, each such phase is comprised of a set of cooperating

sequential processes that implements the desired parallel algorithm. Each sequential process may

be developed separately. These levels of problem solving|program, phase, and sequential process,

also called the Z, Y, and X levels|have direct analogies in the CTA.

The X level corresponds to the individual von Neumann processors of the CTA, and an X level

program speci�es the sequential code that executes in one process. Each process can communicate

with other processes by passing messages. Because the model is MIMD, each process can execute

di�erent code.

The Y level is analogous to the set of von Neumann processors cooperating to compute a parallel

algorithm, forming a phase. The Y-level may specify how the X-level programs are connected to

each other for message passing. Examples of phases include parallel implementations of the FFT,

matrix multiplication, matrix transposition, sort, and global maximum. A phase has a characteristic

communication structure induced by the data dependencies among the processes. For example, the

FFT induces a buttery, while Batcher's sort induces a hypercube [1].

Finally, the Z level corresponds to the actions of the CTA's global controller, where sequences

of parallel phases are invoked and synchronized. A Z level program gives the high level logic of

the computation by specifying the sequential invocation of phases (although their execution may

overlap) that are needed to solve complex problems. For example, the Car-Parrinello molecular

dynamics code simulates the behavior of a collection of atoms by iteratively invoking a series of

phases that perform FFT's, matrix products, and other computations [45]. In Z-Y-X order, these

three levels give a top-down view of a parallel program.

Example: XYZ Levels of the Jacobi Iteration. Figure 1 illustrates the XYZ levels of pro-

gramming for the Jacobi Iteration. The Z level consists of a loop that invokes two phases, one
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program Jacobi
<declarations>
data := Load();

while (error <Tolerance)
{
    Jacobi();
    error := Min();
}

Output();

   

Z Level Y Level X Level

Jacobi()
{
    for each (i,j) in local section
        new(i,j)=(old(i,j+1)+old(i,j−1)+
                         old(i+1,j)+old(i−1,j))/4;
}

Max()
{
    local_max=Max(left_child,right_child);
    Send local_max to parent;
}

Figure 1: XYZ Illustration of the Jacobi Iteration

called Jacobi(), which performs the over-relaxation, the other called Max(), which computes the

maximum di�erence that is used to test for termination.

Each Y level phase is of a collection of processes executing concurrently. Here, the two phases

are graphically depicted with squares representing processes and arcs representing communication

between processes. The Jacobi phase uses a mesh interconnection topology, and the Max phase

uses a binary tree. Other details of the Y level, such as the distribution of data, are not shown in

this �gure but will be explained in the next subsection.

Finally, a sketch of the X level program for the two phases is shown at the right of Figure 1.

The X level code for the Jacobi phase assigns to each data point the average of its four neighbors.

The Max phase �nds, for all data points, the largest di�erence between the current iteration and

the previous iteration. 2

A Z level program is basically a sequential program that provides control ow for the overall

computation. An X level program, in its most primitive form, can also be viewed as a sequential

program with additional communication operations that allow it to interact with other processes.

Although parallelism is not explicitly speci�ed at the X and Z levels, these two levels may still

contain useful parallelism. For example, phase execution may be pipelined, and the X level processes

can execute on superscalar architectures to achieve instruction-level parallelism.

It is the Y level that speci�es scalable parallelism and most clearly departs from a sequential

program. Ensembles support the de�nition and manipulation of this parallelism.

2.2 Ensembles

The Phase Abstractions use the ensemble structure to describe data structures and their partition-

ing, process placement, and process interconnection. In particular, an ensemble is a partitioning

of a set of elements|data, codes, or port connections|into disjoint sections. Each section repre-

sents a thread of execution, so the section is a unit of concurrency, and the degree of parallelism

is modulated by increasing or decreasing the number of sections. These sections are bound to pro-

cessors for execution of a phase: Each process computes on its local section of data and exchanges
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non-local data with neighbors. Because all three aspects of parallel computation|data, code and

communication|are uni�ed in the ensemble structure, all three components can be recon�gured

and scaled in a coherent, concise fashion to provide exibility and portability.

The data-partitioning aspect of ensembles is analogous to the data-partitioning features supplied

in languages such as HPF [22], but since ensembles also incorporate communication and code

components, ensembles provide greater control over performance. For instance, the code ensemble

may logically have identical procedures in each section, but they may be di�erent, e�ectively yielding

MIMD execution with the convenience of SPMD programming. Code ensembles also support the

handling of boundary conditions, which frequently arise in otherwise regular computations and can

be di�cult to handle e�ciently without compromising development costs or portability.

A data ensemble is a data structure with a partitioning. At the Z level the data ensemble

provides a logically global view of the data structure. At the X level each process sees only the

portions of the ensembles mapped to its section. Such a portion is seen as a locally de�ned data

structure with local indexing. For example, the 6� 6 data ensemble in Figure 2 has a global view

with indices [0 : 5]� [0 : 5], and a local view of 3� 3 subarrays with indices [0 : 2]� [0 : 2]. The

mapping of the global view to the local view is performed at the Y level and will be described in

Section 3. The use of local indexing schemes allows an X level process to refer to generic array

bounds rather than to global locations in the data space. Thus, the same X level source code can

be used for multiple processes.

A00 A01 A02 A03 A04 A05

A10 A11 A12 A13 A14 A15

A20 A21 A22 A23 A24 A25

A30 A31 A32 A33 A34 A35

A40 A41 A42 A43 A44 A45

A50 A51 A52 A53 A54 A55

A00 A01 A02

A10 A11 A12

A20 A21 A22

Local ViewGlobal View

A00 A01 A02

A10 A11 A12

A20 A21 A22

A00 A01 A02

A10 A11 A12

A20 A21 A22

A00 A01 A02

A10 A11 A12

A20 A21 A22

Figure 2: A 6�6 Array (left) and its corresponding Data Ensemble for a 2�2 array of sections.

A code ensemble is a collection of procedures with a partitioning. The code ensemble gives

a global view of the processes performing the parallel computation. When the procedures in the

ensemble di�er the model is MIMD; when the procedures are identical the model is SPMD. Figure 3

shows a code ensemble for the Jacobi phase in which all processes execute the Jacobi() function.

xJacobi()

xJacobi()xJacobi()

xJacobi()

Figure 3: Illustration of a Code Ensemble
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Finally, a port ensemble de�nes a logical communication structure by specifying a collection

of port name pairs. Each pair of names represents a logical communication channel between two

sections, and each of these port names is bound to a local port name of the X level. Hence, the

port ensemble speci�es the overall communication structure of a phase. Figure 4 depicts a port

ensemble for the Jacobi phase. For example, the north port (N) of one process is bound to the

south port (S) of its neighboring process.

E
S

W
S

N
WE

N

Figure 4: Illustration of a Port Ensemble

A Y level phase is composed of three primary components: a code ensemble, a port ensemble

that connects the code ensembles processes, and data ensembles that provide arguments to the

processes of the code ensemble. The sections of each ensemble are ordered numerically so that the

i

th

section of a code ensemble is bound to the i

th

section of each data and port ensemble. This

correspondence allows each section to be allocated to a processor for normal sequential execution:

The process executes on that processor, the data can be stored in memory local to that processor,

and the ports de�ne connections for interprocessor communication. Consequently, the i

th

sections

of all ensembles are assigned to the same processor to maintain locality for any phase invocation.

If two phases share a data ensemble but require di�erent partitionings for best performance, a

separate phase may be needed to move the data.

The Z level logically stores ensembles in Z level variables, composes them into phases and stores

their results. The phase invocation interface between the Z and X levels encourages modularity

because the same X level code can be invoked with di�erent ensemble parameters in the same way

that procedures are reused in sequential imperative languages.

The ensemble abstraction helps hide the diversity of parallel architectures. However, to map

well to individual architectures the abstraction must be parameterized, for example, by the number

of processors and the size of the problem. This parameterization is illustrated in the next section.

3 Ensemble Example: Jacobi

To provide a better understanding of the ensembles and the Phase Abstractions, we now complete

the description of the Jacobi program. We adopt notation from the proposed Orca C language

[30, 31], but other languages based on the Phase Abstractions are possible (see Section 4).

3.1 Overall Program Structure

As shown in Figure 5, a Phase Abstractions program consists of X, Y, and Z descriptions, plus a

list of machine con�guration parameters that are used by the program to adapt to di�erent execution

environments. In this case, two runtime parameters are accepted: Processors and shape. The
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#define Rows 1 /* Constants to define the shape */

#define Cols 2 /* of the logical processor array */

#define TwoD 3

program Jacobian (shape, Processors)

switch (shape)f /* Configuration Computation */

case Rows: rows = Processors;

cols = 1;

break;

case Cols: rows = 1;

cols = Processors;

break;

case TwoD: Partition2D(&rows, &cols, Processors);

break;

g

(rows, cols, Processors) /* Configuration Parameter List */

<data ensemble de�nitions>; /* Y Level */

<port ensemble de�nitions>;

<code ensemble de�nitions>;

<process de�nitions>; /* X Level */

begin /* Z Level */

Input();

while (tolerance > delta)

f

Jacobi(values);

tolerance = Max(p, newP);

g

Output();

end

Figure 5: Overall Phase Abstraction Program Structure
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�rst parameter is the number of processors, while the second speci�es the shape of the processor

array. As will be discussed later, the program uses a 2D data decomposition, so by setting shape

to Rows (Cols) we are choosing a horizontal strips (vertical strips) decomposition. (The function

Partition2D() computes values of rows and cols such that (rows * cols) = Processors and the

di�erence between rows and cols is minimized.) With this particular con�guration computation

this program, through the use of di�erent load time parameters, can adapt to di�erent numbers of

processors and can assume three di�erent data decompositions. The con�guration computation is

executed once at load time.

3.2 Z Level of Jacobi

After the program is con�gured, the Z level program is executed, which initializes program variables,

reads the input data, and then iteratively invokes the Jacobi and Max phases until convergence

is reached, at which point an output phase is invoked. The data, processing, and communication

components of the Jacobi and Max phases are speci�ed by de�ning and composing code, data and

port ensembles as described below.

3.3 Y Level: Data Ensembles

This Jacobi iteration uses a single array to store oating point values at each point of a 2D grid.

Parallelism is achieved by partitioning this array into contiguous 2D blocks:

partition block[r][c] float p[rows][cols];

The array p has dimensions (rows * cols) and is partitioned onto a section array (process array)

of size (r * c). The keyword partition identi�es p as an ensemble array, and block names this

partitioning so that it can be reused to de�ne other ensembles. This partitioning corresponds to

the one in Figure 2 when rows=6, cols=6, r = 2 and c = 2, and this ensemble declaration belongs

in the <data ensembles> meta-code of Figure 5.

(Section 5 shows how an alternate decomposition is declared.)

The values of r and c are assumed to be speci�ed in the program's con�guration parameter

list. Each section is implicitly de�ned to be of size (s * t), where s =

rows

r

and t =

cols

c

. (If r

does not divide rows evenly, some sections will have s = d

rows

r

e while others will have s = b

rows

r

c.)

Consequently, X level processes contain no assumptions about the data decomposition except the

dimension of the subarrays so the program can scale in both the number of logical processors and

in the problem size.

3.4 Jacobi Phase

Port Ensemble. The Jacobi phase computes for each point the average of its four nearest neigh-

bors, implying that each section will communicate with its four nearest neighbor sections, as shown

in Figure 4. The following Y level ensemble declaration de�nes the appropriate port ensemble:

Jacobi.portnames <--> N, E, W, S /* North, East, West, South */

Jacobi[i][j].port.N <--> Jacobi[i-1][j].port.S where 1 <= i < r, 0 <= j < c

Jacobi[i][j].port.W <--> Jacobi[i][j-1].port.E where 0 <= i < r, 1 <= j < c
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The �rst line declares the phase's port names so the following bindings can be speci�ed. The

second and third lines de�ne a mesh connectivity between Y level port names. This port ensemble

declaration does not specify connections for the ports that lie on the boundaries. In this case these

unbound ports are bound to derivative functions, which compute boundary conditions using data

local to the section. The following binds derivative functions to ports on the edges of Jacobi.

Jacobi[0][i] .port.N receive <--> RowZero, 0 <= i < c

Jacobi[i][c-1] .port.E receive <--> ColZero, 0 <= i < r

Jacobi[i][0] .port.W receive <--> ColZero, 0 <= i < r

Jacobi[r-1][i] .port.S receive <--> RowZero, 0 <= i < c

RowZero and ColZero are de�ned as:

double RowZero()

{

static double row[1:s] /* default initialized to 0's */

return row;

}

double ColZero()

{

static double col[0][1:t] /* default initialized to 0's */

return col[0];

}

The values of s and t are determined by the process' X level function|in this case xJacobi().

In the absence of derivative functions, X level programs could check for the existence of neigh-

bors, but such tests complicate the source code, increasing the chance of introducing errors. Also,

as Section 5 shows, even modestly more complicated boundary conditions can lead to a proliferation

of special case code.

Code Ensemble. To de�ne the code ensemble for Jacobi, each of the r * c sections is assigned

an instance of the xJacobi() code:

Jacobi[i][j].code <--> xJacobi(); where 0 <= i < r, 0 <= j < c

Because Jacobi contains heterogeneity only on the boundaries, which in this program is handled

by derivative functions, all the functions are the same. In general, however, the only restriction is

that the types of the functions must conform in the argument types and return type speci�ed in a

phase invocation.

X Level. The X level code for Jacobi is shown in Figure 6. It �rst sends edge values to its four

neighbors, it then receives boundary values from its neighbors, and �nally uses the �ve point stencil

to compute the average of each interior point. Several features of the X level code are noteworthy:

� parameters|The arguments to the X level code establish a correspondence between local

variables and the sections of the ensembles. In this case, the local value array is bound to a

block of ensemble values.
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xJacobi(value[1:s][1:t])

double value[0:s+1][0:t+1]; /* extra storage on all four sides */

port North, East, West, South;

{

double new_value[0:s+1][0:t+1];

int i, j;

/* Send neighbor values */

North <== value [1][1:t]; /* 1:t is an array slice */

East <== value[1:s][t];

West <== value[1:s][1];

South <== value[s][1:t];

/* Receive neighbor values */

value[s+1][1:t] <== South;

value[1:s][0] <== West;

value[1:s][t+1] <== East;

value[0][1:t] <== North;

for (i=1; i<=s; i++)

{

for (j=1; i<=t; i++)

{

new_value[i][j] = (value[i][j+1] + value[i][j-1] +

value[i+1][j] + value[i-1][j]) / 4;

}

}

for (i=1; i<=s; i++)

{

for (j=1; i<=t; i++)

{

value[i][j] = new_value[i][j];

}

}

}

Figure 6: X Level Code for the Jacobi Phase
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� communication|Communication is speci�ed using the transmit operator (<==), for which a

port name on the left speci�es a send of the righthand side, and a port on the right indicates

a receive into the variable on the lefthand side. The semantics are that receive operations

block, but sends do not.

� uniformity|Because derivative functions are used, the xJacobi() function contains no tests

for boundary conditions when sending or receiving neighbor values.

� border values|The values s and t, used to de�ne the bounds of the value array, are parame-

ters derived from the size of the sections of the data ensemble. Also, value is declared to be

one element wider on each side than the incoming array argument to hold values from neigh-

boring sections. This extra storage is explicitly speci�ed by the di�erence between the local

declaration, x[0:s+1][0:t+1], and the formal declaration, x[1:s][1:t], where the upper

bounds of these array declarations are inclusive.

� array slices|Slices provide a concise way to refer to an entire row (or in general, a d-

dimensional block) of data. When slices are used in conjunction with the transmit operator

(<==), the entire block is sent as a single message, thus reducing communication overhead.

The Complete Phase. To summarize, the data ensemble, the port ensemble, and the code

ensemble collectively de�ne the Jacobi phase. Upon execution the sections declared by the con�g-

uration parameters are logically connected in a nearest-neighbor mesh, and each section of data is

manipulated by one xJacobi() process. The end result is a parallel algorithm that computes the

Jacobi iteration.

3.5 Max Phase

The Max phase �nds the maximum change of all grid points, and uses the same data ensemble as

the Jacobi phase. The port ensemble is shown graphically in Figure 8 and is de�ned below.

Max.portnames <--> P, L, R /* Parent, Left, Right */

Max[i].port.R <--> Max[2*i].port.P where 0 <= i < r*c/2 - 1

Max[i].port.L <--> Max[2*i+1].port.P where 0 <= i < r*c/2 - 1

The derivative functions for this phase are bound so that for each leaf section a \receive" from the

Left port or Right port will return the value computed by the Smallest Value() function, and a

send from the root's unbound Parent port will be a no-op.

Max[i].port.L receive <--> Smallest_Value() where r*c/2 -1 <= i < Processors

Max[i].port.R receive <--> Smallest_Value() where r*c/2 -1 <= i < Processors

Max[i].port.P send <--> No_Op() where i = 0

The Smallest Value() derivative function simply returns the smallest value that can be repre-

sented on the architecture. The code ensemble for this phase is similar to the Jacobi phase, except

that xMax() replaces xJacobi(). (See Figure 7.)

With a more complicated application than Jacobi, the bene�t of using ensembles increases and

the cost of using them is amortized over a larger program. The cost of using ensembles will decrease
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xMax(value[1:s][1:t], new_value[1:s][1:t])

double value[1:s][1:t];

double new_value[1:s][1:t];

port Parent, Left, Right;

{

int i, j;

double local_max;

double temp;

/* Compute the local maximum */

local_max = abs(value[0][0] - new_value[0][0]);

for (i=1; i<=s; i++)

{

for (j=1; j<=t; j++)

{

temp = abs(value[i][j] - new_value[i][j]);

local_max = Max(temp, local_max);

}

}

/* Compute the global maximum */

temp <== Left; /* receive */

local_max = Max(temp, local_max);

temp <== Right; /* receive */

local_max = Max(temp, local_max);

Parent <== local_max; /* send */

/* Broadcast the result */

local_max <== Parent; /* receive */

Left <== local_max; /* send */

Right <== local_max; /* send */

}

Figure 7: X Level Code for the Max Phase
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as libraries of ensembles, phases, derivative functions and X level codes are built. For example, the

Max phase of Jacobi is common to many computations and would not normally be de�ned by the

programmer.

4 High Level Programming with the Phase Abstractions

Phase Abstractions are not a programming language, but rather a foundation for the development

of parallel programming languages that support the coding of e�cient, scalable, portable programs.

Orca C, used in the previous section, is a literal, textual instantiation of the Phase Abstractions. It

clearly shows the power of the Phase Abstractions, but some may �nd it too low-level and tedious.

Other languages faithful to the Phase Abstractions need not su�er from Orca C's drawbacks. By

precisely understanding the uses for which a language is intended, high-level, easy-to-use languages

can be built from the Phase Abstractions. Such languages might introduce entirely di�erent syntax

speci�c to a particular domain, thus providing simplicity at the expense of generality.

In fact, a departure from the literal Orca C language is not required to achieve an elegant

programming style. By adopting certain conventions, it is possible to build reusable abstractions

directly on top of Orca C. By staying within the Orca C framework, this solution has the advantage

that di�erent sublanguages can be used together for a single large problem that requires diverse

abstractions for good performance. As an example, consider the design of an APL-like array

sublanguage for Orca C.

Recall that an X level procedure receives two kinds of parameters|global data passed as ar-

guments and port connections|that support two basic activities: computations on data and com-

munication. However, it is possible to constrain X level functions to perform just one of these

two tasks|a local computation or a communication operation. Furthermore, we can constrain a

particular phase to consist of only computation functions or only communication functions. That

is, there could be separate computation phases and communication phases. For example, there can

be X level computation functions for adding integers, computing the minimum of some values, or

sorting some elements. There can be X level communication functions for shifting data cyclically in

a ring, for broadcasting or aggregating data, or for communicating up and down a tree structure.

Reductions, which naturally combine both communication and computation, are notable exceptions

where the separation of communication from computation is not desirable. For such operations it

su�ces to de�ne a communication-oriented phase that takes an additional function parameter for
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combining the results of communications.

To illustrate, reconsider the Jacobi example. Rather than specify the entire Jacobi iteration in

one X level process, each communication operation can be performed in a separate phase and the

results can be combined by Z level add and divide phases. The test for convergence is computed

at the Z level by subtracting the old array from the new one and performing a Max reduction on

the di�erences. The program skeleton in Figure 9 illustrates this method, providing examples of

X level functions for + (referred to as operator+ in the syntactic style of C++), shift, and reduce;

the Z level code shows how data ensembles are declared and how phase structures for add, left-shift

and reduce are initialized. The divide and subtract phases are analogous to add, and the other

shift functions are analogous to the left-shift.

There are three consequences of this approach. First, the interface to a phase is substantially

simpli�ed. Second, some problems are harder to describe because it is not possible to combine

computation and communication within a single X level function. Finally, X level functions (and

the phases that they comprise) are smaller and are more likely to perform just one task, increasing

their composability and reusability.

Although the array sublanguage de�ned here is similar to APL, it has some salient di�erences.

Most signi�cantly, the Orca C functions operate on subarrays, rather than individual elements,

which means that fast sequential algorithms can be applied to subarrays. So while this solution

achieves some of the conciseness and reusability of APL, it does not sacri�ce control over data

decompositions or lose the ability to use separate global and local algorithms. This solution also

has the advantage of embedding an array language in Orca C, allowing other programming styles

to be used as they are needed.

5 Discussion

The power of the Phase Abstractions comes from the decomposition of parallel programs into

X, Y and Z levels, the encoding of key architectural properties as simple parameters, and the

concept of ensembles, which allows data, port and code decompositions to be speci�ed and reused

as individual components. The three types of ensembles work together to allow the problem and

machine size to be scaled. In addition, derivative functions allow a single X level program to be

used for multiple processes even in the presence of boundary conditions. This section discusses the

Phase Abstractions with respect to performance and expressiveness.

Portability and Scalability. When programs are moved from one platform to another they

must adapt to the characteristics of their host machine if they are to maintain good performance.

If such adaptation is automatic or requires only minor e�ort, portability is achieved. The Phase

Abstractions support portability and scalability by encoding key architectural characteristics as

ensemble parameters and by separating phase de�nitions into several independent components.

Changes to either the problem size or the number of processors are encapsulated in the data

ensemble declaration. As in Section 3, we relate the size of a section (s * t), the overall problem

size (rows * cols), and the number of sections (r * c) as follows:

s = rows/r

t = cols/c
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xproc TYPE[1:s][1:t] operator+(TYPE x[1:s][1:t], TYPE y[1:s][1:t])

{

TYPE result[1:s][1:t];

int i, j;

for (i=1; i<=s; i++)

for (j=1; j<=t; i++)

result[i][j] = x[i][j] + y[i][j];

return result;

}

xproc void shift(TYPE val[1:s][1:t])

port write_neighbor,

read_neighbor;

{

TYPE temp[1][1:t];

int i;

write_neighbor <== val[1];

temp <== read_neighbor;

for (i=2; i<=t; i++)

val[i-1] = val[i];

val[s] = temp;

}

...

xproc int reduce(TYPE val[1:k], TYPE*() op)

port Parent,

Child[1:n];

{

int i;

TYPE accum;

accum = val[1];

for (i=2; i<=k; i++)

accum = op(accum,val[i]);

for (i=1; i<=n; i++)

accum = op(accum,Child[i]);

Parent <== accum;

}

begin Z

double X[1:J][1:K], OldX[1:J][1:K];

...

phase operator+;

phase Left;

phase Reduce;

...

operator+.code = operator+;

Left.code = shift;

Left.port = WriteLeft(Zero);

...

Reduce.code = reduce;

Reduce.port = Tree(No_Op, Largest_Value, Largest_Value);

do

{

OldX = X;

X := (Left(X) + Right(X) + Up(X) + Down(X)) / 4;

} while (Reduce(X - OldX, max) > tolerance);

end Z

Figure 9: Jacobi Written in an Array Style Using Orca C
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The problem size scales by changing the values of rows and cols, the machine size scales by

changing the values of r and c, and the granularity of parallelism is controlled by altering either

the number of processors or the number of sections in the ensemble declaration. This exibility is

an important aspect of portability because di�erent architectures favor di�erent granularities.

While it is desirable to write programs without making assumptions about the underlying ma-

chine, knowledge of machine details can often be used to optimize program performance. Therefore,

tuning may sometimes be necessary. For example, it may be bene�cial for the logical communica-

tion graph to match the machine's communication structure. Consider embedding the binary tree

of the Max phase onto a mesh architecture: Some logical edges must span multiple physical links.

This edge dilation can be eliminated with a connectivity that allows comparisons along each row

of processors and then along a single column (see Figure 10).

Figure 10: Rows and Columns to Compute the Global Maximum

To address the edge dilation problem the �xed binary tree presented in Section 3 can be replaced

by a new port ensemble that uses a tree of variable degree. Such a solution is shown in Figure 11,

where the child ports are represented by an array of ports. This new program can use either a

binary tree or the \rows and columns" approach. The port ensemble declaration for the latter

approach is shown below.

/* Rows and Columns communication structure */

Max[i][j].port.P <--> Max[i][j-1].port.C[0] 0 <= i < r, 1 <= j < c

Max[i][0].port.P <--> Max[i-1][0].port.C[1] 1 <= i < r

With the code suitably parameterized, this program can now execute e�ciently on a variety of

architectures by selecting the proper port ensemble.

Locality. The best data partitioning depends on factors such as the problem size, the machine

size, the machine's communication and computation characteristics, and the application's commu-

nication patterns.

In the Phase Abstractions model, changes to the data partitioning are encapsulated by data

ensembles. For example, to de�ne a 2D block partitioning on P processors, the con�guration code

can de�ne the number of sections to be r =

p

P, c =

p

P: If a 1D strip partitioning is desired, the

number of sections can simply be de�ned to be r = 1, c = P. This strip decomposition requires

that each process have only East-West neighbors instead of the four neighbors used in the block

decomposition. By using the port ensembles to bind derivative functions to unused ports|in this

case the North and South|the program can easily accommodate this change in the number of

neighbors. No other source level changes are required.
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xMax(value[1:s][1:t], new[1:s][1:t], numChildren)

double value[1:s][1:t];

double new_value[1:s][1:t];

port Parent, Child[numChildren];

{

int i, j;

double local_max;

double temp;

/* Compute the local maximum */

local_max = abs(value[0][0] - new_value[0][0]);

for (i=1; i<=s; i++)

{

for (j=1; i<=t; i++)

{

temp = abs(value[i][j] - new_value[i][j]);

local_max = Max(temp, local_max);

}

}

/* Compute the global maximum */

for (i=0; i<numChildren; i++)

{

temp <== Child[i]; /* receive */

local_max = Max(temp, local_max);

}

Parent <== local_max; /* send */

/* Broadcast the result */

local_max <== Parent; /* receive */

for (i=0; i<numChildren; i++)

{

Child[i] <== local_max; /* send */

}

}

Figure 11: Parameterized X Level Code for the Max Phase
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The explicit dichotomy between local and non-local access encourages the use of di�erent al-

gorithms locally and globally. Batcher's sort, for example, bene�ts from this approach (see Sec-

tion 1). This contrasts with most approaches in which the programmer or compiler identi�es as

much �ne-grained parallelism as possible and the compiler aggregates this �ne-grained parallelism

to a granularity appropriate for the target machine.

Boundary Conditions. Typically, processes on the edge of the problem space must be treated

separately. In the Jacobi Iteration, for example, a receive into the East port must be conditionally

executed because processes on the East edge have no eastern neighbors. (Although our reference

to the \receive" operation implies a message passing language, shared memory programs also have

to deal with these special cases.) Isolated occurrences of these conditionals pose little problem,

but in most realistic applications these lead to convoluted code. For example, SIMPLE can have

up to nine di�erent cases|depending on which portions of the boundaries are contained within a

process|and these conditionals can lead to code that is dominated by the treatment of exceptional

cases [18, 38].

For example, suppose a program with a block decomposition assumes in its conditional expres-

sion that a process is either a NorthEast, East, or SouthEast section, as shown below:

if (NorthEast)

{

/* special case 1 */

}

else if (East)

{

/* special case 2 */

}

else if (SouthEast)

{

/* special case 3 */

}

A problem arises if the programmer then decides that a vertical strips decomposition would be

more e�cient. The above code assumes that exactly one of the three boundary conditions holds.

But in the vertical strips decomposition there is only one section on the Eastern edge, so all three

conditions apply, not just one. Therefore, the change in data decomposition forces the programmer

to rewrite the above boundary condition code.

Our model, however, attempts to insulate the port and code ensembles from changes in the

data decomposition: Processes send and receive data through ports that in some cases involve

interprocess communication and in other cases invoke derivative functions. The handling of bound-

ary conditions has thus been decoupled from the X level source code. Instead of cluttering up the

process code, special cases due to boundary conditions are handled at the problem level where they

naturally belong.

Reusability. The same characteristics that provide exibility in the Phase Abstractions also

encourage reusability. For example, the Car-Parrinello molecular dynamics program [45] consists

of several phases, one of which is computed using the Modi�ed Gram-Schmidt (MGS) method of

solving QR factorization. Empirical results have shown that the MGS method performs best with
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a 2D data decomposition [34]. However, other phases of the Car-Parrinello computation require a

1D decomposition, so in this case a 1D decomposition for MGS yields the best performance since it

avoids data movement between phases. This illustrates that a reusable component is most e�ective

if it is exible enough to accommodate a variety of execution environments.

Irregular Problems. Until now this paper has only described statically de�ned ensembles that

are array-based. However, this should not imply that Phase Abstractions are ill suited to dynamic or

unstructured problems. In fact, to some extent LPAR [28], a set of language extensions for irregular

scienti�c computations (see Section 7), can be described in terms of the Phase Abstractions. The key

point is that an ensemble is a set with a partitioning; to support dynamic or irregular computations

we can envision dynamic or irregular partitionings that are managed at runtime.

Consider �rst a statically de�ned irregular problem such as �nite element analysis. The pro-

grammer begins by de�ning a logical data ensemble that will be replaced by a physical ensemble

at runtime. This logical de�nition includes the proper record formats and an array of portnames,

but not the actual data decomposition or the actual port ensemble. At runtime a phase is run

to determine the partitioning and create the data and port ensembles: The size and contents of

the data ensemble are de�ned, the interconnection structure is determined, and the sections are

mapped to physical processors. We assume that the code ensemble is SPMD since this obviates

the need to assign di�erent codes to di�erent processes dynamically. Once this partitioning phase

has completed the ensembles behave the same as statically de�ned phases.

Dynamic computations could be generalized from the above idea. For example, a load balancing

phase could move data between sections and also create revised data and port ensembles to represent

the new partitioning. Technical di�culties remain before such dynamic ensembles can be supported,

but the concepts do not change.

Limits of the Non-Shared Memory Model. The non-shared memory model encourages good

locality of reference by exposing data movement to the programmer, but the performance advantage

for this model will be small for applications that inherently have poor locality. For example, direct

methods of performing sparse Cholesky factorization have poor locality of reference because of the

sparse and irregular nature of the input data. For certain solutions to this problem, a shared memory

model performs better because the single address space leads to better load balance through the

use of a work queue model [35]. The shared memory model also provides notational convenience,

especially when pointer-based structures are involved.

6 Portability Results

Experimental evidence suggests that the Phase Abstractions can provide portability across a diverse

set of MIMD computers [31, 32]. This section summarizes these results for just one program,

SIMPLE, but similar results were also achieved for QR factorization and matrix multiplication

[30]. Here we briey describe SIMPLE, the machines on which this program was run, the manner

in which this portable program was implemented, and the signi�cant results.

SIMPLE is a large computational uid dynamics benchmark whose importance to high per-

formance computing comes from the substantial body of literature already devoted to its study.

It was introduced in 1977 as a sequential benchmark to evaluate new computers and Fortran

21



Machine Sequent Intel Intel nCUBE BBN Transputer

model Symmetry A iPSC/2 S iPSC/2 F nCUBE/7 Buttery GP1000 simulator

nodes 20 32 32 64 24 64

processors Intel 80386 Intel 80386 Intel 80386 custom Motorola 68020 T800

memory 32MB 4 MB/node 8 MB/node 512 KB/node 4 MB/node N/A

cache 64KB 64 KB 64KB none none

network bus hypercube hypercube hypercube omega mesh

Table 1: Machine Characteristics

compilers [7]. Since its creation it has been studied widely in both sequential and parallel forms

[3, 9, 13, 16, 17, 23, 24, 37, 39].

Hardware. The portability of our parallel SIMPLE was investigated on the iPSC/2 S, iPSC/2 F,

nCUBE/7, Sequent Symmetry, BBN Buttery GP1000, and a detailed Transputer simulator. These

machines are summarized in Table 1. The two Intel machines di�er in that one the iPSC/2 S has a

slower Intel 80387 oating point coprocessor, while the other has the faster iPSC SX oating point

accelerator. The simulator is a detailed Transputer-based non-shared memory machine. Using

detailed information about arithmetic, logical and communication operators of the T800 [24], this

simulator executes a program written in a Phase Abstraction language and produces time estimates

for the program execution.

Implementation The SIMPLE program was written in Orca C. Since no compiler exists for any

language based on the Phase Abstractions, the SIMPLE program was hand-compiled in a straight-

forward fashion to C code that uses a runtime substrate for supporting the Phase Abstractions.

The resulting C code is machine-independent except for process creation, which is dependent on

each operating system's method of spawning processes.

Figure 12(a) shows that similar speedups were achieved on all machines. Of course, many

hardware characteristics can a�ect speedup, and these can explain the di�erences among the curves.

In this discussion we concentrate on communication costs relative to computational speed, the

feature that best distinguishes these machines. For example, the iPSC/2 F and nCUBE/7 have

identical interconnection topologies but the ratio of computation speed to communication speed is

greater on the iPSC/2 [11, 12]. This has the e�ect of reducing speedup because it decreases the

percentage of time spent computing and increases the fraction of time spent on non-computation

overhead. Similarly, since message passing latency is lowest on the Sequent's shared bus, the

Sequent shows the best speedup. This claim assumes little or no bus contention, which is a valid

assumption considering the modest bandwidth required by SIMPLE.

Figure 12(b) shows the SIMPLE results of Hiromoto et al. on a Denelcor HEP using 4096

data points [23], which indicate that our portable program is roughly competitive with machine-

speci�c code. The many di�erences with our results|including di�erent problem sizes, di�erent

architectures, and possibly even di�erent problem speci�cations|make it di�cult to draw any

stronger conclusions.

As another reference point, Figure 12(b) compares our results on the iPSC/2 S against those

of Pingali and Rogers' parallelizing compiler for Id Nouveau, a functional language [39]. Both
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Figure 12: (a) SIMPLE Speedup on Various Machines (b) SIMPLE with 4096 points

experiments were run on iPSC/2's with 4MB of memory and 80387 oating point units. All other

parameters appear to be identical. The largest potential di�erence lies in the performance of the

sequential programs on which speedups are computed. Although these results are encouraging for

proponents of functional languages, we point out that our results do not make use of a sophisticated

compiler: The type of compiler technology developed by Pingali and Rogers can likely improve the

performance of our programs as well. Moreover, our program requires only currently-available C

compilers to achieve portability.

Even though the machines di�er substantially|for example, in memory structure|the speedups

fall roughly within the same range. Moreover, this version of SIMPLE compares favorably with

machine-speci�c implementations. These results suggest, then, that portability has been achieved

for this application and these machines.

7 Related Work

Many systems support some type of global view of parallel computation, SPMD execution, and

data decomposition that are similar to various aspects of the Phase Abstractions. None, however,

provide support for an X-level algorithm that is di�erent from the Z-level parallel algorithm. Nor

do any provide general support for handling boundary conditions or controlling granularity. This

section discusses how some of these systems address scalability and portability in the aggregate

data parallel programming style.
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Dataparallel C. Dataparallel C [21] (DPC) is a portable shared-memory SIMD-style language

that has similarities to C++. Unlike the Phase Abstractions, DPC supports only point-wise par-

allelism. DPC has point-wise processor (poly) variables that are distributed across the processors

of the machine. Unlike its predecessor C* [40], DPC supports data decompositions of its data to

improve performance on coarse-grained architectures. However, because DPC only supports point-

wise communication, the compiler or runtime system must detect when several point sends on a

processor are destined for the same processor and bundle them. Also, to maintain performance of

the SIMD model on a MIMD machine, extra compiler analysis is required to detect when the per-

instruction SIMD synchronizations are not necessary and remove them. Because each point-wise

process is identical, meaning that edge e�ects must be coded as conditionals that determine which

processes are on the edge of the computation. Reusing such code is harder because the boundary

conditions may change from problem to problem. Constant and variable boundary conditions,

however, can be supported by expanding the data space and leaving some processes idle.

Dino. Dino [41] is a C-like, SPMD language. Like C*, it constructs distributed data structures

by replicating structures over processors and executing a single procedure over every element of

the data set. Dino provides a shared address space, but remote communication is speci�ed by

annotating accesses to non-local objects by the special # symbol, and the default semantics is

true message-passing. Parallel invocations of a procedure synchronize on exit of the procedure.

Dino allows the mapping of data to processes to be speci�ed by programmer-de�ned functions.

To ensure fast reads to shared data, a partitioning can map an individual variable to multiple

processors. Writes to such a variable are broadcast to all copies. Dino handles edge e�ects in the

same fashion as C*. Because Dino only supports point-wise communication, as in C*, the compiler

or runtime system must combine messages.

Mehrotra and Rosendale. A system described by Mehrotra and Rosendale [36] is much like

Dino in that it supports a small set of data distributions. However, this system provides no

way to control or determine precisely which points are local to each other, so it is not possible

to control communication costs or algorithm choice based on locality. On the other hand, this

system does not require explicit marking of external memory references as in Dino. Instead, their

system infers, when possible, which references are global and which are not. In algorithms where

processes dynamically choose their \neighbors," this simpli�es programming. Also, programs are

more portable than those written in Dino. The communication structure of the processor is not

visible to the programmer, but the programmer can change the partitioning clauses on the data

aggregates. SPMD processing is allowed, but there are no special facilities for handling edge e�ects.

Parallel Fortrans. Recent languages such as Kali [26], Vienna Fortran [6], and HPF [22] focus

on data decomposition as the expression of parallelism. Their data decompositions are similar to

the Phase Abstractions notion of data ensembles, but the overall approach di�ers fundamentally

from Phase Abstractions. Phase Abstractions require more e�ort from the programmer, while this

other approach relies on compiler technology to exploit loop level parallelism. This compiler-based

approach has clean semantics because it can guarantee deterministic sequential semantics, but it

has less potential for parallelism since there may be cases where compilers cannot transform a

sequential algorithm into an optimal parallel one.
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Kali, Vienna Fortran and HPF depart from sequential languages primarily in their support for

data decomposition, although some of these languages do provide mechanisms for specifying parallel

loops. Vienna Fortran provides no form of parallel loops. HPF has the FORALL statement that can

be used to specify loops with no loop carried dependencies. To ensure deterministic semantics of

updates to common variables by di�erent loop iterations, values are deterministically merged at the

end of the loop. This construct is optional in that the compiler will attempt to extract parallelism

even where FORALL is not used. In contrast to HPF's optional FORALL loops, Kali requires FORALL

loops with the same restriction that each loop can execute independently.

HPF and Vienna Fortran allow arrays to be aligned with respect to some abstract partitioning.

These are very powerful constructs. For example, arrays can be dynamically remapped, and proce-

dures can de�ne their own data distribution. Together these features are potentially very expensive

because although the programmer helps in specifying the data distribution at various points of the

program, the compiler must determine how to move the data. In addition to data distribution

directives, Kali allows the programmer to control the assignment of loop iterations to processors

through the use of the On clause, which can help in maintaining locality.

LPAR. LPAR is a portable language extension that supports structured, irregular scienti�c paral-

lel computations [28, 27]. In particular, LPAR provides mechanisms for describing non-rectangular

distributed partitions of the data space to manage load-balancing and locality. These partitions are

created through the union, intersection and set di�erence of arrays. Because support for irregular

decompositions has a high performance cost, LPAR syntactically distinguishes irregular decompo-

sitions so that faster runtime support can be used for regular decompositions.

3

Computations are

invoked on a group of arrays by the foreach operator, which executes its body in parallel on each

array, thus yielding coarse-grained parallelism. LPAR uses the overlapping indices of distributed

subarrays to support sharing of data elements. Overlapping domains also provide an elegant way

of describing multilevel mesh algorithms and computations for boundary conditions. There is an

operator for redistributing data elements, but LPAR depends on a routine written in the base

language to compute what the new decomposition should be.

The Phase Abstraction's potential to support dynamic, irregular decompositions is discussed

in Section 5. For multigrid decompositions, a sublanguage supporting scaled partitionings and

communication between scaled ensembles would be useful. The Phase Abstractions' support for

loose synchrony naturally supports the use of re�ned grids in conjunction with the base grid.

Split-C. Split-C is a shared-memory SPMD language with memory reference operations that

support latency-hiding [10]. Split-C procedures are concurrently applied in an \owner-computes"

fashion to the partitions of an aggregate data structure such as an array or pointer-based graph. A

process reads data that it does not own with a global pointer (a Split-C data type). To hide latency,

Split-C supports an asynchronous read|akin to an unsafe Multilisp future [20]|that initiates a

read of a global pointer but does not wait for the data to arrive. The read is guaranteed to be

complete only after a sync() operation has been called by the process, which blocks until all of

the process's outstanding reads complete. There is a similar operation for global writes. These

operations hide latency while providing a global namespace and reducing the copying of data in

and out of message queues. (Copying may be necessary for bulk communication of non-contiguous

3

Scott Baden, Personal Communication.
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data, such as the column of an array.) However, these operations can lead to complex programming

errors because a misplaced reference or synchronization operation can lead to incorrect output but

no immediate failure.

Array distribution in Split-C is straightforward but somewhat limited; some number of higher

order dimensions can be cyclically distributed while the remaining dimensions are distributed as

blocks. Load balance, locality, and irregular decompositions may be di�cult to achieve for some

applications. Array distribution declarations are tied to a procedure's array parameter declarations,

which can limit reusability and portability because a procedure's array declarations and the code

that depends on those declarations may need to change to tune distributions for a particular

architecture. This coupling can also incur a performance penalty because the bene�t of an optimal

array distribution for one procedure invocation may be o�set by the cost of redistributing the

array for other calculations that use the array. Split-C provides no special support for boundary

conditions. The typical trick of creating an enlarged array is possible; otherwise, irregularities must

be handled by conditional code in the body of the SPMD procedures.

8 Conclusion

The use of parallelism to satisfy the need for fast computing has been hampered by a lack of

portability, scalability and ease of programming, unacceptably increasing the cost and time required

to develop e�cient programs. Support is required for quickly programming a solution and easily

moving it to new machines as old ones become obsolete, or else the time saved by fast execution is

squandered in programming time.

Rather than de�ning a new parallel programming paradigm, the Phase Abstractions language

model supports well-known techniques for achieving high-performance|computing sequentially on

local aggregates of data elements and communicating large groups of data elements as a unit|by

allowing the programmer to partition the global data set across the parallel machine in a scalable

manner. Additionally, by separating di�erent aspects of a program into reusable parts|X level, Y

level, Z-level, ensemble declarations, and boundary conditions|the creation of subsequent programs

can be signi�cantly simpli�ed. This approach provides machine-independent, low-level control of

parallelism and allows programmers to write in an SPMD manner without sacri�cing the e�ciency

of MIMD processing.

Message passing languages have often been praised for their e�ciency, but they have been con-

demned for being di�cult to use. The contribution of the Phase Abstractions is a language model

that focuses on e�ciency while reducing the di�culty of non-shared memory programming. The

programmability of the Phase Abstractions model is exempli�ed by the straight-forward solution

of problems such as SIMPLE, as well as the ability to de�ne specialized higher-level sublanguages

such as an array language. Because the Phase Abstractions model is designed to be structurally

similar to an MIMD architecture, it performs very well on a variety of MIMD processors. This

claim is supported by tests on machines such as the Intel iPSC, the Sequent Symmetry and the

BBN Buttery.
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