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Abstract

The simulation of parallel architectures requires an enormous amount of CPU cycles and, in

the case of trace-driven simulation, of disk storage. In this paper, we consider the evaluation

of the memory hierarchy of multiprocessor systems via parallel trace-driven simulation. We

re�ne Lin et al.[10] original algorithm, whose main characteristic is to insert the shared

references from every trace in all other traces, by reducing the amount of communication

between simulation processes. We have implemented our algorithm on a KSR-1. Results of

our experiments on traces of four applications and three di�erent cache coherence protocols

show that parallel trace-driven simulation yields signi�cant speedups over its sequential

counter-part. The communication overhead is not substantial compared to the dominant

overhead due to the processing of replicated inserted references.

We also investigate �ltering techniques for multiprocessor traces. We show how to �lter

{in parallel{ private and shared references. Our technique generates �ltered traces for

various block sizes in a single pass. As expected, the simulation of �ltered traces is much

faster but parallel simulation of �ltered traces is not as e�ective since the ratio of un�ltered

shared to private references is now much larger.

�
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1 Introduction

The amount of computational cycles needed to simulate the performance of parallel archi-

tectures is extremely important. One would expect that the existing parallel systems could

be exploited to predict the performance of their successors by taking advantage of their own

ability to perform various tasks concurrently. In other words, parallel architectures should

be simulated using parallel simulation. Although simulation of parallel architectures and

parallel simulation sound similar, they designate two distinct entities. The former refers

to the system that is the target of the simulation while the latter de�nes the medium on

which the simulation is performed. The main reason why we would like to use parallel ma-

chines for simulation is that the detailed simulation of architectural features, either through

a trace-driven or an execution-driven method, is a very time and space consuming task.

Parallel systems can provide us with higher computation and storage capabilities. More-

over, an additional motivation is that the functioning of the target system exhibits natural

parallelism: instructions from distinct simulated processors may be issued and carried out

independently and concurrently.

State of the art simulators of parallel architectures such as Proteus[3] and Tango[8] run

on single processor workstations. Recently execution-driven parallel simulators for parallel

architectures [12, 4] have been implemented on speci�c parallel architectures (the TMI CM-

5 and BBN Butter
y respectively). The challenge in these parallel simulators is to have

e�ective means to simulate the communication among processors. To elaborate on this

point, assume that one processor of the simulation system is used to simulate one processor

of the target system. During the simulation, interprocessor communication will consist not

only of the explicit communication between two nodes in the simulated system but also of

many operations that involve parts of the target system such as the interconnection network

or the cache coherence mechanism. Since the simulation is software-based, the slow-down

due to the simulation of communication can erase, or even outweigh, the bene�ts of having

simulation processes running in parallel. It is therefore critical to keep the amount and cost

of communication as low as possible if we want to achieve good performance with parallel

simulation.

In this paper, we consider the evaluation of the memory hierarchy of multiprocessor

systems via parallel trace-driven simulation. Trace-driven simulation can be used to simulate

the e�ect of various cache coherence protocols, cache con�gurations and organizations,

and can also take into account the network topology and its parameters [5]. We consider

only simulation with real traces as input since the generation of synthetic traces does not

appear to o�er any speed advantage in a multiprocessor environment [2] with the drawbacks

of having to choose the system and application parameters to characterize the resource

demands of a certain workload. Our experiments will be based on real traces collected on

the Sequent multiprocessor system using MPTrace [6].

The remainder of the paper is organized as follows: In Section 2 we present the basic

idea of the parallel trace-driven simulation[10]. In Section 3 we describe how the commu-

nication problem was handled in the original algorithm and our techniques to reduce the

amount of unnecessary communication. In Section 4 we discuss implementation issues. In

Section 5 we present the performance results of the parallel simulation and the speedups

that were achieved using a KSR-1 system. Section 6 shows how �ltering, a technique used
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in uniprocessor trace driven simulation to reduce time and space requirement, can be in-

corporated successfully in parallel trace-driven simulation. Conclusions are given in Section

7.

2 The Basic Parallel Trace-driven Simulation Algorithm

Our goal is parallel trace-driven simulation of multiprocessor architectures. The target sys-

tem is a shared memory system in which each processor has a private cache memory. Pro-

cessors are connected to each other and to global memory via an interconnection network.

We focus our attention on snoopy shared-bus systems although the simulation techniques

described in this paper can be easily adapted to systems that are directory-based and use

other types of interconnection network. The input to the simulation is multiprocessor traces

{ a set of memory address trace �les. In the multiprocessor traces, memory references can

be divided into two types: private references and shared references with only the shared

references having potential e�ects on the status of other processors' caches.

The basic idea of the parallel simulation [10] is to preprocess the input traces so that the

shared references of each input trace are inserted into all the other input trace �les. Then

the preprocessed input trace �les for each simulated processor can be read in and simulated

concurrently. If the input traces included a timestamp for each event, there would be no

di�culty in the insertion process. We could simply merge the shared references into the

other trace �les by their timestamps. However, since the timestamp is not recorded in the

traces, we compute a pseudo timestamp for each event.

Let t

i�1

be the timestamp of the last event e

i�1

. Then the timestamp t

i

for the current

event e

i

is computed as follows:

1. if e

i

is a memory reference to a private variable, then t

i

= t

i�1

+c

pri

, where c

pri

is the average

number of cycles that a private reference takes. Since private references have very high cache

hit ratio, we assume that c

pri

= 1.

2. if e

i

is a memory reference to a shared variable, then t

i

= t

i�1

+ c

sh

, where c

sh

is the average

number of cycles that a shared reference takes. In our simulation, we assume that c

sh

= 10.

3. if e

i

is an instruction fetch, which is also a private reference, then t

i

= t

i�1

+c

pri

+c

ins

, where

c

ins

is the number of cycles the instruction takes without the presence of memory latency.

c

ins

is recorded by MPTrace when traces are collected.

It is important that the shared references and the inserted references be kept in the same

order in all the preprocessed input traces. This property is a necessary condition to guar-

antee that the parallel simulation algorithm described below is deadlock free. Note that

the traces inserted with shared references from other processors might not be a completely

accurate representation of the processes being traced, but they represent traces of \one"

possible execution.

When the preprocessed traces are simulated concurrently, it is only when shared refer-

ences and inserted references are encountered that there might be a need to communicate

with other processes. These references are called interaction points. Since preprocessing

identi�es all interaction points, the brute force approach to parallel simulation would be to

barrier synchronize the execution of the simulation processes at each interaction point.
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Shared Inserted

Protocol Read Write Read Write

hit miss hit miss

Berkeley

Illinois Y X

FBWO Y X

Fire
y Y Y X X

Dragon Y Y X X

Table 1: Communication requirements for di�erent protocols. An entry with \Y" means

that synchronization is required. An entry with X means that communication might be

necessary but detection is impossible using only local information

However it may not be necessary for all simulation processes to rendezvous at each in-

teraction point. Depending on the type of memory operations (read/write) and the cache

coherence protocol being simulated, it is possible that, at some interaction points, a simu-

lation process may be able to determine its cache status by only using its local information.

For such interaction points, there is no need for communication and the corresponding ref-

erences can be simulated in a fashion similar to the processing of private references. The

rest of the interaction points that still need communication and synchronization are called

synchronous points. Table 1 shows the synchronous points for di�erent cache coherence

protocols.

A sketch of the basic parallel trace-driven simulation process is then:

paralleldo i from 1..N

while ( not end of trace input i )

read in a memory reference event R ;

case (R.type)

private: nop;

shared : if ( R is a synchronous point )

wait until it receives a message about

the corresponding inserted reference

from each other cache simulation process ;

inserted: if ( R is a synchronous point )

send a message to the simulation process

whose input trace contains the

corresponding shared reference;

endcase

update the status of cache i ;

endwhile

endparalleldo
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3 The Communication Problem

In order to test the viability of parallel trace-driven simulation, we looked at three cache

coherence protocols, Berkeley, Illinois and Firely [1]. They are interesting because the

number of synchronization points increase with each protocol (see Table 1).

According to Table 1, there is no need for any kind of communication for the Berkeley

protocol (see [10] for a proof) since each cache simulation process can always decide its

status based on its own local information. The parallel simulation processes of the Berkeley

protocol can run independently and therefore the parallel simulation of this protocol rep-

resents the best case, communication-wise. In the case of the Illinois protocol, only shared

read misses are synchronous points. When a read of a shared reference, say r

t

, misses in

the cache C

i

(in the following we will denote by C

i

either the cache itself or the simulation

process simulating that cache's behavior), its simulation process needs to communicate with

the other cache processes to determine the state of the missing line. This communication

will occur when the other cache processes reach the inserted shared reference corresponding

to r

t

. In the case of the Fire
y protocol, this communication is required for both shared

read and shared write misses.

As can be seen from Table 1 there is no di�culty for a cache simulation process to �gure

out whether a shared reference is a synchronous point since all the required information

is local (type of operation and hit/miss information). However, whether communication is

required when an inserted reference is processed cannot be determined locally by the sim-

ulation process encountering the inserted reference. Instead Instead it depends on whether

its corresponding shared reference is a synchronous point or not. The local information

which was su�cient for shared references is no longer enough to decide when it is necessary

for an inserted reference to communicate.

Lin's original algorithm proposed a conservative approach, i.e., messages would be sent

when inserted references corresponding to potential interaction points were encountered.

In the case of the Illinois protocol, a cache simulation simply sends out messages for all

the inserted reads. In the case of the Firely protocol, messages are sent for all the inserted

references. Obviously this method could introduce a lot of unnecessary communication.

To reduce the communication overhead, we seek other information in order to exclude

extraneous sends and receives. We maintain a simulation time for each cache process C

i

.

The simulation time is computed in the same way as the pseudo timestamp (Section 2).

� Case 1: C

i

, with simulation time T

i

, is simulating an inserted reference R

i

ins1

with

corresponding shared reference R

sh1

in C

k

whose current simulation time is T

k

.

{ (1.1) If C

i

is slower than C

k

(T

i

< T

k

), then C

k

must have passed the shared reference

R

sh1

without waiting for a message from C

i

on the result of R

i

ins1

. This implies that

R

i

ins1

is not a synchronous point. Thus no message need to be sent.

{ (1.2) Otherwise (T

i

� T

k

) C

i

sends out a message to C

k

to inform C

k

of its status on

simulating R

i

ins1

.

� Case 2: C

i

is simulating a shared reference R

sh2

which is a synchronous point at time

T

i

. It needs the status of other processes. Let C

j

be another process with current

simulation time T

j

and let R

j

ins2

be the inserted reference corresponding to R

sh2

.
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Figure 1: The data structure of message queues

{ (2.1) if C

i

is slower than C

j

(T

i

< T

j

), it must be the case that C

j

has simulated R

j

ins2

since R

j

ins2

and R

sh2

have the same timestamp. When C

j

was simulating R

j

ins2

, it was

not able to judge whether R

j

ins2

was a synchronous point or not because at that time

C

j

's simulation time was greater than C

i

's also. Thus, following 1:2, C

j

already sent a

message to C

i

, say at time t

0

. In fact, C

j

might have sent other messages to C

i

prior

to t

0

that were not read by C

i

since they did not correspond to synchronization points.

Since, as described below, messages between C

j

and C

i

are entered in a queue in a FIFO

manner, ordered by timestamp, more e�cient techniques than a linear search can be

used, e.g. binary search, to retrieve the message corresponding to R

j

ins2

.

{ (2.2) If C

i

is faster than C

j

(T

i

� T

j

) it has to wait for a message from C

j

to arrive.

When C

j

encounters the inserted reference R

j

ins2

at T

0

j

while C

i

is waiting, it must be

that T

i

= T

0

j

. According to 1:2, a message will be sent from C

j

to C

i

.

The major data structure to facilitate the interprocess communication is a set of message

queues. For each pair of cache simulation processes C

i

(sender) and C

j

(receiver), there is a

dedicated message queue MQ

ij

(cf. Figure 1). Due to the fact that C

i

needs to write to a

message queue (message send) more often than it needs to read from it (message receive),

we choose to place the queue closer to its writer than to its reader.

We can now present a more detailed version of the parallel trace-driven simulation

algorithm.

paralleldo i from 1..N

while ( not end of trace input i )

read in a memory reference event R ;

case (R.type)

private: nop;

shared :

if ( R is a synchronous point )

{

for j = 1 .. N && j != i {

if ( len (msg_queue[j][i] >0 )
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search the message queue and extract

the useful message;

update the message queue by deleting

the messages that are older than the

requested message ;

}

else {

busy waiting until the message arrives

}

}

}

inserted: /* R is inserted from trace j */

if ( R is a synchronous point )

if ( simu_time[i] < simu_time[j] ) {

send a message to the simulation process

whose input trace contains the original

corresponding shared reference;

}

endcase

update the status of cache i ;

endwhile

endparalleldo

4 Implementation

4.1 Preprocessing

The preprocessing of input traces calls for the insertion of the shared references into all

the other trace �les. If this were implemented literally, the total size of the traces would

expend signi�cantly. Assume that we are tracing an application on N processors, i.e., we

have N input trace �les, each of average length L, and with a proportion f

share

of shared

references. Then the total amount of extra memory needed to store the inserted references

isN � (N � 1)� L� f

share

. For example, withN = 10 and f

share

= 5%, the extra memory

required would be about 50% of the original trace. To mitigate the potential pressure on

the disk space, we create a temporary �le by extracting all the shared references from the

trace �les and assigning a timestamp to each event (as mentioned in Section 2). In addition

to the timestamp, the inserted references carry also the identi�cation of the process that

generates the shared reference. Then we sort, in increasing timestamp order, the shared

references from this temporary �le into a shared reference �le. The amount of extra space

needed for this implementation is N�L�f

share

, i.e., an overhead proportional to N rather

than to N

2

. The tradeo� for the memory (on disk for archival storage and in main memory

while processing) saved by this approach is the extra amount of time required for merging

the shared reference �le with the individual trace streams during simulation. The time to

extract and sort the shared reference �le is a one-time cost that is roughly equivalent to the
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cost of merging inserted references if we were to adopt a straightforward implementation.

4.2 Merging the Shared Reference File with the Individual Trace File on

the Fly

From the point of view of a speci�c simulation process C

i

, the shared reference �le contains

shared references, the ones with C

i

's own id, and inserted references, those with the id's of

other processes. The input trace �les containing the original private and shared references

are not modi�ed.

When performing the parallel simulation, each simulation process C

i

has two input

streams, its original trace �le F

i

, and the shared reference �le F

sh

. C

i

computes the simu-

lation time for F

i

on the 
y in the same way as the timestamps in the shared reference �le

were generated. Thus the simulation time and the timestamps of the shared and inserted

references have the same meaning. Let t

i

be the current simulation time for C

i

and t

sh

be

the timestamp of the next unprocessed (by C

i

) reference in F

sh

. We compare t

i

with t

sh

to

decide which of the two references e

i

in F

i

or e

sh

in F

sh

to process:

1. if t

i

< t

sh

, simulate e

i

, the next reference in F

i

, and e

i

is a private reference.

2. If t

i

> t

sh

, simulate e

sh

and e

sh

is an inserted reference.

3. If t

i

= t

sh

, then simulate \both" with

(a) if the id of e

sh

is C

i

's id, then simulate as a shared reference.

(b) otherwise, simulate as an inserted reference.

The simulation process can then proceed as in the algorithm given in Section 3.

4.3 The Communication Cost on Shared Memory Cache Coherent Ar-

chitectures

Our parallel trace-driven simulator has been implemented on KSR-1 { a shared memory

architecture with coherent caches [9]. Each simulation process is on a di�erent KSR-1

node (processor + cache). Communication between the simulation processes is through

sender/receiver message queues (see Figure 1) located in the sender's memory. Each of the

N � 1 initially empty queues on each processor is a circular bu�er whose empty elements

will automatically be recycled. Send and Receive are implemented as follows.

Message Send: When a process C

i

needs to send a message M

1

to C

j

, it writes M

1

into the message queue MQ

ij

. Suppose ADDR

1

is the address where M

1

is to be written

and it maps to cache block B. There are two possible situations: (1) No other process has

cached ADDR

1

and (2) there is one, most likely C

j

, or more processes which happen to

have copied the content of B due to reading some old message in ADDR

1

. In the former

case, since C

i

is the exclusive owner of the cache block B, the write can proceed locally. In

the latter case, C

i

has to invalidate the block B on other processor(s), which is as expensive

as a cache read miss.

Message Receive: When C

i

is to receive a messageM

2

from C

k

, it needs to search the

message queue MQ

ki

to �nd M

2

. At this time, all the cache blocks containing messages in

MQ

ki

that have not been read by C

i

are in exclusive state in C

k

. Therefore in the process
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of searching M

2

, C

i

will incur a series of cache read misses and copy all the messages it

touches into its own cache.

On the KSR-1, the memory latency ratio between a cache miss and a cache hit is 8:1,

if the item is in the (local) second level cache, and about 70:1 if the item is in the �rst

level cache. From the above description of send and receive operations, we can see that

a send is much cheaper than a receive in our implementation. In our parallel simulation

algorithm, we mainly rely on the binary search of message queues MQ

ij

to reduce the

number of messages to retrieve in the receive case. In addition, when a simulation process

C

i

encounters a cache read miss of the target system, it does not necessarily check on all

the other processes. As soon as C

i

receives a message informing it that another process

contains the missed cache block, it can decide its cache status and stop inquiring about

other processes. For the Fire
y protocol, we do the same for the write misses as well. As

we shall see later in 5.3, about 70%-90% of message retrieves are saved by the above two

optimizations. The reduction in the number of messages retrieved does not only speed up

the receiving process but also helps the sending process because less invalidations need to

be issued.

4.4 The I/O Issue

Another implementation issue involved in parallel trace-driven simulation is the I/O prob-

lem. It is well-known that trace-driven simulation is I/O intensive[2]. For parallel trace-

driven simulation, it would be most e�cient if concurrent simulation processes could read

their own input traces in parallel. Unfortunately, for most parallel systems, parallel I/O,

i.e., I/O at each node of the system, is not available. In the system on which we ran our

experiments the processes have to go through a single disk read/write header to fetch the

data, which means that all the I/O is sequential. This fact would hide any bene�t that

could possibly be obtained by doing parallel simulation if I/O time were to dominate simu-

lation time. In order to look at the impact of the parallel simulation algorithm, we discount

the I/O artifact. We read the traces into bu�ers and then simulate. This approach would

be realistic if we were to perform several simulations on the same set of data so that the

I/O overhead could be amortized over multiple simulations; Or if I/O could be performed

in parallel, I/O bu�ering could e�ectively overlap the I/O activities with the simulation

computation. In our simulator, we create a special process for I/O bu�ering. Before the

simulation starts, it reads in a big part of the trace for each process. Then the simulation

is started in parallel. During the simulation, whenever one or more of the trace bu�ers are

empty, all the simulation processes are stopped and wait for I/O bu�ering. The simulation

is resumed after the I/O process �lls trace data into the empty bu�er(s) and the time to do

the I/O is not counted in the execution time.
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APPL Num of Refs Sh Refs(%) Sh Reads(%) SR Misses Sh Writes(%) SW Misses

Water 2997322 46693(1.56) 39711(1.32) 1554 6982(0.23) 1517

Locus 2997196 121622(4.06) 101242(3.38) 3864 20380(0.68) 2917

Mp3d 2949901 238700(8.09) 131305(4.45) 5584 107394(3.64) 14091

Max
ow 4209327 458954(10.90) 374545(8.90) 26147 84409(2.01) 18148

Table 2: The sharing characteristics of the applications: Columns give name of the applica-

tion, total number of references (including instruction fetch), number of shared references,

number of shared read references, number of shared read cache misses, number of shared

write references, and number of shared write cache misses. Cache miss numbers are based

on the Berkeley protocol.

5 Performance Results

5.1 Applications and Traces

Four applications were chosen to measure the performance of the parallel simulator. They

are Water, Locus, Mp3D and Max
ow. These applications were selected because they are

\real applications", the proportion of shared references varies from application to application

so that we can examine the parallel simulation performance as a function of the amount of

shared references, i.e., communication, and the traces were already collected.

Among the four applications, the �rst three are in the Splash benchmark suite [13]. Wa-

ter is a scienti�c application which simulates the evolution of a system of water molecules in

the liquid state. Locus is a commercial quality VLSI standard cell router. Mp3d solves prob-

lem in rare�ed 
uid 
ow simulation. The last application Max
ow is a parallel algorithm

to compute the maximum 
ow of a network.

Table 2 shows the memory access characteristics of the four applications. All of the

above applications have 12 input trace �les. The data given in Table 2 are average numbers

for the multiple trace streams of one application. The caches that were simulated were

512KB, 2-way set associative with a block size of 32 byte.

5.2 A Simple Performance Model

Before we present the performance data of the parallel simulation, we introduce a simple

model to estimate the best results that we can expect from the parallel simulation algorithm.

The overhead of the parallel simulation consists of the overhead of processing the inserted

references and the overhead of communication. In the case of the Berkeley protocol, there

is no communication overhead at all. With N , L and f

share

de�ned as in Section 4.1,

the (average) number of references to be processed by a single simulation process will be

L+L�f

share

�(N�1). Assume that it takes a unit time to simulate one memory reference.

Then the sequential simulation time is:

T

seq

= N � L
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APPL maxspeedup speedup MSG waiting(%) save in snd(%) save in rcv(%)

Water B 10.2 9.2 0 0 0

Water I 10.2 8.2 3.12 5.44 89.42

Water F 10.2 7.7 5.02 12.56 80.54

Locus B 8.3 7.2 0 0 0

Locus I 8.3 6.3 6.09 5.98 88.86

Locus F 8.3 6.2 6.11 7.09 75.81

MP3D B 6.35 5.92 0 0 0

MP3D I 6.35 5.13 4.45 8.64 86.22

MP3D F 6.35 5.01 5.08 14.05 73.16

Max
ow B 5.46 5.01 0 0 0

Max
ow I 5.46 4.14 4.02 4.22 82.97

Max
ow F 5.46 3.82 4.99 34.48 86.64

Table 3: The performance statistics of the parallel simulation: Columns give application

and cache coherence protocol (B { Berkeley, I { Illinois, F { Fire
y), speedup upper bound of

the parallel simulation, real speedup, accumulated time waiting on messages (in percentage

of the total execution time), savings in the messages sent, and savings in the messages

retrieved. Savings are computed based on the potential communication volume.

The parallel simulation time, without communication, is:

T

para

= L+ L� f

share

� (N � 1)

The best performance (speedup) that we can expect is therefore:

MAXSpeedup =

T

seq

T

para

=

N � L

L+ L� f

share

� (N � 1)

=

N

1 + f

share

� (N � 1)

(1)

The �rst column of Table 3 gives the upper bounds of the speedups for the four applications.

The communication overhead in the Illinois and Firely protocols is more di�cult to

estimate. An upper bound on the number of messages, e.g., if we were to follow Lin's

original algorithm, is the number of inserted reads, (N � 1) � Sh Reads, for the Illinois

protocol, and the number of inserted references, (N�1)�Sh Refs for the Fire
y protocol.

A lower bound would be SR Misses for Berkeley and (SR Misses + SW Misses) for

Fire
y if the processor incurring the miss had an oracle telling it which processor to poll

to get the status of the missing line. If this oracle did not exist, like in the simulation, the

above numbers would have to be multiplied by some factor between 1 and N � 1.
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5.3 Experiment Results

Table 3 shows the results of our experiments. The data given in Table 3 are average

numbers of several simulation runs and represent averages of the multiple streams for a

given application. We can make the following observations.

Observation 1: The real speedup of the parallel simulation of the Berkeley protocol is

close to its performance upper bound. The source of the di�erence is in our implementation.

As mentioned in 4.1, in order to save disk space, we actually do not insert shared references

from other processes into the original traces. Instead we create a shared reference �le.

When executing the parallel simulation, we experience the overhead of merging the shared

reference �le with the original trace �les. This requires extra timestamp comparisons.

Observation 2: The performance di�erence between the simulation of the Berkeley pro-

tocol and the simulation of the other two protocols is small. This implies that the commu-

nication cost introduced in simulating the Illinois and the Fire
y protocols does not cause

a severe performance degradation. Table 3 shows that the message waiting time, the syn-

chronization overhead incurred in communication, is a small fraction of the total execution

time (at most 7%). We also display the savings of the messages sent and received over the

initial algorithm. As can be seen, the saving in the amount of the messages sent is not

great. However the amount of messages retrieved (in the receive process) is dramatically

reduced. Since the \send" are almost always local and much less costly than the \retrieve",

the search scheme and the data structure we have implemented are the right choices for

reducing the communication overhead.

Observation 3: Usually the computation-to-communication ratio gives a good idea of the

performance of a parallel program, with the higher ratio yielding the better performance.

In our case, we estimated this ratio as the amount of references processed in the traces

divided by the amount of costly communication (messages retrieved). By using this metric,

MP3D has a lower ratio than Max
ow when simulating the Fire
y protocol. However,

the speedup in Max
ow is signi�cantly lower (by about 20%). This is because the most

signi�cant part of the overhead, namely the processing of inserted references, is not re
ected

in the computation-to-communication ratio. As shown in Table 2, Max
ow's percentage of

inserted references is higher than MP3D's. This clearly dominates the communication costs.

Essentially the insertion of the shared references from other processors is a tradeo� for low

cost communication because all the interaction points are identi�ed before the simulation

begins and synchronization is very e�cient.

The performance data of the Fire
y protocol is of particular importance because the

communication incurred in the simulation re
ects the real amount of bus or interconnect

activities that would be involved in the simulated target systems. If more detailed memory

system simulations were desired, we would expect that all the shared read and write misses

i.e., the references that supposedly involved some bus transaction in the target system,

would require some sort of communication among the simulation processes.

12



6 Filtering

6.1 Filtering Multiprocessor Traces

Very long traces are required to study the behavior of large caches. Reducing the length of

the traces will reduce both simulation compute and I/O times and storage space on disk.

A number of �ltering techniques have been proposed to compact single processor traces

[11, 14]. Wang and Baer [15] extended trace reduction to multiprocessor traces. The basic

idea behind trace reduction is to make use of the cache inclusion property. If a reference

causes a hit in a small direct-mapped cache, it will also be a hit in a larger cache under

the condition that the larger cache has the same block size as that of the smaller cache.

Therefore, if we are interested in metrics such as hit ratios, we can remove from the traces

those references that hit in the small cache.

Note that in multiprocessor systems the �ltering will be slightly di�erent. Not only

do we need to keep all references that miss in the �lter cache but we must also keep the

(shared) references that will potentially modify the status of corresponding lines in other

caches. For example, shared write references that hit the �lter cache in a non-exclusive

state must be kept in the reduced trace.

The currently existing �ltering techniques can be easily adapted to parallel trace-driven

simulation. First, we can �lter multiprocessor traces in parallel and, second, we do not

need to modify conceptually the parallel simulation algorithm presented previously. There

is however one implementation question that requires changes, namely the generation of

the simulation clock times while processing the traces. Our solution is to write timestamps

into the �ltered traces during the �ltering process.

6.2 Releasing the Condition of Single Block Size

Straightforward �ltering techniques require that the caches to be simulated have the same

block size as that of the �lter cache. This means that we need to produce and save reduced

traces for every possible block size under study. It is not unlikely that the space savings

gained from the trace reduction would be erased by the need to save every �ltered trace.

Wang and Baer [15] advocate generating universal reduced traces by collecting the superset

of misses that occur on every cache �lter with di�erent block sizes. We describe now a

methodology for obtaining such universal reduced traces.

It is easy to oberve that the inclusion property necessary for �ltering does not hold when

we use caches with di�erent block sizes. Consider the example shown in Figure 2. Cache

C

1

is a small direct-map cache with block size of 1 word. Cache C

2

is a larger direct-map

cache with block size of 4 words. Let R

1

, R

2

and R

3

be 3 read references to words X , Y

(Y 6= X + 1) and X respectively. Assume that X and Y map to two consecutive blocks in

the small cache. Figure 2 shows the contents of the two caches after the execution of R

1

(part A) and R

2

(part B). Now when R

3

is executed, we have a hit in the �lter cache C

1

and a miss in the large cache C

2

. The same situation can occur in multiprocessor traces

upon invalidations. Assume the status depicted in Figure 3 part A. Then, another processor

writesX and an invalidation based protocol is used. The resulting status is shown in Figure

3 part B. Now a read reference to X + 1 hits in the �lter cache and misses in the larger

cache.
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Figure 3: The invalidation that inviolates the cache inclusion property in multiprocessor

traces.
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APPL Tot Refs (Rduced %) Pri Refs (Rduced %) Sh Refs(Rduced %)

Water before 2997321 2950628 46693

after 22186 (99.26) 11729 (99.60) 10457 (77.60)

Locus before 2997195 2875573 121622

after 37353 (98.76) 6738 (99.77) 30615 (74.83)

MP3D before 2949858 2711157 238701

after 134016 (96.46) 5706 (99.79) 128310 (46.25)

Max
ow before 4209327 3750372 458955

after 132274 (96.86) 4125 (99.89) 128149 (72.08)

Table 4: The references preserved during the �ltering process. Columns give application,

total number of references (including instruction fetch), number of private references and

number of shared references before and after �ltering.

In order to gather a correct universal reduced trace, we perform extra invalidations in the

�lter cache whenever cache replacement or cache invalidation is in order. The invalidation

size is set to be as large as the largest cache block size one would like to study. More

speci�cally, when a cache block needs to be replaced or invalidated, we invalidate all the

cache blocks in the �lter cache that would be in con
ict with the new cache block if the

biggest block size were used. It can be proven (by contradiction) that the cache simulation

based on the �ltered trace generated by the method described above will produce the same

cache miss results as if the full length trace had been used.

Table 4 shows that �ltering works very well for the private references and reasonably

well for the shared references. We used a rather large �lter cache (eight times smaller than

the caches used in the experiments). On average over 96% of the private references and

about 70% - 80% of the shared references are �ltered except for MP3D. The reason that

the �ltering rate of the shared references of MP3D is low is that about 44% of the shared

references are write operations.

Table 5 shows the speedup results based on the �ltered traces. Because �ltering makes

the shared references become the majority of the memory references in the traces, the

speedups of the parallel simulation based on the �ltered traces are signi�cantly lower than

those based on the full trace. In the best case, Water, the speedup is about 2:8. As

mentioned before the main cause of the low speedups is the overhead of processing the

inserted references.

7 Conclusion

In this paper we have shown that parallel trace driven simulation of multiprocessor traces

is viable and can lead to signi�cant speedups. Starting from Lin's conservative algorithm,

we have described how the amount of necessary communication could be reduced. Our

implementation on a KSR-1 system produces speedup results close to the upper bounds

predicted by a simple model. Simulation of the protocols that require more synchronization

points do not, as expected, enjoy the same level of speedup. However, the main overhead
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APPL spdup

Water B 2.85

Locus B 1.81

MP3D B 1.60

Max
ow B 1.92

Table 5: The performance of the parallel simulation based on the �ltered traces. Columns

give application and cache coherence protocol (B { Berkeley) and speedup.

in the method is the processing of the shared references that need to be inserted in all the

traces. The simulation speedup decreases when the level of sharing increases in the real

application being traced.

In addition we have studied �ltering techniques for multiprocessor traces. We generate

universal �ltered traces that allow subsequent simulations with di�erent block sizes. Our

results show that the technique is e�cient in �ltering both private and shared references.

The speedups obtained on �ltered traces are not as impressive since a large portion of the

�ltered traces consist of un�ltered shared references.
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